JP2002121073A - 窒化ケイ素フィルタの製造法 - Google Patents

窒化ケイ素フィルタの製造法

Info

Publication number
JP2002121073A
JP2002121073A JP2000313955A JP2000313955A JP2002121073A JP 2002121073 A JP2002121073 A JP 2002121073A JP 2000313955 A JP2000313955 A JP 2000313955A JP 2000313955 A JP2000313955 A JP 2000313955A JP 2002121073 A JP2002121073 A JP 2002121073A
Authority
JP
Japan
Prior art keywords
silicon nitride
particles
filter
mass
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000313955A
Other languages
English (en)
Inventor
Naomichi Miyagawa
直通 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000313955A priority Critical patent/JP2002121073A/ja
Priority to ES01123326T priority patent/ES2266067T3/es
Priority to AT01123326T priority patent/ATE329674T1/de
Priority to DE60120586T priority patent/DE60120586T2/de
Priority to EP01123326A priority patent/EP1197253B1/en
Priority to US09/975,262 priority patent/US6838026B2/en
Publication of JP2002121073A publication Critical patent/JP2002121073A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】 【課題】窒化ケイ素粒子を出発原料とし、除塵や脱塵に
最適な窒化ケイ素フィルタの製造法を提供する。 【解決手段】平均粒子直径が1〜30μmである窒化ケ
イ素粒子35〜90%と、気孔形成剤5〜60%と、金
属酸化物粒子0.1〜5%とを含み、かつ前記窒化ケイ
素粒子と前記気孔形成剤と前記金属酸化物との合量が9
0%以上である成形体を窒素中で熱処理することにより
窒化ケイ素フィルタを製造する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、高温排気ガス中に
含まれる粉塵等を除去するために好適な窒化ケイ素フィ
ルタの製造法に関する。
【0002】
【従来の技術】窒化ケイ素は、耐熱性、耐食性、耐薬品
性、強度等に優れた特性を有しており、高温や腐食性環
境下での集塵、脱塵用フィルタやディーゼルエンジンの
排ガス浄化フィルタとして期待されている。このような
窒化ケイ素フィルタの製造法が提案されている。
【0003】例えば、特開平6−256069には、粗
粒の窒化ケイ素粒子とガラス粉末を混合後、成形、焼成
する方法が提案されている。しかし、このような低融点
物質を結合剤として添加する方法では窒化ケイ素の持つ
耐熱性を大きく損なう問題がある。また、特開平7−1
87845、特開平8−59364には、それぞれ、窒
化ケイ素粒子と有機ケイ素化合物の混合物、窒化ケイ素
粒子とポリシラザンの混合物を出発原料とし、同様に成
形体を焼成する方法が提案されている。しかし、ポリシ
ラザンのような有機ケイ素化合物一般に高価であるた
め、これらを使用する方法は、製造原価、原料の入手し
やすさなどの点で問題がある。
【0004】一方、窒化ケイ素粒子のかわりに安価な金
属ケイ素粒子を使用し、窒化処理を行うことによって窒
化ケイ素フィルタを得る方法として、特開平1−188
479には、金属ケイ素粒子と窒化ケイ素粒子からなる
混合粉体を出発原料とし、窒化ケイ素粒子の窒化率が5
0%以下のフィルタを得る方法が提案されている。しか
し、この方法では、窒化ケイ素粒子の窒化率が50%以
下であるため、窒化されずに窒化ケイ素焼結体に残留す
る窒化ケイ素粒子が多く、窒化ケイ素の持つ優れた耐熱
性、耐食性を損なうおそれがある。
【0005】
【発明が解決しようとする課題】本発明は、窒化ケイ素
粒子を出発原料とし、しかも強度が高く、除塵、脱塵に
