JP2002141610A - 半導体レーザ素子およびその製造方法 - Google Patents

半導体レーザ素子およびその製造方法

Info

Publication number
JP2002141610A
JP2002141610A JP2000331657A JP2000331657A JP2002141610A JP 2002141610 A JP2002141610 A JP 2002141610A JP 2000331657 A JP2000331657 A JP 2000331657A JP 2000331657 A JP2000331657 A JP 2000331657A JP 2002141610 A JP2002141610 A JP 2002141610A
Authority
JP
Japan
Prior art keywords
layer
optical waveguide
semiconductor laser
laser device
waveguide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000331657A
Other languages
English (en)
Inventor
Toshiaki Fukunaga
敏明 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2000331657A priority Critical patent/JP2002141610A/ja
Priority to KR1020010065584A priority patent/KR100771082B1/ko
Priority to DE60116827T priority patent/DE60116827T2/de
Priority to EP01125890A priority patent/EP1211766B1/en
Priority to US09/984,852 priority patent/US6546033B2/en
Publication of JP2002141610A publication Critical patent/JP2002141610A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/164Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3434Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer comprising at least both As and P as V-compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/34373Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on InGa(Al)AsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/34386Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers explicitly Al-free

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

(57)【要約】 【課題】 端面窓構造を有する半導体レーザ素子におい
て、低出力から高出力まで高い信頼性を得る。 【解決手段】 n-GaAs基板1上に、n−Ga1-z1Alz1As下部
クラッド層2、nあるいはi−Inx2Ga1-x2As1-y2Py2下部
第一光導波層3、i−In0.49Ga0.51Pエッチング阻止層
4、i−Inx2Ga1-x2As1-y2Py2下部第二光導波層5、圧縮
歪Inx1Ga1-x1As1-y 1Py1量子井戸活性層6、pあるいはi
−Inx2Ga1-x2As1-y2Py2上部第一光導波層7、In0.49Ga
0.51Pキャップ層8を積層する。共振器端面近傍が開口し
たレジストを用いて、塩酸系のエッチング液でIn0.49Ga
0.51Pキャップ層8をエッチングし、続いて硫酸系のエッ
チング液でIn0.49Ga0.51Pエッチング阻止層4が露出する
までエッチングする。pあるいはi−Inx2Ga1-x2As1-y2P
y2上部第二光導波層9、p−Ga1- z1Alz1As第一上部クラッ
ド層10を成長させる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、端面窓構造を有す
る半導体レーザ素子およびその製造方法に関するもので
ある。
【0002】
【従来の技術】半導体レーザは、端面で光吸収により流
れる電流によって端面が発熱して端面温度が上昇し、こ
れにより端面でのバンドギャップが小さくなりさらに光
吸収が多くなるという循環によって端面が破壊されるCO
MD(Catastrophic optical mirror damage)現象によ
り、その最高光出力が制限される。また、このCOMDに達
する光出力は経時により劣化し、半導体レーザの駆動が
突然停止することも知られている。そこで、端面近傍を
活性領域よりバンドギャップの大きい結晶として光吸収
を無くした窓構造を形成することにより、高出力駆動で
高信頼性が得られることが知られている。
【0003】例えば、1997年春応用物理学会予稿集29a-
PA-19の川崎和重氏らによる「0.98μm帯リッジ型窓構造
半導体レーザ(1)」において、リッジ構造の端面領域
にSiイオン注入を行い、その後、熱処理拡散によりIn
0.2Ga0.8As量子井戸を無秩序化して形成した窓構造を有
する980nm帯の半導体レーザ素子が報告されてい
