JP2003008124A - 光源装置及びそれを用いた露光装置 - Google Patents

光源装置及びそれを用いた露光装置

Info

Publication number
JP2003008124A
JP2003008124A JP2001183025A JP2001183025A JP2003008124A JP 2003008124 A JP2003008124 A JP 2003008124A JP 2001183025 A JP2001183025 A JP 2001183025A JP 2001183025 A JP2001183025 A JP 2001183025A JP 2003008124 A JP2003008124 A JP 2003008124A
Authority
JP
Japan
Prior art keywords
target
light source
laser beam
source device
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001183025A
Other languages
English (en)
Other versions
JP4995379B2 (ja
Inventor
Kazu Mizoguchi
計 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Priority to JP2001183025A priority Critical patent/JP4995379B2/ja
Publication of JP2003008124A publication Critical patent/JP2003008124A/ja
Application granted granted Critical
Publication of JP4995379B2 publication Critical patent/JP4995379B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70175Lamphouse reflector arrangements or collector mirrors, i.e. collecting light from solid angle upstream of the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lasers (AREA)

Abstract

(57)【要約】 【課題】 高能率であり、かつ、デブリの発生を抑制す
ることができる光源装置を提供する。 【解決手段】 ターゲットにレーザビームを照射するこ
とにより極端紫外光を発生する光源装置であって、ター
ゲットとして、レーザビームが照射される時点におい
て、又はレーザビームが照射された直後においてガス状
態である物質を供給するターゲット供給部113、11
9と、レーザ媒質として二酸化炭素ガスを含む混合ガス
を使用し、波長10μm帯のレーザ光を発生させ、ター
ゲットにレーザビームを照射することによりプラズマを
発生させるレーザ部111、112と、プラズマから放
出される極端紫外光を集光して出射する集光光学系11
5とを具備する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、ターゲットにレー
ザビームを照射することにより極端紫外(EUV:Ex
treme Ultra Violet)光を発生する
光源装置に関する。さらに、本発明は、そのような光源
装置を用いた露光装置に関する。
【0002】
【従来の技術】半導体プロセスの微細化に伴って光リソ
グラフィも微細化が急速に進展しており、次世代におい
ては、100〜70nmの微細加工、更には50nm以
下の微細加工が要求されるようになる。例えば、50n
m以下の微細加工の要求に応えるべく、波長13nmの
EUV光源と縮小投影反射光学系(Cataoptri
c System)とを組み合わせた露光装置の開発が
期待されている。
【0003】EUV光源としては、レーザビームをター
ゲットに照射することによって生成するプラズマを用い
たLPP(Laser Produced Plasm
a)光源と、放電によって生成するプラズマを用いたD
P(Discharge Plasma)光源と、軌道
放射光を用いたSR(Syncrotron Radi
ation)光源との3種類がある。これらの内でも、
LPP光源は、プラズマ密度をかなり大きくできるので
黒体輻射に近い極めて高い輝度が得られ、ターゲット材
料を選択することにより必要な波長帯のみの発光が可能
であり、ほぼ等方的な角度分布を持つ点光源であるので
光源の周囲に電極等の構造物がなく、2πsteradという
極めて大きな捕集立体角の確保が可能であること等の利
点から、数十ワット以上のパワーが要求されるEUVリ
ソグラフィ用の光源として有力であると考えられてい
る。
【0004】LPP光源において、プラズマを発生させ
るためにレーザビームを照射するターゲットとして固体
材料を用いると、レーザビーム照射領域がプラズマ化す
るときにレーザビームの照射により発生する熱がレーザ
ビーム照射領域の周辺に伝わり、その周辺において固体
材料が溶融する。溶融した固体材料は、直径数μm以上
の粒子隗(デブリ)となって多量に放出され、集光ミラ
ーにダメージを与え、その反射率を低下させる。一方、
ターゲットとして気体を用いると、デブリは少なくなる
ものの、レーザ発振器に供給するパワーからEUV光の
パワーへの変換効率が低下してしまう。
【0005】図5に、レーザ媒質としてYAGを用い、
ターゲットとしてキセノンガスを用いた従来の光源装置