最適な窒化ケイ素フィルタの製造法の提供を目的とす
る。
【0006】
【課題を解決するための手段】本発明は、平均粒子直径
が1〜30μmである窒化ケイ素粒子35〜90質量%
と、気孔形成剤5〜60質量%と、金属酸化物粒子0.
1〜5質量%とを含み、かつ前記窒化ケイ素粒子と前記
気孔形成剤と前記金属酸化物粒子の合量が90質量%以
上である成形体を窒素中で熱処理することにより実質的
に窒化ケイ素からなる多孔質体とする窒化ケイ素フィル
タの製造法である。
【0007】
【発明の実施の形態】本発明の窒化ケイ素フィルタの製
造法(以下、本製造法という)では、気孔形成剤5〜6
0質量%(以下、単に%という)と、平均粒子直径1〜
30μmの窒化ケイ素粒子35〜90%と、金属酸化物
粒子0.1〜5%とを含む成形体を使用する。
【0008】気孔形成剤は、熱処理時に分解などして飛
散し、気孔を形成するものである。気孔形成剤が有機高
分子粒子、特に熱分解性の高分子粒子であると熱処理過
程で分解、飛散し、焼結体内に残留物を残さず得られる
窒化ケイ素フィルタの特性を損なわないため好ましい。
【0009】このような有機高分子としては、ポリビニ
ルアルコール、アクリル樹脂、酢酸ビニル樹脂、セルロ
ースなどがある。昇温中に、気孔形成剤として添加した
有機高分子粒子が、熱処理の昇温段階で充分に熱分解さ
れずに炭素として多く残留すると、その後の熱処理過程
で炭化ケイ素が生成するおそれがあり、気孔を閉塞しや
すくなるので好ましくない。その点、アクリル樹脂粒子
を気孔形成剤とすると熱分解しやすく、炭素として残留
する量が少ないため特に好ましい。
【0010】気孔形成剤の含有量は、成形体中5〜60
%である。含有量が5%未満では、フィルタ機能を果た
す気孔の割合が充分でなく、一方、含有量が60%を超
えるとフィルタの気孔率は大きくなるものの、充分な強
度が得られない。気孔形成剤の含有量が成形体中15〜
40%であると、フィルタを高強度でかつ高気孔率にで
きるため好ましい。
【0011】さらに、気孔形成剤が球形であると形成さ
れる気孔も球状となり気孔率を高くしても強度の低下を
抑制できる。また気孔形成剤が球形である場合、平均粒
子直径が20〜100μmであると好適である。気孔形
成剤の平均粒子直径が20μm未満であると熱処理後得
られる窒化ケイ素フィルタの平均細孔直径が5μm以下
となり好ましくなく、一方、100μmを超えると熱処
理後得られる窒化ケイ素フィルタの平均細孔直径が20
μm超となって除塵等のフィルタとして好ましくない。
【0012】本製造法に用いる窒化ケイ素粒子は、平均
粒子直径が1〜30μmである。窒化ケイ素粒子の平均
粒子直径が1μm未満であると、成形体作成中などに外
気の酸素や水分を吸着する量が増大し、窒化ケイ素粒子
が酸化されて生成する二酸化ケイ素の量が大きくなりす
ぎる。また、窒化ケイ素粒子の平均粒子直径が30μm
を超えると、最終的なフィルタとして、球状の気孔を形
成できず、強度特性が低下する。なお、窒化ケイ素粒子
の純度としては目的、用途に応じ適宜選択される。
【0013】窒化ケイ素粒子の含有量としては、成形体
中35〜90%である。含有量が35%未満であると充
分強度を維持しかつ耐熱性の高いフィルタを得ることが
難しくなり、一方、含有量が90%を超えると気孔形成
剤の含有量が少なくなるため気孔率を大きくできない。
窒化ケイ素粒子の含有量が成形体中50〜80%である
と好ましい。
【0014】本製造法に用いる金属酸化物粒子としては
Al、Ca、Sr、Ba、Y、MgおよびYbからなる
群から選ばれる1種以上の金属の酸化物を主成分とする
粒子を用いると焼結助剤的な効果があり高強度化できる
ので好ましい。金属酸化物粒子としては、金属酸化物粒
子自身の他に、熱分解後、金属酸化物粒子となるよう有
機金属系化合物でもよい。
【0015】金属酸化物粒子は粒度が細かい方がよく、
平均粒子直径が10μm以下であると、少ない量でフィ
ルタ内に均一に分散しやすいので好ましい。金属酸化物
粒子を添加することにより、気孔を形成する窒化ケイ素
部分は緻密な組織となり、かつ形成される気孔は球状と
なる。金属酸化物粒子の含有量が成形体中0.1%未満
では骨格となる窒化ケイ素マトリックスの組織を充分に
緻密化できないため高い強度を得ることができず、ま
た、含有量が成形体中5%を超えると窒化ケイ素のもつ
耐熱性を損なうため好ましくない。
【0016】本製造法において、気孔形成剤と窒化ケイ
素粒子と金属酸化物粒子との合量は、成形体中90%以
上である。気孔形成剤と窒化ケイ素粒子と金属酸化物粒
子との合量が、成形体中90%未満であると所望の特性
のフィルタを得ることができない。
【0017】本製造法において、気孔形成剤と窒化ケイ