る。しかしながら、この半導体レーザ素子は活性層近傍
にSiイオン注入し、且つ端面近傍へ電流が流れないよう
にするためHイオン注入により絶縁をとるという非常に
複雑なプロセスが必要であり、作製工程が長くなるとう
いう欠点がある。
【0004】一方、活性層にAlを含むとAlの酸化に
より信頼性が低下するという問題がある。特に、端面近
傍の活性領域を除去して、その領域に再成長を行うこと
によって形成する窓構造では、再成長界面にAlが露出
することになり、さらに信頼性の低下が問題となる。
【0005】
【発明が解決しようとする課題】本発明は上記事情に鑑
みて、活性層にAlを含まず、端面に光を吸収しない窓
領域を有する半導体レーザ素子であって、低出力から高
出力まで信頼性の高い半導体レーザ素子、およびその半
導体レーザ素子を平易な工程で製造する製造方法を提供
することを目的とするものである。
【0006】
【課題を解決するための手段】本発明の半導体レーザ素
子は、第一導電性GaAs基板上に、少なくとも第一導
電性クラッド層、下部光導波層、活性層、上部光導波
層、第二導電型クラッド層、第二導電型コンタクト層が
この順に積層されてなる半導体レーザ素子において、活
性層は圧縮歪Inx1Ga1-x1As1-y1y1(ただし、0
<x1≦0.4、0≦y1≦0.1)からなり、各光導波層は活性
層よりバンドギャップの大きいInx2Ga1 -x2As1-y2
y2(ただし、0≦x2≦0.3、x2=0.49y2)からなり、下
部光導波層の厚さ方向の途中、および上部光導波層の上
面にInx5Ga1-x5P層(ただし、0<x5<1)が形成さ
れており、対向する2つの共振器端面近傍において、2
つのInx5Ga1-x5P層に挟まれた、下部光導波層、活
性層および上部光導波層が除去されており、上部光導波
層の上面に形成されたInx5Ga1-x5P層上に、端面近
傍の除去された領域を埋め込むように、Inx6Ga1-x6
As1-y6y6(ただし、0≦x6≦0.3、x6=0.49y6)層が
形成されており、該Inx6Ga1-x6As1-y6 y6層の上
に第二導電性クラッド層が形成されていることを特徴と
するものである。
【0007】端面近傍の除去された領域に対応する第二
導電性GaAsコンタクト層が除去されており、該コン
タクト層が除去された領域には電流注入を阻止する絶縁
膜が設けられていることが望ましい。
【0008】各クラッド層は、Alz1Ga1-z1As(た
だし、0.2≦z1≦0.8)あるいはIn x3(Alz3
1-z31-x3As1-y3y3(ただし、x3=0.49y3、0.9
<y3≦1、0≦z3≦1)からなることが望ましい。
【0009】本発明の半導体レーザ素子は、ストライプ
部の両脇をコンタクト層から前記上部クラッド層の途中
まで除去されてできたリッジ構造を有し、屈折率導波機
構が設けられているものであってもよい。
【0010】また、上部光導波層より上層に、GaAs
に格子整合するAlz2Ga1-z2As(ただし、0.2<z2
<1)あるいはIn0.49Ga0.51Pからなる電流狭窄層
が設けられた内部電流狭窄構造を有し、屈折率導波機構
が設けられているものであってもよい。
【0011】本発明の半導体レーザ素子の製造方法は、
第一導電性GaAs基板上に、少なくとも第一導電性ク
ラッド層、 Inx2Ga1-x2As1-y2y2(ただし、0≦
x2≦0.3、x2=0.49y2)からなる下部第一光導波層、下
部Inx5Ga1-x5P層(ただし、0<x5<1)、Inx2
1-x2As1-y2y2(ただし、0≦x2≦0.3、x2=0.49y
2)からなる下部第二光導波層、圧縮歪Inx1Ga1-x1
As1-y1y1(ただし、0<x1≦0.4、0≦y1≦0.1)から
なる活性層、Inx2Ga1-x2As1-y2y2(ただし、0
≦x2≦0.3、x2=0.49y2)からなる上部第一光導波層、
上部Inx5Ga1-x5P層(ただし、0<x5<1)をこの順
に積層し、対向する2つの共振器端面近傍における上部
Inx5Ga1-x5P層を塩酸系のエッチャントで除去し、
該上部Inx5Ga1-x5P層をマスクにして硫酸系のエッ
チャントで前記上部Inx5Ga1-x5P層から下部第二光
導波層までを除去し、上部Inx5Ga1-x5P層上に、除
去した領域を埋め込みながらInx2Ga1-x2As1-y2
y2(ただし、0≦x2≦0.3、x2=0.49y2)からなる上部第
二光導波層を形成し、該上部第二光導波層上に第二導電
性クラッド層および第二導電性GaAsコンタクト層を
この順に積層することを特徴とするものである。
【0012】上部Inx5Ga1-x5P層の上にGaAsキ
ャップ層を設けてもよく、その場合、端面近傍の該Ga
Asキャップ層を硫酸系のエッチャントで除去し、次に
該GaAsキャップ層をマスクにして上部Inx5Ga
1-x5P層を塩酸系のエッチャントで除去し、続いて硫酸
系のエッチャントで上部第一光導波層から下部第二光導
波層までの層と前記GaAsキャップ層全体とを同時に
除去することが好ましい。
【0013】なお、上記GaAsに格子整合するとは、
成長層の格子定数をcとすると、Δ=(c-cs)/csで示さ
れる値の絶対値が0.001以下であることを示す。
【0014】また、クラッド層と光導波層は活性層に格
子整合する組成とする。
【0015】また、活性層の歪を補償する歪補償層とし
て、活性層の近傍に引張り歪のIn x4Ga1-x4As1-y4
y4(0<x4<0.49y4、0<y4≦1)障壁層を設けてもよ
い。活性層の歪量Δaは、Δa=(a−aGaAs)/aGaAsで表わ
され、障壁層の歪量△bは、△b=(b−aGaAs)/aGaAsで
表される。ただし、aは活性層の格子定数であり、bは
障壁層の格子定数であり、aGaAsは基板のGaAsの格子定
数である。daを活性層の厚みとし、dbを障壁層の厚みと
