JP2002004807A - タービンの蒸気制御装置 - Google Patents

タービンの蒸気制御装置

Info

Publication number
JP2002004807A
JP2002004807A JP2001061327A JP2001061327A JP2002004807A JP 2002004807 A JP2002004807 A JP 2002004807A JP 2001061327 A JP2001061327 A JP 2001061327A JP 2001061327 A JP2001061327 A JP 2001061327A JP 2002004807 A JP2002004807 A JP 2002004807A
Authority
JP
Japan
Prior art keywords
steam
pressure
temperature
flow
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001061327A
Other languages
English (en)
Other versions
JP4698860B2 (ja
Inventor
Tomoyoshi Tanaka
知佳 田中
Koji Hiramoto
康治 平本
Shoichi Nagata
承一 永田
Kazuya Azuma
一也 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001061327A priority Critical patent/JP4698860B2/ja
Priority to CA002344137A priority patent/CA2344137C/en
Priority to US09/835,354 priority patent/US6588197B2/en
Priority to EP01109596A priority patent/EP1148210B1/en
Priority to DE60115753T priority patent/DE60115753T2/de
Publication of JP2002004807A publication Critical patent/JP2002004807A/ja
Application granted granted Critical
Publication of JP4698860B2 publication Critical patent/JP4698860B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/232Heat transfer, e.g. cooling characterised by the cooling medium
    • F05B2260/233Heat transfer, e.g. cooling characterised by the cooling medium the medium being steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