素粒子と金属酸化物粒子とを含む成形体を作成する方法
としては、プレス成形、押出成形、鋳込成形などの通常
のセラミックス成形法が適宜採用される。なお、成形に
際して、気孔形成剤とは別に有機バインダを加えてもよ
い。このような有機バインダとしては、ポリビニルアル
コールまたはその変成物、デンプンまたはその変成物、
カルボキシメチルセルロース、ヒドロキシメチルセルロ
ース、ポリビニルピロリドン、アクリル樹脂またはアク
リル系共重合体、酢酸ビニル樹脂または酢酸ビニル系共
重合体、等の有機物を使用できる。このような有機バイ
ンダの添加量として成形体100質量部に対して1〜1
0質量部とすると好ましい。なお、気孔形成剤が成形体
のバインダの働きを兼ねてもよい。
【0018】前記成形体を熱処理する条件としては、窒
素雰囲気下で熱処理する。熱処理条件としては、窒素雰
囲気下で1450〜1800℃で2〜5時間保持するこ
とが好ましい。温度範囲が1450℃未満であると窒化
ケイ素粒子の焼結が進まないため好ましくなく、180
0℃を超えると窒化ケイ素粒子が分解するので好ましく
ない。保持時間が2時間未満であると粒子同士の結合が
充分に進行しないため好ましくなく、一方、5時間を超
えると、特に高温では窒化ケイ素が分解しやすくなり好
ましくない。
【0019】熱処理時の昇温速度は、成形体の大きさ、
形状等により適宜選択されるが、脱脂工程は分解したガ
スが大量に発生するため、50〜200℃/hとすると
好ましい。ここで窒素雰囲気とは、実質的に窒素のみを
含み酸素を含まない雰囲気をいうが、他の不活性気体を
含んでいてもよい。窒素分圧は50kPa以上が好まし
い。
【0020】本製造法で得られる窒化ケイ素フィルタの
気孔率は、30〜80%であると好適である。気孔率
は、アルキメデス法により測定する。気孔率が30%未
満であると圧力損失が大きくなるためフィルタとして好
ましくない。また気孔率が80%を超えると強度が低く
なるためフィルタとして好ましくない。
【0021】本製造法で得られる窒化ケイ素フィルタの
水銀圧入法で測定された平均細孔直径は、5〜20μm
であると好ましい。平均細孔直径が5μm未満であると
フィルタ使用時の圧力損失が大きくなり好ましくない。
平均細孔直径が20μmを超えるとディーゼルパティキ
ュレートのような排気微粒子の捕捉除去がしにくくなる
ため好ましくない。
【0022】
【実施例】以下に本発明の実施例(例1〜例6)と比較
例(例7〜例8)を示す。なお、細孔特性は、水銀ポロ
シメータ(ユアサアイオニクス社製、商品名:Auto
SCAN−33)で測定し、熱膨張係数は室温から10
00℃までの範囲で示差熱型熱膨張測定機(リガク社
製、商品名:TAS−100)により測定した。
【0023】[例1]平均粒子直径5μmの窒化ケイ素
粒子68質量部に対し、平均粒子直径20μmの球状の
アクリル樹脂粒子30質量部と粉末状酸化マグネシウム
粒子2質量部を添加し、エチルアルコールを分散媒と
し、ボールミルによって2時間混合した。乾燥後、この
混合粉末を60mm×60mmのプレス金型に充填し、
成形圧19.6MPaでプレス成形し、厚さ10mmの
成形体を得た。該成形体を雰囲気制御電気炉で窒素雰囲
気下で、室温から500℃までを60℃/hで昇温し、
500℃から1760℃までを400℃/hで昇温し1
760℃で4時間保持して熱処理した。
【0024】得られた焼結体の特性は、気孔率60%、
平均細孔直径8μm、であった。この焼結体について熱
膨張係数を測定したところ2.9×10-6/℃と低熱膨
張であった。また焼結体から4mm×3mm×40mm
サイズの曲げ試験片を切り出し、スパン30mmの3点
曲げ強度を室温で測定した。荷重印加速度は0.5mm
/分とした。その結果、曲げ強度は40MPaと高強度
であった。焼結体の組織は、窒化ケイ素マトリックスは
緻密で、その内部にアクリル樹脂により形成された球状
の細孔が均質に分散しているのが認められた。
【0025】[例2]1760℃での保持時間を4時間
から1時間に変更すること以外は、例1と同様にした。
得られた焼結体の特性は、気孔率65%、平均細孔直径
9.5μm、熱膨張係数3.0×10-6/℃、であっ
た。また、例1と同様に測定した室温での3点曲げ強度
は25MPaであった。焼結体の組織は、窒化ケイ素マ
トリックスは緻密で、その内部にアクリル樹脂により形
成された球状の細孔が均質に分散しているのが認められ
た。
【0026】[例3]平均粒子直径20μmのアクリル
樹脂粒子を平均粒子直径60μmの酢酸ビニル樹脂粒子
に変更すること以外は、例1と同様にした。得られた焼
結体の特性は、気孔率59%、平均細孔直径20μm、
であった。また、例1と同様に測定した室温での3点曲