すると、活性領域の結晶性を損なわない0.25nm≧Δada+
2Δbdb≧-0.25nmの関係をもつ層構成が好ましい。
【0016】また、第一導電性と第二導電性は、互いに
逆極性であり、例えば、第一導電性がp型であれば、第
二導電性はn型である。
【0017】
【発明の効果】本発明の半導体レーザ素子およびその製
造方法によれば、上記構成とすることにより、活性層が
Inx1Ga1-x1As1-y1y1(ただし、0<x1≦0.4、0
≦y1≦0.1)からなり、光導波層がInx2Ga1-x2As
1-y2y2(ただし、0≦x2≦0.3、x2=0.49y2)からな
り、下部光導波層の途中にInx5Ga1-x5P層が設けら
れていることによって、活性層および光導波層を硫酸系
のエッチャントで除去すると、エッチングを自動的にこ
のInx5Ga1-x5P層の上で停止させることができ、容
易にエッチング深さを制御でき、平易な工程で精度良く
端面窓構造を形成することができる。また、精度よく除
去された領域に活性層よりバンドギャップの高いInx2
Ga1-x2As1-y2y2が埋め込まれてなる端面窓構造が
形成されているので信頼性の高い半導体レーザ素子を提
供することができる。
【0018】また、上部光導波層にInx5Ga1-x5P層
が設けられていることにより、再成長する際、装置内を
P(リン)雰囲気にして待機させておけば、InGaA
sPの再成長が容易であるという利点がある。また、端
面近傍に活性層よりバンドギャップの大きいInGaA
sPからなる埋め込み層が形成でき、発振光を吸収しな
い窓構造を安定に形成でき、低出力から高出力まで高い
信頼性を得ることができる。さらに、エッチングによっ
て除去する領域の深さは浅いので再成長によりすぐに段
差は平坦化するので、端面まで屈折率導波機構を容易に
作りつけることができる。
【0019】共振器端面近傍の活性層を除去し、該除去
した領域を再成長により埋め込むことにより、端面での
光吸収により生じる電流と素子を駆動させるために注入
される電流との両方を阻止することができるので、端面
での素子の発熱を低減できる。よって、端面の熱暴走に
よる端面破壊レベルを大幅に向上でき、高出力発振下に
おいても信頼性の高い半導体レーザを実現できる。
【0020】また、光導波層の途中にInGaP層を設
けることによって、InGaPはInGaAsPよりバ
ンドギャップが大きいため、活性層からのキャリアの漏
れを防止することができる。よってしきい値電流の低下
を実現することができる。
【0021】また、活性層がAlを含まない組成である
ため、再成長界面にもAlが露出しておらず、酸化によ
る劣化を防止でき、信頼性の高い素子を提供することが
できる。
【0022】
【実施の形態】以下、本発明の実施の形態を図面を用い
て詳細に説明する。
【0023】本発明の第1の実施の形態による半導体レ
ーザ素子について説明する。その断面図を図1に示す。
図1(a)に出射方向に平行な断面図を示し、図1
(b)に図1(a)におけるA−A'断面図を示し、図
1(c)に図1(a)におけるB−B'断面図を示す。
【0024】図1(a)に示すように、有機金属気相成
長法によりn−GaAs基板1上に、n−Ga1-z1Al
z1As下部クラッド層2、nあるいはi−Inx2Ga
1-x2As1-y2y2下部第一光導波層3、i−In0.49
0.51Pエッチング阻止層4(5nm程度)、i−Inx2
1-x2As1-y2y2下部第二光導波層5(0≦x2≦0.3、x
2=0.49y2、10nm程度)、圧縮歪Inx1Ga1-x1As1-y1
y1量子井戸活性層6(0<x1≦0.4、0≦y1≦0.1)、p
あるいはi−Inx2Ga1-x2As1-y2y2上部第一光導
波層(10nm程度)7、In0.49Ga0.51Pキャップ層
(5nm程度)8を積層する。レジストを塗布し、通常
のリソグラフィーにより、所定の共振器位置から隣り合
う素子内部へ向かってそれぞれ20μm、すなわち幅4
0μm程度で
【数1】 方向にストライプ状にレジストを除去し、このレジスト
をマスクとして、塩酸系のエッチング液でIn0.49Ga
0.51Pキャップ層8をエッチングしInx2Ga1- x2As
1-y2y2上部第一光導波層(10nm程度)7を露出させ、
溝ストライプを形成する。この時、エッチングが自動的
にInx2Ga1-x2As1-y2y2上部第一光導波層7の上
面で停止する。引き続きレジストを除去後、硫酸系のエ
ッチング液でIn0.49Ga0.51Pエッチング阻止層4が
露出するまでエッチングする。このとき、自動的にIn
0.49Ga0.51Pエッチング阻止層4の上面でエッチング
が停止する。引き続き、pあるいはi−Inx2Ga1-x2
As1-y2y2上部第二光導波層9、p−Ga1-z1Alz1
As第一上部クラッド層10、p−GaAs第一エッチン
グ阻止層(10nm程度)11を形成する。続いて図1
(b)に示すように、In0.49Ga0.51P第二エッチン
グ阻止層(10nm程度)12、n−Ga1-z2Al z2As
電流狭窄層13、GaAsキャップ層14を形成する。この後、
レジストを塗布後、上記溝ストライプと垂直の(01
1)方向に1〜3μm幅程度の領域レジストを除去し、
レジストをマスクとして、硫酸系のエッチング液でn−
Ga1-z2Al z2As(z2>z1)電流狭窄層13、GaAsキャ
ップ層14をストライプ状に除去する。この時、自動的に
In0.49Ga0.51P第二エッチング阻止層12でエッチン
グが停止する。レジストを除去し、塩酸系エッチング液
で、In0.49Ga0.51P第二エッチング阻止層12を除去
後、p−Ga1-z1Alz1As第二上部クラッド層15、p
−GaAsコンタクト層16を成長する。p側電極17を形
成し、その後基板の研磨を行いn側電極18を形成する。
