JP2003115293A - 二次電池用負極およびそれを用いた二次電池、および負極の製造方法 - Google Patents

二次電池用負極およびそれを用いた二次電池、および負極の製造方法

Info

Publication number
JP2003115293A
JP2003115293A JP2002212547A JP2002212547A JP2003115293A JP 2003115293 A JP2003115293 A JP 2003115293A JP 2002212547 A JP2002212547 A JP 2002212547A JP 2002212547 A JP2002212547 A JP 2002212547A JP 2003115293 A JP2003115293 A JP 2003115293A
Authority
JP
Japan
Prior art keywords
negative electrode
layer
lithium
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002212547A
Other languages
English (en)
Other versions
JP4415241B2 (ja
Inventor
Jiro Iriyama
次郎 入山
Hirochika Yamamoto
博規 山本
Tamaki Miura
環 三浦
Koji Utsuki
功二 宇津木
Masahito Shirakata
雅人 白方
Mitsuhiro Mori
満博 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002212547A priority Critical patent/JP4415241B2/ja
Priority to CNB028150155A priority patent/CN100539257C/zh
Priority to PCT/JP2002/007774 priority patent/WO2003012898A1/ja
Priority to TW091117268A priority patent/TW557597B/zh
Priority to US10/485,474 priority patent/US7202000B2/en
Publication of JP2003115293A publication Critical patent/JP2003115293A/ja
Application granted granted Critical
Publication of JP4415241B2 publication Critical patent/JP4415241B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】 高い充放電効率および良好なサイクル特性を
維持しつつ、リチウムイオン二次電池の電池容量を実質
的に向上させる。 【解決手段】 炭素を主成分とする第1負極層2aと、
リチウム成分を透過できる膜状材料を主成分とする第2
負極層3aと、リチウム、および/またはリチウムを含
有する化合物を主成分とする第3負極層4aとを含む多
層構造を有する二次電池負極とする。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、二次電池用負極お
よびそれを構成要素とする二次電池、及び負極の製造方
法に関する。
【0002】
【従来の技術】携帯電話やノートパソコン等のモバイル
端末の普及により、その電力源となる二次電池の役割が
重要視されている。これらの二次電池には小型・軽量で
かつ高容量であり、充放電を繰り返しても、劣化しにく
い性能が求められる。これらの二次電池の負極には、高
エネルギー密度でかつ軽量という観点から金属リチウム
を用いられることもあるが、この場合充放電サイクルの
進行にともない、充電時にリチウム表面に針状結晶(デ
ンドライト)が析出し、この結晶がセパレータを貫通
し、内部短絡を起こし、電池の寿命が短くなるという課
題があった。
【0003】また、組成式がLiaA(AはAlなどの
金属からなり、aは0<a≦5)で表されるリチウム合
金を負極として用いることが検討されている。この負極
は単位体積当りのリチウムイオンの吸蔵放出量が多く、
高容量であるものの、リチウムイオンが吸蔵放出される
際に膨脹収縮するために充放電サイクルの進行に伴って
微粉化が進行する。このため、充放電サイクル寿命が短
いという課題があった。また、リチウムイオンを吸蔵・
放出可能な黒鉛やハードカーボン等の炭素材料を負極と
して用いた場合、充放電サイクルを良好に繰り返すこと
ができるが、黒鉛材料は金属リチウム、リチウム合金と
比較しその容量は小さく、ハードカーボンは初回充放電
における不可逆容量が大きく充放電効率が低いためエネ
ルギー密度が小さくなるという課題があった。
【0004】そこで炭素負極の容量、充放電効率を向上
させるためこれまで多くの検討が行われてきた。容量を
向上させる方法として、例えば特開平9−259868
号公報には、Liイオンの吸蔵、放出助剤として、粒径
の小さいアルミニウム、鉛、銀を炭素材料に添加するこ
とにより高容量化を図る技術が開示されている。また再
公表特許WO96/33519号には、Sn等を含む非
晶質金属酸化物を負極材料として用いることが開示され
ている。非晶質金属酸化物負極は、金属リチウム、リチ
ウム合金に比べて充放電サイクルを良好に繰り返すこと
ができるとされている。
【0005】また特開平7−326342号公報にはカ
ーボン層の表面にLi合金からなる多孔性の層が形成さ
れてなる積層体を活物質として有することを特徴とする
リチウム二次電池負極が開示されている。この負極によ
り大きな放電容量と高い起電力とを兼ね備えるリチウム
二次電池を提供することができるとされている。また、
負極の劣化を防止することを目的として、特開平5−2
34583号公報では、アルミニウムでコーティングし
たカーボン材を負極材料として用いることが提案されて
いる。これにより、リチウムイオンがカーボン層間に溶
媒和された状態でインターカレーションするこことが防
止され、この結果、カーボン層の損傷を防ぎサイクル特
性が急速に劣化することを抑制できるとされている。
【0006】一方、充放電効率を改善する方法として、
例えば特開平5−144473号公報には負極板の最外
周部に金属Li箔を貼付し炭素中に拡散させることが開
示されている。この方法により高エネルギー密度で耐過
放電特性に優れた非水電解液二次電池が得られるとされ
ている。また特開平5−234621号公報には負極活
物質としてあらかじめリチウム粉末を電極上に付着させ
た炭素材料を用いることが開示されている。この負極に
より充放電容量差を解消でき高容量で安全な電池が提供
できるとされている。
【0007】また特開平5−234621号公報には多
層構造を有し、炭素質物を主成分とする担持体に、活物
質であるアルカリ金属を担持させた二次電池用電極が開
示されている。これにより電極容量が大きく充放電サイ
クル特性が優れた二次電池用負極電極が得られるとされ
ている。また特開平5−242911号公報には負極に
電気的に接続されている構成部品であって、負極活物質
以外の構成部品に、電池を組み立てる時に、あらかじめ
金属リチウムを電気的に接続することが開示されてい
る。これによりエネルギー密度を高めて、過放電特性を
向上できるとされている。
【0008】特開平10−144295号公報には、炭
素材料表面にリチウムと合金を作らない導電性金属を蒸
着し、さらに、この導電性金属の表面に金属リチウムを
蒸着したことを特徴とする負極が開示されている。この
負極により、負極活物質へリチウムイオンを効率よく吸
蔵させて、負極におけるロス容量の補填を確実に行い、
初期の充放電効率を高めることができるとともに、電池
用容量を増加させ、さらに充放電サイクル特性を向上さ
せることができるとされている。特開平5−27507
7号公報には、負極の構成要素として用いられるカーボ
ン材の表面をリチウムイオン伝導性固体電解質の薄膜で
コーティングしたリチウム二次電池用の負極が開示され
ている。これによりカーボン材を負極として使用し且つ
炭酸プロピレンを電解液の有機溶媒の少なくとも一部と
して使用する改良されたリチウム二次電池を提供できる
とされている。特開2000−182602号公報に
は、リチウムを吸蔵、放出可能な非晶質酸化物からなる
負極シートにリチウムを主体とした金属箔が貼付された
二次電池用負極が開示されている。
【0009】
【発明が解決しようとする課題】しかしながら、特開平
9−259868号公報に開示されている粒径の小さい
アルミニウム等を炭素材料に添加する技術は、炭素材料
中に金属粒子を均一に分散することが困難であり、負極
中に金属が局在化してしまう結果、充放電サイクルを繰
り返したとき電界の局所的集中のため電極の充放電状態
が不均一になり、電極の変形、活物質の集電体からの剥
離等が発生する課題があった。このため高水準のサイク
ル特性を維持することは困難であった。再公表特許WO
96/33519号に開示されているSnBbc
d(bは0.4〜0.6、cは0.6〜0.4、dは1
〜7)金属酸化物アモルファス材料は初回充放電におけ
る不可逆容量が大きく電池のエネルギー密度を充分高く
することが困難であるという課題を有していた。
【0010】さらに、上記従来技術は、高い動作電圧が
得られないという共通の課題を有していた。その理由
は、金属と炭素系材料を混合した場合、放電曲線におい
て炭素より高い電圧に金属特有のプラトーを形成するた
め、負極として炭素のみを使用した場合と比較し動作電
圧が低くなるからである。リチウム二次電池は用途に応
じて下限電圧が定められている。したがって動作電圧が
低くなると使用可能領域が狭くなり、結果として、実際
に電池が使用される領域において容量増加を図ることは
困難になる。一方、特開平5−234583号公報に開
示されている、アルミニウムを用いた負極材料では、サ
イクルを繰り返すと急速に容量が低下するという課題を
有していた。これは、電解質内に存在する水等の不純物
とアルミニウムが反応してアルミニウム表面に薄い絶縁
膜が生成することが原因と考えられる。
【0011】また特開平5−144473号公報、特開
平5−234621号公報、特開平5−242911号
公報、特開平5−275077号公報、特開平7−32
6342号公報等に開示されている炭素負極にリチウム
金属やリチウム合金を混合、添加、あるいは貼付する等
の方法では充放電効率の改善は不十分である。その理由
は炭素と、金属Liやリチウム合金が直に接触すると、
加えたリチウム金属やリチウム合金が炭素表面の活性な
官能基や吸着水等の不純物と反応し炭素表面に皮膜を形
成するためである。このような皮膜に含まれるリチウム
は電気化学的に不活性であり、電池の充放電容量に寄与
することができない。よって上記の方法では、充放電効
率の改善は不十分である。さらにこれらの皮膜は電気抵
抗が大きいため電池の抵抗が増大してしまい、電池の実
効容量はむしろ減少する問題点があった。
【0012】また特開2000−182602号公報に
は、リチウムを吸蔵、放出可能な非晶質酸化物からなる
負極シートにリチウムを主体とした金属箔が貼付された
二次電池用負極が開示されているが、非晶質酸化物の負
極シートとして具体的に開示されているのは、Sn、A
l、B、P、Si等の活物質を結着剤で固めた構成のも
のである。このようなシートは、微視的スケールにおい
て金属分布の不均一が生じることは避けられず、結果と
して電界の局所的集中が発生する。また結着剤がリチウ
ム金属箔と直に接触すると結着剤とリチウム金属箔の一
部が反応し抵抗の高い皮膜を生じる。これらの理由によ
り、高水準のサイクル特性を維持することは困難であっ
た。正極の充放電効率が、負極の充放電効率より大きい
通常のリチウムイオン二次電池では、正極と負極の充放
電容量を同じにして電池を構成すると、繰り返し充放電
に使用できる容量つまり可逆容量は、図11aに示すよ
うに正極の方が負極より大きくなっている。この電池の
可逆容量は負極の可逆容量と同じになっている。つまり
正極の可逆容量C1と負極の可逆容量A1の差である(C
1−A1)は電池の可逆容量には寄与しないためエネルギ
ー効率が低くなっている。リチウム二次電池では、正極
の可逆容量と負極の可逆容量が等しい場合に最も効率良
く充放電が行われる。これを考慮すると、図11bに示
すように、負極の容量を(C1−A1)分だけ増加させて
負極全体の可逆容量をA2を正極の可逆容量Cと等しく
すると、エネルギー効率の優れた二次電池が得られるよ
うに思われる。しかしながらこの二次電池では、負極の
可逆容量と不可逆容量の比自体には変動がなく、その不
可逆容量はB1からB2に増加している。充電の際に正極
の可逆容量分のリチウム成分がまず負極の不可逆容量分
を埋め、その後に負極の可逆容量分の充電を行うため、
図11bに示す容量の正極及び負極を使用する二次電池
ではそのエネルギー効率が向上するとは限らず、むしろ
低下することが多い。このように図11a及びbに示す
相対的な容量を調節する手法ではエネルギー効率の改良
に限界があり、負極の不可逆容量に対する可逆容量の比
率を上昇させて負極の可逆容量を正極の可逆容量に等し
くするか近づけることが最も望ましいことが分かる。
【0013】
【発明の目的】本発明の目的は、上記従来技術の有する
課題に鑑み、高い充放電効率および良好なサイクル特性
を維持しつつ、実際に電池が使用される電圧範囲におい
て電池の可逆容量を実質的に向上させた二次電池用負極
およびそれを用いた二次電池、および負極の製造方法を
提供することにある。
【0014】
【課題を解決するための手段】本発明によれば、リチウ
ムイオンを吸蔵および放出することのできる二次電池用
負極であって、炭素を主成分とする第一の層と、リチウ
ム成分が透過できる膜状材料を主成分とする第二の層
と、リチウムおよび/またはリチウム含有化合物を含む
第三の層とを含み、第一の層と第三の層との間に第二の
層が配置された多層構造を有することを特徴とする二次