の構成を示す。キセノンガスに圧力をかけて、ノズル1
03からターゲットとしてキセノンガスを上方に噴出さ
せる。ノズル103の開口部から距離Dだけ離れた位置
において、YAGレーザ発振器101から発生したレー
ザ光を集光レンズ102により収束させたレーザビーム
をキセノンガスに照射して、プラズマ104を生成す
る。プラズマから放出されたEUV光は、反射鏡105
により集光され、平行光107となってデブリシールド
106を通過した後、露光器へ伝送される。
【0006】
【発明が解決しようとする課題】ここで、LD励起YA
Gレーザは、パルス継続時間が数nsで、レーザ光の波
長が1μm帯である。一方、数万度を超えるプラズマの
生成過程は、ps(10 -12秒)のスケールで進展す
る。レーザビームが照射される初期の時点におけるプラ
ズマの密度が小さいと、それ以降においてレーザビーム
はターゲット中の分子や原子を十分にプラズマ化するこ
とができずに素通りしてしまう。逆に、プラズマの密度
が大き過ぎる場合には、レーザビームが照射される側の
プラズマに遮られて、十分な体積のプラズマが生成でき
なくなる。従って、プラズマの密度、あるいは、ターゲ
ットとなる気体の密度には、最適な範囲が存在する。Y
AGレーザを用いる場合には、レーザビームをプラズマ
に効率良く吸収させるために、レーザビームをかなり密
度が大きいガス状ターゲットと相互作用させる必要があ
る。そのため、ノズルの噴出口近くの密度の大きいガス
にレーザビームを照射することが必要であり、ノズルの
噴出口周辺にプラズマが衝突し、ノズル材料が侵食され
て発生するデブリが大きな問題となっていた。また、L
D励起YAGレーザは、レーザ光発生効率が5%〜6%
と低く、高出力化するとガスレーザと比較して装置が大
型化するという問題もあった。さらに、LD励起YAG
レーザを高出力化した場合に、YAGガスの熱歪で横モ
ードが悪化し、ターゲットへの照射効率が低下してしま
うという問題があった。
【0007】そこで、本発明は、高能率であり、かつ、
デブリの発生を抑制することができる光源装置を提供す
ることを目的とする。また、本発明は、そのような光源
装置を用いることにより、微細な光リソグラフィを実現
することができる露光装置を提供することを目的とす
る。
【0008】
【課題を解決するための手段】上記課題を解決するた
め、本発明の第1の観点に係る光源装置は、ターゲット
にレーザビームを照射することにより極端紫外光を発生
する光源装置であって、ターゲットとして、レーザビー
ムが照射される時点、又はレーザビームが照射された直
後においてにおいてガス状態である物質を供給するター
ゲット供給部と、レーザ媒質として二酸化炭素ガスを含
む混合ガスを使用し、波長10μm帯のレーザ光を発生
させ、ターゲットにレーザビームを照射することにより
プラズマを発生させるレーザ部と、プラズマから放出さ
れる極端紫外光を集光して出射する集光光学系とを具備
する。
【0009】本発明の第2の観点に係る光源装置は、タ
ーゲットにレーザビームを照射することにより極端紫外
光を発生する光源装置であって、ターゲットとして、レ
ーザビームが照射される時点において、又はレーザビー
ムが照射された直後においてガス状態となる物質を供給
するターゲット供給部と、レーザ媒質として一酸化炭素
ガスを含む混合ガスを使用し、波長5μm〜6μm帯の
レーザ光を発生させ、ターゲットにレーザビームを照射
することによりプラズマを発させるレーザ部と、プラズ
マから放出される極端紫外光を集光して出射する集光光
学系とを具備する。
【0010】また、本発明に係る露光装置は、本発明に
係る光源装置と、光源装置によって発生された極端紫外
光を複数のミラーを用いてマスクに集光する照明光学系
と、前記マスクから反射された極端紫外光を用いて対象
物を露光させる投影光学系とを具備する。
【0011】本発明によれば、レーザ媒質として炭酸ガ
スを使用したレーザ部から出射した波長の長いレーザビ
ームをガス状態のターゲットに照射して極端紫外光を発
生するので、低密度のガスを使った場合におけるEUV
光の発生能率を高め、かつ、デブリの発生を抑制するこ
とができる。
【0012】
【発明の実施の形態】以下、図面に基いて本発明の実施
の形態について説明する。なお、同一の構成要素につい
ては同一の参照番号を付して、これらの説明を省略す
る。図1に、本発明の第1の実施形態に係る光源装置の
構成を示す。この光源装置は、レーザ部として、レーザ
媒質に炭酸ガスを使用してレーザ光を発生するレーザ発
振器111と、レーザ発振器111が発生するレーザ光
を集光してレーザビームにする照射光学系とを含んでい
る。本実施形態においては、照射光学系が、集光レンズ
112によって構成されている。集光レンズ112とし
ては、平凸レンズやシリンドリカルレンズが使用され
る。
【0013】また、光源装置は、ターゲット供給部とし
て、レーザビームが照射されるターゲットとなる物質を
供給するターゲット供給装置119と、ターゲット供給
装置119から供給される物質を噴射するためのノズル
113とを含んでいる。レーザ部が、ターゲット供給部
から供給されるターゲットにレーザビームを照射するこ
とにより、プラズマを生成する。
【0014】さらに、光源装置は、プラズマから放出さ
れる極端紫外(EUV:ExtraUltra Vio
let)光を集光して出射する集光光学系を構成する反
射鏡115と、レーザビーム照射領域の周辺から放出さ
れる直径数μm以上の粒子隗(デブリ)を取り除いてE
UV光のみを通過させるデブリシールド116とを含ん
でいる。反射鏡115としては、放物面鏡あるいは球面
鏡又は複数の曲率を有する球面鏡を使用することができ