その後、試料をへき開して形成した共振器面にそれぞれ
高反射率コートおよび低反射率コートを行い、チップ化
して半導体レーザ素子を形成する。
【0025】上部第一クラッド層の膜厚は、基本横モー
ド発振が高出力まで実現できる厚みとする。すなわち、
等価屈折率段差が1.5×10-3から7×10-3になるように設
定する。
【0026】クラッド層は光導波層よりバンドギャップ
の大きい組成とし、GaAs基板1に格子整合するInGa
AlPまたはInGaAlAsP系であってもよい。
【0027】本実施の形態による半導体レーザ素子は、
図1(b)および図1(c)に示すように、共振器端面
近傍のi−Inx2Ga1-x2As1-y2y2下部第二光導波
層5からIn0.49Ga0.51Pキャップ層8までが除去さ
れて、除去された領域にはpあるいはi−Inx2Ga
1-x2As1-y2y2上部第二光導波層9が埋め込まれてい
る。
【0028】本実施の形態において、In0.49Ga0.51
Pキャップ層8の上にGaAsキャップ層(10nm程度)
積層し、レジストを塗布し、通常のリソグラフィーによ
り、所定の共振器位置から隣り合う素子内部へ向かって
それぞれ20μm、すなわち幅40μm程度で
【数2】 方向にストライプ状にレジストを除去し、このレジスト
をマスクとして、硫酸系エッチング液で、GaAsキャップ
層をストライプ状に除去し、レジスト除去後GaAsキャッ
プ層をマスクとして、塩酸系エッチング液で、In0.49
Ga0.51Pキャップ層8を除去し、引き続き、硫酸系エ
ッチング液で、GaAsキャップ層全体とIn 0.49Ga0.51
Pエッチング阻止層12が露出するまで、エッチングする
という工程を用いてもよい。端面除去を行う工程におい
て、GaAsキャップ層を形成することにより、再成長
表面に残る有機物など付着を防ぐことができる。
【0029】次に本発明の第2の実施の形態による半導
体レーザ素子について説明する。その半導体レーザ素子
の断面図を図2に示す。図2(a)に出射方向に平行な
断面図を示し、図2(b)に図2(a)におけるA−
A'断面図を示し、図2(c)に図2(a)におけるB
−B'断面図を示す。
【0030】本半導体レーザ素子は、上記第1の実施の
形態の半導体レーザ素子において、p−GaAsコンタ
クト層16を形成後、活性層を除去した領域に該当するス
トライプ領域のp−GaAsコンタクト層16を除去し、
その部分を絶縁膜19で覆い。p側電極17を形成し、その
後基板の研磨を行いn側電極18を形成する。その後、試
料をへき開して形成した共振器面に高反射率コート、低
反射率コートを行い、チップ化したものである。各要素
には同符号を付し説明を省略する。この半導体レーザ素
子では、窓領域への電流の注入を大幅に抑制でき、さら
なる光出力の増大を図ることができる。
【0031】次に本発明の第3の実施の形態による半導
体レーザ素子について説明する。その半導体レーザ素子
の断面図を図3に示す。図3(a)に出射方向に平行な
断面図を示し、図3(b)に図3(a)におけるA−
A'断面図を示し、図3(c)に図3(a)におけるB
−B'断面図を示す。
【0032】図3(a)に示すように、有機金属気相成
長法によりn−GaAs基板21上に、n−Ga1-z1Al
z1Asクラッド層22、nあるいはi−Inx2Ga1-x2
1- y2y2下部第一光導波層23、i−In0.49Ga0.51
Pエッチング阻止層24(5nm程度)、i−Inx2Ga
1-x2As1-y2y2下部第二光導波層25(0≦x2≦0.3、x2=
0.49y2、10nm程度)、i−Inx4Ga1-x4As1-y4
y4下部引張り歪障壁層26(0<y4<0.49y4、0<y4≦
1)、圧縮歪Inx1Ga1-x1As1-y1y1量子井戸活性
層27(0<x1≦0.4、0≦y1≦0.1)、i−Inx4Ga1-x4
As1-y4y4上部引張り歪障壁層28、i−Inx2Ga
1-x2As1-y2y2上部第一光導波層(10nm程度)29、I
0.49Ga0.51Pキャップ層(5nm程度)30を積層す
る。レジストを塗布し、通常のリソグラフィーにより、
所定の共振器位置から隣り合う素子内部へ向かってそれ
ぞれ20μm、すなわち幅40μm程度で
【数3】 方向にストライプ状にレジストを除去し、このレジスト
をマスクとして、塩酸系のエッチング液でIn0.49Ga
0.51Pキャップ層30をエッチングしInx2Ga1- x2As
1-y2y2上部第一光導波層(10nm程度)29を露出させ、
溝ストライプを形成する。この時、エッチングが自動的
にInx2Ga1-x2As1-y2y2上部第一光導波層29の上
面で停止する。引き続きレジストを除去後、硫酸系のエ
ッチング液でIn0.49Ga0.51Pエッチング阻止層24が
露出するまでエッチングする。このとき、自動的にIn
0.49Ga0.51Pエッチング阻止層24の上面でエッチング
が停止する。引き続き、pあるいはi−Inx2Ga1-x2
As1-y2y2上部第二光導波層31、p−Ga1-z1Alz1
As第一上部クラッド層32、p−GaAs第一エッチン
グ阻止層(10nm程度)33を形成する。続いて図3
(b)に示すように、In0.49Ga0.51P第二エッチン
グ阻止層(10nm程度)34、n−Ga1-z2Al z2As
電流狭窄層35、GaAsキャップ層36を形成する。この後、
レジストを塗布後、上記溝ストライプと垂直の(01
1)方向に1〜3μm幅程度の領域レジストを除去し、
レジストをマスクとして、硫酸系のエッチング液でn−
Ga1-z2Al z2As(z2>z1)電流狭窄層35、GaAsキャ
ップ層36をストライプ状に除去する。この時、自動的に
In0.49Ga0.51P第二エッチング阻止層34でエッチン
グが停止する。レジストを除去し、塩酸系エッチング液