電池用負極、が提供される。負極炭素材料にあらかじめ
負極不可逆容量分の金属リチウムを加えれば、電池の不
可逆容量が減少し、エネルギー密度を向上できるように
思われる。しかしながら単にこれらの材料を組み合わせ
ただけでは実際に電池のエネルギー密度を向上させるこ
とは困難である。この点については、従来技術の項で述
べたとおりである。
【0015】そこで本発明においては、負極の構造とし
てリチウムイオンを吸蔵および放出することのできる二
次電池用負極であって、炭素を主成分とする第一の層
と、リチウム成分が透過できる膜状材料を主成分とする
第二の層と、リチウムおよび/またはリチウム含有化合
物を含む第三の層とを含む多層構造を採用している。な
お、上記の第二の層の膜状材料とは、粒子状材料と異な
り、ほぼ均一な組成で膜を構成している材料をいい、た
とえば蒸着法、CVD法またはスパッタリンダ法等の方
法により成膜されたものをいう。たとえばリチウム成分
が透過できる粒子材料を結着剤で固めたものは、本発明
における膜状材料には含まれない。又本発明で「主成
分」とは50重量%超で100重量%以下の含有量の成
分を意味する。更に本発明で「リチウム成分」とは、リ
チウムとリチウムイオンの一方または両者を意味する。
本発明の二次電池用負極では、第二の層を設けることに
より、負極の活性なサイトと金属リチウムとが直接反応
することを抑制し、第三の層に加えたリチウムが炭素負
極不可逆容量の補填に有効に働くようにしている。また
加えたリチウムの一部は、リチウム成分が透過できる第
二の層の膜状材料にドープされ、それにより膜状材料の
リチウム成分濃度を高め、膜状材料中の電荷キャリアー
数が増加するため、導電性が向上する。そのために第二
の層の電子伝導性あるいはイオン導電性は大きくなり、
第二の層によるハイレート放電特性への悪影響はごく小
さくなる。
【0016】本発明においては、負極が前記のような多
層構造をとるため、正極−負極間の電界分布が均一にな
る。このため電界の局所的集中が起こらず、サイクルを
経ても集電体から負極構成物が剥離する等の破損が発生
せず安定した電池特性が得られる。また、電界分布が不
均一な場合、負極構成物が局所的に体積膨脹することが
あり、電池特性の劣化を引き起こす原因となる。また結
着剤等の不純物は金属リチウムと反応し抵抗の高い皮膜
を形成し電池特性を悪化させる。膜状材料を用いる本発
明に係る負極は、このような問題も解決することができ
る。
【0017】第二の層あるいは後述の第三の層の蒸着方
法としては電子ビーム加熱法あるいはイオンビーム加熱
法、抵抗加熱法、高周波誘導加熱法、イオンプレーティ
ング法などがあげられる。蒸着材料は粒状、塊状、板
状、タブレットなど形状は特には設定しない。これら蒸
着材料をハース、坩堝、バスケット等の容器に入れる。
蒸着時の圧力は大気圧以下であれば良いが、蒸着前に真
空容器内を10-3Pa以下にしておくのが好ましい。これに
より負極や蒸着材料あるいは真空容器内に吸着する水分
や不純物が取り除かれ、クリーンな膜を得ることができ
る。蒸着材料を溶かすには偏向型電子銃やピアース型電
子銃から放出した電子ビームを用いる。この電子ビーム
は蒸発材料上をスキャンさせ溶解させても良い。またイ
オンプレーティング法を行う際にはアーク放電、中空陰
極放電、及び高周波励起放電等を用いることができる。
さらには(ワイヤー)バスケットや坩堝を加熱しその中
の蒸着材料を溶融させても良い。これにより蒸発粒子は
イオン化し密着性の良い膜を得ることができる。
【0018】第二の層あるいは第三の層の蒸着速度はサ
ンプル上で0.1nm/sec以上〜100nm/se
c以下であることが好ましい。これは0.1nm/se
c未満であると堆積速度が遅すぎて生産性に支障をきた
すためである。一方100nm/secを越えると得ら
れる膜がポーラスになるため脆弱になってしまい、膜と
しての機能を果たさなくなってしまうからである。蒸着
材料を入れるハース、坩堝、バスケット等の容器上面か
ら蒸着面(負極電極面)までの最短距離は50mm以上
150cm)以下が好ましい。なぜなら容器から蒸着面
の距離が近すぎると蒸着時に容器からの輻射熱を受けて
しまい負極にダメージを負ってしまうからである。また
150cm以上になると堆積速度は遅くなってしまい生
産性に問題が生じるため好ましくない。負極は蒸着時あ
るいはその前後の工程で冷却を行い、蒸着物の堆積等に
よるダメージを軽減しても良い。
【0019】第二の層あるいは第三の層のスパッタリン
グ法による成膜方法としては、直流スパッタリング、交
流スパッタリング、バイアススパッタリング、高周波ス
パッタリング、マグネトロンスパッタリング、ECRスパ
ッタリング、イオンビームスパッタリング、バイアスス
パッタリング、リアクティブスパッタリング、プラズマ
スパッタリングあるいはこれら手法を組み合わせた方法
があげられる。スパッタリングプラズマの源となるガス
には不活性ガスを含むものが用いられ、例示するならば
Ar、Xe、N2あるいはこれらの混合ガスなどがあげられ
る。スパッタリングのターゲットと負極の位置関係はタ
ーゲットが上、負極が下、あるいは負極が上、ターゲッ
トが下となっても良い。スパッタリング時の圧力は大気
圧以下であれば良いが、蒸着前に真空容器内を10-3
a以下にしておくのが好ましい。ターゲットと負極間は
50mm以上500mm以下であることが好ましい。50
mm未満であるとプラズマの影響で負極がダメージを受
け、また500mmを超えると堆積速度が遅くなり生産
性に問題が生じるようになる。ターゲットをスパッタリ
ングするイオンエネルギーは100eV以上15keV
以下であることが好ましい。これは100eVV未満で
あるとスパッタ収量が少なくなるため堆積速度が減少し
生産性に問題があるからである。また15keVを超え
ると、イオンはスパッタリングではなくターゲットに注
入されるようになりスパッタ収量が落ち堆積速度が落ち
てしまうからである。
【0020】第二の層あるいは第三の層の気相成長法
(CVD法)としては熱CVD法、MOCVD法、光CVD法、プラズ
マCVD法、ECRプラズマCVD法、マイクロ波CVD法があげら
れる。Siの堆積の際にはモノシラン、ジシラン、トリ
シラン、TEOS(Si(OC254)を使用することが
できる。反応容器の圧力は1Pa以上104Pa以下で
あることが好ましい。また供給ガスは気相から直接供給
してもよいし、固体を加熱することにより発生する蒸気
を用いても良い。
【0021】また本発明は、上記の負極を用いた二次電
池であって、満充電状態において、該負極は、第一の層
及び第二の層のリチウム成分合計量において、理論組成
よりも過剰なリチウム成分の量を含有することを特徴と
する。ただしここでいう理論組成とは、ある物質とリチ
ウム成分が化合物を生成する際、その化合物に含まれ得
るリチウムの最大値をいい、また満充電とは電池の負極
の電圧がリチウム金属電極を基準として0〜0.01V
の状態を意味する。各種リチウム合金における理論組成
は、たとえば、「電子材料」(2001年4月号、第4
0巻第4号、78ページ、2001年4月1日発行、発
行所:株式会社工業調査会)に記載がある。以下に示す
値は、リチウム合金組成の上限値であり、この組成比を
超えたリチウムを含有する合金は、通常の合金の製造方
法では得ることができない。このように一般に理論組成
よりリチウム含有量が大きい合金等は存在しないが、前
記した理論組成よりも過剰なリチウム成分を含有するリ
チウム二次電池用負極では、リチウム成分が合金の結晶
格子内の隙間に進入しているか、表面に付着していると
推測できる。
【0022】LiSi合金:Li4Si LiSn合金:Li4.4Sn LiCd合金:Li3Cd LiSb合金:Li3Sb LiPb合金:Li4.4Pb LiZn合金:LiZn LiBi合金:Li3Bi
【0023】また黒鉛の理論組成値はLiC6であり、
またLiを吸蔵しない材料のLiの理論組成値は0であ
る。
【0024】上述した第一〜第三の層を含む多層構造の
負極に充放電を繰り返すと、第三の層に含まれるリチウ
ムが、第一の層(第1負極層)と第二の層にドープさ
れ、第三の層が次第に消失していくが、この過程で、リ
チウムを含んだ第二の層が生成される。このようなリチ
ウムを含んだ第二層を持つ負極は、三層構造のものとは
異なる観点から、それ自体、優れた電池性能の実現に寄
与する。
【0025】本発明の第二層は、もともと導電性を有
し、充放電によってリチウムがドープされることによ
り、さらに導電性が向上する。このような導電性が高い
皮膜は、充放電反応を妨げることはなく、むしろ保護膜
として電解液と活物質の副反応を抑制し、電池特性を向
上させる。
【0026】また本発明によれば、上述した多層構造の
負極を用いた二次電池であって、正極にリチウム含有遷
移金属酸化物を含み、正極の可逆容量に対する負極の可
逆容量の比が1〜1.3の範囲であることを特徴とする
二次電池が提供される。可逆容量とは充電容量に対して
放電できる容量のことである。また充電容量から可逆容
量を除いた容量を不可逆容量という。また充電容量に対
する放電容量の比を充放電効率という。正極、負極のそ
れぞれの充電容量、放電容量、充放電効率は、対極に大
過剰、つまり正極あるいは負極のLi放出または吸蔵量
より多い量のリチウム金属を用いたコインセル等により
測定することができる。
【0027】二次電池の正極と負極の充放電効率が異な
る場合、正極の充電容量と負極の充電容量を同じにして
二次電池を設計すると、電池の可逆容量は、両極のうち
充放電効率の低いほうの可逆容量になってしまう。従来
技術の正極にLieCoO2、LifMn24(ここでe
は0<e≦1.1、fは0<f≦1.4)等のリチウム
含有遷移金属酸化物を、負極に黒鉛、ハードカーボン等
の炭素を用いた二次電池の場合、一般に炭素の充放電効
率がリチウム含有遷移金属酸化物の充放電効率より低い
ため、電池の可逆容量は負極の可逆容量により決定され
る。そのため、正極の充電容量と負極の充電容量を同じ
にして二次電池を設計すると、正極の可逆容量は電池の
可逆容量にすべてを使うことはできず、容量効率の減少
が生じてしまう。
【0028】また正極と負極の可逆容量を同じにして二
次電池を設計すると、正極の充電容量と負極の充電容量
を同じにして二次電池を設計した場合と比較して、負極
の不可逆容量が大きくなってしまうため、やはり正極の
可逆容量をすべて電池の可逆容量に利用することはでき
ない。この場合、電池の可逆容量は、正極の充電容量と
負極の充電容量を同じにして二次電池を設計した場合に
比べてさらに低くなる。従来技術では、異なる充放電効
率を持つ正負極を組み合わせて二次電池を作成した場
合、充放電効率が高い方の電極の可逆容量をすべて電池
の可逆容量に利用することは、単に正負極の比率を制御
するだけでは不可能である。
【0029】本発明の電池は、上述したように、負極の
不可逆容量を第三の層中のリチウムが補填するため、結
果的に正負極の充放電効率を同程度にすることができ、
不可逆容量が大きい負極を用いても正極の可逆容量を無
駄にすることがない。そのため電池のエネルギー密度を
高くすることができる。本発明によれば電池に含まれる
正極の可逆容量に対する負極の可逆容量の比が1〜1.
3の範囲の場合、電池のエネルギー密度を高くすること
ができ、かつサイクル特性も良好となる。正極の可逆容
量に対する負極の可逆容量の比が1より小さい場合、充
電時に正極から放出されたリチウムイオンを負極がすべ
て吸蔵することができないためサイクル特性が悪くな
る。また電池に含まれる正極の可逆容量に対する負極の
可逆容量の比が1.3より大きい場合、電池に含まれる
負極量が多くなり、電池のエネルギー密度が小さくな
る。
【0030】また本発明によれば、上述した多層構造の
負極の製造方法であって、集電体上に炭素を主成分とす
る第一の層を形成する工程と、リチウム成分を透過でき
る膜状材料を主成分とする第二の層を形成する工程とリ
チウムおよび/またはリチウム含有化合物を含む第三の
層を形成する工程を含むことを特徴とする負極の製造方
法が提供される。また本発明によれば、上述した多層構
造の負極の製造方法であって、前記第二の層および、第
三の層の少なくとも一方が、蒸着法、CVD法またはス
パッタリング法により形成された層であることを特徴と
する負極の製造方法が提供される。また本発明によれ
ば、上述した多層構造の負極の製造方法であって、前記
第二の層および、第三の層の少なくとも一方が、複数の
蒸着源、ガスまたはターゲットを用いた蒸着法、CVD
法またはスパッタリング法により形成された層であるこ
とを特徴とする負極の製造方法が提供される。
【0031】
【発明の実施の形態】本発明において、第一、第二、第
三の層は、いずれも単数でも複数でもよい。第一、第
二、第三の層の位置関係については、第一の層と第三の
層とが直に接してはならず、これらの間に第二の層が介
在する。第一、第二、第三の層が複数存在する場合は第
一の層と第三の層とが直に接しなければいかなる積層構
造をとることができる。すなわち、以下に示すいずれの
形態であってもよい。
【0032】 (a)第一の層が電極最表面に配置された構成。 (b)第二の層が電極最表面に配置された構成。 (c)第三の層が電極最表面に配置された構成。
【0033】また、第二の層と第三の層からなる多層膜
を第一の層の上部および下部に第一の層を第二の層で挟
むように配置した構成や、第一の層と第二の層からなる
多層膜を第三の層の上部および下部に第三の層を第二の
層で挟むように配置した構成を採用することもできる。
このように、第一の層が第二の層に挟まれた配置、ある
いは第三の層が第二の層に挟まれた配置とすることによ
り、高い充放電効率および良好なサイクル特性を維持し
つつ、電池容量を一層向上させることができる。前記し
た第二の層が電極最表面に配置される構成では、最表面
の第二の層は第一の層と第三の層を直接接触させないと
いう機能は発揮されないが、第三の層からリチウム成分
を吸蔵して充放電に使用できるリチウム成分の増加に寄
与できる。
【0034】本発明において、第二の層はリチウム成分
を吸蔵および放出することのできる材料からなるものと
することが望ましい。リチウム成分を吸蔵する形態とし