る。本発明において、EUV光は、5nm〜50nmの
波長を有している。
【0015】ターゲットとなる物質を供給するためのノ
ズル113の上方には回収ダクト118が設けられ、ノ
ズルの開口部と回収ダクトの開口部とが対向するように
配置されている。ノズルから供給され、プラズマ化しな
かったか、又は、定常状態に戻ったターゲット物質は、
回収ダクト118の開口部から吸引されてターゲット回
収装置120に回収される。
【0016】本発明においては、ターゲットとして、レ
ーザビームが照射される時点において、又はレーザビー
ムが照射された直後においてガス状態である物質を使用
する。このような物質としては、通常、露光装置が使用
されるような温度でガス状態となるような物質であれば
特に限定はなく、具体的には、常温(20℃)でガス状
態である物質が該当し、例えば、キセノン(Xe)、キ
セノンを主成分とする混合物、アルゴン(Ar)、クリ
プトン(Kr)、又は、低気圧状態でガスである水(H
2O)、アルコールを用いることができる。極端紫外光
発生部は真空状態にする必要があるので、常温で水を供
給してもノズルから出た後は気体となる。
【0017】ターゲットとなる物質は、ノズル113か
ら、ガス状態、液体状態、固体状態又はこれらの混合状
態で放出される。例えば、気体のみからなる物質、固体
又は液体の微粒子のみからなる物質、液体又は固体の微
粒子と気体とが混合された物質が挙げられる。ただし、
ターゲットとなる物質が、ノズル113から放出された
時点で液体又は固体である場合には、レーザビームが照
射される時点又はレーザビームが照射された直後におい
てガス状態となることが必要である。
【0018】ターゲットとなる物質が最初からガス状態
である場合には、この気体に圧力を加えてノズル113
の開口部から放出することにより、この気体をガス状態
のままで供給してもよい。又は、この気体を、正イオン
又は負イオンを核として複数個の原子又は分子が凝集し
てできる電荷を帯びた原子又は分子の集合体(クラスタ
ーイオン)のジェット(噴射)として供給しても良い。
【0019】あるいは、ターゲットとなる物質を冷却し
て液体化し、この物質に圧力を加えてノズルの開口部か
ら液体状で放出したり、液体化された物質にノズル内で
熱を加えてノズルの開口部から液滴状で放出して、レー
ザビームが照射される時点においてこの物質をガス状態
としてもよい。さらに、ターゲットとなる物質を冷却固
化して微粒子状にし、この物質をノズルの開口部から放
出して、レーザビームが照射される時点においてこの物
質をガス状態としてもよい。なお、これらの場合におい
て、ターゲットとなる物質に圧力を加える手段や温度を
調節する手段を、ノズル等に適宜設けることができる。
【0020】本実施形態においては、ターゲットとして
キセノン(Xe)を用いている。その場合、発生するE
UV光は約10nm〜約15nmの波長を有する。ター
ゲット供給装置119がキセノンガスに圧力を加えるこ
とにより、ノズル113の開口部から上方に向けてキセ
ノンガスを噴射する。ノズル113は、スリット状の開
口を有するか、又は直線上に配列された複数の開口を有
する。従って、噴出したキセノンガスは、開口部の長手
方向に広い幅を有しながら垂直に流動し、キセノンガス
の柱を形成することになる。
【0021】あるいは、冷却されて液体状態又は固体状
態となったキセノンを、ノズル113の開口部から噴射
するようにしてもよい。ただし、レーザビームが照射さ
れる位置においては、キセノンがガス状態となるように
する。
【0022】レーザ発振器111は、レーザ媒質に二酸
化炭素ガスを含む混合ガスを使用することにより10μ
m帯の波長を有するレーザ光を発生するか、又は、レー
ザ媒質に一酸化炭素ガスを含む混合ガスを使用すること
により5μm〜6μmの波長を有するレーザ光を発生す
る。レーザ発振器111から発生されたレーザ光は、集
光レンズ112により集光され、実質的にライン状の断
面形状を有するレーザビームとなって、キセノンガスの
柱に向けて照射される。照射されるレーザビームがキセ
ノンガスと交差する位置において、例えば、約0.5c
m〜2cmの長さの葉巻状のプラズマ114が発生す
る。
【0023】プラズマが発生する位置の周囲には、反射
鏡115が設置されている。反射鏡115には、レーザ
ビームを通過させるための開口と、ノズル113から回
収ダクト118へ向けてターゲットを噴射させるための
開口と、ターゲットを回収ダクトに吸収するための開口
とが形成されている。プラズマ114から放出されたE
UV光は、反射鏡115によって平行光となり、デブリ
シールド116を通過して出力される。本実施形態にお
いては、照射されるレーザビームの光軸が、出力される
EUV光の光軸と実質的に平行となっている。反射鏡1
15の内面(集光鏡)のコーティングとしては、波長1
3nmのEUV光を発生する場合にはMo/Si又はM
o/Srを用い、波長11nmのEUV光を発生する場
合にはMo/Be又はMo/Srを用いると、集光効率
を向上させることができる。
【0024】本実施形態に係る光源装置においては、Y
AGレーザビームを用いた光源装置と比べて、ノズル1
13の開口部からプラズマ114までの距離Dをかなり
長く採ることができ、例えば10cm〜20cm程度と
することができる。YAGレーザは、1μm帯の短い波
長を有するレーザ光を出力するため、密度の大きいター
ゲットガスと相互作用させないと効率良くプラズマを発
生することができない。一方、炭酸ガスレーザは、約1
0μmの長い波長を有するレーザ光を出力するため、密
度の比較的小さいターゲットガスと相互作用させても効
率良くプラズマを発生することができる。また、一酸化