で、In0.49Ga0.51P第二エッチング阻止層34を除去
後、p−Ga1-z1Alz1As第二上部クラッド層37、p
−GaAsコンタクト層38を成長する。p側電極39を形
成し、その後基板の研磨を行いn側電極40を形成する。
その後、試料をへき開して形成した共振器面に高反射率
コート、低反射率コートを行い、チップ化して半導体レ
ーザ素子を形成する。
【0033】上部第一クラッド層の膜厚は、基本横モー
ド発振が高出力まで実現できる厚みとする。すなわち、
等価屈折率段差が1.5×10-3から7×10-3になるように設
定する。
【0034】クラッド層は光導波層よりバンドギャップ
の大きい組成とし、GaAs基板21に格子整合するInGa
P、InGaAlPまたはInGaAlAsP系であってもよい。
【0035】本実施の形態による半導体レーザ素子も、
図3(b)および図3(c)に示すように、共振器端面
近傍のi−Inx2Ga1-x2As1-y2y2下部第二光導波
層25からIn0.49Ga0.51Pキャップ層30までが除去さ
れて、除去された領域にはpあるいはi−Inx2Ga
1-x2As1-y2y2上部第二光導波層31が埋め込まれてい
る。
【0036】上記実施の形態では、GaAs基板はn型
の導電性のもので記述しているが、p型の導電性の基板
を用いてもよく、この場合上記すべての導電性を反対に
すれば良い。
【0037】活性層は多重量子井戸であってもよいが、
引張り歪障壁層の歪量と厚みの積と、圧縮歪活性層の歪
量と厚みの積との和の絶対値は0.25nm以内とする。
【0038】上記構造により、単一横モードを保ったま
ま、高いレベルの光出力のレーザ光を発生させる。ま
た、上記は単一横モードレーザの作製について述べた
が、マルチモード発振する屈折率導波型の幅広ストライ
プレーザの作製にも用いることができる。
【0039】次に、本発明の第4の実施の形態による半
導体レーザ素子について説明する。その半導体レーザ素
子の断面図を図4に示す。図4(a)に出射方向に平行
な断面図を示し、図4(b)に図4(a)におけるA−
A'断面図を示し、図4(c)に図4(a)におけるB
−B'断面図を示す。
【0040】有機金属気相成長法によりn−GaAs基
板41上に、n−Ga1-z1Alz1As下部クラッド層(0.
2≦z1≦0.8)42、nあるいはi−Inx2Ga1-x2As
1-y2 y2下部第一光導波層43、i−In0.49Ga0.51
エッチング阻止層44(5nm程度)、i−Inx2Ga1-x2
As1-y2y2下部第二光導波層45(0≦x2≦0.3、x2=0.4
9y2,10nm程度)、圧縮歪Inx1Ga1-x1As1-x1y1
量子井戸活性層46(0<x1≦0.4、0≦y1≦0.1)、pある
いはi−Inx2Ga1-x2As1-y2y2上部第一光導波層
(10nm程度)47、In0.49Ga0.51Pキャップ層(5n
m程度)48を積層する。レジストを塗布し、通常のリソ
グラフィーにより、所定の共振器位置から隣り合う素子
内部へ向かってそれぞれ20μm、すなわち幅40μm
程度で
【数4】 方向にストライプ状にレジストを除去し、このレジスト
をマスクとして、塩酸系のエッチング液でIn0.49Ga
0.51Pキャップ層48をエッチングしInx2Ga1- x2As
1-y2y2上部第一光導波層(10nm程度)47を露出させ、
溝ストライプを形成する。この時、エッチングが自動的
にInx2Ga1-x2As1-y2y2上部第一光導波層47の上
面で停止する。引き続きレジストを除去後、硫酸系のエ
ッチング液でIn0.49Ga0.51Pエッチング阻止層44が
露出するまでエッチングする。このとき、自動的にIn
0.49Ga0.51Pエッチング阻止層44の上面でエッチング
が停止する。引き続き、pあるいはi−Inx2Ga1-x2
As1-y2y2上部第二光導波層49、p−Ga1-z1Alz1
As下部第一上部クラッド層50、p−In0.49Ga0. 51
P第一エッチング阻止層(10nm程度)51を形成す
る。続いて図4(b)に示すように、p−GaAs第二
エッチング阻止層(10nm程度)52、n−In 0.49
0.51P電流狭窄層53、GaAsキャップ層54を形成する。
この後、レジストを塗布後、上記溝ストライプと垂直な
(011)方向に1〜3μm幅程度の領域レジストを除
去し、レジストをマスクとして、硫酸系のエッチング液
でGaAsキャップ層54をストライプ状に除去する。この
時、自動的にIn0.49Ga0.51P電流狭窄層52でエッチ
ングが停止する。レジストを除去し、塩酸系エッチング
液で、In0.49Ga0.51P電流狭窄層52を除去後、p−
Ga1-z1Alz1As第二上部クラッド層55、p−GaA
sコンタクト層56を成長する。p側電極57を形成し、そ
の後基板の研磨を行いn側電極58を形成する。その後、
試料をへき開して形成した共振器面に高反射率コート、
低反射率コートを行い、チップ化して半導体レーザ素子
を形成する。上部第一クラッド層の組成と膜厚は、基本
横モード発振が高出力まで実現できる値とする。すなわ
ち、等価屈折率段差が1.5×10-3から7×10 -3になるよう
に設定する。
【0041】クラッド層は光導波層よりバンドギャップ
の大きい組成とし、GaAs基板1に格子整合するInGa
AlPまたはInGaAlAsP系であってもよい。
【0042】本実施の形態による半導体レーザ素子も、
図4(b)および図4(c)に示すように、共振器端面
近傍のi−Inx2Ga1-x2As1-y2y2下部第二光導波
層45からIn0.49Ga0.51Pキャップ層48までが除去さ
れて、除去された領域にはpあるいはi−Inx2Ga
1-x2As1-y2y2上部第二光導波層49が埋め込まれてい
る。
【0043】次に本発明の第5の実施の形態による半導