ては、合金等を形成する形態のほか、当該材料と合金を
形成することなく構造体中にリチウムを取り込む形態も
含む。第二の層はアモルファス構造とすることが好まし
い。アモルファス構造への電気化学的なリチウムのドー
プ・脱ドープは、結晶構造よりも卑な電位で起こるた
め、高い動作電圧および高い充放電効率を維持しつつ電
池容量を増加させることができる。ここで、本発明にお
けるアモルファスとは、CuKα線を用いたX線回折法
の2θ値で15〜40度に頂点を有するブロードな散乱
帯を有するものをいう。アモルファス構造は、結晶体と
比較して、構造的に等方であるため外部からの応力に対
する強度に優れる上、化学的に安定である。このため電
解液と反応を起こしにくく、充放電のサイクルを繰り返
した際の安定性に優れ、容量劣化が発生しにくい。
【0035】また第二の層は、蒸着法、CVD法または
スパッタリング法により形成した層とすることが好まし
い。これらの成膜法を用いた場合、アモルファス状の膜
が負極上に均一に得られる。この膜により正極―負極間
の電解分布は均一になる。このため電界の局所的集中が
起こらず、サイクルを経ても集電体から負極構成物が剥
離する等の破損が発生せず安定した電池特性が得られ
る。本発明における第二の層を構成する材料は、リチウ
ム成分を透過できる材料であれば特に制限がないが、S
i、Ge、Ag、In、SnおよびPbからなる群から
選択される一または二以上の元素を含むものとすること
が好ましい。これらはリチウムもしくはリチウムイオン
を吸蔵および放出することのできる材料である。かかる
材料を選択し、かつアモルファス構造を具備することに
より、高い動作電圧および高い充放電効率を維持しつつ
電池容量を増加させることができる。特に、第二の層
を、Si、Ge、Sn、Pbおよびこれらの酸化物から
なる群から選択される一または二以上の材料からなるも
のとすれば、動作電圧、充放電効率および電池容量をよ
り顕著に改善できる上、製造も容易となる。このうち、
特にSi、Snおよびこれらの酸化物は、リチウムを吸
蔵した際の構造変化が小さく、充放電を繰り返しても劣
化しにくく、良好なサイクル特性が得られる。
【0036】本発明において、第三の層を構成する物質
はリチウム、および/またはリチウムを含有する化合物
であれば特に制限がないが、好ましくは金属リチウム、
リチウム合金、窒化リチウム、Li3-ggN(M=C
o、Ni、Cu、gは0<g<3)及びこれらの混合物
である。このような材料は電気化学的に多くのリチウム
を放出することができるため、負極の不可逆容量を補い
電池の充放電効率を向上させることができる。また本発
明において、第三の層を構成する物質はアモルファス構
造とすることが好ましい。アモルファス構造は、結晶と
比較して、構造的に等方であるため化学的に安定で電解
液と副反応を起こしにくい。このため、第三の層に含ま
れるリチウムが効率よく負極の不可逆容量の補填に利用
される。
【0037】また本発明において、第三の層を構成する
物質は、蒸着法、CVD法またはスパッタリング法によ
り形成した層とすることが好ましい。これらの成膜法を
用いた場合、負極全体に均一なアモルファス状の層を作
製することができる。また溶媒を用いる必要がないた
め、副反応が起こりにくくより純度の高い層を作製する
ことができ、第三の層に含まれるリチウムが効率よく負
極の不可逆容量の補填に利用される。また本発明におい
て、第二の層、第三の層がそれぞれ二種類以上の元素か
らなる物質の場合、複数の蒸着源、ガス、またはターゲ
ットを用いた、蒸着法、CVD法または、スパッタリン
グ法により形成した層とすることが好ましい。複数の複
数の蒸着源、ガス、またはターゲットを用いることによ
り、第二の層、第三の層に含まれる元素の比率を制御す
ることが容易になる。
【0038】次に添付図面を参照しながら本発明の二次
電池用負極の実施態様について説明する。図1は本発明
の第1実施形態に係る非水電解液二次電池の負極の断面
図である。集電体1aは、充放電の際、電流を電池の外
部に取り出したり外部から電池内に電流を取り込むため
の電極である。この集電体1aは導電性の金属箔であれ
ばよく、たとえば、アルミニウム、銅、ステンレス、
金、タングステン、モリブデン等を用いることができ
る。第1負極層2a(第一の層)は、充放電の際、Li
を吸蔵あるいは放出する負極部材である。この第1負極
層2aはLiを吸蔵可能な炭素であり、黒鉛、フラーレ
ン、カーボンナノチューブ、DLC(diamond like car
bon)、アモルファスカーボン、ハードカーボンあるい
はこの混合物を例示できる。
【0039】第2負極層3a(第二の層)はリチウムも
しくは、リチウムイオンを透過できる膜状材料である。
このような材料としてB23、P25、Wh3h-1(h
=1、2、3、4)、Moi3i-1(i=1、2、3、
4)、TiO、TiO2、Si、Ge、Ag、Sn、I
n、Pbおよびこれらの複合酸化物、複合硫化物が挙げ
られ、これらを単独または一種以上を組み合わせて用い
ることができる。またこれらにハロゲン化リチウム、リ
チウムカルコゲナイド等を添加しリチウムイオン導電性
を高くしてもよい。またこの材料はアモルファスである
ことが好ましい。アモルファス材料を用いることによ
り、リチウムのドープ・脱ドープが起こる電位を結晶に
比べて卑にすることができ、この結果、電池の動作電圧
を高くすることができる。また第2負極層3aは、CV
D法、蒸着法、またはスパッタ法により形成することが
好ましい。これらの方法で作製すれば、アモルファス層
を均一な膜質および膜厚で形成することができる。また
第2負極層3aの厚さは0.1〜10μmが好ましい。
【0040】第3負極層4a(第三の層)はリチウム、
および/またはリチウムを含有する化合物からなる負極
部材である。このような材料として、金属リチウム、リ
チウム合金、窒化リチウム、Li3-ggN(M=Co、
Ni、Cu、gは0<g<3)及びこれらの混合物が挙
げられ、これらを単独または一種以上を組み合わせて用
いることができる。またこの材料はアモルファスである
ことが好ましい。アモルファス材料を用いることによ
り、電解液との副反応を抑制し、材料中に含まれるリチ
ウムを効率よく不可逆容量の補填に利用することができ
る。この結果、電池の初回充放電効率が向上し、エネル
ギー密度を高くすることができる。第3負極層4aは、
CVD法、蒸着法、またはスパッタ法により形成するこ
とが好ましい。これらの方法で作製すれば、アモルファ
ス層を均一な膜質および膜厚で形成することができる。
これらの方法以外にリチウム等の箔を第二の層の表面を
被覆するように設置し、その後充放電を開始することに
より前記リチウム箔等を前記蒸着層等と同様に機能させ
ることもできる。また第3負極層4aの厚さは0.2〜
20μmが好ましい。また、図1に示す本発明の第1実
施形態に類似する第2実施形態として、図2に示すよう
に集電体1aの両面に炭素負極2aと第2負極層3aと
を第3負極層4aを具備する構造を採用することもでき
る。
【0041】図3は、本発明の第3実施形態に係る非水
電解液二次電池の負極の断面図である。この負極では、
集電体上に第1負極層2aが形成され、その上に第2負
極3aが形成されている。第1負極層2aおよび第2負
極層3a中には、満充電状態において飽和量を超えるリ
チウム成分が含有される。すなわち、満充電状態におい
ては、理論組成よりも過剰なリチウム成分が第1負極層
2aおよび第2負極層3a中に含有される。リチウムの
理論組成とは課題を解決するための手段で述べたとおり
である。なお、図3では第1負極層2aの上に第2負極
層3aが形成された例を示したが、図4に示す本発明の
第4実施形態のように、図3の第3実施形態の負極の表
面にリチウムからなる第3負極層4aが配置された構造
とすることもできる。本発明のリチウム二次電池におい
て用いることのできる正極としては、LijMO2(ただ
しMは、少なくとも1つの遷移金属を表す。jは0<j
<1.4)である複合酸化物、例えば、LijCoO2
LijNiO2、LijMn24、LijMnO3、Lij
kCo1-k2(kは0<k<1)などを、カーボンブ
ラック等の導電性物質、ポリフッ化ビニリデン(PVD
F)等の結着剤をN−メチル−2−ピロリドン(NM
P)等の溶剤と分散混練したものをAl箔等の基体上に
塗布したものを用いることができる。
【0042】また、本発明のリチウム二次電池において
用いることのできるセパレータとしては、ポリプロピレ
ン、ポリエチレン等のポリオレフィン、フッ素樹脂等の
多孔性フィルムがある。また、電解液としては、プロピ
レンカーボネート(PC)、エチレンカーボネート(E
C)、ブチレンカーボネート(BC)、ビニレンカーボ
ネート(VC)等の環状カーボネート類、ジメチルカー
ボネート(DMC)、ジエチルカーボネート(DE
C)、エチルメチルカーボネート(EMC)、ジプロピ
ルカーボネート(DPC)等の鎖状カーボネート類、ギ
酸メチル、酢酸メチル、プロピオン酸エーテル等の脂肪
族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラ
クトン類、1,2-エトキシエタン(DEE)、エトキ
シメトキシエタン(EME)等の鎖状エーテル類、テト
ラヒドロフラン、2-メチルテトラヒドロフラン等の環
状エーテル類、ジメチルスルホキシド、1,3-ジオキ
ソラン、ホルムアミド、アセトアミド、ジメチルホルム
アミド、ジオキソラン、アセトニトリル、プロピルニト
リル、ニトロメタン、エチルモノグライム、リン酸トリ
エステル、トリメトキシメタン、ジオキソラン誘導体、
スルホラン、メチルスルホラン、1,3-ジメチル-2-
イミダゾリジノン、3-メチル-2-オキサゾリジノン、
プロピレンカーボネート誘導体、テトラヒドロフラン誘
導体、エチルエーテル、1,3-プロパンサルトン、ア
ニソール、N−メチルピロリドン、などの非プロトン性
有機溶媒を一種又は二種以上を混合して使用し、これら
の有機溶媒に溶解するリチウム塩を溶解させる。リチウ
ム塩としては、例えばLiPF6、LiAsF6、LiA
lCl4、LiClO4、LiBF4、LiSbF6,Li
CF3SO3、LiCF3CO2、Li(CF3SO22
LiN(CF3SO22、LiB10Cl10、低級脂肪族
カルボン酸カルボン酸リチウム、クロロボランリチウ
ム、四フェニルホウ酸リチウム、LiBr、LiI、L
iSCN、LiCl、イミド類などがあげられる。ま
た、電解液に代えてポリマー電解質を用いてもよい。
【0043】本発明に係る二次電池の形状としては、特
に制限はないが例えば、円筒型、角型、コイン型などが
あげられる。電池の組み立て直後(例にあげるならば電
解液を注液し封止した後)充放電を行っていない状態
で、電池の端子電圧を測定すると1セルあたり1V以上
3V以下の端子電圧が観測される。これは負極にリチウ
ムまたはリチウム含有化合物を含む第3負極層4aとを
含むためである。もし第3負極層4aを含まなければ端
子電圧は1V未満である。
【0044】以下に実施例より本発明を詳細に説明す
る。以下の実施例において充放電測定はすべて20℃で
行った。
【0045】[実施例1]本実施例では、集電体1aとし
て銅箔を用い、炭素負極2aとして黒鉛を主成分に用い
た。第2負極層3aは、B23とし、第2負極層3aの
形成は真空蒸着法を用いた。第3負極層4aは金属リチ
ウムとし、第3負極層4aの形成は真空蒸着法を用い
た。図1に示す非水電解液二次電池の負極は次のような
手順で作製を行った。まず集電体1aには厚み10μm
の銅箔を用い、この上に炭素負極2aを堆積させた。こ
の第1負極層2aは、黒鉛粉末に結着材としてN-メチ
ル-2-ピロリドンに溶解したポリフッ化ビニリデンと導
電付与材を混合しペースト状にしたものを、集電体1a
上に塗布し、乾燥させたものである。乾燥後、第1負極
層2aを、プレス機を使い圧縮した。この第1負極層2
aの上にB23からなる第2負極層3aを、真空蒸着法
を用いて堆積させ、さらに真空蒸着法を用いてリチウム
からなる第3負極層4aを堆積させて負極を得た。
【0046】この負極の可逆容量を、対極に金属リチウ
ムを用いたコインセルにより測定した。電解液には1モ
ル/lの濃度LiPF6を溶解させたエチレンカーボネ
ート(EC)とジエチルカーボネート(DEC)の混合
溶媒(混合容積比:EC/DEC=30/70)を使用
し、測定電流は0.1mAとし、電圧範囲は0〜2V
(Li/Li+)とした。一方、図2に示す構造の二次
電池の負極についても上記と同様の方法により作製し
た。製造上、特に問題は生じなかった。
【0047】正極には、Li1-lMn24と導電付与剤
とポリフッ化ビニリデンをN-メチル-2-ピロリドンと
分散混練したものをアルミニウム箔上に塗布したものを
用いた。この正極の可逆容量を、対極に金属リチウムを
用いたコインセルにより測定した。電解液には1モル/
lの濃度LiPF6を溶解させたエチレンカーボネート
(EC)とジエチルカーボネート(DEC)の混合溶媒
(混合容積比:EC/DEC=30/70)を使用し、
測定電流は0.1mAとし、電圧範囲は3〜4.3V
(Li/Li+)とした。セパレータとしてポリプロピ
レン不織布を用い、電解液には1モル/lの濃度LiP
6を溶解させたエチレンカーボネート(EC)とジエ
チルカーボネート(DEC)の混合溶媒(混合容積比:
EC/DEC=30/70)を用いて、上記の正極と負
極とを組み合わせて角型電池を作製した。電池に含まれ
る正極の可逆容量に対する電池に含まれる負極の可逆容
量の比は1.06となった。
【0048】[比較例1〜3]比較例1として図5に示す
厚み10μmの銅箔の集電体1aと黒鉛を主成分とする
第1負極層2aとB23からなる第2負極層3aで構成
した負極を用いた角型電池を作製した。比較例2として
図6に示す厚み10μmの銅箔の集電体1aと黒鉛を主
成分とする第1負極層2aとリチウムからなる第2負極
層4aで構成した負極を用いて角型電池を作製した。比
較例3として図6に示す厚み10μmの銅箔の集電体1
aと黒鉛を主成分とする第1負極層2aとLi3.5Si
合金からなる第2負極層4aで構成した負極を用いて角
型電池を作製した。