げ強度は20MPaであった。焼結体の組織は、窒化ケ
イ素マトリックスは緻密で、その内部に酢酸ビニル樹脂
粒子により形成された球状の細孔が均質に分散している
のが認められた。
【0027】[例4]窒化ケイ素粒子の添加量を48質
量部、アクリル樹脂粒子の添加量を50質量部、粉末状
酸化マグネシウム粒子の添加量を2質量部に変更するこ
と以外は、例1と同様にした。得られた焼結体の特性
は、気孔率80%、平均細孔直径15μm、熱膨張係数
3.1×10-6/℃、であった。また、例1と同様に測
定した室温での3点曲げ強度は5MPaであった。焼結
体の組織は、窒化ケイ素マトリックスは緻密で、その内
部にアクリル樹脂により形成された球状の細孔が均質に
分散しているのが認められた。
【0028】[例5]平均粒子直径5μmの窒化ケイ素
粒子60質量部に対し、平均粒子直径100μmのアク
リル樹脂粒子35質量部、粉末状酸化イットリウム粒子
5質量部を添加し、エチルアルコールを分散媒とし、ボ
ールミルによって2時間混合した。乾燥後、この混合粉
末を60mm×60mmのプレス金型に充填し、成形圧
19.6MPaでプレス成形を行い、厚さ10mmの成
形体を得た。該成形体を雰囲気制御電気炉で窒素雰囲気
下で、室温から1000℃までを60℃/hで昇温し、
1000℃から1700℃までを400℃/hで昇温し
1700℃で4時間保持して熱処理した。
【0029】得られた焼結体の特性は、気孔率65%、
平均細孔直径20μm、熱膨張係数3.1×10-6
℃、であった。また、例1と同様に測定した室温での3
点曲げ強度は10.9MPaであった。焼結体の組織
は、窒化ケイ素マトリックスは緻密で、その内部にアク
リル樹脂により形成された球状の細孔が均質に分散して
いるのが認められた。
【0030】[例6]平均粒子直径1.5μmの窒化ケ
イ素粒子65質量部に対し、平均粒子直径50μmのア
クリル樹脂粒子を30質量部、粉末状スピネル粒子(M
gAl24)5質量部を添加し、エチルアルコールを分
散媒とし、ボールミルによって2時間混合した。乾燥
後、この混合粉末を60mm×60mmのプレス金型に
充填し、成形圧19.6MPaでプレス成形し、厚さ1
0mmの成形体を得た。該成形体を雰囲気制御電気炉で
窒素雰囲気下で、室温から500℃までを60℃/hで
昇温し、500℃から1750℃までを400℃/hで
昇温し1750℃で2時間保持して熱処理した。
【0031】得られた焼結体の特性は、気孔率60%、
平均細孔直径12μm、熱膨張係数3.1×10-6
℃、であった。また、例1と同様に測定した室温で3点
曲げ強度は10.8MPaであった。焼結体の組織は、
窒化ケイ素マトリックスは緻密で、その内部にアクリル
樹脂により形成された球状の細孔が均質に分散している
のが認められた。
【0032】[例7]金属酸化物粒子を無添加とするこ
と以外は、例1と同様にした。得られた焼結体の特性
は、気孔率75%、平均細孔直径12μm、熱膨張係数
3.0×10-6/℃、であった。また、例1と同様に測
定した室温での3点曲げ強度は8MPaと低強度であっ
た。焼結体の組織は、窒化ケイ素マトリックスが多孔質
となっており、その内部にアクリル樹脂により形成され
た球状の細孔が分散しているのが認められた。
【0033】[例8]平均粒子直径50μmの金属ケイ
素粒子100質量部に対し、平均粒子直径50μmのア
クリル樹脂粒子を30質量部を添加し、エチルアルコー
ルを分散媒とし、ボールミルによって2時間混合した。
乾燥後、この混合粉末を40mm×60mmのプレス金
型に充填し、成形圧19.6MPaでプレス成形を行
い、厚さ10mmの成形体を得た。該成形体を雰囲気制
御電気炉で窒素雰囲気下で、室温から500℃までを6
0℃/hで昇温し、500℃から1600℃までを40
0℃/hで昇温し1600℃で4時間保持して熱処理し
た。
【0034】得られた焼結体の特性は、気孔率60%、
平均細孔直径20μm、であった。しかし、得られた焼
結体内に多くのシリコン金属の残留が認められ、その熱
膨張係数は4.0×10-6/℃と高熱膨張であった。こ
の試料の、例1と同様に測定した室温での3点曲げ強度
は、9MPaであった。
【0035】
【発明の効果】本製造法により、脱塵や除塵に適した窒
化ケイ素フィルタを容易に製造できる。本発明によって
得られる窒化ケイ素フィルタは、平均細孔直径がディー
ゼルパティキュレートの捕集に最適であり、気孔率も従
来のものより大きく、しかも強度も充分にあり、かつ耐
食性にも優れていることからディーゼルパティキュレー
トの除去フィルタに使用すると、パティキュレート捕集
率の高い、しかも耐久性に優れたディーゼルパティキュ
レートフィルタが得られる。