体レーザ素子の断面図を図5に示す。図5(a)に出射
方向に平行な断面図を示し、図5(b)に図5(a)に
おけるA−A'断面図を示し、図5(c)に図5(a)
におけるB−B'断面図を示す。
【0044】図5(a)に示すように、有機金属気相成
長法によりn−GaAs基板61上に、n−Ga1-z1Al
z1As下部クラッド層62,nあるいはi−Inx2Ga
1-x2As1-y2y2下部第一光導波層63、i−In0.49
0.51Pエッチング阻止層64(5nm程度)、i−Inx2
Ga1-x2As1-y2y2下部第二光導波層65(0≦x2≦0.
3、x2=0.49y2、10nm程度)、圧縮歪Inx1Ga1-x1
1-y1y1量子井戸活性層66(0<x1≦0.4、0≦y1≦0.
1)、pあるいはi−Inx2Ga1-x2As1-y2y2上部
第一光導波層(10nm程度)67、In0.49Ga0.51Pキャ
ップ層(5nm程度)68を積層する。レジストを塗布
し、通常のリソグラフィーにより、所定の共振器位置か
ら隣り合う素子内部へ向かってそれぞれ20μm、すな
わち幅40μm程度で
【数5】 方向にストライプ状にレジストを除去し、このレジスト
をマスクとして、塩酸系のエッチング液でIn0.49Ga
0.51Pキャップ層68をエッチングしInx2Ga1- x2As
1-y2y2上部第一光導波層(10nm程度)67を露出させ、
溝ストライプを形成する。この時、エッチングが自動的
にInx2Ga1-x2As1-y2y2上部第一光導波層67の上
面で停止する。引き続きレジストを除去後、硫酸系のエ
ッチング液でIn0.49Ga0.51Pエッチング阻止層64が
露出するまでエッチングする。このとき、自動的にIn
0.49Ga0.51Pエッチング阻止層64の上面でエッチング
が停止する。引き続き、pあるいはi−Inx2Ga1-x2
As1-y2y2上部第二光導波層69、p−Ga1-z1Alz1
As下部第一上部クラッド層70、p−In0.49Ga0. 51
Pエッチング阻止層(10nm程度)71、p−Ga1-z1
Alz1As第二上部クラッド層72、p−GaAsコンタ
クト層73を成長する。引き続き、絶縁膜を形成し、1〜
3μm程度の(011)方向にストライプ領域に絶縁膜
を残す。この絶縁膜をマスクとして、硫酸系エッチング
液で、p−GaAsコンタクト層73、p−Ga1-z1Al
z1As第二上部クラッド層72を除去しリッジを形成す
る。引き続き、絶縁膜74を形成し、通常のリソグラフィ
ーによりリッジ上部だけに窓あけを行う。p側電極75を
形成し、その後基板の研磨を行いn側電極76を形成す
る。その後、試料をへき開して形成した共振器面に高反
射率コート、低反射率コートを行い、チップ化して半導
体レーザ素子を形成する。
【0045】上部第一クラッド層の膜厚は、基本横モー
ド発振が高出力まで実現できる値とする。すなわち、等
価屈折率段差が1.5×10-3から7×10-3になるように設定
する。
【0046】本実施の形態による半導体レーザ素子も、
図5(b)および図5(c)に示すように、共振器端面
近傍のi−Inx2Ga1-x2As1-y2y2下部第二光導波
層65からIn0.49Ga0.51Pキャップ層68までが除去さ
れて、除去された領域にはpあるいはi−Inx2Ga
1-x2As1-y2y2上部第二光導波層69が埋め込まれてい
る。
【0047】また、上記すべての実施の形態における半
導体レーザ素子の発振する波長帯λに関しては、Inx1
Ga1-x1As1-y1y1(0<x1≦0.4、0≦y1≦0.1)から
なる組成の活性層より、900<λ<1200(nm)
の範囲までの制御が可能である。
【0048】各層の成長法として、固体あるいはガスを
原料とする分子線エピタキシャル成長法であってもよ
い。
【0049】また、GaAs基板はn型の導電性のもの
で記述しているが、p型の導電性の基板を用いてもよ
く、この場合上記すべての層の導電性を反対にすれば良
い。
【0050】また、活性層は多重量子井戸であってもよ
いが歪量と厚みの積の合計は0.25nm以内とする。
【0051】本発明の半導体レーザ素子は、低出力から
高出力まで高い信頼性が得られているので、高速な情報
・画像処理及び通信、計測、医療、印刷の分野での光源
として応用可能である。また、高出力下での信頼性が高
いため、固体レーザ及び波長変換素子励起用の光源とし
ても応用可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による半導体レーザ
素子を示す断面図
【図2】本発明の第2の実施の形態による半導体レーザ
素子を示す断面図
【図3】本発明の第3の実施の形態による半導体レーザ
素子を示す断面図
【図4】本発明の第4の実施の形態による半導体レーザ
素子を示す断面図
【図5】本発明の第5の実施の形態による半導体レーザ
素子を示す断面図
【符号の説明】
1 n−GaAs基板 2 n−Ga1-z1Alz1As下部クラッド層 3 nあるいはi−Inx2Ga1-x2As1-y2y2下部
第一光導波層 4 i−In0.49Ga0.51Pエッチング阻止層 5 i−Inx2Ga1-x2As1-y2y2下部第二光導波
層 6 圧縮歪Inx1Ga1-x1As1-y1y1量子井戸活性
層 7 pあるいはi−Inx2Ga1-x2As1-y2y2上部
第一光導波層 8 In0.49Ga0.51Pキャップ層 9 pあるいはi−Inx2Ga1-x2As1-y2y2上部
第二光導波層 10 p−Ga1-z1Alz1As第一上部クラッド層 11 p−GaAs第一エッチング阻止層 12 In0.49Ga0.51P第二エッチング阻止層 13 n−Ga1-z2Alz2As電流狭窄層 14 GaAsキャップ層 15 p−Ga1-z1Alz1As第二上部クラッド層 16 p−GaAsコンタクト層