(57)【要約】 【課題】 蒸気温度の調節と蒸気流量の確保という2つ
の異なる要求を同時に満たす。 【解決手段】 高圧蒸気と中圧蒸気を混合して、ガスタ
ービン1及び燃焼器17に導入する蒸気を適正な温度及
び流量に制御し、蒸気温度の調節と蒸気流量の確保とい
う2つの異なる要求を同時に満たし、蒸気による翼環部
のクリアランス制御と蒸気による燃焼器17の冷却制御
とを両立させる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、ガスタービンの翼
環及び燃焼器等の高温部品に排熱回収ボイラからの蒸気
または補助経路からの流体を導入して温度制御するター
ビンの蒸気制御装置に関する。
【0002】
【従来の技術】エネルギー資源の有効利用と経済性の観
点から、発電設備(発電プラント)では様々な高効率化
が図られている。ガスタービンと蒸気タービンを組み合
わせたタービン発電プラント(複合発電プラント)もそ
の一つである。複合発電プラントでは、ガスタービンか
らの高温の排気ガスが排熱回収ボイラに送られ、排熱回
収ボイラ内で過熱ユニットを介して蒸気を発生させ、発
生した蒸気を蒸気タービンに送って蒸気タービンで仕事
をするようになっている。
【0003】ガスタービンの燃焼器等の高温部品は空気
により冷却されていたが、近年の燃焼温度の高温化にと
もない蒸気により冷却されるようになってきている。複
合発電プラントにおいても、燃焼器等の高温部品を蒸気
によって冷却するガスタービンを適用し、蒸気タービン
と組み合わせて高効率な発電プラントが計画されてい
る。また、近年のガスタービンの高温化に伴い、タービ
ンの翼環部に蒸気を導入して動翼と翼環部のクリアラン
スを最適に制御することが種々検討されている。つま
り、起動時等には動翼と翼環部の接触をなくすと共に、
定常運転時には動翼と翼環部のクリアランスを最小に維
持し、安全性と高効率とを両立させるように蒸気により
温度制御することが計画されている。
【0004】そして、複合発電プラントにおいては、タ
ービンの翼環部に蒸気を導入して動翼と翼環部のクリア
ランスを最適に制御すると共に、燃焼器等の高温部品を
蒸気により冷却することが検討されてきている。
【0005】
【発明が解決しようとする課題】蒸気による動翼と翼環
部のクリアランス制御と、蒸気による燃焼器等の高温部
品の冷却制御とを行うためには、クリアランス制御で
は、例えば、起動時には比較的高温の蒸気を導入してク
リアランスを大きめに制御し、定常運転時等には低温の
蒸気を導入してクリアランスを小さめに制御する必要が
ある一方、高温部品の冷却制御では低温の蒸気を導入す
る必要がある。このように、蒸気による動翼と翼環部の
クリアランス制御と、蒸気による燃焼器等の高温部品の
冷却制御とを実施するためには、両者の要求温度を満足
する状態に蒸気量等を制御して蒸気を導入する必要があ
る。しかし、現在の複合発電プラントでは、異なる温度
要求を満足することができる蒸気の制御を行うための十
分な技術が確立されていないのが現状である。
【0006】本発明は上記状況に鑑みてなされたもの
で、蒸気による翼環部のクリアランス制御と蒸気による
燃焼器等の高温部品の冷却制御とを両立させることがで
きるタービンの蒸気制御装置を提供することを目的とす
る。
【0007】
【課題を解決するための手段】上記目的を達成するため
の本発明の構成は、ガスタービンの排気ガスによって高
圧側蒸気を発生させる高圧ユニット及び低圧側蒸気を発
生させる低圧側ユニットを備えた排熱回収ボイラと、排
熱回収ボイラで発生した蒸気により作動する蒸気タービ
ンと、排熱回収ボイラの低圧側ユニットからの低圧側蒸
気を蒸気タービンに導入する低圧側蒸気導入路と、排熱
回収ボイラの高圧側ユニットからの高圧側蒸気を蒸気タ
ービンに導入する高圧側蒸気導入路と、低圧側蒸気導入
路から分岐して設けられ低圧側ユニットからの低圧蒸気
をガスタービンの翼環及び高温部品にバイパスする蒸気
流路と、高圧側蒸気導入路から分岐して設けられガスタ
ービンの翼環及び高温部品の前側における蒸気流路に合
流する高圧蒸気流路と、蒸気流路及び高圧蒸気流路の蒸
気を調節することでガスタービンの翼環及び高温部品に
流通する蒸気流量及び蒸気温度を調整する流量調整制御
手段とを備えたことを特徴とする。
【0008】そして、流量調整制御手段は、蒸気流路の
分岐部の後流側における低圧側蒸気導入路に設けられ蒸
気タービンに流通する蒸気量を調整することで蒸気流路
の蒸気の流量を制御する第1流量制御弁と、高圧蒸気流
路に設けられ高圧側蒸気量を調整することで蒸気流路の
蒸気の温度を制御する第2流量制御弁と、高圧蒸気流路
の合流部の後流側における蒸気流路の蒸気温度を検出す
る温度検出手段と、高圧蒸気流路の合流部の後流側にお
ける蒸気流路の蒸気圧力状況を検出する圧力検出手段
と、温度検出手段及び圧力検出手段の検出状況に基づい
て第1流量制御弁及び第2流量制御弁を制御することで
ガスタービンの翼環及び高温部品に流通する蒸気の温度
及び流量を所定状態に維持する制御手段とからなること
を特徴とする。また、高温部品は燃焼器であり、圧力検
出手段は、燃焼器の入口蒸気圧力と出口蒸気圧力の差圧
を検出する差圧検出手段であり、第2流量制御弁の後流
側の高圧蒸気流路には第3流量制御弁を有する補助流体
導入路が合流し、補助流体導入路の合流部の後流側の高
圧蒸気流路には第2温度検出手段が設けられ、制御手段
には、差圧検出手段の検出情報に基づいて第1流量制御
弁の開閉を制御すると共に、差圧検出手段及び温度検出
手段の検出情報に基づいて第2流量制御弁の開閉を制御
し、更に、第2温度検出手段の検出情報に基づいて第3
流量制御弁の開閉を制御し、ガスタービンの出力が高く
なるにつれて蒸気流路の蒸気流量を多くすると共に蒸気
温度が所定温度に低下するように制御する機能が備えら
れていることを特徴とする。また、制御手段には、差圧
検出手段及び温度検出手段の検出情報に基づいて第2流
量制御弁の開閉を制御するに際し、差圧検出手段の検出
情報に基づく開閉指令と温度検出手段の検出情報に基づ
く開閉指令とを比較し、開度が高い方の指令により第2
流量制御弁の開閉を制御する機能が備えられていること
を特徴とする。また、制御手段には、第2流量制御弁の
開閉が、差圧検出手段の検出情報に基づく開閉指令であ
るか温度検出手段の検出情報に基づく開閉指令であるか
を判断する機能が備えられ、差圧検出手段の検出情報に
基づく開閉指令である場合における第3流量制御弁の開
度を、温度検出手段の検出情報に基づく開閉指令である
場合における第3流量制御弁の開度よりも開側に設定す
る機能が備えられていることを特徴とする。
【0009】また、高温部品は燃焼器であり、圧力検出
手段は、燃焼器の入口蒸気圧力と出口蒸気圧力の差圧を
検出する差圧検出手段であり、第2流量制御弁の後流側
の高圧蒸気流路には第3流量制御弁を有する補助流体導
入路が合流し、補助流体導入路の合流部の後流側の高圧
蒸気流路には第2温度検出手段が設けられ、制御手段に
は、温度検出手段の検出情報に基づいて第1流量制御弁
の開閉を制御すると共に、差圧検出手段の検出情報に基
づいて第2流量制御弁の開閉を制御し、更に、第2温度
検出手段の検出情報に基づいて第3流量制御弁の開閉を
制御し、ガスタービンの出力が高くなるにつれて蒸気流
路の蒸気流量を多くすると共に蒸気温度が所定温度に低
下するように制御する機能が備えられていることを特徴
とする。
【0010】また、上記目的を達成するための本発明の
ガスタービンの蒸気制御装置は、ガスタービンの排気ガ
スによって高圧側蒸気を発生させる高圧ユニット及び低
圧側蒸気を発生させる低圧側ユニットを備えた排熱回収
ボイラと、排熱回収ボイラで発生した蒸気により作動す
る蒸気タービンと、低圧側ユニットからの低圧側蒸気を
蒸気タービンに導入する低圧側蒸気導入路と、高圧側ユ
ニットからの高圧側蒸気を蒸気タービンに導入する高圧
側蒸気導入路と、低圧側蒸気導入路から分岐して設けら
れ低圧側ユニットからの低圧蒸気をガスタービンの翼環
及び高温部品にバイパスする蒸気流路と、蒸気流路の分
岐部の後流側における低圧側蒸気導入路に設けられ蒸気
流路に導入される蒸気量を制御する第1流量制御弁と、
ガスタービンの翼環及び高温部品を流通した後の蒸気温
度を検出する流通後蒸気温度検出手段と、流通後蒸気温
度検出手段の検出情報に基づいて蒸気流路に流入する蒸
気流量を調整するために第1流量制御弁の開閉制御を行
いガスタービンの翼環及び高温部品を流通する蒸気流量
を所定状態に制御する制御手段とを備えたことを特徴と
する。
【0011】また、上記目的を達成するための本発明の
ガスタービンの蒸気制御装置は、ガスタービンの排気ガ
スによって高圧側蒸気を発生させる高圧ユニット及び低
圧側蒸気を発生させる低圧側ユニットを備えた排熱回収
ボイラと、排熱回収ボイラで発生した蒸気により作動す
る蒸気タービンと、低圧側ユニットからの低圧側蒸気を
蒸気タービンに導入する低圧側蒸気導入路と、高圧側ユ
ニットからの高圧側蒸気を蒸気タービンに導入する高圧
側蒸気導入路と、高圧側蒸気導入路から分岐して設けら
れガスタービンの翼環及び高温部品にバイパスする高圧
蒸気流路と、高圧蒸気流路に設けられた第2流量制御弁
と、ガスタービンの翼環及び高温部品を流通した後の蒸
気温度を検出する流通後蒸気温度検出手段と、流通後蒸
気温度検出手段の検出情報に基づいて高圧蒸気流路の蒸
気流量を調整するために第2流量制御弁の開閉制御を行
いガスタービンの翼環及び高温部品を流通する蒸気流量
を所定状態に制御する制御手段とを備えたことを特徴と
する。
【0012】また、上記目的を達成するための本発明の
ガスタービンの蒸気制御装置は、ガスタービンの排気ガ
スによって高圧側蒸気を発生させる高圧ユニット及び低
圧側蒸気を発生させる低圧側ユニットを備えた排熱回収
ボイラと、排熱回収ボイラで発生した蒸気により作動す
る蒸気タービンと、低圧側ユニットからの低圧側蒸気を
蒸気タービンに導入する低圧側蒸気導入路と、高圧側ユ
ニットからの高圧側蒸気を蒸気タービンに導入する高圧
側蒸気導入路と、低圧側蒸気導入路から分岐して設けら
れ低圧側ユニットからの低圧蒸気をガスタービンの翼環
及び高温部品にバイパスする蒸気流路と、高圧側蒸気導
入路から分岐して設けられガスタービンの翼環及び高温
部品の前側における蒸気流路に合流する高圧蒸気流路
と、蒸気流路の分岐部の後流側における低圧側蒸気導入
路に設けられ蒸気流路に導入される蒸気量を制御する第
1流量制御弁と、高圧蒸気流路に設けられた第2流量制
御弁と、ガスタービンの翼環及び高温部品を流通した後
の蒸気温度を検出する流通後蒸気温度検出手段と、流通
後蒸気温度検出手段の検出情報に基づいて蒸気流路に流
入する蒸気流量を調整するために第1流量制御弁の開閉
制御を行うと共に高圧蒸気流路の蒸気流量を調整するた
めに第2流量制御弁の開閉制御を行いガスタービンの翼
環及び高温部品を流通する蒸気流量を所定状態に制御す
る制御手段とを備えたことを特徴とする。
【0013】そして、ガスタービンの翼環及び高温部品
の後流側における蒸気流路には第4流量制御弁が設けら
れ、制御手段には、流通後蒸気温度検出手段の検出情報
に基づいて蒸気流路の流量を制御して蒸気流路の流量を
確保するように第4流量制御弁の開閉制御を行なう機能
と、流通後蒸気温度検出手段により蒸気温度が上限値を
越えたことが検出されたときに第4流量制御弁を全開に
制御する機能とが備えられていることを特徴とする。
【0014】また、制御手段には、流通後蒸気温度検出
手段により蒸気温度が上限値を越えたことが検出された
ときに蒸気流路の流量が最大となるように第1流量制御
弁を全閉状態に制御する機能が備えられていることが好
ましい。また、制御手段には、流通後蒸気温度検出手段
により蒸気温度が上限値を越えたことが検出されたとき
に高圧蒸気流路の流量が最大となるように第2流量制御
弁を全開状態に制御する機能が備えられていることが好
ましい。また、制御手段には、流通後蒸気温度検出手段
により蒸気温度が上限値を越えたことが検出されたとき
に蒸気流路の流量が最大となるように第1流量制御弁を
全閉状態に制御すると共に第2流量制御弁を全開状態に
制御する機能が備えられていることが好ましい。
【0015】
【発明の実施の形態】図1には本発明の第1実施形態例
に係るタービンの蒸気制御装置を備えた複合発電プラン
トの概略系統、図2乃至図4には流量調整手段の制御ブ
ロック、図5にはガスタービン出力と蒸気流量の関係、
図6にはガスタービン出力と蒸気設定温度の関係を示し
てある。
【0016】図1に示すように、ガスタービン1からの
排気ガスが排熱回収ボイラ2に送られるようになってお
り、排熱回収ボイラ2には、高圧側ユニットである高圧
ドラム3及び第1高圧過熱器4、第2高圧過熱器5が備
えられていると共に、低圧側ユニットである中圧ドラム
6、中圧過熱器7及び再熱器8が備えられている。高圧
ドラム3で発生した蒸気(高圧側蒸気)は第1高圧過熱
器4、第2高圧過熱器5を経て高圧側蒸気導入路9から
高圧蒸気タービン10に送られる。高圧蒸気タービン1
0の排気蒸気は再熱器8を経て蒸気導入路11から中圧
蒸気タービン12に送られる。そして、中圧蒸気タービ
ン12の排気蒸気は低圧蒸気タービン13に送られ、復
水器14で復水されて排熱回収ボイラ2側に回収され
る。一方、中圧ドラム6の蒸気(低圧側蒸気)は低圧側
蒸気導入路としての中圧側蒸気導入路15から中圧過熱
器7及び再熱器8を順次経て中圧蒸気タービン12に送
られる。
【0017】中圧側蒸気導入路15から分岐して蒸気流
路16が設けられ、蒸気流路16はガスタービン1の翼
環及び高温部品である燃焼器17を経てバイパスし、中
圧蒸気タービン12の入口側における蒸気導入路11に
合流している。また、第2高圧過熱器5の後流側の高圧
側蒸気導入路9から分岐して高圧蒸気流路18が設けら
れ、高圧蒸気流路18はガスタービン1の前側における
蒸気流路16に合流している。高圧蒸気流路18には中
圧給水ポンプからの給水が導入される補助流体流路19
が合流している。
【0018】蒸気流路16の分岐部の後流側における中
圧側蒸気導入路15には第1流量制御弁20が設けら