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】平均粒子直径が1〜30μmである窒化ケ
    イ素粒子35〜90質量%と、気孔形成剤5〜60質量
    %と、金属酸化物粒子0.1〜5質量%とを含み、かつ
    前記窒化ケイ素粒子と前記気孔形成剤と前記金属酸化物
    粒子の合量が90質量%以上である成形体を窒素中で熱
    処理することにより実質的に窒化ケイ素からなる多孔質
    体とする窒化ケイ素フィルタの製造法。
  2. 【請求項2】前記金属酸化物粒子がAl、Ca、Sr、
    Ba、Y、MgおよびYbからなる群から選ばれる1種
    以上の金属の酸化物を主成分とする請求項1記載の窒化
    ケイ素フィルタの製造法。
  3. 【請求項3】前記気孔形成剤が球状の有機高分子粒子で
    ある請求項1または2記載の窒化ケイ素フィルタの製造
    法。
  4. 【請求項4】前記フィルタの気孔率が30〜80%であ
    る請求項1、2または3記載の窒化ケイ素フィルタの製
    造法。
  5. 【請求項5】前記フィルタの水銀圧入法で測定される平
    均細孔直径が5〜20μmである請求項1、2、3また
    は4記載の窒化ケイ素フィルタの製造法。
  6. 【請求項6】前記熱処理条件が、成形体を窒素雰囲気中
    で、温度1450〜1800℃の範囲で2〜5時間保持
    して熱処理を行うものである請求項1〜5のいずれか記
    載の窒化ケイ素フィルタの製造法。
JP2000313955A 2000-10-13 2000-10-13 窒化ケイ素フィルタの製造法 Withdrawn JP2002121073A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000313955A JP2002121073A (ja) 2000-10-13 2000-10-13 窒化ケイ素フィルタの製造法
ES01123326T ES2266067T3 (es) 2000-10-13 2001-10-08 Un metodo para producir un filtro de nitruro de silicio.
AT01123326T ATE329674T1 (de) 2000-10-13 2001-10-08 Verfahren zur herstellung eines siliziumnitridfilters
DE60120586T DE60120586T2 (de) 2000-10-13 2001-10-08 Verfahren zur Herstellung eines Siliziumnitridfilters
EP01123326A EP1197253B1 (en) 2000-10-13 2001-10-08 Method for producing a silicon nitride filter
US09/975,262 US6838026B2 (en) 2000-10-13 2001-10-12 Method for producing a silicon nitride filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313955A JP2002121073A (ja) 2000-10-13 2000-10-13 窒化ケイ素フィルタの製造法