【0049】比較例1、2、3の電池のそれぞれに含ま
れる第1負極層2aの量は実施例1の電池に含まれる第
1負極層2aの量と同じにした。比較例1、2、3の負
極以外の部材は実施例1と同じ材料を用いた。上記実施
例1の負極(図1の構造)を用いた電池と、比較例1、
2、3の電池について、充電前の電池の電圧を測定した
ところ、実施例1は1.5V、比較例1、2、3、の電
池はそれぞれ、0.2V、1.6V、1.3Vとなっ
た。これらの電池の充放電サイクル試験を行った。充放
電試験の電圧範囲は3〜4.3Vとした。実施例および
比較例の初回充放電結果を表1に示す。比較例1の充放
電効率が84.4%であるのに対して、実施例1の充放
電効率は98%以上であり、この結果から実施例1の初
回充放電効率が高いことがわかる。また比較例2、3の
充放電効率はそれぞれ72.3%、81.4%と低く、
単に炭素層上にLi層やリチウム合金層を形成しただけで
は充放電効率は改善しないことが分かる。
【0050】
【表1】
【0051】また実施例1、比較例1、2、3の平均放
電電圧はそれぞれ3.6V、3.5V、3.4V、であ
った。実施例1が比較例2よりも高い平均放電電圧を持
つ理由は、比較例2のリチウム層が炭素表面の活性なサ
イトと反応して抵抗の高い被膜を形成するのに対して、
実施例1のリチウム層は、その一部が第2負極層3aへ
とドープされ、第2負極層3aの抵抗を低くするためで
ある。その結果、電池の抵抗は実施例1の方が比較例2
よりも低くなり、実施例1の平均放電電圧は比較例2よ
りも高くなったと考えられる。次に充放電サイクル特性
の評価結果を表2に示す。表2中の放電容量比は、1サ
イクルの放電容量を100%としたとき、それに対する
300サイクルの放電容量の比率を表す。実施例1では
300サイクル後も初回の容量の90%以上を保持して
おり、比較例1と同等以上サイクル特性を持つことが分
かる。比較例2、3の300サイクル後の放電容量はそ
れぞれ初回放電容量の19.9%、30.2%となっ
た。これは炭素層上に形成されたLiおよびLi合金が
炭素表面の活性なサイトと反応し、電気抵抗の高い皮膜
を形成しているためと考えられる。
【0052】
【表2】
【0053】本実施例における評価結果から、本発明に
係る負極を備える二次電池は、初回充放電効率が高く、
かつサイクル特性も安定していることが証明された。
【0054】[実施例2、3]本実施例では、厚み10μ
mの銅箔の集電体1aと第1負極層2aとしてハードカ
ーボンを主成分に用いた。第2負極層3aはシリコンを
用いた。第2負極層3aの形成はCVD法(実施例2)
およびスパッタリング法(実施例3)を用いた。第3負
極層4aは金属リチウムとした。第3負極層4aの形成
は真空蒸着法を用いた。実施例2、3の負極の可逆容量
を、対極に金属リチウムを用いたコインセルにより測定
した。電解液には1モル/lの濃度LiPF6を溶解さ
せたプロピレンカーボネイト(PC)とエチルメチルカ
ーボネイト(EMC)の混合溶媒(混合容積比:PC/
EMC=40/60)を用いた。測定電流は0.1mA
とし、電圧範囲は0〜2V(Li/Li+)とした。正
極には、Li1-lMn24と導電付与剤とポリフッ化ビ
ニリデンをN-メチル-2-ピロリドンと分散混練したも
のをアルミニウム箔上に塗布したものを用いた。この正
極の可逆容量を、対極に金属リチウムを用いたコインセ
ルにより測定した。電解液には1モル/lの濃度LiP
6を溶解させたプロピレンカーボネイト(PC)とエ
チルメチルカーボネイト(EMC)の混合溶媒(混合容
積比:PC/EMC=40/60)を用いた。測定電流
は0.1mAとし、電圧範囲は3〜4.3V(Li/L
+)とした。
【0055】セパレータにはポリプロピレン不織布を用
い、かつ上記の正極と負極とを組み合わせて角型電池を
作製した。電池に含まれる正極の可逆容量に対する電池
に含まれる負極の可逆容量の比は、実施例2、3ともに
1.10であった。電解液には1モル/lの濃度LiP
6を溶解させたプロピレンカーボネイト(PC)とエ
チルメチルカーボネイト(EMC)の混合溶媒(混合容
積比:PC/EMC=40/60)を用いた。その他の
部材は実施例1と同じ材料を用いて角型電池を作製し
た。
【0056】[比較例4、5]比較例4として図7に示す
厚み10μmの銅箔の集電体1aとハードカーボンを主
成分に用いた第1負極層2aからなる負極を用意した。
一方、比較例5として図8に示す厚み10μmの銅箔の集
電体1aとハードカーボンを主成分に用いた第1負極層
2a中にシリコン粉末5a(粒径20〜100μm)を
添加した負極を用意した。その他の部材は実施例2と同
じ材料を用いて角型電池を作製した。比較例4、5の電
池のそれぞれに含まれるハードカーボンを主成分に用い
た第1負極層2aの量は、実施例2、3の電池のそれぞ
れに含まれるそれぞれの第1負極層2aの量と同じにし
た。
【0057】次に、上記実施例2、3、および比較例
4、5の評価結果について説明する。上記実施例2、3
の負極(図1の構造)を用いた電池と、比較例4、5の
電池について、充電前の電池の電圧を測定したところ、
実施例2、3は1.4V、比較例4、5の電池はそれぞ
れ、0.1V、0.1Vとなった。これらの電池につい
て、充放電サイクル試験を行った。充放電試験の電圧範
囲は3〜4.3Vとした。実施例および比較例の初回充
放電結果を表3に示す。比較例4、5の充放電効率がそ
れぞれ58.1%、40.0%であるのに対して、実施
例2、3の充放電効率は90%以上であり、この結果か
ら実施例2、3の初回充放電効率が高いことがわかる。
よって第1負極層2aにハードカーボンを主成分に用い
ても第2負極層3a、第3負極層4aを形成することに
より充放電効率を改善できることが明らかとなった。
【0058】
【表3】
【0059】また実施例2、3の充電容量は比較例4の
1.3倍以上あり、第2負極層3a中にシリコンが含ま
れると負極容量が増大することが明らかとなった。また
実施例2、3、比較例4,5の平均放電電圧はそれぞれ
3.6V、3.6V、3.6V、3.4Vであった。実
施例2、3が比較例5よりも高い平均放電電圧を持つ理
由は、比較例5の負極2a中に含まれる結晶質シリコン
へのリチウムの脱ドープが、実施例2、3の第2負極層
3aのアモルファス構造を持つシリコンへのリチウムの
脱ドープよりも貴な電位で起こるためである。
【0060】次に実施例2、3および比較例4、5の負
極の充放電サイクル特性を測定し、その結果を表4に示
す。実施例2、3では300サイクル後も初回の容量の
90%以上を保持しており、比較例4と同等以上サイク
ル特性を持つことが分かる。また比較例5の300サイ
クル後の放電容量は初回放電容量の10%程度となっ
た。これは炭素層中のシリコン粒子が充放電に伴って膨
張収縮することにより、負極層の電気的接触が失われ電
気抵抗が増大したためと考えられる。本実施例における
評価結果から、本発明に係る負極を備える二次電池は、
容量、充放電効率が高く、かつサイクル特性も安定して
いることが証明された。
【0061】
【表4】
【0062】[実施例4、5、6]本実施例では、集電体
1aには厚み10μmの銅箔を用い、第1負極層2aに
はハードカーボンを主成分に用いた。第2負極層3aと
してSiOx(0<x<2)(実施例4)あるいはSnOy
(0<y<2)(実施例5)あるいはSiとSnの混合物
(実施例6)を用いた。SiOx、SnOy膜の形成は蒸
着法を用いた。SiSn膜の形成は、SiとSnをそれ
ぞれ別の坩堝に入れ、レーザーを用いて蒸着する方法を
用いた。それぞれの蒸着量を、水晶振動子を用いて測定
することにより、SiとSnの比率を制御した。第3負
極層4aとしてリチウムインジウム合金を用いた。合金
中のリチウムとインジウムの比率はそれぞれ98重量
%、2重量%とした。リチウムインジウム合金膜の形成
は、リチウムとインジウムをそれぞれ別の坩堝に入れ、
レーザーを用いて蒸着する方法を用いた。それぞれの蒸
着量を、水晶振動子を用いて測定することにより、リチ
ウムとインジウムの比率を制御した。
【0063】これらの負極の可逆容量を対極に金属リチ
ウムを用いたコインセルにより測定した。電解液には1
モル/lの濃度LiPF6を溶解させたプロピレンカー
ボネイト(PC)とエチルメチルカーボネイト(EM
C)の混合溶媒(混合容積比:PC/EMC=40/6
0)を用いた。測定電流は0.1mAとし、電圧範囲は
0〜2.0V(Li/Li+)とした。正極には、Li
1-lMn24と導電付与剤とポリフッ化ビニリデンをN-
メチル-2-ピロリドンと分散混練したものをアルミニウ
ム箔上に塗布したものを用いた。この正極の可逆容量
を、対極に金属リチウムを用いたコインセルにより測定
した。電解液には1モル/lの濃度LiPF6を溶解さ
せたプロピレンカーボネイト(PC)とエチルメチルカ
ーボネイト(EMC)の混合溶媒(混合容積比:PC/
EMC=40/60)を用いた。測定電流は0.1mA
とし、電圧範囲は3〜4.3V(Li/Li+)とし
た。
【0064】上記の正極と負極とを組み合わせて角型電
池を作製した。電池に含まれる正極の可逆容量に対する
電池に含まれる負極の可逆容量の比は、実施例4、5、
6ともに1.23とした。その他の部材は実施例2と同
じ材料を用いて角型電池を作製した。実施例4、5、6
の電池のそれぞれに含まれるハードカーボンを主成分に
用いた第1炭素負極2aの量は、比較例4、5の電池の
それぞれに含まれるハードカーボンを主成分に用いた第
1負極層2aの量と同じにした。上記実施例4、5、6
の負極(図1の構造)を用いた電池について、充電前の
電圧を測定したところ、それぞれ、1.3V、1.3
V、1.4Vとなった。これらの電池について充放電サ
イクル試験を行った。充放電の電圧範囲は3〜4.3V
とした。実施例4、5、6の初回充放電結果を表5に示
す。実施例4、5、6の充放電効率はいずれも90%以
上と、比較例4、5の充放電効率より高くなっており、
第3負極層4aとしてリチウムインジウム合金を用いて
も充放電効率が改善されることが分かる。また実施例
4、5、6の充電容量は比較例4の1.3倍以上あり、
第2負極層3a中にシリコン、スズ、及びそれらの酸化
物が含まれると負極容量が増大することが分かる。
【0065】
【表5】
【0066】また実施例4、5、6の平均放電電圧は
3.6Vであった。実施例4、5、6が比較例5よりも
高い平均放電電圧を持つ理由は、比較例5の第1負極層
2a中に含まれる結晶質シリコンへのリチウムの脱ドー
プが、実施例4、5、6の第2負極層3aのアモルファ
ス構造を持つシリコン、スズ、及びそれら酸化物へのリ
チウムの脱ドープよりも貴な電位で起こるためである。
【0067】次に実施例4、5、6の負極の充放電サイ
クル特性を測定し、その結果を比較例4および5の結果
とともに表6に示す。実施例4、5、6では300サイ
クル後も初回の容量の90%以上を保持しており、比較
例4と同等以上のサイクル特性を持つことが分かる。本
実施例における評価結果から、本発明に係る負極を備え
る二次電池は、容量、充放電効率が高く、かつサイクル
特性も安定していることが証明された。
【0068】
【表6】
【0069】[実施例7]本実施例では、集電体1aには
厚み10μmの銅箔を用い、第1負極層2aには黒鉛を
主成分に用いた。第2負極層3aとしてSiOx(0<
x<2)を用いた。SiOx膜の形成は真空蒸着法を用
いた。第三負極層4aとしてリチウム金属と窒化リチウ
ムの混合物を用いた。混合物中の金属リチウムと窒化リ
チウムの比率はそれぞれ90%、10%とした。リチウ
ム金属と窒化リチウムの混合物の膜の形成は金属リチウ
ムと窒化リチウムをそれぞれ別のハーネスに入れ、レー
ザーを用いて蒸着する方法を用いた。この負極の単位面
積当たりの可逆容量を、対極に金属リチウムを用いたコ
インセルにより測定した。電解液には1モル/lの濃度
LiPF6を溶解させたエチレンカーボネート(EC)
とジエチルカーボネート(DEC)の混合溶媒(混合容
積比:EC/DEC=30/70)を用い、測定電流は
0.1mAとし、電圧範囲は0〜2V(Li/Li+
とした。
【0070】正極には、LiCoO2と導電付与剤とポ
リフッ化ビニリデンをN-メチル-2-ピロリドンと分散
混練したものをアルミニウム箔上に塗布したものを用い
た。この正極の単位面積当たりの可逆容量を、対極に金
属リチウムを用いたコインセルにより測定した。電解液
には1モル/lの濃度LiPF6を溶解させたエチレン
カーボネート(EC)とジエチルカーボネート(DE
C)の混合溶媒(混合容積比:EC/DEC=30/7
0)を用いた。測定電流は0.1mAとし、電圧範囲は
3〜4.2V(Li/Li+)とした。上記の正極と負
極とを組み合わせて角型電池を作製した。電池に含まれ
る正極の可逆容量に対する電池に含まれる負極の可逆容
量の比は1.08となった。その他の部材は実施例1と
同じものを用いた。
【0071】[比較例6]比較例2と同様の負極と実施例
7と同様の正極を用いて角型電池を作製した。比較例6
に含まれる黒鉛を主成分に用いた第1負極層2aの量
は、実施例7の電池のそれぞれに含まれるそれぞれの第
1負極層2aの量と同じにした。その他の部材は実施例
1と同様の材料を用いた。
【0072】実施例7と比較例6の電池について、充放
電サイクル試験を行った。充放電試験の電圧範囲は3〜
4.2Vとした。実施例7と比較例6の初回充放電結果
を表7に示す。実施例7の充放電効率は94%以上と、
比較例6の充放電効率より高くなっており、第3負極層
4aとして金属リチウムと窒化リチウムの混合物を用い
ても充放電効率が改善されることが明らかとなった。ま
た実施例7の充電容量は比較例6の1.3倍以上あり、
第2負極層3a中にシリコンの酸化物が含まれると負極
容量が増大することが明らかとなった。
【0073】
【表7】
【0074】また実施例7の平均放電電圧は3.6Vで
あった。実施例7が比較例6よりも高い平均放電電圧を
持つ理由は、比較例2のリチウム層が炭素表面の活性な
サイトと反応して抵抗の高い被膜を形成するのに対し
て、実施例7のリチウム層は、その一部が第2負極層3
aへとドープされ、第2負極層3aの抵抗を低くするた