れ、第1流量制御弁20の開閉により中圧側蒸気導入路
15を流通する蒸気量(中圧ドラム6の蒸気圧力)が調
整される。また、補助流体流路19の合流部の前流側に
おける高圧蒸気流路18には第2流量制御弁21が設け
られ、第2流量制御弁21の開閉により高圧蒸気流路1
8から蒸気流路16に導入される高圧蒸気の流量が調整
される。即ち、蒸気流路16の蒸気の温度が調整され
る。更に、補助流体流路19には第3流量制御弁22が
設けられ、第3流量制御弁22の開閉により高圧蒸気流
路18に適宜量の中圧給水が導入されて高圧蒸気流路1
8内の蒸気が減温され、蒸気流路16に導入される高圧
蒸気の温度が所定温度に制御される。
【0019】高圧蒸気流路18の合流部とガスタービン
1との間における蒸気流路16には温度検出手段T1が設
けられ、温度検出手段T1によりガスタービン1に導入さ
れる蒸気の温度が検出される。蒸気流路16の燃焼器1
7の入口側と出口側の蒸気圧力差を検出する差圧検出手
段P1が設けられ、差圧検出手段P1により燃焼器17を流
通する蒸気の差圧、即ち、流量が検出される。また、補
助流体流路19の合流部の後流側における高圧蒸気流路
18には第2温度検出手段T3が設けられ、第2温度検出
手段T3により高圧蒸気流路18の蒸気温度が検出され
る。尚、図中の符号で、P2は蒸気流路16の燃焼器17
の入口側の蒸気圧力を検出する入口圧力検出手段、P3は
蒸気流路16の燃焼器17の出口側の蒸気圧力を検出す
る出口圧力検出手段、T2は蒸気流路16の燃焼器17の
出口側の蒸気温度を検出する出口温度検出手段である。
【0020】温度検出手段T1、差圧検出手段P1及び第2
温度検出手段T3の検出情報、入口圧力検出手段P2、出口
圧力検出手段P3及び出口温度検出手段T2の検出情報は制
御手段25に入力される。また、制御手段25にはガス
タービン1の出力MWが入力される。制御手段25には、
第1流量制御弁20に開閉指令を出力する第1出力部3
1、第2流量制御弁21に開閉指令を出力する第2出力
部32及び第3流量制御弁22に開閉指令を出力する第
3出力部33が備えられている。
【0021】差圧検出手段P1の検出情報に応じて(差圧
に応じて)第1出力部31により第1流量制御弁20を
開閉させることにより、中圧蒸気タービン12側への蒸
気の流通が規制されて燃焼器17を流通する蒸気流量が
適正に制御される。また、差圧検出手段P1及び温度検出
手段T1の検出情報に応じて第2出力部32により第2流
量制御弁21を開閉させると共に、第2温度検出手段T3
の検出情報に応じて第3出力部により第3流量制御弁2
2を開閉させることにより、ガスタービン1及び燃焼器
17を流通する蒸気温度が、適正流量を保った状態で適
正に制御される(流量調整手段)。
【0022】つまり、第1出力部31では、燃焼器17
の必要冷却蒸気量が演算されると共に必要冷却蒸気量に
見合った差圧が演算され、差圧検出手段P1の検出値が演
算された差圧となるように第1流量制御弁20に開閉指
令を出力する(差圧制御)。これにより、燃焼器17に
は必要冷却蒸気量が供給される。また、第2出力部32
では、ガスタービン1の必要蒸気温度が演算されると共
に温度検出手段T1の検出値が演算された温度となるよう
に第2流量制御弁21に開閉指令を出力する(温度制
御)。このとき、第3出力部33では、蒸気流路16に
導入される蒸気温度(第2温度検出手段T3の検出情報)
に基づいて第3流量制御弁22に開閉指令が出力され、
中圧給水の量が適宜制御されて高圧蒸気流路18の蒸気
温度が所定温度に減温される。
【0023】温度制御により燃焼器17を流通する蒸気
流量が増減すると、差圧検出手段P1の検出情報により第
1流量制御弁20が開閉制御され、規定の蒸気流量が確
保されているが、負荷変動等により中圧蒸気の発生遅れ
等が生じ、蒸気流路16を流通する蒸気の絶対流量が不
足した場合は、温度制御に優先して、差圧検出手段P1の
検出値が演算された差圧となるように第2流量制御弁2
1が開閉制御され、高圧蒸気を導入することで蒸気流量
を確保する(バックアップ制御)。即ち、第2流量制御
弁21には差圧制御においても開閉指令が出力され、温
度制御による開度指令と、差圧制御による開度指令の高
い値を選択して第2流量制御弁21の開度として制御さ
れるようになっている。
【0024】上述した蒸気制御装置では、温度の低い中
圧ドラム6側の発生蒸気と、温度の高い高圧ドラム3の
発生蒸気とを混合し、混合した蒸気流量及び蒸気温度を
適切に制御してガスタービン1及び燃焼器17に導入し
ている。混合を最適に行うため、中圧側蒸気導入路15
に設けられた第1流量制御弁20の開閉により蒸気流量
が制御され、高圧蒸気流路18に設けられた第2流量制
御弁21の開閉により高圧蒸気流量を調整して蒸気温度
が制御されている。また、中圧蒸気が不足した場合に
は、バックアップ制御により第2流量制御弁21を開閉
して高圧蒸気を流量確保のために導入するようにしてい
る。従って、ガスタービン1の翼環に蒸気を導入してク
リアランスを適正に保つための蒸気温度調整と、燃焼器
17を適正に冷却するための蒸気流量調整という、異な
る要求を同時に満たすことができ、蒸気による翼環部の
クリアランス制御と蒸気による燃焼器17の冷却制御と
を両立させることが可能になる。
【0025】図2乃至図4に基づいて流量調整手段を詳
細に説明する。図2には第1出力部31のブロック構
成、図3には第2出力部のブロック構成、図4には第3
出力部のブロック構成を示してある。
【0026】図2に示すように、第1出力部31の演算
手段41には、温度検出手段T1、入口圧力検出手段P2、
出口圧力検出手段P3及び出口温度検出手段T2の検出情報
が入力される。また、変換演算手段42にはガスタービ
ン1の出力MWが入力され、変換演算手段42で出力MW
が、要求される冷却蒸気流量として変換されて演算手段
41に入力される。演算手段41では入力情報を差圧相
当値に変換して加算手段43に出力し、加算手段43に
は差圧検出手段P1の検出情報が入力される。加算手段4
3では、演算手段41からの差圧相当値の情報と差圧検
出手段P1の検出情報との差を求め、PI演算手段44では
求められた差分を開度指令として演算して第1流量制御
弁20に出力する。従って、第1流量制御弁20は、差
圧検出手段P1の検出情報に基づいて開閉が制御され、蒸
気流量が適切に制御される。
【0027】図3に示すように、第2出力部32の演算
手段41には、温度検出手段T1、入口圧力検出手段P2、
出口圧力検出手段P3及び出口温度検出手段T2の検出情報
が入力される。また、第2変換演算手段45にはガスタ
ービン1の出力MWが入力され、第2変換演算手段45で
は出力MWが、要求されるバックアップ用蒸気流量として
変換されて演算手段41に入力される。演算手段41で
は入力情報が差圧相当値に変換され加算手段43に出力
され、加算手段43には差圧検出手段P1の検出情報が入
力される。加算手段43では、演算手段41からの差圧
相当値の情報と差圧検出手段P1の検出情報との差を求
め、PI演算手段44では求められた差分を開度指令とし
て演算する。
【0028】一方、ガスタービン1の出力MWが温度設定
演算手段46に入力され、温度設定演算手段46では出
力MWが要求される蒸気温度相当値として変換される。変
換された蒸気温度相当値は第2加算手段47に出力さ
れ、第2加算手段47には温度検出手段T1の検出情報が
入力される。第2加算手段47では、温度設定演算手段
46からの蒸気温度相当値の情報と温度検出手段T1の検
出情報との差を求め、第2PI演算手段48では求められ
た差分を開度指令として演算する。従って、第2流量制
御弁21は、温度検出手段T1の検出情報に基づいて開閉
が制御され、蒸気温度が適切に制御される。
【0029】また、PI演算手段44からの開度指令(差
圧制御)と、第2PI演算手段48からの開度指令(温度
制御)とが高値選択器49で比較され、高値選択器49
では高い方の値を開度指令として第2流量制御弁21に
出力する。従って、第2流量制御弁21は、温度検出手
段T1の検出情報に基づいて温度制御により開閉が制御さ
れると同時に、差圧検出手段P1の検出情報に基づいて差
圧制御により開閉が制御され(バックアップ制御)、蒸
気温度が適切に制御されると同時に蒸気流量が確保され
る。つまり、中圧ドラム6側の蒸気流量が不足した場合
には、差圧制御が優先されて高圧蒸気が流量確保のため
に導入される。
【0030】図4に示すように、第3出力部33の第3
変換演算手段51にはガスタービン1の出力MWが入力さ
れ、第3変換演算手段51では出力MWが要求される蒸気
温度相当値として変換される。この時の温度相当値は、
中圧蒸気温度よりも高く設定される。一方、第2温度検
出手段T3の検出情報が第3加算手段52に入力され、第
3加算手段52には第3変換演算手段51で変換された
温度相当値が入力される。第3加算手段52では、第3
変換演算手段51からの温度相当値の情報と第2温度検
出手段T3の検出情報との差を求め、第3PI演算手段53
では求められた差分を開度指令として演算して第3流量
制御弁22に出力する。従って、第3流量制御弁22
は、第2温度検出手段T3の検出情報に基づいて開閉が制
御され、減温するための中圧給水量が適切に制御され
る。
【0031】上述した制御を実施する場合の蒸気流量と
ガスタービン1の出力MWとの関係を図5に示してある。
また、上述した制御を実施する場合の蒸気設定温度とガ
スタービン1の出力MWとの関係を図6に示してある。
【0032】図5に示すように、ガスタービン1の出力
MWが高くなるにしたがって、蒸気流量は多くなるように
制御される。そして、第1流量制御弁20の開閉制御に
よる中圧蒸気量(図中実線で示す)が、第2流量制御弁
21の開閉制御による高圧蒸気量(高圧蒸気流路からの
蒸気量:図中点線で示す)よりも、多くなるように制御
されるようになっている。
【0033】また、図6に示すように、ガスタービン1
の出力MWが高くなるにしたがって、第2流量制御弁21
及び第3流量制御弁22の開閉の基になる蒸気設定温度
が低くなるように設定されている。即ち、ガスタービン
1の出力MWが高くなるにしたがって、高圧蒸気流量及び
中圧給水流量が減少するように制御され、例えば、ガス
タービン1の出力MWが100%のときに高圧蒸気流路18の
温度が中圧蒸気温度TIに一致するように第2流量制御弁
21及び第3流量制御弁22の開閉が制御されるように
なっている。図中、実線が第2流量制御弁21を開閉制
御するための蒸気設定温度で、点線が第3流量制御弁2
2を開閉制御するための蒸気設定温度である。
【0034】蒸気制御では、中圧蒸気と高圧蒸気を混合
してガスタービン1及び燃焼器17に導入する蒸気流量
及び蒸気温度を制御している。また、中圧蒸気流量が不
足している場合に、高圧蒸気をバックアップとして用い
ている。しかし、バックアップである高圧蒸気の流量に
は制限があるため、高圧蒸気はできるだけ少ない蒸気流
量とすることが好ましい。
【0035】中圧蒸気流量が十分に確保されているとき
は、即ち、温度制御によって第2流量制御弁21が開閉
制御されているときは、高圧蒸気温度を高くしたほうが
(中圧給水量を減らして減温度合いを低下させる)中圧
蒸気蒸気量が多くなって高圧蒸気量を減らすことができ
る。逆に、中圧蒸気流量が不足しているときは、即ち、
差圧制御によるバックアップ制御によって第2流量制御
弁21が開閉制御されているときは、高圧蒸気温度を低
くしたほうが(中圧給水量を増やして減温度合いを高め
る)供給温度が低くなって高圧蒸気量を減らすことがで
きる。そこで、高圧蒸気温度を制御している第3流量制
御弁22の設定を、第2流量制御弁21が温度制御によ
って開閉制御されているか、差圧制御によって開閉制御
しているかで切り換えることで、高圧蒸気量を減らすこ
とができる。
【0036】以下に、第2流量制御弁21が温度制御中
の開閉指令で制御されているか、差圧制御中の開閉指令
で制御されているかを判断し、差圧制御中である場合の
第3流量制御弁22の設定を、温度制御中よりも開側に
設定する機能を備えた制御手段の実施形態例を図7、図
8に基づいて説明する。図7には第2実施形態例に係る
制御手段の第2流量制御弁21の開度指令を出力する第
2出力部のブロック構成、図8には第2実施形態例に係
る制御手段の第3流量制御弁22の開度指令を出力する
第3出力部のブロック構成を示してある。尚、第1流量
制御弁20の開度指令を出力する第1出力部31は第2
実施形態例の図2と同一であるので、説明は省略してあ
る。
【0037】図7に示すように、第2出力部37の演算
手段41には、温度検出手段T1、入口圧力検出手段P2、
出口圧力検出手段P3及び出口温度検出手段T2の検出情報
が入力される。また、第2変換演算手段45にはガスタ
ービン1の出力MWが入力され、第2変換演算手段45で
は出力MWが、要求されるバックアップ用蒸気流量として
変換されて演算手段41に入力される。演算手段41で
は入力情報が差圧相当値に変換され加算手段43に出力
され、加算手段43には差圧検出手段P1の検出情報が入
力される。加算手段43では、演算手段41からの差圧
相当値の情報と差圧検出手段P1の検出情報との差を求
め、PI演算手段44では求められた差分を開度指令とし
て演算する。
【0038】一方、ガスタービン1の出力MWが温度設定
演算手段46に入力され、温度設定演算手段46では出
力MWが、要求される蒸気温度相当値として変換される。
変換された蒸気温度相当値は第2加算手段47及び後述
する加算手段501に出力され、第2加算手段47には
温度検出手段T1の検出情報が入力される。第2加算手段
47では、温度設定演算手段46からの蒸気温度相当値
の情報と温度検出手段T1の検出情報との差を求め、第2
PI演算手段48では求められた差分を開度指令として演
算する。従って、第2流量制御弁21は、温度検出手段
T1の検出情報に基づいて開閉が制御され、蒸気温度が適
切に制御される。
【0039】また、PI演算手段44からの開度指令(差
圧制御)と、第2PI演算手段48からの開度指令(温度
制御)とが高値選択器49で比較され、高値選択器49