炭素レーザは、波長およそ5μm〜6μmのレーザ光を
出力するため、炭酸ガスレーザと同様の効果を期待でき
る。
【0025】従って、本実施形態によれば、ノズルの開
口部から離れた位置において、レーザビームをターゲッ
トガスに照射することが可能となる。これによって、プ
ラズマによるノズルのダメージや加熱の問題を軽減し、
デブリの発生を抑圧して反射鏡の寿命を長くすることが
できる。また、ノズルの開口部とプラズマが発生する位
置との間隔を離すことができるので、EUV光を取り出
すための集光光学系の配置に関する設計が容易になる。
さらに、ターゲットガスの柱の幅方向にレーザビームを
照射した場合に、その幅の最遠端においてもプラズマを
発生することができる。また、ノズル113としてラバ
ールノズルを用いて、超音速でガス状又はクラスター状
にターゲットを噴射することも可能である。図4に、ラ
バールノズルの断面形状を示す。図4に示すように、タ
ンクAとタンクBとの間にスロートが設けられている。
スロートは、タンクAの出口において急速に狭まり、そ
の後、タンクBに向かって徐々に広がる形状を有してい
る。なお、レーザ発振器111の炭酸ガスレーザとして
は、パルス発振レーザであってもよく、不安定共振器を
用いて集光性を高めることも可能である。
【0026】次に、本発明の第2の実施形態について説
明する。図2に、本発明の第2の実施形態に係る発光装
置の構成を示す。本実施形態においては、レーザビーム
の光軸を、集光光学系から出射されるEUVの光軸と実
質的に直交させている。その他の点に関しては、第1の
実施形態と同一である。
【0027】図2に示すように、ノズル113の開口部
からターゲットとなるキセノンガスを下方に向けて噴射
すると、横に広がったターゲットガスの柱が形成され
る。レーザ発振器111から発生されたレーザ光は、シ
リンドリカル集光レンズ112により集光されたレーザ
ビームとなる。レーザビームがガス状のターゲットに照
射されることにより、葉巻状のプラズマ114が生成さ
れる。なお、プラズマ化しなかったか、又は、定常状態
に戻ったターゲットは、回収ダクト118によって吸収
される。発生したプラズマから放射されるEUV光は、
反射鏡115により反射集光されて平行光117となっ
て出力される。
【0028】次に、本発明の一実施形態に係る露光装置
について説明する。図3に、本発明の一実施形態に係る
露光装置の構成を示す。この露光装置は、本発明に係る
光源装置を光源として用いており、光源におけるデブリ
が少ないため、光学系への悪影響を小さくできる。
【0029】図3に示すように、露光装置1は、EUV
光を発生する光源装置100と、光源装置100によっ
て発生されたEUV光を複数のミラーを用いてレチクル
ステージ300に取り付けられたレチクル(マスク)に
集光する照明光学系200と、前記マスクから反射され
たEUV光を用いて対象物を露光させる投影光学系40
1とを含んでいる。投影光学系401は、ウエハを設置
するためのウエハステージ402や、ウエハ500の位
置を検出するウエハアライメントセンサ403と共に、
露光器400を構成している。露光装置1の全体は、真
空ポンプ等により低圧力に保たれた真空系内に設置され
ている。
【0030】本実施形態に係る露光装置の動作について
説明する。照明光学系200は、光源装置100によっ
て発生されたEUV光を、集光ミラー201、202、
203によって、レチクルステージ300に集光する。
このように、照明光学系200は、全て反射系で構成さ
れており、トータルの反射率は、約0.65となってい
る。
【0031】レチクルステージ300の図中下側には、
所望のパターンが形成されたマスクが取り付けられてお
り、このマスクは、形成されたパターンに従って、照明
光学系200から入射されたEUV光を反射する。露光
器400に設けられた投影光学系401は、マスクによ
って反射されたEUV光を、ウエハステージ402上の
ウエハ500に塗布されたレジストに投影して、レジス
トを露光する。これにより、マスク上のパターンを縮小
して、ウエハ上のレジストに転写することができる。レ
チクルステージ300及びウエハステージ402は、光
軸に対して垂直に移動可能であり、レチクルステージ3
00及びウエハステージ402を移動させることによ
り、全マスクパターンを露光する。
【0032】
【発明の効果】以上説明したように、本発明によれば、
ターゲットにレーザビームを照射することにより極端紫
外光を発生する光源装置において、能率を高め、かつ、
デブリの発生を抑制することができる。また、この光源
装置を用いて、微細な光リソグラフィを実現する露光装
置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る光源装置の構成
を示す断面図である。
【図2】本発明の第2の実施態様に係る光源装置の構成
を示す斜視図である。
【図3】本発明の一実施形態に係る露光装置の構成を示
す図である。
【図4】ラバールノズルの形状を示す断面図である。
【図5】従来の光源装置の構成を示す断面図である。
【符号の説明】
1 露光装置 100 光源装置 101 YAGレーザ発振器 102、112 集光レンズ 103、113 ノズル 104、114 プラズマ 105、115 反射鏡 106、116 デブリシールド 107、117 EUVの平行光 111 炭酸ガスレーザ発振器 118 回収ダクト 119 ターゲット供給装置 120 ターゲット回収装置 200 照明光学系 201、202、203 集光ミラー 300 レチクルステージ 400 露光器 401 投影光学系 402 ウエハステージ 403 ウエハアライメントセンサ 500 ウエハ