Publications (1)

Publication Number Publication Date
JP2002121073A true JP2002121073A (ja) 2002-04-23

Family

ID=18793285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313955A Withdrawn JP2002121073A (ja) 2000-10-13 2000-10-13 窒化ケイ素フィルタの製造法

Country Status (1)

Country Link
JP (1) JP2002121073A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067147A1 (ja) * 2003-01-30 2004-08-12 Asahi Glass Company, Limited 窒化ケイ素質ハニカムフィルタの製造法
CN113387694A (zh) * 2021-06-24 2021-09-14 重庆奥福精细陶瓷有限公司 一种颗粒过滤器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251585A (ja) * 1985-04-26 1986-11-08 株式会社デンソー 窒化珪素質摺動部材の製造方法
JPS62176970A (ja) * 1985-06-27 1987-08-03 トヨタ自動車株式会社 メカニカルシ−ル用焼結セラミツク製スラストワツシヤ
JPH0859367A (ja) * 1994-06-30 1996-03-05 Korea Advanced Inst Of Sci Technol 中空球形のポリマー性前駆体を用いる多孔質セラミックスまたは多孔質セラミックス積層体の製造方法
JPH08133857A (ja) * 1994-11-08 1996-05-28 Sumitomo Electric Ind Ltd セラミックス多孔体及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251585A (ja) * 1985-04-26 1986-11-08 株式会社デンソー 窒化珪素質摺動部材の製造方法
JPS62176970A (ja) * 1985-06-27 1987-08-03 トヨタ自動車株式会社 メカニカルシ−ル用焼結セラミツク製スラストワツシヤ
JPH0859367A (ja) * 1994-06-30 1996-03-05 Korea Advanced Inst Of Sci Technol 中空球形のポリマー性前駆体を用いる多孔質セラミックスまたは多孔質セラミックス積層体の製造方法
JPH08133857A (ja) * 1994-11-08 1996-05-28 Sumitomo Electric Ind Ltd セラミックス多孔体及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067147A1 (ja) * 2003-01-30 2004-08-12 Asahi Glass Company, Limited 窒化ケイ素質ハニカムフィルタの製造法
CN113387694A (zh) * 2021-06-24 2021-09-14 重庆奥福精细陶瓷有限公司 一种颗粒过滤器及其制备方法

Similar Documents

Publication Publication Date Title
JP3581879B2 (ja) アルミナ多孔体及びその製造方法
She et al. High‐strength porous silicon carbide ceramics by an oxidation‐bonding technique
JPH09100179A (ja) 窒化ケイ素質多孔体およびその製造方法
JP4473463B2 (ja) 窒化珪素多孔体及びその製造方法
EP1197253B1 (en) Method for producing a silicon nitride filter
US7368076B2 (en) Method for producing a silicon nitride filter
JP2004223359A (ja) フィルタ用多孔質Si3N4とその製造方法
EP1502641B1 (en) Silicon nitride honeycomb filter and method for its production
US20060119016A1 (en) Method for producing silicon nitride honeycomb filter
JP2002356384A (ja) 炭化ケイ素質多孔体およびその製造方法
US20060071374A1 (en) Method for producing silicon nitride filter
JP2002121073A (ja) 窒化ケイ素フィルタの製造法
KR100994376B1 (ko) 자동차용 질화규소 필터 및 그 제조방법
JP4574044B2 (ja) 窒化珪素多孔体及びその製造方法
US20050023736A1 (en) Method for producing a silicon nitride honeycomb filter
JP2007131528A (ja) 非酸化物系多孔質セラミック材の製造方法
JP2001293315A (ja) アルミナ固溶窒化ケイ素質フィルタの製造方法
JP2003002759A (ja) セラミックス多孔体およびその製造方法
JP2004262730A (ja) 炭化ケイ素−窒化ケイ素複合多孔体の製造方法
JP2683452B2 (ja) セラミックス多孔体およびその製造方法
JP3570676B2 (ja) セラミックス多孔体及びその製造方法
JP2005058999A (ja) 窒化ケイ素質ハニカムフィルタの製造法
JP2002121074A (ja) 窒化ケイ素フィルタの製造法
KR101090275B1 (ko) 뮬라이트 결합 탄화규소 세라믹스 소재 제조용 조성물, 세라믹스 및 그 제조방법
JPWO2004067147A1 (ja) 窒化ケイ素質ハニカムフィルタの製造法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100621