では高い方の値を開度指令として第2流量制御弁21に
出力する。従って、第2流量制御弁21は、温度検出手
段T1の検出情報に基づいて温度制御により開閉が制御さ
れると同時に、差圧検出手段P1の検出情報に基づいて差
圧制御により開閉が制御され(バックアップ制御)、蒸
気温度が適切に制御されると同時に蒸気流量が確保され
る。つまり、中圧ドラム6側の蒸気流量が不足した場合
には、差圧制御が優先されて高圧蒸気が流量確保のため
に導入される。
【0040】そして、第2出力部37では、PI演算手段
44では求められた差分(差圧制御の指令)と、高値選
択器49で選択された差分(差圧制御もしくは温度制御
の指令)とが、第4加算手段56に入力されて加算され
る。PI演算手段44で求められた差分が、例えば、マイ
ナスの値で第4加算手段56に入力され、高値選択器4
9で選択された差分が、例えば、プラスの値で第4加算
手段56に入力される。加算の結果は判定器57に入力
され、判定器57では加算の結果が0以下かプラスかが
判定される。即ち、加算の結果が0以下である場合、差
圧制御により第2流量制御弁21の開閉制御が実施され
ている状態で、加算の結果がプラスである場合、温度制
御により第2流量制御弁21の開閉制御が実施されてい
る状態となる。判定器57による判定結果、即ち、第2
流量制御弁21の開閉制御が温度制御によるか差圧制御
によるかの判定結果は、図8に示した第3出力部38に
送られる。
【0041】図8に示すように、第3出力部38には、
第4変換演算手段61及び第5変換演算手段62が備え
られ、第4変換演算手段61及び第5変換演算手段62
にはガスタービン1の出力MWが入力される。第4変換演
算手段61では、出力MWが、差圧制御時における蒸気温
度相当値として変換され、第5変換演算手段62では、
出力MWが、温度制御時における蒸気温度相当値として変
換される。つまり、差圧制御用である第4変換演算手段
61で変換された蒸気温度相当値が、温度制御用である
第5変換演算手段62で変換された蒸気温度相当値より
も、低い値に設定されている。第4変換演算手段61及
び第5変換演算手段62で変換された蒸気温度相当値
は、それぞれ切換器63に入力される。切換器63に
は、前述した第2出力部37の判定器57からの判定結
果が入力され、切換器63では、判定結果に応じて蒸気
温度相当値を選択して出力する。即ち、判定結果が0以
下である場合、差圧制御用である第4変換演算手段61
で変換された蒸気温度相当値を出力し、判定結果がプラ
スである場合、温度制御用である第5変換演算手段62
で変換された蒸気温度相当値を出力する。
【0042】また、第3出力部38には、関数手段50
2が備えられ、関数手段502には出口温度検出手段T2
の検出情報が入力される。関数手段502は、温度上昇
につれて出力が増大する関数が記憶されている。関数手
段502の出力は加算手段503の減算側に入力され、
加算手段503の加算側には切換器63からの出力が入
力される。加算手段503では、切換器63の出力値か
ら関数手段502の出力値を減算する。一方、前述した
温度設定演算手段46で変換された蒸気温度相当値が加
算手段501に入力され、加算手段501では所定のバ
イアス値が加算される。所定のバイアス値が加算された
出力値と、加算手段503からの出力値は、高値選択器
504に入力されて比較され、高い方の値が出力され
る。
【0043】一方、第2温度検出手段T3の検出情報が第
3加算手段52に入力され、第3加算手段52には第3
変換演算手段51で変換された温度相当値が入力され
る。第3加算手段52では、高値選択器504からの出
力値と第2温度検出手段T3の検出情報との差を求め、第
3PI演算手段53では求められた差分を開度指令として
演算して第3流量制御弁22に出力する。従って、第3
流量制御弁22は、第2温度検出手段T3の検出情報に基
づいて開閉が制御され、減温するための中圧給水量が温
度制御及び差圧制御それぞれで適切に制御される。
【0044】つまり、上述した実施形態例では、温度制
御によって第2流量制御弁21が開閉制御されていると
きは、中圧給水量が減って蒸気温度が高くなり、結果と
して中圧蒸気量が増加して(第1流量制御弁20が差圧
検出手段P1の検出情報に基づいて開閉制御されている)
高圧蒸気量を減らすことができる。また、差圧制御によ
るバックアップ制御によって第2流量制御弁21が開閉
制御されているときは、中圧給水量が増えて蒸気温度が
低くなり、供給温度が低くなって高圧蒸気量を減らすこ
とができる。この結果、高圧蒸気量を減らすことがで
き、プラント効率の低下を最小限に抑えることができ
る。
【0045】また、切換器63の出力値から関数手段5
02(温度上昇につれ増大する関数)の出力値を減算し
て第3加算手段52に入力することにより、第3流量制
御弁22の開度が開方向に制御され第2温度検出手段T3
で検出される高圧バックアップ蒸気の温度(T3)が下が
る。ただし、第3加算手段52に与える蒸気温度相当値
(=蒸気温度T3)が蒸気温度(T1+α)より低くなるこ
とはないので(高圧と中圧とが混合された後の温度T1は
高圧の温度T3より低い)、図7の温度設定演算手段46
の出力値(=蒸気温度T1)に所定のバイアス値を加えた
値、または、関数手段502の出力値を減算した値の高
い方を第3加算手段52に入力している。即ち、燃焼器
17出口蒸気温度の上昇にて高圧バックアップ蒸気の温
度を下げる(入口蒸気温度設定よりも高い範囲内で第3
流量制御弁22の温度設定を下げる)ようにし、第2流
量制御弁21が入口蒸気温度制御中には高圧バックアッ
プ流量が増加し、出口蒸気温度を低下させることが可能
になる。また、差圧制御で高圧バックアップ蒸気が導入
される場合も、供給温度をさらに下げることで出口蒸気
温度は低下しやすくなる。
【0046】上述した制御を実施する場合の蒸気設定温
度とガスタービン1の出力MWとの関係を図9に示してあ
る。
【0047】また、図9に示すように、ガスタービン1
の出力MWが高くなるにしたがって、第2流量制御弁21
及び第3流量制御弁22の開閉の基になる蒸気設定温度
が低くなるように設定されている。即ち、ガスタービン
1の出力MWが高くなるにしたがって、高圧蒸気流量及び
中圧給水流量が減少するように制御される。図中、実線
が第2流量制御弁21を開閉制御するための蒸気設定温
度で、点線が温度制御によって第2流量制御弁21が開
閉制御されているときの第3流量制御弁22を開閉制御
するための蒸気設定温度で、一点鎖線が差圧制御によっ
て第2流量制御弁21が開閉制御されているときの第3
流量制御弁22を開閉制御するための蒸気設定温度であ
る。温度制御によって第2流量制御弁21が開閉制御さ
れているときの第3流量制御弁22を開閉制御するため
の蒸気設定温度が高くなっているため、第3流量制御弁
22は差圧制御のときに比べて閉まり側に制御されて中
圧給水量が少なくなる。
【0048】図10に基づいて本発明の第3実施形態例
に係るタービンの蒸気制御装置を説明する。図10には
本発明の第3実施形態例に係るタービンの蒸気制御装置
を備えた複合発電プラントの概略系統を示してある。
尚、図1に示した複合発電プラントと構成部材は同一で
あるため、同一符号を付して重複する説明は省略してあ
る。
【0049】図に示すように、中圧蒸気流量を制御する
第1流量制御弁20は、温度検出手段T1の検出情報に基
づいて開閉制御され、高圧蒸気流量を制御する第2流量
制御弁21は差圧検出手段P1の検出情報に基づいて開閉
制御される。また、中圧給水量を制御する第3流量制御
弁22は、第2温度検出手段T3の検出情報に基づいて制
御される。つまり、蒸気流路16の蒸気温度に応じて第
1流量制御弁20が開閉制御されて中圧蒸気量が制御さ
れ、燃焼器17の出入口圧力の差圧に応じて第2流量制
御弁21が開閉制御されて高圧蒸気量が制御される。そ
して、ガスタービン1の出力が高くなるにつれて蒸気流
路16の蒸気流量を多くすると共に蒸気温度が所定温度
に低下するように高圧蒸気量と中圧蒸気量が適切に制御
される。
【0050】第3実施形態例の蒸気制御装置でも、前述
した実施形態例と同様に、高圧蒸気と中圧蒸気を混合し
て、適正な温度及び流量に制御することができ、蒸気温
度の調節と蒸気流量の確保という2つの異なる要求を同
時に満たすことができる。
【0051】尚、蒸気流路16の圧力状況及び温度状況
に基づいて、中圧蒸気側の第1流量制御弁20及び高圧
蒸気側の第2流量制御弁21の開閉を制御する構成であ
れば、各種検出情報は上述した実施形態例の検出手段に
限定されるものではなく、検出手段として図示の検出手
段のいずれかを省略してガスタービン1の負荷や各ドラ
ムの圧力、ガスタービン1の翼環部のクリアランスを直
接または間接に検出する等の手段を加えた構成とした
り、各検出手段を必要に応じて適宜組み合わせて用いる
ことが可能である。また、補助流体流路19から導入す
る流体は、中圧給水に限定されず、高圧蒸気を減温でき
る流体であればよい。
【0052】本発明の第4実施形態例を図11乃至図1
4に基づいて説明する。図11には本発明の第4実施形
態例に係るガスタービンの蒸気冷却装置を備えた複合発
電プラントの概略構成、図12には第1流量制御弁の制
御ブロック、図13には第2流量制御弁の制御ブロッ
ク、図14には蒸気量制御弁の制御ブロックを示してあ
る。
【0053】図11に示すように、ガスタービン101
からの排気ガスが排熱回収ボイラ102に送られるよう
になっており、排熱回収ボイラ102には、高圧側ユニ
ットとして高圧ドラム103及び第1高圧過熱器10
4、第2高圧過熱器105が備えられていると共に、低
圧側ユニットとして中圧ドラム106、中圧過熱器10
7及び再熱器108が備えられている。高圧ドラム10
3で発生した蒸気は第1高圧過熱器104、第2高圧過
熱器105を経て高圧側蒸気導入路109から高圧蒸気
タービン110に送られる。高圧蒸気タービン110の
排気蒸気は再熱器108を経て蒸気導入路111から中
圧蒸気タービン112に送られる。そして、中圧蒸気タ
ービン112の排気蒸気は低圧蒸気タービン113に送
られ、復水器114で復水されて排熱回収ボイラ102
側に回収される。一方、中圧ドラム106の蒸気は蒸気
導入路としての中圧側蒸気導入路115から中圧過熱器
107及び再熱器108を順次経て中圧蒸気タービン1
12に送られる。
【0054】中圧側蒸気導入路115から分岐して蒸気
流路116が設けられ、蒸気流路116はガスタービン
101の翼環及び高温部品である燃焼器117を経てバ
イパスし、中圧蒸気タービン112の入口側における蒸
気導入路111に合流している。燃焼器117の出口側
における蒸気流路116には第4流量制御弁201が設
けられ、第4流量制御弁201の開閉により蒸気流路1
16の蒸気量が調整される。尚、第4流量制御弁201
は燃焼器117の入口側における蒸気流路116に設け
られることもある。また、第2高圧過熱器105の後流
側の高圧側蒸気導入路109から分岐して高圧蒸気流路
118が設けられ、高圧蒸気流路118はガスタービン
101の前側における蒸気流路116に合流している。
高圧蒸気流路118には中圧給水ポンプからの給水が導
入される補助流体流路119が合流している。
【0055】蒸気流路116の分岐部の後流側における
中圧側蒸気導入路115には第1流量制御弁120が設
けられ、第1流量制御弁120の開閉により中圧側蒸気
導入路115を流通する蒸気量が調整される。また、補
助流体流路119の合流部の前流側における高圧蒸気流
路118には第2流量制御弁121が設けられ、第2流
量制御弁121の開閉により高圧蒸気流路118から蒸
気流路116に導入される高圧蒸気の流量が調整され
る。即ち、蒸気流路116の蒸気の温度が調整される。
更に、補助流体流路119には補助流体圧力制御弁とし
ての第3流量制御弁122が設けられ、第3流量制御弁
122の開閉により高圧蒸気流路118に適宜量の中圧
給水が導入されて高圧蒸気流路118内の蒸気が減温さ
れ、蒸気流路116に導入される高圧蒸気の温度が所定
温度に制御される。
【0056】高圧蒸気流路118の合流部とガスタービ
ン101との間における蒸気流路116には温度検出手
段T1が設けられ、温度検出手段T1によりガスタービン1
01に導入される蒸気の温度が検出される。蒸気流路1
16の燃焼器117の入口側と出口側の蒸気圧力差を検
出する差圧検出手段P1が設けられ、差圧検出手段P1によ
り燃焼器117を流通する蒸気の差圧、即ち、流量が検
出される。また、補助流体流路119の合流部の後流側
における高圧蒸気流路118には補助蒸気温度検出手段
としての第2温度検出手段T3が設けられ、第2温度検出
手段T3により高圧蒸気流路118の蒸気温度が検出され
る。尚、図中の符号で、P2は蒸気流路116の燃焼器1
17の入口側の蒸気圧力を検出する入口圧力検出手段、
P3は蒸気流路116の燃焼器117の出口側の蒸気圧力
を検出する出口圧力検出手段、T2は蒸気流路116の燃
焼器117の出口側の蒸気温度を検出する冷却後蒸気温
度検出手段としての出口温度検出手段である。また、燃
焼器117の入口側には燃焼器117の車室圧を検出す
る車室圧検出手段P4が設けられている。
【0057】温度検出手段T1、差圧検出手段P1及び第2
温度検出手段T3、入口圧力検出手段P2、出口圧力検出手
段P3、出口温度検出手段T2及び車室圧検出手段P4の検出
情報は制御手段125に入力される。また、制御手段1
25にはガスタービン101の出力MWが入力される。制
御手段125からは、第1流量制御弁120、第2流量
制御弁121、第3流量制御弁122及び第4流量制御
弁201に開閉指令が出力される。
【0058】差圧検出手段P1の検出情報に応じて(差圧
に応じて)第1流量制御弁120を開閉させることによ
り、中圧蒸気タービン112側への蒸気の流通が規制さ
れてガスタービン101の翼環及び燃焼器117を流通
する蒸気流量が適正に制御される。また、差圧検出手段
P1及び温度検出手段T1の検出情報に応じて第2流量制御
弁121を開閉させると共に、第2温度検出手段T3の検