めである。その結果、電池の抵抗は実施例1の方が比較
例2よりも低くなり、実施例7の平均放電電圧は比較例
6よりも高くなったと考えられる。
【0075】次に実施例7と比較例6の電池の充放電サ
イクル特性の結果を表8に示す。実施例7では300サ
イクル後も初回の容量の90%以上を保持しており、比
較例6よりも明らかに上回り、比較例1、4と同等以上
のサイクル特性を持つことが分かる。本実施例における
評価結果から、本発明に係る負極を備える二次電池は、
容量、充放電効率が高く、かつサイクル特性も安定して
いることが証明された。
【0076】
【表8】
【0077】[実施例8、9]実施例8、9の負極をそれ
ぞれ図9、10にそれぞれ示す。実施例8および9で
は、厚み10μmの銅箔の集電体1aと第1負極層2a
として黒鉛を主成分に用いた。第2負極層3aはシリコ
ンを用い、真空蒸着法で形成した。第3負極層4a は金
属リチウムとし、真空蒸着法で形成した。実施例8では
図9に示すように、第3負極層4aが上下から第2負極
層3aに挟まれる構造をとっている。実施例9では図1
0に示すように、第1炭素負極層2aが上下から第2負
極層3aに挟まれる構造をとっている。それぞれの負極
の可逆容量を、対極に金属リチウムを用いたコインセル
により測定した。電解液には1モル/lの濃度LiPF
6を溶解させたエチレンカーボネート(EC)とジエチ
ルカーボネート(DEC)の混合溶媒(混合容積比:E
C/DEC=30/70)を用い、測定電流は0.1m
Aとし、電圧範囲は0〜2V(Li/Li+)とした。
【0078】これらの負極と実施例1と同じ正極を組み
合わせて角型電池を作製した。電池に含まれる正極の可
逆容量に対する電池に含まれる負極の可逆容量の比は
1.06とした。実施例8、9の電池にそれぞれ含まれ
る第1負極層2aの量は比較例1、2、3の電池にそれ
ぞれに含まれる第1負極層2aの量と同じにした。その
他の部材は実施例1と同様の材料を用いた。上記実施例
8、9の負極(図1の構造)を用いた電池について、充
放電サイクル試験を行った。充放電試験の電圧範囲は3
〜4.3Vとした。実施例8、9の初回充放電結果を表
9に示す。実施例8、9の充放電効率はいずれも90%
以上と、比較例1、2、3の充放電効率より高くなって
おり、充放電効率が改善されることが分かる。また実施
例8、9の容量は比較例1の1.3倍以上あり、第2負
極層3a中にSiが含まれると負極容量が増大することが
分かる。
【0079】
【表9】
【0080】また実施例8、9の平均放電電圧は3.7
Vであった。実施例8、9が比較例2よりも高い平均放
電電圧を持つ理由は、比較例2のLi層が炭素表面の活
性なサイトと反応して抵抗の高い被膜を形成するのに対
して、実施例7のLi層は、その一部が第2負極層3a
へとドープされ、第2負極層3aの抵抗を低くするため
である。その結果、電池の抵抗は実施例1の方が比較例
2よりも低くなり、実施例8、9の平均放電電圧は比較
例2よりも高くなったと考えられる。
【0081】次に実施例8、9の電池の充放電サイクル
特性の結果を比較例2,3の電池の充放電サイクル特性
の結果とともに表10に示す。実施例8、9では300
サイクル後も初回の容量の90%以上を保持しており、
比較例1、3と同等以上のサイクル特性を持つことが分
かる。以上により負極が4層以上の多層構造をとっても
充放電効率、容量、サイクル特性が改善されることが明
らかとなった。本実施例における評価結果から、本発明
に係る負極を備える二次電池は、容量、充放電効率が高
く、かつサイクル特性も安定していることが証明され
た。
【0082】
【表10】
【0083】[実施例10〜15]実施例10〜15で
は、ハードカーボンと導電付与剤とポリフッ化ビニリデ
ンをN-メチル-2-ピロリドンと分散混練したものを銅
箔上に塗布し第1負極層2aとした。塗布量を制御し、
単位面積当たりの第1負極層2aの量が異なる電極を六
種類作成した(実施例10〜15)。これらの電極にシ
リコンを真空蒸着することにより第2負極層3aを形成
した。さらに金属リチウムを真空蒸着することにより第
3負極層4aを形成し、六種類の負極を得た。Li1-l
24と導電付与剤とポリフッ化ビニリデンをN-メチル
-2-ピロリドンと分散混練したものをアルミニウム箔上
に塗布し、正極とした。正極の可逆容量を、対極に金属
リチウムを用いたコインセルにより測定した。電解液に
は1モル/lの濃度LiPF6を溶解させたプロピレン
カーボネイト(PC)とエチルメチルカーボネイト(E
MC)の混合溶媒(混合容積比:PC/EMC=40/
60)を用いた。測定電流は0.1mAとし、電圧範囲
は3〜4.3V(Li/Li+)とした。
【0084】セパレータにはポリプロピレン不織布を用
い、上記の正極と負極とを組み合わせて角型電池を作製
した。それぞれ負極の可逆容量を、対極に金属リチウム
を用いたコインセルにより測定した。電解液には1モル
/lの濃度LiPF6を溶解させたプロピレンカーボネ
イト(PC)とエチルメチルカーボネイト(EMC)の
混合溶媒(混合容積比:PC/EMC=40/60)を
用いた。測定電流は0.1mAとし、電圧範囲は0〜2
V(Li/Li+)とした。電池に含まれる正極の可逆
容量に対する電池に含まれる負極の可逆容量の比を、実
施例10では0.9、実施例11では1.0、実施例1
2では1.1、実施例13では1.2、実施例14では
1.3、実施例15では1.4とした。上記実施例10
〜15の負極(図1の構造)を用いた電池について、充
放電サイクル試験を行った。充放電試験の電圧範囲は
3.0〜4.3Vとした。実施例10〜15の初回充放
電結果を表11に示す。
【0085】
【表11】
【0086】表11に示す結果から、電池に含まれる正極
の可逆容量に対する電池に含まれる負極の可逆容量の比
が1.0〜1.3の範囲にある電池の放電容量は大きい
ことが明らかになった。次に実施例10〜15の電池の
充放電サイクル特性の結果を表12に示す。電池に含ま
れる正極の可逆容量に対する電池に含まれる負極の可逆
容量の比が1.0〜1.3の範囲にある電池のサイクル
特性は優れていることが明らかとなった。本実施例にお
ける評価結果から、本発明に係る負極を備える二次電池
は、容量、充放電効率が高く、かつサイクル特性も安定
していることが証明された。
【0087】
【表12】
【0088】また、実施例10〜15と同様の電池を作
成し20回の充放電サイクルを行なった後の電池の負極
・正極の可逆容量の確認を行った。まず充放電試験機を
使い50mAの電流を流し電池の端子電圧を3Vとした。
この電池を露点−40℃以下の室内で分解し正極と負極
を抜き取り、その表面をDECで洗浄後乾燥し可逆容量の
測定を行った。測定の際には電極面積をφ1.5cmと
し対極にはリチウム金属(φ2cm、厚さ1mm)を使
用した。負極の可逆容量測定の際には電解液には1モル
/lの濃度LiPF6を溶解させたエチレンカーボネー
ト(EC)とジエチルカーボネート(DEC)の混合溶媒
(混合容積比:EC/DEC=30/70)を用いた。またセパ
レータにはポリプロピレン不織布を用い、コインセル電
池を作製した。測定電流は0.1mAとした。まず負極
側に−の電圧、リチウム金属は+の電圧を印加し端子電
圧が0Vになるまで電流を流し、次に負極側に+の電圧、
リチウム金属には−の電圧を印加し端子電圧が2.5V
になるまで電流を流した。このとき負極からLiイオン
が抜き出され対極のリチウム金属に戻り電池の端子電圧
が増加する。そこで負極の可逆容量は負極からLiイオ
ンが抜き出され対極のリチウム金属に戻る時の電圧範囲
0〜2.0V(Li/Li+)までの容量とした。
【0089】正極の可逆容量測定の際には電解液には1
モル/lの濃度LiPF6を溶解させたエチレンカーボ
ネート(EC)とジエチルカーボネート(DEC)の混合溶
媒(混合容積比:EC/DEC=30/70)を用いた。またセ
パレータにはポリプロピレン不織布を用い、コインセル
電池を作製した。測定電流は0.1mAとした。まず正
極側に+の電圧、リチウム金属には−の電圧を印加し端
子電圧が4.3Vになるまで電流を流す。次に正極側に
−の電圧、リチウム金属には+の電圧を印加し端子電圧
が3.0Vになるまで電流を流す。このときリチウム金
属からLiイオンが放出され正極に戻り電池の端子電圧
が減少する。そこで正極の可逆容量はリチウム金属Li
イオンが放出され正極に戻る時の電圧範囲4.3〜3V
(Li/Li+)までの容量とした。本実験では実施例
10〜15の電池の正極の可逆容量に対する負極に対す
る可逆容量の比は実施例10では0.91、実施例11
では1.0、実施例12では1.08、実施例13では
1.22、実施例14では1.3、実施例15では1.
38であり、電池を組み立てる前の電極の容量から求め
た可逆容量比と大きく変わらないことが判明した。
【0090】[実施例16]実施例2と同様にして角型電
池を作製した。図1のように、厚み10μmの銅箔の集
電体1a上にハードカーボンを主成分に用いた第1負極
層2aを形成した。第2負極層3aはシリコンを用い
た。第2負極層3aの形成はCVD法により、行った。
第3負極層4aは金属リチウムとし、真空蒸着法により
形成した。電解液には1モル/lの濃度LiPF6を溶
解させたプロピレンカーボネイト(PC)とエチルメチ
ルカーボネイト(EMC)の混合溶媒(混合容積比:P
C/EMC=40/60)を用いた。
【0091】第2負極層3aの膜厚は1μmとし、第3
負極層4aの膜厚は3μmとした。この電池について充
放電サイクル試験を行った。充放電試験の電圧範囲は3
〜4.3Vとした。300サイクル実施後、満充電状態
において電池の層構造を電子顕微鏡観察したところ、第
2負極層3aと第3負極層4aの境界面が不明瞭となっ
ており、第3負極層4aを構成していたリチウムが第2
負極層3aにドープされたことが確認された。両層のマ
スバランスを考慮すると、300サイクル後の状態にお
いて、第2負極層3aに、満充電状態において理論組成
よりも過剰なリチウムを含有する領域が生成しているこ
とが明らかになった。
【0092】
【発明の効果】以上説明したように本発明の二次電池用
負極は、炭素を主成分とする第1負極層(第一の層)
と、リチウム成分が透過できる膜状材料を主成分とする
第2負極層(第二の層)と、Li、および/またはLi
を含有する化合物を主成分とする第3負極層(第三の
層)とを含む多層構造を採用している。この負極とリチ
ウムイオンを吸蔵及び放出することのできる正極とを用
いた電池においては、負極の第3負極層に含まれるLi
が負極の不可逆容量を効率良く補填することができ、高
い充放電効率と放電容量を両立させることができる。ま
た第3負極層に含まれるLiの一部は第2負極層(第二
の層)へドープされ、第2負極層(第二の層)のリチウ
ム成分の透過性を高くする。このような高いリチウム成
分の透過性を持つ膜状材料が負極中に均一に存在するこ
ととなるため、正極―負極間の電界分布が均一になる。
この結果、電界の局所的集中を防止し、良好なサイクル
特性を実現できる。
【0093】また本発明の負極を用いた電池によれば、
負極の構造として、満充電状態において理論組成よりも
過剰なリチウムを含有するリチウム合金を含む構成を採
用しているため、デンドライドの発生や、他の層、たと
えば炭素含有層との反応が抑制され良好なサイクル特性
が得られる。また、本発明において、リチウムイオン導
電性を持つ膜状材料からなる第二の層にSi、Ge、A
g、Sn、InおよびPbから選択される金属等が含ま
れ、なおかつ第二の層をアモルファス構造とすれば、高
い動作電圧および高い充放電効率を維持しつつ電池容量
を増加させることができる。この理由はアモルファス構
造へのLiのドープ・脱ドープは、結晶構造へのドープ
・脱ドープよりも卑な電位で起こるためである。また、
本発明の負極を用いた電池において、正極の可逆容量に
対する負極の可逆容量の比を1.0〜1.3の範囲とす
ることにより、エネルギー密度が高く、サイクル特性の
良好な電池が得られる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る非水電解液二次電
池の負極の断面図。
【図2】本発明の第2実施形態に係る非水電解液二次電
池の負極の断面図。
【図3】本発明の第3実施形態に係る非水電解液二次電
池の負極の断面図。
【図4】本発明の第4実施形態に係る非水電解液二次電
池の負極の断面図。
【図5】比較例1の非水電解液二次電池の負極の断面
図。
【図6】比較例2または3の非水電解液二次電池の負極
の断面図。
【図7】比較例4の非水電解液二次電池の負極の断面
図。
【図8】比較例5の非水電解液二次電池の負極の断面
図。
【図9】実施例8の非水電解液二次電池の負極の断面
図。
【図10】実施例9の非水電解液二次電池の負極の断面
図。
【図11】従来の二次電池の正極及び負極の可逆容量の
関係を示す図。
【符号の説明】
1a 集電体 2a 第1負極層(第一の層) 3a 第2負極層(第二の層) 4a 第3負極層(第三の層) 5a シリコン粉末
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/40 H01M 10/40 Z (72)発明者 三浦 環 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 宇津木 功二 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 白方 雅人 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 森 満博 東京都港区芝五丁目7番1号 日本電気株 式会社内 Fターム(参考) 5H029 AJ03 AJ05 AK03 AL02 AL03 AL04 AL06 AL12 AL18 AM03 AM04 AM05 AM07 AM16 BJ03 BJ12 CJ24 DJ17 DJ18 HJ19 5H050 AA07 AA08 BA16 BA17 BA18 CA08 CA09 CB02 CB03 CB05 CB07 CB12 CB29 FA02 FA18 FA19 FA20 GA24 HA19