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 第一導電性GaAs基板上に、少なくと
    も第一導電性クラッド層、下部光導波層、活性層、上部
    光導波層、第二導電型クラッド層、第二導電型コンタク
    ト層がこの順に積層されてなる半導体レーザ素子におい
    て、 前記活性層が、圧縮歪Inx1Ga1-x1As1-y1y1(た
    だし、0<x1≦0.4、0≦y1≦0.1)からなり、 前記各光導波層が、前記活性層よりバンドギャップの大
    きいInx2Ga1-x2As1-y2y2(ただし、0≦x2≦0.
    3、x2=0.49y2)からなり、 前記下部光導波層の厚さ方向の途中、および前記上部光
    導波層の上面にInx5Ga1-x5P層(ただし、0<x5<
    1)が形成されており、 対向する2つの共振器端面近傍において、前記2つのI
    x5Ga1-x5P層に挟まれた、前記下部光導波層、活性
    層および上部光導波層が除去されており、 前記上部光導波層の上面に形成された前記Inx5Ga
    1-x5P層上に、端面近傍の除去された領域を埋め込むよ
    うに、Inx6Ga1-x6As1-y6y6(ただし、0≦x6≦
    0.3、x6=0.49y6)層が形成されており、 該Inx6Ga1-x6As1-y6y6層の上に前記第二導電性
    クラッド層が形成されていることを特徴とする半導体レ
    ーザ素子。
  2. 【請求項2】 前記端面近傍の除去された領域に対応す
    る前記第二導電性GaAsコンタクト層が除去されてお
    り、該コンタクト層が除去された領域に電流注入を阻止
    する絶縁膜が設けられていることを特徴とする請求項1
    記載の半導体レーザ素子。
  3. 【請求項3】 前記各クラッド層が、Alz1Ga1-z1
    s(ただし、0.2≦z1≦0.8)あるいはInx3(Alz3
    1-z31-x3As1-y3y3(ただし、x3=0.49y3、0.9
    <y3≦1、0≦z3≦1)からなることを特徴とする請求項
    1または2記載の半導体レーザ素子。
  4. 【請求項4】 ストライプ部の両脇を前記コンタクト層
    から前記上部クラッド層の途中まで除去されてできたリ
    ッジ構造を有し、屈折率導波機構が設けられていること
    を特徴とする請求項1、2または3記載の半導体レーザ
    素子。
  5. 【請求項5】 前記上部光導波層より上層に、GaAs
    に格子整合するAl z2Ga1-z2As(ただし、0.2<z2
    <1)あるいはIn0.49Ga0.51Pからなる電流狭窄層
    が設けられた内部電流狭窄構造を有し、屈折率導波機構
    が設けられていることを特徴とする請求項1、2または
    3記載の半導体レーザ素子。
  6. 【請求項6】 第一導電性GaAs基板上に、少なくと
    も第一導電性クラッド層、Inx2Ga1-x2As1-y2y2
    (ただし、0≦x2≦0.3、x2=0.49y2)からなる下部第一
    光導波層、下部Inx5Ga1-x5P層(ただし、0<x5<
    1)、Inx2Ga1-x2As1-y2y2(ただし、0≦x2≦0.
    3、x2=0.49y2)からなる下部第二光導波層、圧縮歪I
    x1Ga1-x1As1-y1y1(ただし、0<x1≦0.4、0≦y
    1≦0.1)からなる活性層、Inx2Ga1-x2As1-y2y2
    (ただし、0≦x2≦0.3、x2=0.49y2)からなる上部第一
    光導波層、上部Inx5Ga1-x5P層(ただし、0<x5<
    1)をこの順に積層し、 対向する2つの共振器端面近傍における前記上部Inx5
    Ga1-x5P層を塩酸系のエッチャントで除去し、該上部
    Inx5Ga1-x5P層をマスクにして硫酸系のエッチャン
    トで前記上部Inx5Ga1-x5P層から下部第二光導波層
    までを除去し、前記上部Inx5Ga1-x5P層上に、前記
    除去した領域を埋め込みながらInx2Ga1-x2As1-y2
    y2(ただし、0≦x2≦0.3、x2=0.49y2)からなる上部
    第二光導波層を形成し、該上部第二光導波層上に第二導
    電性クラッド層および第二導電性GaAsコンタクト層
    をこの順に積層することを特徴とする半導体レーザ素子
    の製造方法。
  7. 【請求項7】 前記上部Inx5Ga1-x5P層の上にGa
    Asキャップ層を設け、前記端面近傍の該GaAsキャ
    ップ層を硫酸系のエッチャントで除去し、次に該GaA
    sキャップ層をマスクにして前記上部Inx5Ga1-x5
    層を塩酸系のエッチャントで除去し、続いて硫酸系のエ
    ッチャントで上部第一光導波層から下部第二光導波層ま
    での層と前記GaAsキャップ層全体とを同時に除去す
    ることを特徴とする請求項6記載の半導体レーザ素子の
    製造方法。
JP2000331657A 2000-10-31 2000-10-31 半導体レーザ素子およびその製造方法 Withdrawn JP2002141610A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000331657A JP2002141610A (ja) 2000-10-31 2000-10-31 半導体レーザ素子およびその製造方法
KR1020010065584A KR100771082B1 (ko) 2000-10-31 2001-10-24 반도체 레이저소자 및 그 제조방법
DE60116827T DE60116827T2 (de) 2000-10-31 2001-10-30 InGaAsP-Halbleiterlaser
EP01125890A EP1211766B1 (en) 2000-10-31 2001-10-30 InGaAsP semiconductor laser device
US09/984,852 US6546033B2 (en) 2000-10-31 2001-10-31 InGaAsP semiconductor laser device in which near-edge portions are filled with non-absorbent layer, and lower optical waveguide layer includes InGaP intermediate layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331657A JP2002141610A (ja) 2000-10-31 2000-10-31 半導体レーザ素子およびその製造方法