出情報に応じて第3流量制御弁122を開閉させること
により、ガスタービン101の翼環及び燃焼器117を
流通する蒸気量が適正流量を保った状態で適正に制御さ
れる。また、車室圧検出手段P4の検出情報に応じて第4
流量制御弁201を開閉させることにより、ガスタービ
ン101の翼環及び燃焼器117を流通する蒸気流量が
適正に制御される。
【0059】この時、ガスタービン101の翼環及び燃
焼器117を流通する蒸気量が適正を保っているにも拘
らず何らかの異常により蒸気温度が上昇した場合、出口
温度検出手段T2の検出情報に応じて、第1流量制御弁1
20、第2流量制御弁121、第3流量制御弁122及
び第4流量制御弁201が開閉され、蒸気流路116の
蒸気量が増やされてガスタービン101の翼環及び燃焼
器117を流通する蒸気温度の過上昇が防止される。
【0060】つまり、制御手段125では、ガスタービ
ン101の翼環及び燃焼器117の必要冷却蒸気量が演
算されると共に必要冷却蒸気量に見合った差圧が演算さ
れ、差圧検出手段P1の検出値が演算された差圧となるよ
うに第1流量制御弁120に開閉指令を出力する。これ
により、ガスタービン101の翼環及び燃焼器117に
は必要冷却蒸気量が供給される。また、制御手段125
では、ガスタービン101の必要蒸気温度が演算される
と共に温度検出手段T1の検出値が演算された温度となる
ように第2流量制御弁121に開閉指令を出力する。こ
のとき、制御手段125では、蒸気流路116に導入さ
れる蒸気温度(第2温度検出手段T3の検出情報及び温度
検出手段T1の検出情報)に基づいて第3流量制御弁12
2に開閉指令が出力され、中圧給水の量が適宜制御され
て高圧蒸気流路118の蒸気温度が所定温度に減温され
る。また、制御手段125では、燃焼器117の車室圧
に応じて第4流量制御弁201に開閉指令を出力する。
【0061】温度制御によりガスタービン101の翼環
及び燃焼器117を流通する蒸気流量が増減すると、差
圧検出手段P1の検出情報により第1流量制御弁120が
開閉制御され、規定の蒸気流量が確保されているが、負
荷変動等により中圧蒸気の発生遅れ等が生じ、蒸気流路
116を流通する蒸気の絶対流量が不足した場合は、温
度制御に優先して、差圧検出手段P1の検出値が演算され
た差圧となるように第2流量制御弁121が開閉制御さ
れ、高圧蒸気を導入することで蒸気流量を確保する(バ
ックアップ制御)。即ち、第2流量制御弁121には差
圧制御においても開閉指令が出力され、温度制御による
開度指令と、差圧制御による開度指令の高い値を選択し
て第2流量制御弁121の開度として制御されるように
なっている。
【0062】上述した蒸気制御装置では、温度の低い中
圧ドラム106側の発生蒸気と、温度の高い高圧ドラム
103の発生蒸気とを混合し、混合した蒸気流量及び蒸
気温度を適切に制御してガスタービン101の翼環及び
燃焼器117に導入している。また、混合を最適に行う
ため、中圧側蒸気導入路115に設けられた第1流量制
御弁120の開閉により蒸気流量が制御され、高圧蒸気
流路118に設けられた第2流量制御弁121の開閉に
より高圧蒸気流量を調整して蒸気温度が制御されてい
る。また、中圧蒸気が不足した場合には、バックアップ
制御により第2流量制御弁121を開閉して高圧蒸気を
流量確保のために導入するようにしている。更に、燃焼
器117の車室圧に応じて第4流量制御弁201を開閉
して蒸気流路116を流通する蒸気の流量が制御されて
いる。このため、ガスタービン101の翼環に蒸気を導
入してクリアランスを適正に保つための蒸気温度調整
と、燃焼器117を適正に冷却するための蒸気流量調整
という、異なる要求を同時に満たすことができ、蒸気に
よる翼環部のクリアランス制御と蒸気による燃焼器17
の冷却制御とを両立させることが可能になる。
【0063】図12乃至図14に基づいて第1流量制御
弁120、第2流量制御弁121及び第4流量制御弁2
01の制御状況を詳細に説明する。図12には第1流量
制御弁120の制御ブロック構成、図13には第2流量
制御弁121の制御ブロック構成、図14には第4流量
制御弁201の制御ブロック構成を示してある。
【0064】図12に示すように、制御手段125の演
算手段141には、温度検出手段T1、入口圧力検出手段
P2、出口圧力検出手段P3及び出口温度検出手段T2の検出
情報が入力される。また、変換演算手段142にはガス
タービン101の出力MWが入力され、変換演算手段14
2では出力MWが、要求される蒸気流量として変換されて
加算手段151に入力される。一方、出口温度検出手段
T2の検出情報に基づいて温度に応じたバイアスが関数手
段150で演算されて加算手段151で要求される蒸気
流量に加算され、演算手段141に入力される。
【0065】具体的に要求される冷却蒸気流量は、出口
温度検出手段T2で検出される蒸気温度が高くになるにし
たがって多くなるようにバイアス値が設定されている。
即ち、出口温度検出手段T2で検出される蒸気温度が高く
になるにしたがって第1流量制御弁120が閉側に作動
されて蒸気流路116に送られる蒸気量が多くなるよう
に制御される。演算手段141では入力情報を差圧相当
値に変換して加算手段143に出力し、加算手段143
には差圧検出手段P1の検出情報が入力される。加算手段
143では、演算手段141からの差圧相当値の情報と
差圧検出手段P1の検出情報との差を求め、PI演算手段1
44では求められた差分を0側情報の開度指令として、
0側情報を選択手段152に送る。選択手段152には
全閉指令(最小開度、例えば3%乃至5%の開度)が指
令手段153から1側情報として送られている。
【0066】選択手段152は通常はオフにされ、比較
手段154からの指令があった際にオンになる。即ち、
選択手段152は、オンになることで0側情報から1側
情報に出力指令が切り換えられるようになっており、オ
フの場合、0側情報の開度指令(ガスタービン101の
出力MW及び蒸気流路116の状況に応じた開度指令)が
第1流量制御弁120に出力され、オンの場合、1側情
報の開度指令(全閉指令)が第1流量制御弁120に出
力される。比較手段154には出口温度検出手段T2の検
出情報が入力され、比較手段154の結果が選択手段1
52に送られる。比較手段154で出口温度検出手段T2
の検出情報が所定値(上限値)を越えているとされた場
合、比較手段154から選択手段152にオン信号が出
され、選択手段152が1側情報の開度指令に切り換え
られる。
【0067】従って、第1流量制御弁120は、ガスタ
ービン101の出力MW及び蒸気流路116の状況の検出
情報に基づいて蒸気流路116の蒸気量が所定流量とな
るように開閉が制御されると共に、出口温度検出手段T2
で検出される蒸気温度に応じて、燃焼器117の出口側
の温度が高くなった際には温度上昇分蒸気流路116の
蒸気量が増加するように閉側に制御される。更に、第1
流量制御弁120は、出口温度検出手段T2の検出情報が
所定値(上限値)を越えた場合には全閉指令(最小開度
指令)により全閉状態とされ、中圧ドラム106からの
蒸気が蒸気流路116に全量送られる。
【0068】図13に示すように、制御装置125の演
算手段141には、温度検出手段T1、入口圧力検出手段
P2、出口圧力検出手段P3及び出口温度検出手段T2の検出
情報が入力される。また、第2変換演算手段145には
ガスタービン101の出力MWが入力され、第2変換演算
手段145では出力MWが、要求されるバックアップ用蒸
気流量として変換されて加算手段162に入力される。
一方、出口温度検出手段T2の検出情報に基づいて温度に
応じたバイアスが関数手段161で演算されて加算手段
162で要求されるバックアップ用蒸気流量に加算さ
れ、演算手段141に入力される。
【0069】そして、演算手段141では入力情報が差
圧相当値に変換され加算手段143に出力され、加算手
段143には差圧検出手段P1の検出情報が入力される。
加算手段143では、演算手段141からの差圧相当値
の情報と差圧検出手段P1の検出情報との差を求め、PI演
算手段144では求められた差分を開度指令として演算
する。
【0070】具体的に要求される冷却蒸気流量は、出口
温度検出手段T2で検出される蒸気温度が高くになるにし
たがって多くなるようにバイアス値が設定されている。
即ち、出口温度検出手段T2で検出される蒸気温度が高く
になるにしたがって第2流量制御弁121が開側に作動
されて高圧蒸気流路118から蒸気流路116に送られ
る蒸気量が多くなるように制御される。
【0071】一方、温度検出手段T1の検出情報が加算手
段601に減算側として入力され、ガスタービン101
の出力MWが温度設定演算手段602で蒸気温度相当の値
とされ加算手段601に加算側として入力される。加算
手段601では、温度設定演算手段602からの蒸気温
度相当値の情報と温度検出手段T1の検出情報との差を求
め、PI演算手段603では求められた差分を開度指令と
して演算する。また、PI演算手段603からの開度指令
(差圧制御)と、PI演算手段144からの開度指令(温
度制御)とが高値選択器604で比較され、高値選択器
604では高い方の値を開度指令として第2流量制御弁
121に出力する。
【0072】従って、第2流量制御弁121は、ガスタ
ービン101の出力MW及び蒸気流路116の状況の検出
情報に基づいて蒸気流路116の蒸気量が所定流量とな
るように開閉が制御されると共に、出口温度検出手段T2
で検出される蒸気温度に応じて、燃焼器117の出口側
の温度が高くなった際には温度上昇分蒸気流路116の
蒸気量が増加するように開側に制御される。また、第2
流量制御弁121は、温度検出手段T1の検出情報に基づ
いて温度制御により開閉が制御されると同時に、差圧検
出手段P1の検出情報に基づいて差圧制御により開閉が制
御され(バックアップ制御)、蒸気温度が適切に制御さ
れると同時に蒸気流量が確保される。つまり、中圧ドラ
ム106側の蒸気流量が不足した場合には、差圧制御が
優先されて高圧蒸気が流量確保のために導入される。
【0073】図14に示すように、制御装置125の加
算手段210には指令手段211からの指令情報と車室
圧検出手段P4の検出情報が入力される。加算手段210
からの情報は加算手段212で出口圧力検出手段P3の検
出情報が加算される。これらの情報に基づいてPI演算手
段213では第4流量制御弁201の開度指令が演算さ
れる。PI演算手段213では求められた開度指令を0側
情報として、0側情報を選択手段214に送る。選択手
段152には全開指令が指令手段215から1側情報と
して送られている。
【0074】選択手段215は通常はオフにされ、比較
手段216からの指令があった際にオンになる。即ち、
選択手段215は、オンになることで0側情報から1側
情報に出力指令が切り換えられるようになっており、オ
フの場合、0側情報の開度指令(車室圧力及び燃焼器1
17の出口側圧力に応じた開度指令)が第4流量制御弁
201に出力され、オンの場合、1側情報の開度指令
(全開指令)が第4流量制御弁201にに出力される。
比較手段216には出口温度検出手段T2の検出情報が入
力され、比較手段216の結果が選択手段214に送ら
れる。比較手段216で出口温度検出手段T2の検出情報
が所定値(上限値)を越えているとされた場合、比較手
段216から選択手段215にオン信号が出され、選択
手段214が1側情報の開度指令に切り換えられる。
【0075】従って、燃焼器117の出口側の温度が上
昇して出口温度検出手段T2で検出される蒸気温度が所定
値(上限値)を越えた場合には、第4流量制御弁201
が全開となって冷却用蒸気が増量される。これにより、
所定量に冷却蒸気量が制御されているにも拘らず冷却蒸
気温度が上昇して所定値(上限値)を越えた場合も、冷
却蒸気量が増量されるようになっている。
【0076】このため、燃焼器117の出口側の温度が
高くなった際には、出口温度検出手段T2で検出される蒸
気温度が高くになるにしたがって冷却用蒸気が増量され
ると共に、出口温度検出手段T2の検出情報が所定値(上
限値)を越えた場合には、中圧ドラム106からの蒸気
が蒸気流路116に全量送られると共に第4流量制御弁
201が全開となって冷却用蒸気が増量される。これに
より、所定量に冷却蒸気量が制御されているにも拘らず
冷却蒸気温度が上昇しても、ガスタービン101の翼環
及び燃焼器117が保護されるようになっている。
【0077】従って、何らかの異常によりガスタービン
101の翼環及び燃焼器117に供給される冷却蒸気の
温度が上昇して損傷等の虞が生じた場合に、ガスタービ
ン101の翼環及び燃焼器117に送られる冷却蒸気の
流量を増加して翼環及び燃焼器117を保護することが
可能になる。従って、燃焼器117の出口側の温度が上
昇してもインターロック機能を用いることなくガスター
ビン101の翼環及び燃焼器117を保護することがで
きる蒸気制御装置となる。
【0078】このため、ガスタービン101の翼環に蒸
気を導入してクリアランスを適正に保つための蒸気温度
調整と、燃焼器117を適正に冷却するための蒸気流量
調整という、異なる要求を翼環及び燃焼器117を保護
した状態で同時に満たすことができ、蒸気による翼環部
のクリアランス制御と蒸気による燃焼器117の冷却制
御とを高い信頼性で両立させることが可能になる。
【0079】燃焼器117の出口側の温度が高くなった
際における第1流量制御弁120及び第2流量制御弁1
21の開閉制御は、例えば、第1流量制御弁120の閉
動作により中圧ドラム106からの蒸気を蒸気流路11
6に送り、第1流量制御弁120を全閉状態にしても燃
焼器117の出口側の温度が高い場合に第2流量制御弁
121を開動作させて高圧蒸気流路118側からの蒸気
量を増量するようになっている。そして、燃焼器117
の出口側の温度が所定値(上限値)を越えた場合に第4
流量制御弁201を全開にして冷却用蒸気を増量する。
尚、第1流量制御弁120及び第2流量制御弁121の
開閉制御の状況は、設備の能力等により適宜設定され、
所定流量の確保と所定温度の確保が両立できるように他