Claims (15)

    【特許請求の範囲】
  1. 【請求項1】 ターゲットにレーザビームを照射するこ
    とにより極端紫外光を発生する光源装置であって、 前記ターゲットとして、レーザビームが照射される時点
    において、又はレーザビームが照射された直後において
    ガス状態となる物質を供給するターゲット供給部と、 レーザ媒質として二酸化炭素ガスを含む混合ガスを使用
    し、波長10μm帯のレーザ光を発生させ、前記ターゲ
    ットにレーザビームを照射することによりプラズマを発
    生させるレーザ部と、 前記プラズマから放出される極端紫外光を集光して出射
    する集光光学系と、を具備する光源装置。
  2. 【請求項2】 ターゲットにレーザビームを照射するこ
    とにより極端紫外光を発生する光源装置であって、 前記ターゲットとして、レーザビームが照射される時点
    において、又はレーザビームが照射された直後において
    ガス状態となる物質を供給するターゲット供給部と、 レーザ媒質として一酸化炭素ガスを含む混合ガスを使用
    し、波長5μm〜6μm帯のレーザ光を発生させ、前記
    ターゲットにレーザビームを照射することによりプラズ
    マを発させるレーザ部と、 前記プラズマから放出される極端紫外光を集光して出射
    する集光光学系と、を具備する光源装置。
  3. 【請求項3】 5nm〜50nmの範囲内の波長を有す
    る極端紫外光を発生する請求項1又は2記載の光源装
    置。
  4. 【請求項4】 前記ターゲット供給部が、前記ターゲッ
    トとして常温(20℃)でガス状態である物質を供給す
    る、請求項1〜3のいずれか1項記載の光源装置。
  5. 【請求項5】 前記ターゲット供給部が、前記ターゲッ
    トとしてキセノン、キセノンを主成分とする混合物、ア
    ルゴン、クリプトン、低気圧状態でガスである水(H2
    O)、アルコールの内の少なくとも1つを供給する、請
    求項4記載の光源装置。
  6. 【請求項6】 前記ターゲット供給部が、ガス状態であ
    る物質に圧力を加えてノズルの開口部から放出すること
    により、前記ターゲットとなる物質をガス状態又はクラ
    スター状態で供給する、請求項1〜5のいずれか1項記
    載の光源装置。
  7. 【請求項7】 前記ターゲット供給部が、前記ターゲッ
    トとなる物質を冷却して液体化し、液体化された物質に
    圧力を加えてノズルの開口部から液体状で放出すること
    により、前記ターゲットとなる物質をレーザビームが照
    射される時点において、又はレーザビームが照射された
    直後においてガス状態とする、請求項1〜5のいずれか
    1項記載の光源装置。
  8. 【請求項8】 前記ターゲット供給部が、前記ターゲッ
    トとなる物質を冷却して液体化し、液体化された物質に
    ノズル内で熱を加えてノズルの開口部から液滴状で放出
    することにより、前記ターゲットとなる物質をレーザビ
    ームが照射される時点において、又はレーザビームが照
    射された直後においてガス状態とする、請求項1〜5の
    いずれか1項記載の光源装置。
  9. 【請求項9】 前記ターゲット供給部が、前記ターゲッ
    トとなる物質を冷却して固体化し、固体化された物質を
    ノズルの開口部から粒子状で放出することにより、前記
    ターゲットとなる物質をレーザビームが照射される時点
    において、又はレーザビームが照射された直後において
    ガス状態とする、請求項1〜5のいずれか1項記載の光
    源装置。
  10. 【請求項10】 前記ターゲット供給部が、前記ターゲ
    ットとなる物質を放出するためのスリット状の開口部を
    有する、請求項6〜8のいずれか1項記載の光源装置。
  11. 【請求項11】 前記ターゲット供給部が、直線上に配
    列された複数の開口部を有する、請求項6〜9のいずれ
    か1項記載の光源装置。
  12. 【請求項12】 前記レーザ部が、 レーザ媒質として炭酸ガスを使用してレーザ光を発生す
    るレーザ発振器と、 前記レーザ発振器が発生するレーザ光を集光して、実質
    的にライン状の断面形状を有するレーザビームを照射す
    る照射光学系と、を含む、請求項1〜11のいずれか1
    項記載の光源装置。
  13. 【請求項13】 前記照射光学系が、前記集光光学系か
    ら出射される極端紫外光の光軸と実質的に平行な光軸を
    有する、請求項12記載の光源装置。
  14. 【請求項14】 前記照射光学系が、前記集光光学系か
    ら出射される極端紫外光の光軸と実質的に直交する光軸
    を有する、請求項12記載の光源装置。
  15. 【請求項15】 請求項1〜14のいずれか1項記載の
    光源装置と、 前記光源装置によって発生された極端紫外光を複数のミ
    ラーを用いてマスクに集光する照明光学系と、 前記マスクから反射された極端紫外光を用いて対象物を
    露光させる投影光学系と、を具備する露光装置。
JP2001183025A 2001-06-18 2001-06-18 光源装置及びそれを用いた露光装置 Expired - Fee Related JP4995379B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001183025A JP4995379B2 (ja) 2001-06-18 2001-06-18 光源装置及びそれを用いた露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001183025A JP4995379B2 (ja) 2001-06-18 2001-06-18 光源装置及びそれを用いた露光装置