Publications (1)

Publication Number Publication Date
JP2002141610A true JP2002141610A (ja) 2002-05-17

Family

ID=18807968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331657A Withdrawn JP2002141610A (ja) 2000-10-31 2000-10-31 半導体レーザ素子およびその製造方法

Country Status (5)

Country Link
US (1) US6546033B2 (ja)
EP (1) EP1211766B1 (ja)
JP (1) JP2002141610A (ja)
KR (1) KR100771082B1 (ja)
DE (1) DE60116827T2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580738B2 (en) * 1999-12-08 2003-06-17 Fuji Photo Film Co., Ltd. High-power semiconductor laser device in which near-edge portions of active layer are removed
DE60119470T2 (de) * 2000-10-12 2007-04-19 Fuji Photo Film Co., Ltd., Minami-Ashigara Halbleiterlaser mit Gebiet ohne Stromzuführung in der Nähe einer Resonatorendfläche und zugehöriges Herstellungsverfahren
JP2002305352A (ja) * 2001-04-05 2002-10-18 Fuji Photo Film Co Ltd 半導体レーザ素子
EP1263100A3 (en) * 2001-05-28 2005-02-09 Fuji Photo Film Co., Ltd. Semiconductor laser device and method of manufacture thereof
JP2003069148A (ja) * 2001-08-27 2003-03-07 Fuji Photo Film Co Ltd 半導体レーザ素子
US20030235225A1 (en) * 2002-06-22 2003-12-25 Rick Glew Guided self-aligned laser structure with integral current blocking layer
KR100785772B1 (ko) * 2005-12-08 2007-12-18 한국전자통신연구원 에너지 밴드 구조의 변화를 이용한 반도체 레이저 다이오드
US11824322B2 (en) * 2021-02-16 2023-11-21 Ii-Vi Delaware, Inc. Laser device with non-absorbing mirror, and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4802182A (en) * 1987-11-05 1989-01-31 Xerox Corporation Monolithic two dimensional waveguide coupled cavity laser/modulator
JP3183683B2 (ja) * 1991-09-06 2001-07-09 シャープ株式会社 窓型半導体レーザ素子
US5412678A (en) * 1992-09-22 1995-05-02 Xerox Corporation Multi-beam, orthogonally-polarized emitting monolithic quantum well lasers
JP3714430B2 (ja) * 1996-04-15 2005-11-09 シャープ株式会社 分布帰還型半導体レーザ装置
RO116694B1 (ro) * 1997-06-09 2001-04-30 Iulian Basarab Petrescu-Prahova Dispozitiv cu efect laser de tip diodă, de mare putere, şi procedeu de obţinere
JP3317335B2 (ja) * 1998-02-10 2002-08-26 富士写真フイルム株式会社 半導体レーザ装置
JP2000031585A (ja) * 1998-07-15 2000-01-28 Rohm Co Ltd 半導体レーザ装置

Also Published As

Publication number Publication date
KR20020033524A (ko) 2002-05-07
KR100771082B1 (ko) 2007-10-29
DE60116827T2 (de) 2006-11-02
DE60116827D1 (de) 2006-04-13
EP1211766A2 (en) 2002-06-05
EP1211766A3 (en) 2004-01-14
EP1211766B1 (en) 2006-01-25
US6546033B2 (en) 2003-04-08
US20020051477A1 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
EP0920096A2 (en) Semiconductor laser device
US6580738B2 (en) High-power semiconductor laser device in which near-edge portions of active layer are removed
JP3317335B2 (ja) 半導体レーザ装置
JP2001053384A (ja) 半導体レーザ装置およびその製造方法
EP1220393B1 (en) Semiconductor laser device having InGaAs compressive-strain active layer, GaAsP tensile-strain barrier layers and InGaP optical waveguide layers
JP3859839B2 (ja) 屈折率導波型半導体レーザ装置
JP2002141610A (ja) 半導体レーザ素子およびその製造方法
US6621845B2 (en) Semiconductor laser device which includes AlGaAs optical waveguide layer being formed over internal stripe groove and having controlled refractive index
US6400743B1 (en) High-power semiconductor laser device having current confinement structure and index-guided structure
JP2003069148A (ja) 半導体レーザ素子
JP2001223436A (ja) 半導体レーザ装置
JP2002204032A (ja) 半導体レーザ素子
JP2001168458A (ja) 半導体レーザ装置
JPH11233874A (ja) 半導体レーザ装置およびその製造方法
JP2003152282A (ja) 半導体レーザ素子
JP2001308466A (ja) 半導体レーザ装置
JP2003347679A (ja) 半導体レーザ素子
JP2001053382A (ja) 半導体レーザ装置
KR100817487B1 (ko) 반도체 레이저 장치
EP1251609B1 (en) High-power semiconductor window laser device
JP2003078205A (ja) 半導体レーザ素子
JP2001053390A (ja) 半導体レーザ装置およびその製造方法
JPH1197794A (ja) 半導体レーザ装置
JP2003198066A (ja) 半導体レーザ素子
JP2001267689A (ja) 半導体レーザ素子

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108