の制御弁との開閉と組み合わせて実施される。また、第
4流量制御弁201の開閉制御は、燃焼器117の出口
側の温度が所定値(上限値)を越える前に上昇した温度
に応じて適宜開閉し、所定値(上限値)を越えたときに
全開にするようにしてもよい。
【0080】
【発明の効果】本発明のタービンの蒸気制御装置は、ガ
スタービンの排気ガスによって高圧側蒸気を発生させる
高圧ユニット及び低圧側蒸気を発生させる低圧側ユニッ
トを備えた排熱回収ボイラと、排熱回収ボイラで発生し
た蒸気により作動する蒸気タービンと、排熱回収ボイラ
の低圧側ユニットからの低圧側蒸気を蒸気タービンに導
入する低圧側蒸気導入路と、排熱回収ボイラの高圧側ユ
ニットからの高圧側蒸気を蒸気タービンに導入する高圧
側蒸気導入路と、低圧側蒸気導入路から分岐して設けら
れ低圧側ユニットからの低圧蒸気をガスタービンの翼環
及び高温部品にバイパスする蒸気流路と、高圧側蒸気導
入路から分岐して設けられガスタービンの翼環及び高温
部品の前側における蒸気流路に合流する高圧蒸気流路
と、蒸気流路及び高圧蒸気流路の蒸気を調節することで
ガスタービンの翼環及び高温部品に流通する蒸気流量及
び蒸気温度を調整する流量調整制御手段とを備えたの
で、高圧蒸気と中圧蒸気を混合して、ガスタービンと高
温部品側に導入する蒸気を適正な温度及び流量に制御す
ることができ、蒸気温度の調節と蒸気流量の確保という
2つの異なる要求を同時に満たすことができる。この結
果、蒸気による翼環部のクリアランス制御と蒸気による
燃焼器等の高温部品の冷却制御とを両立させることが可
能になる。
【0081】また、流量調整制御手段は、蒸気流路の分
岐部の後流側における低圧側蒸気導入路に設けられ蒸気
タービンに流通する蒸気量を調整することで蒸気流路の
蒸気の流量を制御する第1流量制御弁と、高圧蒸気流路
に設けられ高圧側蒸気量を調整することで蒸気流路の蒸
気の温度を制御する第2流量制御弁と、高圧蒸気流路の
合流部の後流側における蒸気流路の蒸気温度を検出する
温度検出手段と、高圧蒸気流路の合流部の後流側におけ
る蒸気流路の蒸気圧力状況を検出する圧力検出手段と、
温度検出手段及び圧力検出手段の検出状況に基づいて第
1流量制御弁及び第2流量制御弁を制御することでガス
タービンの翼環及び高温部品に流通する蒸気の温度及び
流量を所定状態に維持する制御手段とからなるので、高
価な検出手段や弁部材を用いることなく蒸気温度の調節
と蒸気流量の確保という2つの異なる要求を同時に満た
すことができる。
【0082】また、高温部品は燃焼器であり、圧力検出
手段は、燃焼器の入口蒸気圧力と出口蒸気圧力の差圧を
検出する差圧検出手段であり、第2流量制御弁の後流側
の高圧蒸気流路には第3流量制御弁を有する補助流体導
入路が合流し、補助流体導入路の合流部の後流側の高圧
蒸気流路には第2温度検出手段が設けられ、制御手段に
は、差圧検出手段の検出情報に基づいて第1流量制御弁
の開閉を制御すると共に、差圧検出手段及び温度検出手
段の検出情報に基づいて第2流量制御弁の開閉を制御
し、更に、第2温度検出手段の検出情報に基づいて第3
流量制御弁の開閉を制御し、ガスタービンの出力が高く
なるにつれて蒸気流路の蒸気流量を多くすると共に蒸気
温度が所定温度に低下するように制御する機能が備えら
れているので、ガスタービンの運転状況に応じて最適に
蒸気温度の調節と蒸気流量の確保という2つの異なる要
求を同時に満たすことができる。
【0083】また、制御手段には、差圧検出手段及び温
度検出手段の検出情報に基づいて第2流量制御弁の開閉
を制御するに際し、差圧検出手段の検出情報に基づく開
閉指令と温度検出手段の検出情報に基づく開閉指令とを
比較し、開度が高い方の指令により第1流量制御弁の開
閉を制御する機能が備えられているので、高圧側蒸気を
流量確保のためのバックアップ蒸気として用いることが
できる。
【0084】また、制御手段には、第2流量制御弁の開
閉が、差圧検出手段の検出情報に基づく開閉指令である
か温度検出手段の検出情報に基づく開閉指令であるかを
判断する機能が備えられ、差圧検出手段の検出情報に基
づく開閉指令である場合における第3流量制御弁の開度
を、温度検出手段の検出情報に基づく開閉指令である場
合における第3流量制御弁の開度よりも開側に設定する
機能が備えられているので、高圧側蒸気が適用される制
御に応じて高圧側蒸気の温度を変更して高圧側蒸気流量
を最小限に抑えることができる。
【0085】また、高温部品は燃焼器であり、圧力検出
手段は、燃焼器の入口蒸気圧力と出口蒸気圧力の差圧を
検出する差圧検出手段であり、第2流量制御弁の後流側
の高圧蒸気流路には第3流量制御弁を有する補助流体導
入路が合流し、補助流体導入路の合流部の後流側の高圧
蒸気流路には第2温度検出手段が設けられ、制御手段に
は、温度検出手段の検出情報に基づいて第1流量制御弁
の開閉を制御すると共に、差圧検出手段の検出情報に基
づいて第2流量制御弁の開閉を制御し、更に、第2温度
検出手段の検出情報に基づいて第3流量制御弁の開閉を
制御し、ガスタービンの出力が高くなるにつれて蒸気流
路の蒸気流量を多くすると共に蒸気温度が所定温度に低
下するように制御する機能が備えられているので、高圧
蒸気と中圧蒸気を混合して、適正な温度及び流量に制御
することができ、蒸気温度の調節と蒸気流量の確保とい
う2つの異なる要求を同時に満たすことができる。
【0086】本発明のガスタービンの蒸気制御装置は、
ガスタービンの排気ガスによって高圧側蒸気を発生させ
る高圧ユニット及び低圧側蒸気を発生させる低圧側ユニ
ットを備えた排熱回収ボイラと、排熱回収ボイラで発生
した蒸気により作動する蒸気タービンと、低圧側ユニッ
トからの低圧側蒸気を蒸気タービンに導入する低圧側蒸
気導入路と、高圧側ユニットからの高圧側蒸気を蒸気タ
ービンに導入する高圧側蒸気導入路と、低圧側蒸気導入
路から分岐して設けられ低圧側ユニットからの低圧蒸気
をガスタービンの翼環及び高温部品にバイパスする蒸気
流路と、蒸気流路の分岐部の後流側における低圧側蒸気
導入路に設けられ蒸気流路に導入される蒸気量を制御す
る第1流量制御弁と、ガスタービンの翼環及び高温部品
を流通した後の蒸気温度を検出する流通後蒸気温度検出
手段と、流通後蒸気温度検出手段の検出情報に基づいて
蒸気流路に流入する蒸気流量を調整するために第1流量
制御弁の開閉制御を行いガスタービンの翼環及び高温部
品を流通する蒸気流量を所定状態に制御する制御手段と
を備えたので、ガスタービンと高温部品側に導入する蒸
気を適正な温度及び流量に制御することができ、蒸気温
度の調節と蒸気流量の確保という2つの異なる要求を同
時に満たすことができると共に、温度制御後の蒸気温度
が高くなった際にはガスタービンの翼環及び高温部品に
導かれる蒸気流量を増量するように第1流量制御弁を制
御することで温度制御用の蒸気量が増量して翼環及び高
温部品の保護が可能になる。この結果、蒸気による翼環
部のクリアランス制御と蒸気による燃焼器等の高温部品
の冷却制御とを高い信頼性で両立させることが可能にな
ると共に、高温部品の出口側の温度が上昇してもインタ
ーロック機能を用いることなく翼環部及び高温部品が保
護される。
【0087】また、本発明のガスタービンの蒸気制御装
置は、ガスタービンの排気ガスによって高圧側蒸気を発
生させる高圧ユニット及び低圧側蒸気を発生させる低圧
側ユニットを備えた排熱回収ボイラと、排熱回収ボイラ
で発生した蒸気により作動する蒸気タービンと、低圧側
ユニットからの低圧側蒸気を蒸気タービンに導入する低
圧側蒸気導入路と、高圧側ユニットからの高圧側蒸気を
蒸気タービンに導入する高圧側蒸気導入路と、高圧側蒸
気導入路から分岐して設けられガスタービンの翼環及び
高温部品にバイパスする高圧蒸気流路と、高圧蒸気流路
に設けられた第2流量制御弁と、ガスタービンの翼環及
び高温部品を流通した後の蒸気温度を検出する流通後蒸
気温度検出手段と、流通後蒸気温度検出手段の検出情報
に基づいて高圧蒸気流路の蒸気流量を調整するために第
2流量制御弁の開閉制御を行いガスタービンの翼環及び
高温部品を流通する蒸気流量を所定状態に制御する制御
手段とを備えたので、ガスタービンの翼環と高温部品側
に導入する蒸気を適正な温度及び流量に制御することが
でき、蒸気温度の調節と蒸気流量の確保という2つの異
なる要求を同時に満たすことができると共に、温度制御
後の蒸気温度が高くなった際にはガスタービンの翼環及
び高温部品に導かれる蒸気流量を増量するように第2流
量制御弁を制御することで温度制御用の蒸気量を増量し
て翼環及び高温部品の保護が可能になる。この結果、蒸
気による翼環部のクリアランス制御と蒸気による燃焼器
等の高温部品の冷却制御とを高い信頼性で両立させるこ
とが可能になると共に、高温部品の出口側の温度が上昇
してもインターロック機能を用いることなく翼環部及び
高温部品が保護される。
【0088】また、本発明のガスタービンの蒸気制御装
置は、ガスタービンの排気ガスによって高圧側蒸気を発
生させる高圧ユニット及び低圧側蒸気を発生させる低圧
側ユニットを備えた排熱回収ボイラと、排熱回収ボイラ
で発生した蒸気により作動する蒸気タービンと、低圧側
ユニットからの低圧側蒸気を蒸気タービンに導入する低
圧側蒸気導入路と、高圧側ユニットからの高圧側蒸気を
蒸気タービンに導入する高圧側蒸気導入路と、低圧側蒸
気導入路から分岐して設けられ低圧側ユニットからの低
圧蒸気をガスタービンの翼環及び高温部品にバイパスす
る蒸気流路と、高圧側蒸気導入路から分岐して設けられ
ガスタービンの翼環及び高温部品の前側における蒸気流
路に合流する高圧蒸気流路と、蒸気流路の分岐部の後流
側における低圧側蒸気導入路に設けられ蒸気流路に導入
される蒸気量を制御する第1流量制御弁と、高圧蒸気流
路に設けられた第2流量制御弁と、ガスタービンの翼環
及び高温部品を流通した後の蒸気温度を検出する流通後
蒸気温度検出手段と、流通後蒸気温度検出手段の検出情
報に基づいて蒸気流路に流入する蒸気流量を調整するた
めに第1流量制御弁の開閉制御を行うと共に高圧蒸気流
路の蒸気流量を調整するために第2流量制御弁の開閉制
御を行いガスタービンの翼環及び高温部品を流通する蒸
気流量を所定状態に制御する制御手段とを備えたので、
ガスタービンの翼環と高温部品側に導入する蒸気を適正
な温度及び流量に制御することができ、蒸気温度の調節
と蒸気流量の確保という2つの異なる要求を同時に満た
すことができると共に、温度制御後の蒸気温度が高くな
った際にはガスタービンの翼環及び高温部品に導かれる
蒸気流量を増量するように第1流量制御弁及び第2流量
制御弁を制御することで温度制御用の蒸気量を増量して
翼環及び高温部品の保護が可能になる。この結果、蒸気
による翼環部のクリアランス制御と蒸気による燃焼器等
の高温部品の冷却制御とを高い信頼性で両立させること
が可能になると共に、高温部品の出口側の温度が上昇し
てもインターロック機能を用いることなく翼環部及び高
温部品が保護される。
【0089】そして、ガスタービンの翼環及び高温部品
の後流側における蒸気流路には第4流量制御弁が設けら
れ、制御手段には、流通後蒸気温度検出手段の検出情報
に基づいて蒸気流路の流量を制御して蒸気流路の流量を
確保するように第4流量制御弁の開閉制御を行なう機能
と、流通後蒸気温度検出手段により蒸気温度が上限値を
越えたことが検出されたときに第4流量制御弁を全開に
制御する機能とが備えられているので、蒸気温度が上限
値を越えたときには最大量を蒸気流路に通すことができ
る。
【図面の簡単な説明】
【図1】本発明の第1実施形態例に係るタービンの蒸気
制御装置を備えた複合発電プラントの概略構成図。
【図2】流量調整手段の制御ブロック図。
【図3】流量調整手段の制御ブロック図。
【図4】流量調整手段の制御ブロック図。
【図5】ガスタービン出力と蒸気流量の関係を表すグラ
フ。
【図6】ガスタービン出力と蒸気設定温度の関係を表す
グラフ。
【図7】第2実施形態例に係る制御手段のブロック構成
図。
【図8】第2実施形態例に係る制御手段のブロック構成
図。
【図9】ガスタービン出力と蒸気設定温度の関係を表す
グラフ。
【図10】本発明の第3実施形態例に係るタービンの蒸
気制御装置を備えた複合発電プラントの概略構成図。
【図11】本発明の第4実施形態例に係るガスタービン
の蒸気冷却装置を備えた複合発電プラントの概略構成
図。
【図12】第1流量制御弁の制御ブロック図。
【図13】第2流量制御弁の制御ブロック図。
【図14】蒸気量制御弁の制御ブロック図。
【符号の説明】
1 ガスタービン 2 排熱回収ボイラ 3 高圧ドラム 4 第1高圧過熱器 5 第2高圧過熱器 6 中圧ドラム 7 中圧過熱器 8 再熱器 9 高圧側蒸気導入路 10 高圧蒸気タービン 11 蒸気導入路 12 中圧蒸気タービン 13 低圧蒸気タービン 14 復水器 15 中圧側蒸気導入路 16 蒸気流路 17 燃焼器 18 高圧蒸気流路 19 補助流体流路 20 第1流量制御弁 21 第2流量制御弁 22 第3流量制御弁 25 制御手段 31 第1出力部 32,37 第2出力部 33,38 第3出力部 41 演算手段 42 変換演算器 43 加算手段 44 PI演算手段 45 第2変換演算手段 46 温度設定演算手段 47 第2加算手段 48 第2PI演算手段 49 高値選択器 51 第3変換演算手段 52 第3加算手段 53 第3PI演算手段 56 第4加算手段 57 判定器 61 第4変換演算手段 62 第5変換演算手段 63 切換器
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02C 7/18 F02C 7/18 C F22B 1/18 F22B 1/18 R (72)発明者 永田 承一 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 東 一也 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂製作所内 Fターム(参考) 3G071 AB04 BA10 BA22 DA11 FA06 GA02 HA05 JA03 3G081 BA02 BB00 BC07 BD00 DA06 DA21