Claims (22)

    【特許請求の範囲】
  1. 【請求項1】 リチウムイオンを吸蔵および放出するこ
    とのできる二次電池用負極であって、炭素を主成分とす
    る第一の層と、リチウム成分が透過できる膜状材料から
    なる第二の層と、リチウムおよび/またはリチウム含有
    化合物を含む第三の層とを含み、第一の層と第三の層と
    の間に第二の層が配置された多層構造を有することを特
    徴とする二次電池用負極。
  2. 【請求項2】 請求項1に記載の二次電池用負極におい
    て、前記第二の層が、リチウム成分を吸蔵および放出す
    ることのできる材料からなることを特徴とする二次電池
    用負極。
  3. 【請求項3】 請求項1または2に記載の二次電池用負
    極において、前記膜状材料がアモルファス構造を有する
    ことを特徴とする二次電池用負極。
  4. 【請求項4】 請求項1乃至3のいずれかに記載の二次
    電池用負極において、前記第二の層が、蒸着法、CVD
    法またはスパッタリング法により形成された層であるこ
    とを特徴とする二次電池用負極。
  5. 【請求項5】 請求項1乃至4のいずれかに記載の二次
    電池用負極において、前記第二の層が、B23、P
    25、Al23、Wh3h-1(h=1、2、3、4)、
    Moi3i-1(i=1、2、3、4)、TiO、TiO2
    からなる群から選択される一または二以上の材料を含む
    ことを特徴とする二次電池用負極。
  6. 【請求項6】 請求項1乃至5のいずれかに記載の二次
    電池用負極において、前記第二の層が、Si、Ge、S
    n、In、AgおよびPbからなる群から選択される一
    または二以上の元素を含むことを特徴とする二次電池用
    負極。
  7. 【請求項7】 請求項1乃至6のいずれかに記載の二次
    電池用負極において、前記第二の層が、Si、Ge、S
    n、In、Ag、Pbの酸化物からなる群から選択され
    る一または二以上の材料からなることを特徴とする二次
    電池用負極。
  8. 【請求項8】 請求項1乃至7のいずれかに記載の二次
    電池用負極において、前記第三の層がアモルファス構造
    を有することを特徴とする二次電池用負極。
  9. 【請求項9】 請求項1乃至8のいずれかに記載の二次
    電池用負極において、前記第三の層が、蒸着法、CVD
    法またはスパッタリング法により形成された層であるこ
    とを特徴とする二次電池用負極。
  10. 【請求項10】 請求項1乃至8のいずれかに記載の二
    次電池用負極において、前記第三の層が、第二の層の表
    面にリチウム含有箔を置くことにより形成された層であ
    ることを特徴とする二次電池用負極。
  11. 【請求項11】 請求項1乃至10のいずれかに記載の
    二次電池用負極において、前記第三の層が金属リチウ
    ム、リチウム合金およびリチウム窒化物からなる群から
    選択される一または二以上の材料を含むことを特徴とす
    る二次電池用負極。
  12. 【請求項12】 請求項1乃至11のいずれかに記載の
    負極と、リチウムイオンを吸蔵および放出することので
    きる正極と、前記正極および前記負極の間に配置された
    電解質と、を具備することを特徴とする二次電池。
  13. 【請求項13】 請求項1乃至11のいずれかに記載の
    負極を用いた二次電池であって、正極にリチウム含有遷
    移金属酸化物を含むことを特徴とする二次電池。
  14. 【請求項14】 請求項12または13に記載の負極を
    用いた二次電池であって、正極の可逆容量に対する負極
    の可逆容量の比が1.0〜1.3の範囲であることを特
    徴とする二次電池。
  15. 【請求項15】 請求項12乃至14のいずれかに記載
    の二次電池であって、満充電状態において前記負極がリ
    チウム成分の理論組成よりも過剰なリチウム成分を含有
    することを特徴とする二次電池。
  16. 【請求項16】 請求項15に記載の二次電池におい
    て、前記負極が、前記第一の層と、前記第三の層との間
    に前記第二の層が配置された多層構造を有し、前記第一
    の層と前記第二の層のリチウム成分合計量が前記第一の
    層と前記第二の層のリチウム成分の理論含有量の和より
    多くの量のリチウム成分を含有することを特徴とする二
    次電池。
  17. 【請求項17】 請求項15に記載の二次電池におい
    て、前記負極が、前記第一の層上に前記第二の層が配置
    された多層構造を有し、前記第一の層と前記第二の層の
    リチウム成分の理論含有量の和より多くの量のリチウム
    成分を含有していることを特徴とする二次電池用負極。
  18. 【請求項18】 請求項1乃至11のいずれかに記載の
    負極の製造方法であって、集電体上に炭素を主成分とす
    る第一の層を形成する工程と、前記第一の層上にリチウ
    ム成分を透過できる膜状材料を主成分とする第二の層を
    形成する工程と、前記第二の層上にリチウムおよび/ま
    たはリチウム含有化合物を含む第三の層を形成する工程
    を含むことを特徴とする負極の製造方法。
  19. 【請求項19】 請求項18に記載の負極の製造方法で
    あって、前記第二の層および、第三の層の少なくとも一
    方が、蒸着法、CVD法またはスパッタリング法により
    形成された層であることを特徴とする負極の製造方法。
  20. 【請求項20】 請求項18または19に記載の負極の
    製造方法であって、前記第二の層および第三の層の少な
    くとも一方が、複数の蒸着源を用いた蒸着法により形成
    された層であることを特徴とする負極の製造方法。
  21. 【請求項21】 請求項18または19に記載の負極の
    製造方法であって、前記第二の層および前記第三の層の
    少なくとも一方が、複数のガスを用いたCVD法により
    形成された層であることを特徴とする負極の製造方法。
  22. 【請求項22】 請求項18または19に記載の負極の
    製造方法であって、前記第二の層および前記第三の層の
    少なくとも一方が、複数のターゲットを用いたスパッタ
    リング法により形成された層であることを特徴とする負
    極の製造方法。
JP2002212547A 2001-07-31 2002-07-22 二次電池用負極およびそれを用いた二次電池、および負極の製造方法 Expired - Lifetime JP4415241B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002212547A JP4415241B2 (ja) 2001-07-31 2002-07-22 二次電池用負極およびそれを用いた二次電池、および負極の製造方法
CNB028150155A CN100539257C (zh) 2001-07-31 2002-07-31 二次电池用负极以及使用其的二次电池、和负极的制造方法
PCT/JP2002/007774 WO2003012898A1 (fr) 2001-07-31 2002-07-31 Pole negatif pour accumulateur, accumulateur utilisant le pole negatif et procede de fabrication de pole negatif
TW091117268A TW557597B (en) 2001-07-31 2002-07-31 Negative electrode of secondary battery and secondary battery using the same and manufacturing method of the negative electrode
US10/485,474 US7202000B2 (en) 2001-07-31 2002-07-31 Anode for secondary battery, secondary battery using same and method for fabricating anode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-232905 2001-07-31
JP2001232905 2001-07-31
JP2002212547A JP4415241B2 (ja) 2001-07-31 2002-07-22 二次電池用負極およびそれを用いた二次電池、および負極の製造方法