Publications (2)

Publication Number Publication Date
JP2003008124A true JP2003008124A (ja) 2003-01-10
JP4995379B2 JP4995379B2 (ja) 2012-08-08

Family

ID=19023030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001183025A Expired - Fee Related JP4995379B2 (ja) 2001-06-18 2001-06-18 光源装置及びそれを用いた露光装置

Country Status (1)

Country Link
JP (1) JP4995379B2 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092056A1 (en) * 2002-04-26 2003-11-06 Canon Kabushiki Kaisha Exposure apparatus and device fabrication method using the same
JP2004172626A (ja) * 2002-11-21 2004-06-17 Asml Holding Nv リソグラフィー装置中の主要室ガスから光源ガスを分離する装置および方法
WO2006001459A1 (ja) * 2004-06-24 2006-01-05 Nikon Corporation Euv光源、euv露光装置、及び半導体デバイスの製造方法
JP2006135298A (ja) * 2004-10-07 2006-05-25 Komatsu Ltd 極端紫外光源装置用ドライバーレーザ及びlpp型極端紫外光源装置
US7491955B2 (en) 2004-06-24 2009-02-17 Nikon Corporation EUV light source, EUV exposure system, and production method for semiconductor device
JP2010021543A (ja) * 2008-06-12 2010-01-28 Komatsu Ltd 極端紫外光源装置
DE102009044426A1 (de) 2008-11-06 2010-05-27 Gigaphoton, Inc. Extremultraviolett-Lichtquelleneinrichtung und Verfahren zum Steuern einer Extremultraviolett-Lichtquelleneinrichtung
US7763871B2 (en) 2008-04-02 2010-07-27 Asml Netherlands B.V. Radiation source
JP2011014913A (ja) * 2010-07-16 2011-01-20 Komatsu Ltd 極端紫外光源装置用ドライバレーザシステム
JP2011054376A (ja) * 2009-09-01 2011-03-17 Ihi Corp Lpp方式のeuv光源とその発生方法
US7928416B2 (en) 2006-12-22 2011-04-19 Cymer, Inc. Laser produced plasma EUV light source
WO2011115233A1 (en) * 2010-03-18 2011-09-22 Gigaphoton Inc. Extreme ultraviolet light generation system
JP2012049564A (ja) * 2004-10-07 2012-03-08 Komatsu Ltd 極端紫外光源装置用ドライバーレーザ及びlpp型極端紫外光源装置
WO2012041807A1 (en) * 2010-09-29 2012-04-05 Carl Zeiss Smt Gmbh Mirror, optical system for euv projection exposure system and method of producing a component
JP2014207246A (ja) * 2014-07-25 2014-10-30 株式会社Ihi Lpp方式のeuv光源とその発生方法
US8901521B2 (en) 2007-08-23 2014-12-02 Asml Netherlands B.V. Module and method for producing extreme ultraviolet radiation
JP2015122313A (ja) * 2010-03-18 2015-07-02 ギガフォトン株式会社 チャンバ装置および極端紫外光生成装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048889B (zh) * 2012-12-18 2015-05-20 华中科技大学 一种基于圆偏振激光驱动的极紫外光刻光源产生系统
US11237483B2 (en) * 2020-06-15 2022-02-01 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for controlling droplet in extreme ultraviolet light source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258692A (ja) * 1992-03-10 1993-10-08 Nikon Corp X線発生方法およびx線発生装置
JPH10221499A (ja) * 1997-02-07 1998-08-21 Hitachi Ltd レーザプラズマx線源およびそれを用いた半導体露光装置並びに半導体露光方法
JP2000091195A (ja) * 1998-09-10 2000-03-31 Hitachi Ltd 露光方法及び露光装置
JP2000131439A (ja) * 1998-10-29 2000-05-12 Hitachi Ltd X線強度モニタ及びそのx線強度モニタを用いるx線利用装置
JP2000188198A (ja) * 1998-12-21 2000-07-04 Agency Of Ind Science & Technol レ―ザ―プラズマx線源装置
JP2001023795A (ja) * 1999-07-05 2001-01-26 Toyota Macs Inc X線発生装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258692A (ja) * 1992-03-10 1993-10-08 Nikon Corp X線発生方法およびx線発生装置
JPH10221499A (ja) * 1997-02-07 1998-08-21 Hitachi Ltd レーザプラズマx線源およびそれを用いた半導体露光装置並びに半導体露光方法
JP2000091195A (ja) * 1998-09-10 2000-03-31 Hitachi Ltd 露光方法及び露光装置
JP2000131439A (ja) * 1998-10-29 2000-05-12 Hitachi Ltd X線強度モニタ及びそのx線強度モニタを用いるx線利用装置
JP2000188198A (ja) * 1998-12-21 2000-07-04 Agency Of Ind Science & Technol レ―ザ―プラズマx線源装置
JP2001023795A (ja) * 1999-07-05 2001-01-26 Toyota Macs Inc X線発生装置