Claims (10)

    【特許請求の範囲】
  1. 【請求項1】 ガスタービンの排気ガスによって高圧側
    蒸気を発生させる高圧ユニット及び低圧側蒸気を発生さ
    せる低圧側ユニットを備えた排熱回収ボイラと、排熱回
    収ボイラで発生した蒸気により作動する蒸気タービン
    と、排熱回収ボイラの低圧側ユニットからの低圧側蒸気
    を蒸気タービンに導入する低圧側蒸気導入路と、排熱回
    収ボイラの高圧側ユニットからの高圧側蒸気を蒸気ター
    ビンに導入する高圧側蒸気導入路と、低圧側蒸気導入路
    から分岐して設けられ低圧側ユニットからの低圧蒸気を
    ガスタービンの翼環及び高温部品にバイパスする蒸気流
    路と、高圧側蒸気導入路から分岐して設けられガスター
    ビンの翼環及び高温部品の前側における蒸気流路に合流
    する高圧蒸気流路と、蒸気流路及び高圧蒸気流路の蒸気
    を調節することでガスタービンの翼環及び高温部品に流
    通する蒸気流量及び蒸気温度を調整する流量調整制御手
    段とを備えたことを特徴とするタービンの蒸気制御装
    置。
  2. 【請求項2】 請求項1において、流量調整制御手段
    は、蒸気流路の分岐部の後流側における低圧側蒸気導入
    路に設けられ蒸気タービンに流通する蒸気量を調整する
    ことで蒸気流路の蒸気の流量を制御する第1流量制御弁
    と、高圧蒸気流路に設けられ高圧側蒸気量を調整するこ
    とで蒸気流路の蒸気の温度を制御する第2流量制御弁
    と、高圧蒸気流路の合流部の後流側における蒸気流路の
    蒸気温度を検出する温度検出手段と、高圧蒸気流路の合
    流部の後流側における蒸気流路の蒸気圧力状況を検出す
    る圧力検出手段と、温度検出手段及び圧力検出手段の検
    出状況に基づいて第1流量制御弁及び第2流量制御弁を
    制御することでガスタービンの翼環及び高温部品に流通
    する蒸気の温度及び流量を所定状態に維持する制御手段
    とからなることを特徴とするタービンの蒸気制御装置。
  3. 【請求項3】 請求項2において、高温部品は燃焼器で
    あり、圧力検出手段は、燃焼器の入口蒸気圧力と出口蒸
    気圧力の差圧を検出する差圧検出手段であり、第2流量
    制御弁の後流側の高圧蒸気流路には第3流量制御弁を有
    する補助流体導入路が合流し、補助流体導入路の合流部
    の後流側の高圧蒸気流路には第2温度検出手段が設けら
    れ、制御手段には、差圧検出手段の検出情報に基づいて
    第1流量制御弁の開閉を制御すると共に、差圧検出手段
    及び温度検出手段の検出情報に基づいて第2流量制御弁
    の開閉を制御し、更に、第2温度検出手段の検出情報に
    基づいて第3流量制御弁の開閉を制御し、ガスタービン
    の出力が高くなるにつれて蒸気流路の蒸気流量を多くす
    ると共に蒸気温度が所定温度に低下するように制御する
    機能が備えられていることを特徴とするタービンの蒸気
    制御装置。
  4. 【請求項4】 請求項3において、制御手段には、差圧
    検出手段及び温度検出手段の検出情報に基づいて第2流
    量制御弁の開閉を制御するに際し、差圧検出手段の検出
    情報に基づく開閉指令と温度検出手段の検出情報に基づ
    く開閉指令とを比較し、開度が高い方の指令により第2
    流量制御弁の開閉を制御する機能が備えられていること
    を特徴とするタービンの蒸気制御装置。
  5. 【請求項5】 請求項4において、制御手段には、第2
    流量制御弁の開閉が、差圧検出手段の検出情報に基づく
    開閉指令であるか温度検出手段の検出情報に基づく開閉
    指令であるかを判断する機能が備えられ、差圧検出手段
    の検出情報に基づく開閉指令である場合における第3流
    量制御弁の開度を、温度検出手段の検出情報に基づく開
    閉指令である場合における第3流量制御弁の開度よりも
    開側に設定する機能が備えられていることを特徴とする
    タービンの蒸気制御装置。
  6. 【請求項6】 請求項2において、高温部品は燃焼器で
    あり、圧力検出手段は、燃焼器の入口蒸気圧力と出口蒸
    気圧力の差圧を検出する差圧検出手段であり、第2流量
    制御弁の後流側の高圧蒸気流路には第3流量制御弁を有
    する補助流体導入路が合流し、補助流体導入路の合流部
    の後流側の高圧蒸気流路には第2温度検出手段が設けら
    れ、制御手段には、温度検出手段の検出情報に基づいて
    第1流量制御弁の開閉を制御すると共に、差圧検出手段
    の検出情報に基づいて第2流量制御弁の開閉を制御し、
    更に、第2温度検出手段の検出情報に基づいて第3流量
    制御弁の開閉を制御し、ガスタービンの出力が高くなる
    につれて蒸気流路の蒸気流量を多くすると共に蒸気温度
    が所定温度に低下するように制御する機能が備えられて
    いることを特徴とするタービンの蒸気制御装置。
  7. 【請求項7】 ガスタービンの排気ガスによって高圧側
    蒸気を発生させる高圧ユニット及び低圧側蒸気を発生さ
    せる低圧側ユニットを備えた排熱回収ボイラと、排熱回
    収ボイラで発生した蒸気により作動する蒸気タービン
    と、低圧側ユニットからの低圧側蒸気を蒸気タービンに
    導入する低圧側蒸気導入路と、高圧側ユニットからの高
    圧側蒸気を蒸気タービンに導入する高圧側蒸気導入路
    と、低圧側蒸気導入路から分岐して設けられ低圧側ユニ
    ットからの低圧蒸気をガスタービンの翼環及び高温部品
    にバイパスする蒸気流路と、蒸気流路の分岐部の後流側
    における低圧側蒸気導入路に設けられ蒸気流路に導入さ
    れる蒸気量を制御する第1流量制御弁と、ガスタービン
    の翼環及び高温部品を流通した後の蒸気温度を検出する
    流通後蒸気温度検出手段と、流通後蒸気温度検出手段の
    検出情報に基づいて蒸気流路に流入する蒸気流量を調整
    するために第1流量制御弁の開閉制御を行いガスタービ
    ンの翼環及び高温部品を流通する蒸気流量を所定状態に
    制御する制御手段とを備えたことを特徴とするガスター
    ビンの蒸気制御装置。
  8. 【請求項8】 ガスタービンの排気ガスによって高圧側
    蒸気を発生させる高圧ユニット及び低圧側蒸気を発生さ
    せる低圧側ユニットを備えた排熱回収ボイラと、排熱回
    収ボイラで発生した蒸気により作動する蒸気タービン
    と、低圧側ユニットからの低圧側蒸気を蒸気タービンに
    導入する低圧側蒸気導入路と、高圧側ユニットからの高
    圧側蒸気を蒸気タービンに導入する高圧側蒸気導入路
    と、高圧側蒸気導入路から分岐して設けられガスタービ
    ンの翼環及び高温部品にバイパスする高圧蒸気流路と、
    高圧蒸気流路に設けられた第2流量制御弁と、ガスター
    ビンの翼環及び高温部品を流通した後の蒸気温度を検出
    する流通後蒸気温度検出手段と、流通後蒸気温度検出手
    段の検出情報に基づいて高圧蒸気流路の蒸気流量を調整
    するために第2流量制御弁の開閉制御を行いガスタービ
    ンの翼環及び高温部品を流通する蒸気流量を所定状態に
    制御する制御手段とを備えたことを特徴とするガスター
    ビンの蒸気制御装置。
  9. 【請求項9】 ガスタービンの排気ガスによって高圧側
    蒸気を発生させる高圧ユニット及び低圧側蒸気を発生さ
    せる低圧側ユニットを備えた排熱回収ボイラと、排熱回
    収ボイラで発生した蒸気により作動する蒸気タービン
    と、低圧側ユニットからの低圧側蒸気を蒸気タービンに
    導入する低圧側蒸気導入路と、高圧側ユニットからの高
    圧側蒸気を蒸気タービンに導入する高圧側蒸気導入路
    と、低圧側蒸気導入路から分岐して設けられ低圧側ユニ
    ットからの低圧蒸気をガスタービンの翼環及び高温部品
    にバイパスする蒸気流路と、高圧側蒸気導入路から分岐
    して設けられガスタービンの翼環及び高温部品の前側に
    おける蒸気流路に合流する高圧蒸気流路と、蒸気流路の
    分岐部の後流側における低圧側蒸気導入路に設けられ蒸
    気流路に導入される蒸気量を制御する第1流量制御弁
    と、高圧蒸気流路に設けられた第2流量制御弁と、ガス
    タービンの翼環及び高温部品を流通した後の蒸気温度を
    検出する流通後蒸気温度検出手段と、流通後蒸気温度検
    出手段の検出情報に基づいて蒸気流路に流入する蒸気流
    量を調整するために第1流量制御弁の開閉制御を行うと
    共に高圧蒸気流路の蒸気流量を調整するために第2流量
    制御弁の開閉制御を行いガスタービンの翼環及び高温部
    品を流通する蒸気流量を所定状態に制御する制御手段と
    を備えたことを特徴とするガスタービンの蒸気制御装
    置。
  10. 【請求項10】 請求項9において、ガスタービンの翼
    環及び高温部品の後流側における蒸気流路には第4流量
    制御弁が設けられ、制御手段には、流通後蒸気温度検出
    手段の検出情報に基づいて蒸気流路の流量を制御して蒸
    気流路の流量を確保するように第4流量制御弁の開閉制
    御を行なう機能と、流通後蒸気温度検出手段により蒸気
    温度が上限値を越えたことが検出されたときに第4流量
    制御弁を全開に制御する機能とが備えられていることを
    特徴とするガスタービンの蒸気制御装置。
JP2001061327A 2000-04-18 2001-03-06 タービンの蒸気制御装置 Expired - Lifetime JP4698860B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001061327A JP4698860B2 (ja) 2000-04-18 2001-03-06 タービンの蒸気制御装置
CA002344137A CA2344137C (en) 2000-04-18 2001-04-17 Steam control apparatus for turbine
US09/835,354 US6588197B2 (en) 2000-04-18 2001-04-17 Steam control apparatus for turbine
EP01109596A EP1148210B1 (en) 2000-04-18 2001-04-18 Steam cooling apparatus for turbine
DE60115753T DE60115753T2 (de) 2000-04-18 2001-04-18 Dampfkühlung für eine Turbine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000116337 2000-04-18
JP2000-116337 2000-04-18
JP2000116337 2000-04-18
JP2001061327A JP4698860B2 (ja) 2000-04-18 2001-03-06 タービンの蒸気制御装置

Publications (2)

Publication Number Publication Date
JP2002004807A true JP2002004807A (ja) 2002-01-09
JP4698860B2 JP4698860B2 (ja) 2011-06-08

Family

ID=26590299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001061327A Expired - Lifetime JP4698860B2 (ja) 2000-04-18 2001-03-06 タービンの蒸気制御装置

Country Status (5)

Country Link
US (1) US6588197B2 (ja)
EP (1) EP1148210B1 (ja)
JP (1) JP4698860B2 (ja)
CA (1) CA2344137C (ja)
DE (1) DE60115753T2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039088A1 (ja) 2011-09-15 2013-03-21 三菱重工業株式会社 ガスタービン冷却システム及びガスタービン冷却方法
JP2014185550A (ja) * 2013-03-22 2014-10-02 Mitsubishi Heavy Ind Ltd 高温部品の冷却装置、ガスタービンコンバインドプラント、及び高温部品の冷却方法
KR102526253B1 (ko) * 2021-12-06 2023-04-28 대우조선해양 주식회사 이중 연료 엔진용 연료 오일 유량의 측정 유니트 및 동 유니트를 포함하는 연료 오일 공급 시스템, 그리고 이를 포함하는 선박
KR20230084908A (ko) * 2021-12-06 2023-06-13 한화오션 주식회사 이중 연료 엔진용 연료 오일 유량의 측정 유니트 및 동 유니트를 포함하는 연료 오일 공급 시스템, 그리고 이를 포함하는 선박
US11913341B2 (en) 2020-09-08 2024-02-27 Mitsubishi Heavy Industries, Ltd. Clearance control system for gas turbine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2364125C (en) * 2000-11-28 2005-05-24 Mitsubishi Heavy Industries, Ltd. Steam cooling apparatus for gas turbine
US20100170218A1 (en) * 2009-01-05 2010-07-08 General Electric Company Method for expanding compressor discharge bleed air
US8973373B2 (en) * 2011-10-31 2015-03-10 General Electric Company Active clearance control system and method for gas turbine
JP5927893B2 (ja) * 2011-12-15 2016-06-01 株式会社Ihi インピンジ冷却機構、タービン翼及び燃焼器
JP5834876B2 (ja) * 2011-12-15 2015-12-24 株式会社Ihi インピンジ冷却機構、タービン翼及び燃焼器
US10316696B2 (en) 2015-05-08 2019-06-11 General Electric Company System and method for improving exhaust energy recovery
CN111780091B (zh) * 2020-06-16 2021-12-10 大唐绥化热电有限公司 一种基于热电厂机炉余热的热电厂热水加热管理系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163960A (ja) * 1991-12-16 1993-06-29 Tohoku Electric Power Co Inc コンバインドサイクル発電プラント
JPH11210411A (ja) * 1998-01-29 1999-08-03 Mitsubishi Heavy Ind Ltd ガスタービン蒸気冷却システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1243682B (it) 1989-07-28 1994-06-21 Gen Electric Raffreddamento a vapore di turbomotore a gas
JPH06264763A (ja) * 1993-03-11 1994-09-20 Hitachi Ltd コンバインドプラントシステム
US5577377A (en) 1993-11-04 1996-11-26 General Electric Co. Combined cycle with steam cooled gas turbine
DE4409567A1 (de) * 1994-03-21 1995-09-28 Abb Management Ag Verfahren zur Kühlung von thermisch belasteten Komponenten einer Gasturbogruppe
US5685693A (en) 1995-03-31 1997-11-11 General Electric Co. Removable inner turbine shell with bucket tip clearance control
EP0978636B1 (en) * 1996-07-24 2008-05-07 Mitsubishi Heavy Industries, Ltd. Combined cycle power plant
JPH1061457A (ja) * 1996-08-27 1998-03-03 Mitsubishi Heavy Ind Ltd 複合サイクル発電プラント用ガスタービン
DE69832573T2 (de) * 1997-04-15 2006-08-10 Mitsubishi Heavy Industries, Ltd. Gas- dampfkraftwerk und verfahren um die gasturbine mit kühlgas zu versehen
US6272841B2 (en) * 1998-01-23 2001-08-14 Mitsubishi Heavy Industries, Ltd. Combined cycle power plant
EP1182330B1 (en) * 1998-01-29 2006-03-29 Mitsubishi Heavy Industries, Ltd. Outlet steam monitoring system in steam cooled type gas turbine
US6105363A (en) * 1998-04-27 2000-08-22 Siemens Westinghouse Power Corporation Cooling scheme for turbine hot parts
JP3652962B2 (ja) * 1999-11-25 2005-05-25 三菱重工業株式会社 ガスタービンコンバインドサイクル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163960A (ja) * 1991-12-16 1993-06-29 Tohoku Electric Power Co Inc コンバインドサイクル発電プラント
JPH11210411A (ja) * 1998-01-29 1999-08-03 Mitsubishi Heavy Ind Ltd ガスタービン蒸気冷却システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039088A1 (ja) 2011-09-15 2013-03-21 三菱重工業株式会社 ガスタービン冷却システム及びガスタービン冷却方法
JP2013064328A (ja) * 2011-09-15 2013-04-11 Mitsubishi Heavy Ind Ltd ガスタービン冷却システム及びガスタービン冷却方法
JP2014185550A (ja) * 2013-03-22 2014-10-02 Mitsubishi Heavy Ind Ltd 高温部品の冷却装置、ガスタービンコンバインドプラント、及び高温部品の冷却方法
US11913341B2 (en) 2020-09-08 2024-02-27 Mitsubishi Heavy Industries, Ltd. Clearance control system for gas turbine
KR102526253B1 (ko) * 2021-12-06 2023-04-28 대우조선해양 주식회사 이중 연료 엔진용 연료 오일 유량의 측정 유니트 및 동 유니트를 포함하는 연료 오일 공급 시스템, 그리고 이를 포함하는 선박
KR20230084908A (ko) * 2021-12-06 2023-06-13 한화오션 주식회사 이중 연료 엔진용 연료 오일 유량의 측정 유니트 및 동 유니트를 포함하는 연료 오일 공급 시스템, 그리고 이를 포함하는 선박
KR102573651B1 (ko) 2021-12-06 2023-09-01 한화오션 주식회사 이중 연료 엔진용 연료 오일 유량의 측정 유니트 및 동 유니트를 포함하는 연료 오일 공급 시스템, 그리고 이를 포함하는 선박

Also Published As

Publication number Publication date
US20010031199A1 (en) 2001-10-18
EP1148210B1 (en) 2005-12-14
JP4698860B2 (ja) 2011-06-08
CA2344137C (en) 2006-05-16
CA2344137A1 (en) 2001-10-18
EP1148210A3 (en) 2004-04-14
US6588197B2 (en) 2003-07-08
EP1148210A2 (en) 2001-10-24
DE60115753D1 (de) 2006-01-19
DE60115753T2 (de) 2006-09-28

Similar Documents

Publication Publication Date Title
JP3800384B2 (ja) コンバインド発電設備
US8516787B2 (en) Combined-cycle power plant having a once-through cooler
JP2002004807A (ja) タービンの蒸気制御装置
JP2006118391A (ja) ガス化複合発電プラントにおける抽気空気昇圧設備の制御装置
JP3774487B2 (ja) コンバインドサイクル発電プラント
US6651440B2 (en) Steam cooling apparatus for gas turbine
JP2000303804A (ja) 石炭ガス化複合発電プラントとその運転制御装置。
JP2915885B1 (ja) ガスタービン複合発電システム
JP4905941B2 (ja) 排熱回収ボイラとその蒸気圧力制御方法
JP3518252B2 (ja) クローズド蒸気冷却ガスタービンコンバインドプラント及びガスタービンコンバインドプラント
JP4090584B2 (ja) コンバインドサイクル発電プラント
JPH0932512A (ja) 蒸気タービングランドシールの蒸気供給装置
JP4610722B2 (ja) ガスタービンの蒸気冷却装置
JP3144440B2 (ja) 多軸複合サイクル発電プラント
JP4598943B2 (ja) ガスタービンの蒸気冷却装置
KR20190089068A (ko) 제어 시스템, 가스 터빈, 발전 플랜트 및 연료 온도의 제어 방법
JP2999122B2 (ja) 複合プラントの制御装置
JP3790146B2 (ja) コンバインドサイクル発電プラントおよびその運転方法
JP2007177665A (ja) 蒸気タービンプラント
JPH08200010A (ja) 複合発電プラント及びその運転方法
JPH11148603A (ja) 石炭・残渣油ガス化複合発電プラントの制御装置
JPH08121112A (ja) 一軸型複合サイクル発電設備
JP2554704B2 (ja) タービン制御装置
JP2024009646A (ja) 蒸気発電プラントの制御装置、制御方法及び制御プログラム
JPH03115707A (ja) 複合発電プラント

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R151 Written notification of patent or utility model registration

Ref document number: 4698860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term