Publications (2)

Publication Number Publication Date
JP2003115293A true JP2003115293A (ja) 2003-04-18
JP4415241B2 JP4415241B2 (ja) 2010-02-17

Family

ID=26619735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212547A Expired - Lifetime JP4415241B2 (ja) 2001-07-31 2002-07-22 二次電池用負極およびそれを用いた二次電池、および負極の製造方法

Country Status (5)

Country Link
US (1) US7202000B2 (ja)
JP (1) JP4415241B2 (ja)
CN (1) CN100539257C (ja)
TW (1) TW557597B (ja)
WO (1) WO2003012898A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085756A1 (fr) * 2002-04-10 2003-10-16 Nec Corporation Cellule electrolytique non aqueuse
WO2003100888A1 (fr) * 2002-05-24 2003-12-04 Nec Corporation Electrode negative pour pile secondaire et pile secondaire l'utilisant
JP2005063978A (ja) * 2003-08-19 2005-03-10 Samsung Sdi Co Ltd リチウム金属アノードの製造方法
WO2005078828A1 (ja) * 2004-02-18 2005-08-25 Matsushita Electric Industrial Co., Ltd. 二次電池
WO2005101549A1 (ja) * 2004-04-01 2005-10-27 Sumitomo Electric Industries Ltd. リチウム二次電池負極部材、及びその製造方法
JP2007005219A (ja) * 2005-06-27 2007-01-11 Nippon Telegr & Teleph Corp <Ntt> リチウム2次電池及びその製造方法
JP2007122992A (ja) * 2005-10-27 2007-05-17 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびリチウム二次電池の製造方法
KR100773671B1 (ko) * 2004-02-18 2007-11-05 마쯔시다덴기산교 가부시키가이샤 2차전지의 제조방법
US7402184B2 (en) 2004-06-22 2008-07-22 Matsushita Electric Industrial Co., Ltd. Secondary battery and method for producing the same
JP2008277099A (ja) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd 電気化学素子とその電極の製造方法、製造装置、前処理方法、前処理装置
JP2008300214A (ja) * 2007-05-31 2008-12-11 Fuji Heavy Ind Ltd 電極、蓄電デバイスおよびこれらの製造方法
JP2009533835A (ja) * 2007-05-29 2009-09-17 エルエス エムトロン リミテッド 二次電池用負極材及びこれを用いた二次電池
JP2010527132A (ja) * 2007-05-16 2010-08-05 エルエス エムトロン リミテッド 二次電池用負極材及びこれを用いた二次電池
JP2011165657A (ja) * 2010-01-15 2011-08-25 Semiconductor Energy Lab Co Ltd 蓄電装置
WO2015045929A1 (ja) * 2013-09-25 2015-04-02 トヨタ自動車株式会社 全固体電池
JP2015065033A (ja) * 2013-09-25 2015-04-09 トヨタ自動車株式会社 全固体電池
US10003074B2 (en) 2010-11-16 2018-06-19 Varta Microbattery Gmbh Lithium ion cell having improved ageing behavior
KR20190039425A (ko) 2016-09-08 2019-04-11 맥셀 홀딩스 가부시키가이샤 리튬 이온 이차 전지 및 그 제조 방법

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247408B2 (en) 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
US7771870B2 (en) 2006-03-22 2010-08-10 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries
US20110165471A9 (en) * 1999-11-23 2011-07-07 Sion Power Corporation Protection of anodes for electrochemical cells
EP1690838B1 (en) * 2003-11-17 2011-02-16 National Institute of Advanced Industrial Science and Technology Nanocrystal oxide/glass composite mesoporous powder or thin film, process for producing the same, and utilizing the powder or thin film, various devices, secondary battery and lithium storing device
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US7465519B2 (en) * 2004-09-03 2008-12-16 The Hongkong University Of Science And Technology Lithium-ion battery incorporating carbon nanostructure materials
US20060051282A1 (en) * 2004-09-03 2006-03-09 The Hong Kong University Of Science And Technology Synthesis of carbon nanostructures
US7563541B2 (en) * 2004-10-29 2009-07-21 Medtronic, Inc. Lithium-ion battery
US8105714B2 (en) * 2004-10-29 2012-01-31 Medtronic, Inc. Lithium-ion battery
US9065145B2 (en) * 2004-10-29 2015-06-23 Medtronic, Inc. Lithium-ion battery
US9077022B2 (en) 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
US20080044728A1 (en) * 2004-10-29 2008-02-21 Medtronic, Inc. Lithium-ion battery
US7927742B2 (en) * 2004-10-29 2011-04-19 Medtronic, Inc. Negative-limited lithium-ion battery
CN101048898B (zh) * 2004-10-29 2012-02-01 麦德托尼克公司 锂离子电池及医疗装置
TWI311384B (en) * 2004-11-25 2009-06-21 Sony Corporatio Battery and method of manufacturing the same
JP4794893B2 (ja) * 2005-04-12 2011-10-19 パナソニック株式会社 非水電解液二次電池
US8492810B2 (en) * 2006-02-28 2013-07-23 Qimonda Ag Method of fabricating an integrated electronic circuit with programmable resistance cells
US20080070103A1 (en) * 2006-09-19 2008-03-20 Caleb Technology Corporation Activation of Anode and Cathode in Lithium-Ion Polymer Battery
US20080070108A1 (en) * 2006-09-19 2008-03-20 Caleb Technology Corporation Directly Coating Solid Polymer Composite Having Edge Extensions on Lithium-Ion Polymer Battery Electrode Surface
US7527894B2 (en) 2006-09-19 2009-05-05 Caleb Technology Corporation Identifying defective electrodes in lithium-ion polymer batteries
US20080070104A1 (en) * 2006-09-19 2008-03-20 Caleb Technology Corporation Forming Polymer Electrolyte Coating on Lithium-Ion Polymer Battery Electrode
EP2076936B1 (en) * 2006-10-25 2018-07-18 Oxis Energy Limited A lithium-sulphur battery with a high specific energy and a method of operating same
GB2443852B (en) * 2006-10-25 2008-12-17 Oxis Energy Ltd A Lithium-Sulphur Battery with a High Specific Energy and a Method of Operating same
EP2102924B1 (en) 2006-12-04 2018-03-28 Sion Power Corporation Separation of electrolytes in lithium batteries
US9728809B2 (en) * 2007-01-04 2017-08-08 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
FR2913011B1 (fr) * 2007-02-22 2010-03-12 Centre Nat Rech Scient Nouveaux materiaux comprenant des elements du groupe 14
JP5300502B2 (ja) * 2008-03-13 2013-09-25 株式会社東芝 電池用活物質、非水電解質電池および電池パック
US8603196B2 (en) * 2008-08-04 2013-12-10 Panasonic Corporation Lithium secondary battery manufacturing method comprising forming lithium metal layer and lithium secondary battery
US20100279155A1 (en) * 2009-04-30 2010-11-04 Medtronic, Inc. Lithium-ion battery with electrolyte additive
US20110020701A1 (en) 2009-07-16 2011-01-27 Carbon Micro Battery Corporation Carbon electrode structures for batteries
US8603195B2 (en) * 2009-08-24 2013-12-10 Applied Materials, Inc. 3D approach on battery and supercapitor fabrication by initiation chemical vapor deposition techniques
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
HUE042715T2 (hu) * 2010-01-18 2019-07-29 Enevate Corp Kompozit anyagok elektorkémiai tároláshoz
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US20170040598A1 (en) 2015-08-07 2017-02-09 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US9553303B2 (en) 2010-01-18 2017-01-24 Enevate Corporation Silicon particles for battery electrodes
KR101202334B1 (ko) * 2010-07-20 2012-11-16 삼성에스디아이 주식회사 양극 및 이를 포함한 리튬 전지
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US9583757B2 (en) 2010-12-22 2017-02-28 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US9397338B2 (en) 2010-12-22 2016-07-19 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
CN102231438A (zh) * 2011-05-20 2011-11-02 复旦大学 一种用于锂离子电池的氧化硼无定形纳米负极材料及其制备方法
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US9287580B2 (en) 2011-07-27 2016-03-15 Medtronic, Inc. Battery with auxiliary electrode
JP6118805B2 (ja) 2011-10-13 2017-04-19 シオン・パワー・コーポレーション 電極構造およびその製造方法
US20130149560A1 (en) 2011-12-09 2013-06-13 Medtronic, Inc. Auxiliary electrode for lithium-ion battery
US8993172B2 (en) 2011-12-10 2015-03-31 Kalptree Energy, Inc. Li-ion battery and battery active components on metal wire
KR20130118716A (ko) 2012-04-20 2013-10-30 주식회사 엘지화학 전극 조립체, 이를 포함하는 전지셀 및 디바이스
US9005311B2 (en) 2012-11-02 2015-04-14 Sion Power Corporation Electrode active surface pretreatment
US10017849B2 (en) * 2012-11-29 2018-07-10 Corning Incorporated High rate deposition systems and processes for forming hermetic barrier layers
US10381690B2 (en) * 2013-08-14 2019-08-13 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
US9905854B2 (en) * 2013-09-03 2018-02-27 Samsung Sdi Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery including the same
US9343736B2 (en) * 2014-03-31 2016-05-17 Battelle Memorial Institute Lithium compensation for full cell operation
JP6770952B2 (ja) 2014-09-09 2020-10-21 シオン・パワー・コーポレーション リチウムイオン電気化学電池における保護層、並びに関連する電極および方法
CN112117462A (zh) * 2015-04-23 2020-12-22 威廉马歇莱思大学 作为电极的垂直对齐的碳纳米管阵列
CN107848247B (zh) 2015-05-20 2021-06-01 锡安能量公司 电极的保护层
CN108028392B (zh) * 2016-01-20 2021-08-17 株式会社Lg化学 具有部分引入金属催化剂的副反应阻止层的锂-空气电池的正极、具有所述正极的锂-空气电池及其制造方法
JP7049269B2 (ja) 2016-05-20 2022-04-06 シオン・パワー・コーポレーション 電極用保護層および電気化学電池
KR102581466B1 (ko) * 2016-05-27 2023-09-22 삼성전자주식회사 리튬전지 및 보호음극의 제조방법
US11024923B2 (en) 2017-03-09 2021-06-01 Sion Power Corporation Electrochemical cells comprising short-circuit resistant electronically insulating regions
KR102270864B1 (ko) * 2017-04-19 2021-07-01 주식회사 엘지에너지솔루션 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
PL3654423T3 (pl) 2017-08-18 2022-06-13 Lg Chem, Ltd. Elektroda ujemna dla akumulatora litowego i zawierający ją akumulator litowy
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
CN109411694A (zh) * 2018-10-22 2019-03-01 天齐锂业(江苏)有限公司 一种金属锂复合负极及其制备方法与应用
WO2020111318A1 (ko) * 2018-11-29 2020-06-04 주식회사 엘 앤 에프 리튬 이차전지용 양극 활물질
CN110600747A (zh) * 2019-10-09 2019-12-20 山东大学 一种柔性三维层状MXene@铟复合膜及其制备方法和应用
CN114976207A (zh) * 2020-09-11 2022-08-30 宁德新能源科技有限公司 电化学装置和电子装置
WO2022204003A1 (en) * 2021-03-22 2022-09-29 Lyten, Inc. Carbon composite anode with ex-situ electrodeposited lithium
US20230163309A1 (en) 2021-11-22 2023-05-25 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241675A (ja) * 1990-02-20 1991-10-28 Osamu Yamamoto 非水電解液二次電池
JPH0473862A (ja) * 1990-07-06 1992-03-09 Yuasa Corp リチウム二次電池
JPH05275076A (ja) * 1992-03-24 1993-10-22 Agency Of Ind Science & Technol リチウム二次電池用負極
JPH06310125A (ja) * 1993-04-20 1994-11-04 Mitsubishi Cable Ind Ltd リチウム二次電池用負極
JPH0750162A (ja) * 1993-08-04 1995-02-21 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池用負極
JPH07326345A (ja) * 1994-05-31 1995-12-12 Mitsubishi Cable Ind Ltd リチウム二次電池用負極とその製造方法、およびその負極を用いてなるリチウム二次電池
JPH08124597A (ja) * 1994-10-26 1996-05-17 Sanyo Electric Co Ltd 固体電解質二次電池
JPH08153514A (ja) * 1994-11-28 1996-06-11 Ricoh Co Ltd フィルム状非水電解液二次電池用負極および該電極を用いた非水電解液二次電池
JPH09129217A (ja) * 1995-11-01 1997-05-16 Fuji Photo Film Co Ltd 非水二次電池
JPH10144295A (ja) * 1996-11-11 1998-05-29 Fuji Elelctrochem Co Ltd リチウムイオン二次電池
JP2001283833A (ja) * 2000-04-03 2001-10-12 Sanyo Electric Co Ltd 二次電池
JP2002015726A (ja) * 2000-06-29 2002-01-18 Sony Corp ゲル電解質二次電池
JP2002015729A (ja) * 2000-06-30 2002-01-18 Toshiba Corp 非水電解質二次電池
JP2002237295A (ja) * 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd リチウム二次電池及びその製造法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2110097C (en) * 1992-11-30 2002-07-09 Soichiro Kawakami Secondary battery
JPH07326342A (ja) * 1994-05-30 1995-12-12 Mitsubishi Cable Ind Ltd リチウム二次電池用負極およびそれを用いてなるリチウム二次電池
EP0836238B1 (en) * 1995-06-28 2005-11-16 Ube Industries, Ltd. Nonaqueous secondary battery
EP1170816A2 (en) * 2000-07-06 2002-01-09 Japan Storage Battery Company Limited Non-aqueous electrolyte secondary battery and process for the preparation thereof
JP2002280076A (ja) * 2001-03-15 2002-09-27 Hitachi Ltd リチウム二次電池、リチウム二次電池を用いたモジュール及びこれらを用いた装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241675A (ja) * 1990-02-20 1991-10-28 Osamu Yamamoto 非水電解液二次電池
JPH0473862A (ja) * 1990-07-06 1992-03-09 Yuasa Corp リチウム二次電池
JPH05275076A (ja) * 1992-03-24 1993-10-22 Agency Of Ind Science & Technol リチウム二次電池用負極
JPH06310125A (ja) * 1993-04-20 1994-11-04 Mitsubishi Cable Ind Ltd リチウム二次電池用負極
JPH0750162A (ja) * 1993-08-04 1995-02-21 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池用負極
JPH07326345A (ja) * 1994-05-31 1995-12-12 Mitsubishi Cable Ind Ltd リチウム二次電池用負極とその製造方法、およびその負極を用いてなるリチウム二次電池
JPH08124597A (ja) * 1994-10-26 1996-05-17 Sanyo Electric Co Ltd 固体電解質二次電池
JPH08153514A (ja) * 1994-11-28 1996-06-11 Ricoh Co Ltd フィルム状非水電解液二次電池用負極および該電極を用いた非水電解液二次電池
JPH09129217A (ja) * 1995-11-01 1997-05-16 Fuji Photo Film Co Ltd 非水二次電池
JPH10144295A (ja) * 1996-11-11 1998-05-29 Fuji Elelctrochem Co Ltd リチウムイオン二次電池
JP2001283833A (ja) * 2000-04-03 2001-10-12 Sanyo Electric Co Ltd 二次電池
JP2002015726A (ja) * 2000-06-29 2002-01-18 Sony Corp ゲル電解質二次電池
JP2002015729A (ja) * 2000-06-30 2002-01-18 Toshiba Corp 非水電解質二次電池
JP2002237295A (ja) * 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd リチウム二次電池及びその製造法