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274435B2 (en) 2002-04-26 2007-09-25 Canon Kabushiki Kaisha Exposure apparatus and device fabrication method using the same
WO2003092056A1 (en) * 2002-04-26 2003-11-06 Canon Kabushiki Kaisha Exposure apparatus and device fabrication method using the same
JP4516738B2 (ja) * 2002-11-21 2010-08-04 エーエスエムエル ホールディング エヌ.ブイ. リソグラフィー装置中の主要室ガスから光源ガスを分離する装置および方法
JP2004172626A (ja) * 2002-11-21 2004-06-17 Asml Holding Nv リソグラフィー装置中の主要室ガスから光源ガスを分離する装置および方法
WO2006001459A1 (ja) * 2004-06-24 2006-01-05 Nikon Corporation Euv光源、euv露光装置、及び半導体デバイスの製造方法
JPWO2006001459A1 (ja) * 2004-06-24 2008-04-17 株式会社ニコン Euv光源、euv露光装置、及び半導体デバイスの製造方法
US7491955B2 (en) 2004-06-24 2009-02-17 Nikon Corporation EUV light source, EUV exposure system, and production method for semiconductor device
JP4683231B2 (ja) * 2004-06-24 2011-05-18 株式会社ニコン Euv光源、euv露光装置、及び半導体デバイスの製造方法
US7741616B2 (en) 2004-06-24 2010-06-22 Nikon Corporation EUV light source, EUV exposure equipment, and semiconductor device manufacturing method
JP2012049564A (ja) * 2004-10-07 2012-03-08 Komatsu Ltd 極端紫外光源装置用ドライバーレーザ及びlpp型極端紫外光源装置
JP2012227167A (ja) * 2004-10-07 2012-11-15 Gigaphoton Inc 極端紫外光源装置用ドライバーレーザ及びlpp型極端紫外光源装置
JP2006135298A (ja) * 2004-10-07 2006-05-25 Komatsu Ltd 極端紫外光源装置用ドライバーレーザ及びlpp型極端紫外光源装置
US7928416B2 (en) 2006-12-22 2011-04-19 Cymer, Inc. Laser produced plasma EUV light source
US8704200B2 (en) 2006-12-22 2014-04-22 Cymer, Llc Laser produced plasma EUV light source
US9713239B2 (en) 2006-12-22 2017-07-18 Asml Netherlands B.V. Laser produced plasma EUV light source
US8901521B2 (en) 2007-08-23 2014-12-02 Asml Netherlands B.V. Module and method for producing extreme ultraviolet radiation
US9363879B2 (en) 2007-08-23 2016-06-07 Asml Netherlands B.V. Module and method for producing extreme ultraviolet radiation
US8242473B2 (en) 2008-04-02 2012-08-14 Asml Netherlands B.V. Radiation source
US7763871B2 (en) 2008-04-02 2010-07-27 Asml Netherlands B.V. Radiation source
US8698116B2 (en) 2008-06-12 2014-04-15 Gigaphoton Inc. Extreme ultra violet light source apparatus
JP2010021543A (ja) * 2008-06-12 2010-01-28 Komatsu Ltd 極端紫外光源装置
US8536551B2 (en) 2008-06-12 2013-09-17 Gigaphoton Inc. Extreme ultra violet light source apparatus
JP2010135769A (ja) * 2008-11-06 2010-06-17 Komatsu Ltd 極端紫外光源装置、極端紫外光源装置の制御方法
DE102009044426B4 (de) 2008-11-06 2023-01-12 Gigaphoton, Inc. Extremultraviolett-Lichtquelleneinrichtung und Verfahren zum Steuern einer Extremultraviolett-Lichtquelleneinrichtung
US8399870B2 (en) 2008-11-06 2013-03-19 Gigaphoton Inc. Extreme ultraviolet light source device and control method for extreme ultraviolet light source device
DE102009044426A1 (de) 2008-11-06 2010-05-27 Gigaphoton, Inc. Extremultraviolett-Lichtquelleneinrichtung und Verfahren zum Steuern einer Extremultraviolett-Lichtquelleneinrichtung
US8692220B2 (en) 2008-11-06 2014-04-08 Gigaphoton Inc. Extreme ultraviolet light source device and control method for extreme ultraviolet light source device
US8242472B2 (en) 2008-11-06 2012-08-14 Gigaphoton Inc. Extreme ultraviolet light source device and control method for extreme ultraviolet light source device
US9000402B2 (en) 2009-09-01 2015-04-07 Ihi Corporation LPP EUV light source and method for producing the same
JP2011054376A (ja) * 2009-09-01 2011-03-17 Ihi Corp Lpp方式のeuv光源とその発生方法
US8759804B2 (en) 2010-03-18 2014-06-24 Gigaphoton Inc. Chamber apparatus and extreme ultraviolet light generation system
JP2015122313A (ja) * 2010-03-18 2015-07-02 ギガフォトン株式会社 チャンバ装置および極端紫外光生成装置
WO2011115233A1 (en) * 2010-03-18 2011-09-22 Gigaphoton Inc. Extreme ultraviolet light generation system
JP2011014913A (ja) * 2010-07-16 2011-01-20 Komatsu Ltd 極端紫外光源装置用ドライバレーザシステム
JP2013540350A (ja) * 2010-09-29 2013-10-31 カール・ツァイス・エスエムティー・ゲーエムベーハー Euv投影露光系のためのミラー、光学系、及び構成要素を生成する方法
US10274649B2 (en) 2010-09-29 2019-04-30 Carl Zeiss Smt Gmbh Mirror and related EUV systems and methods
WO2012041807A1 (en) * 2010-09-29 2012-04-05 Carl Zeiss Smt Gmbh Mirror, optical system for euv projection exposure system and method of producing a component
JP2014207246A (ja) * 2014-07-25 2014-10-30 株式会社Ihi Lpp方式のeuv光源とその発生方法