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118831B2 (en) 2002-04-10 2006-10-10 Nec Corporation Nonaqueous electrolyte cell
WO2003085756A1 (fr) * 2002-04-10 2003-10-16 Nec Corporation Cellule electrolytique non aqueuse
WO2003100888A1 (fr) * 2002-05-24 2003-12-04 Nec Corporation Electrode negative pour pile secondaire et pile secondaire l'utilisant
US8034475B2 (en) 2002-05-24 2011-10-11 Nec Corporation Anode for secondary battery and secondary battery using the same
US7763387B2 (en) 2002-05-24 2010-07-27 Nec Corporation Negative electrode for secondary cell and secondary cell using the same
JP2005063978A (ja) * 2003-08-19 2005-03-10 Samsung Sdi Co Ltd リチウム金属アノードの製造方法
US8163425B2 (en) 2004-02-18 2012-04-24 Panasonic Corporation Secondary battery
WO2005078828A1 (ja) * 2004-02-18 2005-08-25 Matsushita Electric Industrial Co., Ltd. 二次電池
KR100773671B1 (ko) * 2004-02-18 2007-11-05 마쯔시다덴기산교 가부시키가이샤 2차전지의 제조방법
US8163424B2 (en) 2004-02-18 2012-04-24 Panasonic Corporation Secondary battery
WO2005101549A1 (ja) * 2004-04-01 2005-10-27 Sumitomo Electric Industries Ltd. リチウム二次電池負極部材、及びその製造方法
US7416815B2 (en) 2004-04-01 2008-08-26 Sumitomo Electric Industries, Ltd. Negative electrode member for lithium battery and process for producing the same
US7402184B2 (en) 2004-06-22 2008-07-22 Matsushita Electric Industrial Co., Ltd. Secondary battery and method for producing the same
JP2007005219A (ja) * 2005-06-27 2007-01-11 Nippon Telegr & Teleph Corp <Ntt> リチウム2次電池及びその製造方法
JP2007122992A (ja) * 2005-10-27 2007-05-17 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびリチウム二次電池の製造方法
JP2008277099A (ja) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd 電気化学素子とその電極の製造方法、製造装置、前処理方法、前処理装置
JP2010527132A (ja) * 2007-05-16 2010-08-05 エルエス エムトロン リミテッド 二次電池用負極材及びこれを用いた二次電池
JP2009533835A (ja) * 2007-05-29 2009-09-17 エルエス エムトロン リミテッド 二次電池用負極材及びこれを用いた二次電池
JP2008300214A (ja) * 2007-05-31 2008-12-11 Fuji Heavy Ind Ltd 電極、蓄電デバイスおよびこれらの製造方法
JP2017117803A (ja) * 2010-01-15 2017-06-29 株式会社半導体エネルギー研究所 蓄電装置
JP2015146320A (ja) * 2010-01-15 2015-08-13 株式会社半導体エネルギー研究所 蓄電装置
US9590249B2 (en) 2010-01-15 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Electricity storage device
JP2011165657A (ja) * 2010-01-15 2011-08-25 Semiconductor Energy Lab Co Ltd 蓄電装置
US10003074B2 (en) 2010-11-16 2018-06-19 Varta Microbattery Gmbh Lithium ion cell having improved ageing behavior
KR101921348B1 (ko) * 2010-11-16 2018-11-22 바르타 마이크로바테리 게엠베하 개선된 노화 거동을 갖는 리튬 이온 전지
US10483543B2 (en) 2010-11-16 2019-11-19 Varta Microbattery Gmbh Lithium ion cell having improved ageing behavior
WO2015045929A1 (ja) * 2013-09-25 2015-04-02 トヨタ自動車株式会社 全固体電池
JP2015065033A (ja) * 2013-09-25 2015-04-09 トヨタ自動車株式会社 全固体電池
KR20190039425A (ko) 2016-09-08 2019-04-11 맥셀 홀딩스 가부시키가이샤 리튬 이온 이차 전지 및 그 제조 방법

Also Published As

Publication number Publication date
JP4415241B2 (ja) 2010-02-17
US7202000B2 (en) 2007-04-10
CN1537338A (zh) 2004-10-13
TW557597B (en) 2003-10-11
CN100539257C (zh) 2009-09-09
US20040175621A1 (en) 2004-09-09
WO2003012898A1 (fr) 2003-02-13

Similar Documents

Publication Publication Date Title
JP4415241B2 (ja) 二次電池用負極およびそれを用いた二次電池、および負極の製造方法
US9263735B2 (en) Anode and battery
US9742036B2 (en) Anode material, anode and battery
KR100450548B1 (ko) 2차 전지용 음극 및 그 2차 전지용 음극을 이용한 2차 전지
JP3982230B2 (ja) 二次電池用負極およびそれを用いた二次電池
JP5177361B2 (ja) 二次電池用負極および二次電池
US20120231341A1 (en) Positive active material, and electrode and lithium battery containing the positive active material
US9059475B2 (en) Lithium secondary battery
JP5278994B2 (ja) リチウム二次電池
US8377591B2 (en) Anode material for secondary battery, anode for secondary battery and secondary battery therewith
JP2007200646A (ja) リチウム二次電池
CN100517857C (zh) 电池
JP2003303618A (ja) 非水電解液電池
CN102195087A (zh) 非水电解质组合物以及非水电解质电池
US9312534B2 (en) Nonaqueous electrolytic solution secondary battery, and positive electrode and negative electrode used in the same
JP2003297353A (ja) 二次電池用負極およびそれを用いた二次電池ならびに二次電池用負極の製造方法
KR101016077B1 (ko) 전기 화학 소자용 전극과 그 제조 방법 및 이를 이용한전기 화학 소자
JP4304570B2 (ja) 非水電解液およびそれを用いた二次電池
US20040175622A9 (en) Method of preparing electrode composition having a carbon-containing-coated metal oxide, electrode composition and electrochemical cell
JP5863631B2 (ja) 非水電解質二次電池の製造方法
KR20160083818A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP4078864B2 (ja) 二次電池用負極および二次電池
KR101701415B1 (ko) 음극활물질, 그 제조방법 및 이를 채용한 음극과 리튬전지
JP2006302757A (ja) 電池
US20240154159A1 (en) Electrolyte, Lithium Battery Including the Same, and Method of Preparing the Electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

R150 Certificate of patent or registration of utility model

Ref document number: 4415241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

EXPY Cancellation because of completion of term