Also Published As

Publication number Publication date
JP4995379B2 (ja) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4995379B2 (ja) 光源装置及びそれを用いた露光装置
JP4111487B2 (ja) 極端紫外光源装置
US8399867B2 (en) Extreme ultraviolet light source apparatus
RU2242291C2 (ru) Способ и устройство для создания плотного тумана из микрометровых и субмикрометровых капель
JP6549123B2 (ja) 放射源装置およびリソグラフィ装置
JP5149520B2 (ja) 極端紫外光源装置
JP3118515U (ja) 極紫外光源内のガス噴射制御のためのノズル
KR101357231B1 (ko) Lpp 방식의 euv 광원과 그 발생 방법
KR20030090745A (ko) 극자외선광 특히 리소그라피 공정용 극자외선광을발생시키는 방법 및 장치
US20080197298A1 (en) Extreme ultra violet light source apparatus
US11419203B2 (en) EUV radiation modification methods and systems
JP2013524525A (ja) Euv放射源およびeuv放射生成方法
JP4963149B2 (ja) 光源装置及びそれを用いた露光装置
US11960210B2 (en) Laser interference fringe control for higher EUV light source and EUV throughput
JP5215540B2 (ja) ターゲット物質供給装置
JP2000089000A (ja) X線発生装置
US20050205803A1 (en) Light source device and exposure equipment using the same
JP3897287B2 (ja) Lpp光源装置
JP2008293738A (ja) Euv光発生装置および方法
JP4629990B2 (ja) プラズマが隔離されたレーザ生成プラズマeuv光源
JP4408704B2 (ja) ジェットノズル及びそれを用いた光源装置
JP2022026279A (ja) 極端紫外光生成システム、及び電子デバイスの製造方法
JP2005197081A (ja) 光源装置及びそれを用いた露光装置
JP2006228998A (ja) 極端紫外線光源装置
JP5578482B2 (ja) Lpp方式のeuv光源とその発生方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4995379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees