WO2013039088A1 - ガスタービン冷却システム及びガスタービン冷却方法 - Google Patents

ガスタービン冷却システム及びガスタービン冷却方法 Download PDF

Info

Publication number
WO2013039088A1
WO2013039088A1 PCT/JP2012/073274 JP2012073274W WO2013039088A1 WO 2013039088 A1 WO2013039088 A1 WO 2013039088A1 JP 2012073274 W JP2012073274 W JP 2012073274W WO 2013039088 A1 WO2013039088 A1 WO 2013039088A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
gas turbine
pressure
drum
cooling
Prior art date
Application number
PCT/JP2012/073274
Other languages
English (en)
French (fr)
Inventor
康裕 竹井
直仁 斎藤
藤田 真
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP12832650.1A priority Critical patent/EP2752566B1/en
Priority to KR1020147006649A priority patent/KR101520238B1/ko
Priority to CN201280044710.3A priority patent/CN103975143B/zh
Priority to US14/344,465 priority patent/US20140338362A1/en
Publication of WO2013039088A1 publication Critical patent/WO2013039088A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/207Heat transfer, e.g. cooling using a phase changing mass, e.g. heat absorbing by melting or boiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • the present invention relates to a gas turbine cooling system and a gas turbine cooling method for cooling a gas turbine with steam generated in an exhaust heat recovery boiler.
  • Exhaust heat recovery boilers installed in gas turbine combined cycle power generation (GTCC) and coal gasification combined power generation (IGCC) generate steam for driving the steam turbine using exhaust heat from the gas turbine.
  • GTCC gas turbine combined cycle power generation
  • IGCC coal gasification combined power generation
  • Patent Document 1 discloses a technique for maintaining cooling by steam by introducing high-pressure steam or medium-pressure steam of an exhaust heat recovery boiler to a steam cooling system when an abnormality occurs during operation.
  • Patent Document 2 discloses a technology that achieves both clearance control between a moving blade and a blade ring by steam and cooling control of a high-temperature component such as a combustor by steam.
  • the medium-pressure steam of 4.0MPa to 5.0MPa generated in the exhaust heat recovery boiler matches the cooling conditions required for the object to be cooled (gas turbine), the steam generated in the exhaust heat recovery boiler is used as the cooling medium. When used, medium pressure steam is often used.
  • the present invention has been made in view of such circumstances, and without using high-pressure steam generated in an exhaust heat recovery boiler or reducing the generation of high-pressure steam, the gas turbine is efficiently made of steam.
  • a gas turbine cooling system and a gas turbine cooling method capable of cooling are provided.
  • a gas turbine cooling system includes a gas turbine, a first system that generates heat by exchanging heat with exhaust heat from the gas turbine, and supplies water and steam to the first system.
  • a second drum that generates heat of the second steam at a pressure lower than that of the first steam by exchanging heat with exhaust heat from the gas turbine, and a second drum that supplies water and steam to the second system.
  • a waste heat recovery boiler a second system and a gas turbine cooling system, a first flow path for supplying second steam from the second system to the cooling system, and a first drum and a second drum And a second flow path for supplying saturated steam in the first drum from the first drum to the second drum.
  • the water and steam of the second drum are supplied to the second system of the exhaust heat recovery boiler, and exchange heat with the exhaust heat from the gas turbine in the second system.
  • Second steam is generated.
  • the second steam is supplied from the second system to the cooling system of the gas turbine via the first flow path to cool the gas turbine.
  • saturated steam in the first drum is supplied from the first drum to the second drum via the second flow path.
  • the gas turbine cooling system may further include a steam amount adjusting unit that adjusts the amount of saturated steam flowing through the second flow path based on the cooling state of the gas turbine. .
  • the gas turbine since the amount of saturated steam supplied from the first drum to the second drum via the second flow path changes according to the cooling state of the gas turbine, the gas turbine is cooled. An appropriate amount of saturated steam can be supplied to the second drum.
  • the gas turbine cooling status is monitored and managed by the gas turbine outlet temperature on the gas turbine side, for example indirectly based on the amount of steam after cooling the gas turbine discharged from the gas turbine cooling system. It may be judged.
  • the gas turbine cooling system according to the first aspect may have a configuration in which a brackish water separator is provided downstream of the second flow path and upstream of the second drum or in the second drum.
  • the saturated steam supplied from the first drum to the second drum via the second flow path is separated into water and steam by the brackish water separator, the separated steam is used in the gas turbine cooling system.
  • the gas turbine can be cooled by water-free steam. As a result, corrosion and breakage of the cooling system caused by water contained in the steam can be prevented.
  • the water level does not rise in the second drum in a short time due to the condensation of the steam, the water level fluctuation of the second drum can be suppressed.
  • a gas turbine cooling method includes a gas turbine, a first system that generates heat by exchanging heat with exhaust heat from the gas turbine, and supplies water and steam to the first system.
  • a second drum that generates heat of the second steam at a pressure lower than that of the first steam by exchanging heat with exhaust heat from the gas turbine, and a second drum that supplies water and steam to the second system.
  • a gas turbine cooling method in a gas turbine cooling system including an exhaust heat recovery boiler having a step of supplying a second steam from a second system to a cooling system of the gas turbine, and a first from the first drum to the second drum Supplying saturated steam in the drum.
  • the gas turbine is efficiently cooled by the steam without using the high-pressure steam generated in the exhaust heat recovery boiler or reducing the generation of the high-pressure steam. Can do.
  • An exhaust heat recovery system and a gas turbine cooling system include, for example, a gas turbine combined cycle power generation (GTCC) having a heat recovery steam generator 2 and a gas turbine 3, an integrated coal gasification combined power generation (IGCC), and the like. This is applied to the plant 1.
  • GTCC gas turbine combined cycle power generation
  • IGCC integrated coal gasification combined power generation
  • the gas turbine cooling system includes, for example, an exhaust heat recovery boiler 2, a gas turbine 3, and an intermediate pressure steam pipe 19 (first flow path) for supplying intermediate pressure steam from the intermediate pressure system 7 to the exhaust heat recovery boiler 2 to the gas turbine 3. ) And a steam supply pipe 20 (second flow path) for supplying saturated steam from the high-pressure drum 11 to the intermediate-pressure drum 12.
  • the exhaust heat recovery boiler 2 is supplied with exhaust gas discharged from the gas turbine 3 via the exhaust gas supply path 14.
  • the exhaust heat recovery boiler 2 exchanges heat with exhaust gas heat (exhaust heat) to generate steam.
  • the exhaust heat recovery boiler 2 is provided with, for example, a reheat system 5, a high pressure system 6, an intermediate pressure system 7, a low pressure system 8, a high pressure drum 11, an intermediate pressure drum 12, a low pressure drum 13, and the like. .
  • a reheat system 5 In the exhaust heat recovery boiler 2, a reheat system 5, a high pressure system 6, an intermediate pressure system 7, and a low pressure system 8 are arranged in this order along the flow direction of the exhaust gas.
  • the reheat system 5 includes a reheater, and the steam extracted from the steam turbine 4 is supplied to the reheat system 5 via the low-temperature reheat steam pipe 15 and heated by the reheater of the reheat system 5.
  • the steam heated by the reheat system 5 is supplied to the steam turbine 4 through the high-temperature reheat steam pipe 16 to drive the steam turbine 4.
  • the high-pressure system 6 includes a high-pressure superheater and a high-pressure evaporator, and the high-pressure evaporator of the high-pressure system 6 is supplied with water from the high-pressure drum 11.
  • the water supplied from the high-pressure drum 11 is heated by the high-pressure evaporator of the high-pressure system 6 to generate steam.
  • the generated steam is heated by a high-pressure superheater to generate high-pressure steam.
  • the generated high-pressure steam is supplied to the steam turbine 4 via the high-pressure steam pipe 17 to drive the steam turbine 4.
  • the low pressure system 8 includes a low pressure evaporator and a low pressure superheater, and the low pressure evaporator of the low pressure system 8 is supplied with water from the low pressure drum 13.
  • the water supplied from the low-pressure drum 13 is heated by the low-pressure evaporator of the low-pressure system 8 to generate steam.
  • the generated steam is superheated by a low pressure superheater to generate low pressure steam.
  • the generated low-pressure steam is supplied to the steam turbine 4 through the low-pressure steam pipe 18 to drive the steam turbine 4.
  • the intermediate pressure system 7 includes an intermediate pressure evaporator and an intermediate pressure superheater, and the intermediate pressure evaporator of the intermediate pressure system 7 is supplied with water from the intermediate pressure drum 12. Water supplied from the intermediate pressure drum 12 is heated by an intermediate pressure evaporator in the intermediate pressure system 7 to generate steam. The generated steam is superheated by an intermediate pressure superheater to generate intermediate pressure steam. All or part of the generated intermediate pressure steam is supplied to the cooling system of the gas turbine 3 through the intermediate pressure steam pipe 19 to cool the corresponding part.
  • the cooling system of the gas turbine 3 is provided, for example, in a high-temperature portion such as a combustor or a casing of a combustor provided in the gas turbine 3.
  • the required steam amount of the intermediate pressure steam supplied from the intermediate pressure drum 12 to the gas turbine 3 via the intermediate pressure steam pipe 19 is adjusted based on the cooling state of the gas turbine 3.
  • the intermediate pressure steam pipe 19 is provided with a control valve 25 to adjust the amount of steam.
  • the outlet temperature of the gas turbine 3 is monitored and managed on the gas turbine 3 side.
  • the amount and temperature of steam after cooling the gas turbine 3 discharged from the cooling system of the gas turbine 3 Indirectly determined based on pressure and the like.
  • the control valve 25 is adjusted to the open side to increase the amount of intermediate pressure steam supplied to the cooling system of the gas turbine 3.
  • the control valve 25 is adjusted to the closed side to reduce the amount of steam of the medium pressure steam.
  • the steam supply pipe 20 supplies saturated steam from the high pressure drum 11 to the intermediate pressure drum 12.
  • the steam Saturated steam is supplied from the high-pressure drum 11 to the intermediate-pressure drum 12 through the supply pipe 20.
  • the intermediate pressure steam supplied to the cooling system of the gas turbine 3 can be supplemented by the steam supplied from the high pressure drum 11 to the intermediate pressure drum 12.
  • the steam used for cooling the gas turbine 3 is supplied to, for example, the high-temperature reheat steam pipe 16 and reused for driving the steam turbine 4.
  • the gas turbine 3 burns fuel gas to drive the turbine, and the main shaft connected to the generator rotates together with the turbine to drive the generator to generate power.
  • the fuel gas burned in the gas turbine 3 is discharged as exhaust gas. Since the gas turbine 3 becomes high temperature due to combustion of the fuel gas, the gas turbine 3 is cooled by a cooling medium in order to reduce the influence of heat. For example, steam generated by the exhaust heat recovery boiler 2 is used as the cooling medium.
  • the steam turbine 4 is supplied with the steam generated by the exhaust heat recovery boiler 2 and drives the turbine.
  • the main shaft of the steam turbine 4 is connected to a generator and rotates with the turbine to drive the generator to generate power.
  • one generator may be connected to both the gas turbine 3 and the steam turbine 4, or different generators may be connected to the gas turbine 3 and the steam turbine 4, respectively.
  • the steam turbine 4 is supplied with reheat steam, high pressure steam, and low pressure steam from the reheat system 5, high pressure system 6, and low pressure system 8 of the exhaust heat recovery boiler 2 to drive the turbine. .
  • a steam supply pipe 20 that connects the high-pressure drum 11 (first drum) and the intermediate-pressure drum 12 (second drum) is provided.
  • the steam supply pipe 20 includes a control valve 21, a flow meter 22, an orifice 23, a brackish water separator 24, and the like.
  • the control valve 21 of the steam supply pipe 20 opens and closes according to the command of the control valve 25 of the intermediate pressure steam pipe 19.
  • the saturated steam in the high pressure drum 11 is supplied to the intermediate pressure drum 12 through the steam supply pipe 20.
  • the amount of saturated steam supplied from the high pressure drum 11 to the intermediate pressure drum 12 is determined based on the amount of steam flowing through the intermediate pressure steam pipe 19.
  • control valve 21 is adjusted to the open side to increase the amount of saturated steam.
  • the control valve 21 is adjusted to the closed side to reduce the amount of saturated steam.
  • the flow meter 22 is provided in the steam supply pipe 20 and measures the amount of saturated steam flowing through the steam supply pipe 20.
  • the orifice 23 is provided in the rear stage of the control valve 21 in the steam supply pipe 20.
  • the orifice 23 can suppress a rapid decrease in pressure in the control valve 21 and can reduce collision of saturated water with the control valve 21 caused by steam flowing through the steam supply pipe 20. As a result, damage and corrosion of the control valve 21 can be prevented.
  • a baffle plate may be provided downstream of the orifice 23 in order to prevent trouble caused by water generated when the saturated steam is decompressed by the orifice 23.
  • the brackish water separator 24 is provided downstream of the steam supply pipe 20 and upstream of the intermediate pressure drum 12 or in the intermediate pressure drum 12.
  • the brackish water separator 24 separates the steam and the liquid from the saturated steam flowing through the steam supply pipe 20.
  • the brackish water separator 24 may be of any type, such as a system in which a fluid is passed through a wire mesh or corrugated sheet to separate the vapor and liquid, or a system in which the vapor and liquid are separated using centrifugal force.
  • the vapor obtained by the separation is supplied as it is to the intermediate pressure system 7, and the liquid obtained by the separation is temporarily stored in the intermediate pressure drum 12.
  • the brackish water separator 24 When the brackish water separator 24 is not provided, a part of the saturated steam supplied through the steam supply pipe 20 condenses in the intermediate pressure drum 12, and as a result, the amount of saturated steam supplied under the worst conditions As a result, the water level of the intermediate pressure drum 12 may rise rapidly. On the other hand, by providing the brackish water separator 24, the water level in the intermediate pressure drum 12 is affected only by the liquid separated by the brackish water separator 24. Therefore, the fluctuation of the water level in the intermediate pressure drum 12 can be minimized.
  • the water level in the intermediate pressure drum 12 is normally controlled by three elements (water level, water supply amount, generated steam amount).
  • the saturated steam supplied from the high pressure drum 11 to the intermediate pressure drum 12 is controlled.
  • the high-pressure drum 11 and the medium-pressure drum 12 can control the drum level as usual.
  • the brackish water separator 24 is provided on the upstream side of the intermediate pressure drum 12 or in the intermediate pressure drum 12, the fluctuation in the water level in the intermediate pressure drum 12 can be minimized. Operational fluctuations of the intermediate pressure drum 12 due to the presence or absence of supply of saturated steam can be minimized.
  • low-temperature saturated steam is extracted from the high-pressure drum 11 instead of from the high-pressure system 6 that requires a temperature reduction process, and used as cooling water for the gas turbine 3.
  • saturated water is generated after the saturated steam is extracted from the high-pressure drum 11 and depressurized, and the generated water may damage the subsequent equipment and piping, and is difficult to employ.
  • the saturated steam of the high-pressure drum 11 is decompressed and supplied to the intermediate-pressure drum 12, and brackish water separation is performed in the intermediate-pressure drum 12.
  • the intermediate pressure steam is used as the cooling steam for the gas turbine without changing the control of the intermediate pressure drum 12 itself from the conventional method.
  • the steam for cooling the gas turbine 3 can be increased without adopting a design that suppresses the amount of high-pressure steam and increases the amount of medium-pressure steam. Therefore, the economical exhaust heat recovery boiler 2 can be achieved without increasing the amount of medium pressure steam and suppressing the amount of high pressure steam that contributes to plant performance.
  • water droplets and mist-like water contained in the cooling steam can be reduced, troubles due to thermal shock or the like can be avoided in the tail tube cooling system exposed to a high heat load.
  • the high-pressure drum 11 and the intermediate-pressure drum 12 are connected, saturated steam is supplied from the high-pressure drum 11 to the intermediate-pressure drum 12, and the amount of steam generated by the intermediate-pressure system 7 using the steam.
  • the present invention is not limited to this example.
  • the present invention can be applied to a system that supplies steam from the low-pressure drum 13 to other devices.
  • the high-pressure drum 11 and the low-pressure drum 13 are connected, or the intermediate-pressure drum 12 and the low-pressure drum 13 are connected, and saturated steam is supplied from the high-pressure drum 11 or the intermediate-pressure drum 12 to the low-pressure drum 13. Increase the amount of steam generated in

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 排熱回収ボイラで発生する高圧蒸気を用いたり、高圧蒸気の発生を減少させたりすることなく、効率良くガスタービンを蒸気により冷却可能なガスタービン冷却システム及び冷却方法を提供する。この冷却システムは、ガスタービン(3)と、これからの排熱と熱交換して高圧蒸気を発生させる高圧系統(6)と、これに水及び蒸気を供給する高圧ドラム(11)と、ガスタービン(3)からの排熱と熱交換して中圧蒸気を発生させる中圧系統(7)と、これに水及び蒸気を供給する中圧ドラム(12)とを有する排熱回収ボイラ(2)と、中圧系統(7)とガスタービン(3)の冷却系統とを接続し、中圧系統(7)から冷却系統へ中圧蒸気を供給する中圧蒸気管(19)と、高圧ドラム(11)と中圧ドラム(12)とを接続し、高圧ドラム(11)から中圧ドラム(12)へ高圧ドラム(11)内の飽和蒸気を供給する蒸気供給管(20)とを備える。

Description

ガスタービン冷却システム及びガスタービン冷却方法
 本発明は、排熱回収ボイラで発生した蒸気によってガスタービンを冷却するガスタービン冷却システム及びガスタービン冷却方法に関する。
 ガスタービンコンバインドサイクル発電(GTCC)や石炭ガス化複合発電(IGCC)に設けられる排熱回収ボイラは、ガスタービンからの排熱を利用して蒸気タービンを駆動させるための蒸気を発生させている。ところで、高効率化が図られたガスタービンの高温化に伴い、機器保護の観点から、運転時に高温となるガスタービン燃焼器の尾筒やその他の部位などを冷却する必要がある。そこで、上記発電システムにおいて、ガスタービンを冷却するため、冷却媒体として空気を使用するだけでなく、排熱回収ボイラで発生した蒸気を冷却媒体として使用することがある。
 特許文献1では、稼動時において異常が発生した場合、排熱回収ボイラの高圧蒸気又は中圧蒸気を蒸気冷却システムに導くことによって、蒸気による冷却を維持する技術が開示されている。
 特許文献2では、蒸気による動翼と翼環部間のクリアランス制御と、蒸気による燃焼器等の高温部品の冷却制御とを両立させる技術が開示されている。
特開平10-37711号公報 特開2002-4807号公報
 排熱回収ボイラで発生する4.0MPaから5.0MPa程度の中圧蒸気は、被冷却対象(ガスタービン)において要求される冷却条件と合致することから、排熱回収ボイラで発生した蒸気を冷却媒体として使用する場合、中圧蒸気が用いられることが多い。
 一方、プラント効率改善のため、排熱回収ボイラで発生する高圧蒸気量の増加が求められていることから、排熱回収ボイラで発生する中圧蒸気量は、被冷却対象(ガスタービン)において冷却に使用される必要蒸気量との差が可能な限り小さいことが要求されている。しかし、その結果、発電負荷や燃料条件によっては、被冷却対象における必要蒸気量に対して中圧蒸気量が不足する可能性が生じる。
 そこで、排熱回収ボイラで発生する高圧蒸気の一部を冷却媒体として用いることが考えられるが、高温かつ高圧である蒸気をわざわざ減温、減圧することになり、プラント効率の低下を招きかねない。
 本発明は、このような事情に鑑みてなされたものであって、排熱回収ボイラで発生する高圧蒸気を用いたり、高圧蒸気の発生を減少させたりすることなく、効率良くガスタービンを蒸気によって冷却することが可能なガスタービン冷却システム及びガスタービン冷却方法を提供する。
 上記課題を解決するために、本発明のガスタービン冷却システム及びガスタービン冷却方法は以下の手段を採用する。
 本発明の第一の態様に係るガスタービン冷却システムは、ガスタービンと、ガスタービンからの排熱と熱交換して第1蒸気を発生させる第1系統と、第1系統へ水及び蒸気を供給する第1ドラムと、ガスタービンからの排熱と熱交換して第1蒸気よりも低圧の第2蒸気を発生させる第2系統と、第2系統へ水及び蒸気を供給する第2ドラムとを有する排熱回収ボイラと、第2系統とガスタービンの冷却系統とを接続し、第2系統から冷却系統へ第2蒸気を供給する第1流路と、第1ドラムと第2ドラムとを接続し、第1ドラムから第2ドラムへ第1ドラム内の飽和蒸気を供給する第2流路とを備える。
 上記第一の態様に係るガスタービン冷却システムによれば、第2ドラムの水及び蒸気が、排熱回収ボイラの第2系統へ供給され、第2系統でガスタービンからの排熱と熱交換して第2蒸気が発生する。第2蒸気は、第1流路を介して第2系統からガスタービンの冷却系統へ供給されて、ガスタービンを冷却する。また、第1ドラム内の飽和蒸気が、第2流路を介して第1ドラムから第2ドラムへ供給される。その結果、第2ドラムから第2系統へ供給される蒸気の蒸気量を増加させることができることから、第2系統からガスタービンの冷却系統へ供給される蒸気の蒸気量も増加させることができる。
 上記第一の態様に係るガスタービン冷却システムは、ガスタービンの冷却状態に基づいて、第2流路を流れる飽和蒸気の蒸気量を調整する蒸気量調整手段を更に備えた構成であってもよい。
 この構成によれば、ガスタービンの冷却状況に応じて、第2流路を介して第1ドラムから第2ドラムへ供給される飽和蒸気の蒸気量が変化することから、ガスタービンを冷却するのに適切な量の飽和蒸気を第2ドラムへ供給できる。ガスタービンの冷却状況は、ガスタービンの出口温度をガスタービン側で監視・管理しており、例えばガスタービンの冷却系統から排出されたガスタービン冷却後の蒸気の蒸気量等に基づいて間接的に判断されてもよい。
 上記第一の態様に係るガスタービン冷却システムは、第2流路の下流であって、第2ドラムの上流又は第2ドラム内に汽水分離装置が設けられた構成であってもよい。
 この構成によれば、第2流路を介して第1ドラムから第2ドラムへ供給される飽和蒸気は、汽水分離装置によって水と蒸気に分離されるため、分離された蒸気をガスタービン冷却系統へ供給することができ、水を含まない蒸気によってガスタービンを冷却できる。その結果、蒸気に含まれる水を原因とする冷却系統の腐食や破損を防止できる。また、蒸気が凝縮することによって第2ドラム内で短時間に水位が上がることがないため、第2ドラムの水位変動を抑制できる。
 本発明の第二の態様に係るガスタービン冷却方法は、ガスタービンと、ガスタービンからの排熱と熱交換して第1蒸気を発生させる第1系統と、第1系統へ水及び蒸気を供給する第1ドラムと、ガスタービンからの排熱と熱交換して第1蒸気よりも低圧の第2蒸気を発生させる第2系統と、第2系統へ水及び蒸気を供給する第2ドラムとを有する排熱回収ボイラとを備えるガスタービン冷却システムにおけるガスタービン冷却方法であって、第2系統からガスタービンの冷却系統へ第2蒸気を供給するステップと、第1ドラムから第2ドラムへ第1ドラム内の飽和蒸気を供給するステップとを備える。
 上記第二の態様に係るガスタービン冷却方法によれば、排熱回収ボイラで発生する高圧蒸気を用いたり、高圧蒸気の発生を減少させたりすることなく、効率良くガスタービンを蒸気によって冷却することができる。
本発明の一実施形態に係る排熱回収システム及びガスタービン冷却システムを示す概略構成図である。 同実施形態に係るガスタービン冷却システムを示す概略構成図である。 従来の排熱回収システム及びガスタービン冷却システムを示す概略構成図である。
 以下に、本発明に係る実施形態について、図面を参照して説明する。
 本発明の一実施形態に係る排熱回収システム及びガスタービン冷却システムは、例えば、排熱回収ボイラ2とガスタービン3を有するガスタービンコンバインドサイクル発電(GTCC)や石炭ガス化複合発電(IGCC)等のプラント1に適用される。
 ガスタービン冷却システムは、例えば排熱回収ボイラ2と、ガスタービン3と、排熱回収ボイラ2の中圧系統7からガスタービン3へ中圧蒸気を供給する中圧蒸気管19(第1流路)と、高圧ドラム11から中圧ドラム12へ飽和蒸気を供給する蒸気供給管20(第2流路)等からなる。
 排熱回収ボイラ2は、排ガス供給路14を介してガスタービン3から排出された排ガスが供給される。そして、排熱回収ボイラ2は、排ガスの熱(排熱)と熱交換して蒸気を生成する。排熱回収ボイラ2には、図1に示すように、例えば再熱系統5、高圧系統6、中圧系統7、低圧系統8、高圧ドラム11、中圧ドラム12及び低圧ドラム13等が設けられる。
 排熱回収ボイラ2では、排ガスの流れ方向に沿って、再熱系統5、高圧系統6、中圧系統7、低圧系統8が順に配置される。再熱系統5は、再熱器を含み、蒸気タービン4から抽気された蒸気は、低温再熱蒸気管15を介して再熱系統5へ供給され、再熱系統5の再熱器で加熱される。再熱系統5で加熱された蒸気は、高温再熱蒸気管16を介して蒸気タービン4へ供給されて、蒸気タービン4を駆動する。
 高圧系統6は、高圧過熱器、高圧蒸発器を含み、高圧系統6の高圧蒸発器は、高圧ドラム11から水が供給される。高圧ドラム11から供給された水は、高圧系統6の高圧蒸発器で加熱され、蒸気が生成される。生成された蒸気は、高圧過熱器で加熱されて、高圧蒸気が生成される。生成された高圧蒸気は、高圧蒸気管17を介して蒸気タービン4へ供給されて、蒸気タービン4を駆動する。
 低圧系統8は、低圧蒸発器、低圧過熱器を含み、低圧系統8の低圧蒸発器は、低圧ドラム13から水が供給される。低圧ドラム13から供給された水は、低圧系統8の低圧蒸発器で加熱され、蒸気が生成される。生成された蒸気は、低圧過熱器で過熱されて、低圧蒸気が生成される。生成された低圧蒸気は、低圧蒸気管18を介して蒸気タービン4へ供給されて、蒸気タービン4を駆動する。
 中圧系統7は、中圧蒸発器、中圧過熱器を含み、中圧系統7の中圧蒸発器は、中圧ドラム12から水が供給される。中圧ドラム12から供給された水は、中圧系統7の中圧蒸発器で加熱され、蒸気が生成される。生成された蒸気は、中圧過熱器で過熱されて、中圧蒸気が生成される。生成された中圧蒸気の全量又は一部が、中圧蒸気管19を介してガスタービン3の冷却系統へ供給されて、該当箇所を冷却する。ガスタービン3の冷却系統は、例えば、ガスタービン3に設けられた燃焼器の尾筒、車室などの高温部分に設けられる。中圧蒸気管19を介して、中圧ドラム12からガスタービン3へ供給される中圧蒸気の必要蒸気量は、ガスタービン3の冷却状態に基づいて調整される。中圧蒸気管19には制御弁25が設けられ、蒸気量が調整される。
 ガスタービン3の冷却状態は、ガスタービン3の出口温度をガスタービン3側で監視・管理しており、例えばガスタービン3の冷却系統から排出されたガスタービン3冷却後の蒸気の蒸気量、温度、圧力などに基づいて間接的に判断される。例えば、ガスタービン3が冷却不足と判断された場合、制御弁25が開放側に調整されて、ガスタービン3の冷却系統へ供給する中圧蒸気の蒸気量を増加させる。一方、ガスタービン3を過剰に冷却していると判断された場合、制御弁25が閉鎖側に調整されて、中圧蒸気の蒸気量を減少させる。
 蒸気供給管20は、高圧ドラム11から中圧ドラム12へ飽和蒸気を供給する。ガスタービン3の冷却に要する蒸気量に対して、中圧ドラム12から供給された水に基づいて中圧系統7で生成される中圧蒸気だけでは、不足していると判断された場合、蒸気供給管20を介して、高圧ドラム11から中圧ドラム12へ飽和蒸気を供給する。これにより、ガスタービン3の冷却系統へ供給する中圧蒸気を高圧ドラム11から中圧ドラム12へ供給される蒸気によって補うことができる。
 ガスタービン3の冷却に使用された蒸気は、例えば高温再熱蒸気管16へ供給されて蒸気タービン4の駆動に再使用される。
 ガスタービン3は、燃料ガスを燃焼して、タービンを駆動し、発電機と連結された主軸がタービンと共に回転することで、発電機を駆動させて発電を行う。ガスタービン3にて燃焼された燃料ガスは、排ガスとして排出される。ガスタービン3は、燃料ガスの燃焼によって高温になることから、熱による影響を低減するため、冷却媒体によって冷却される。冷却媒体は、例えば排熱回収ボイラ2で生成された蒸気が使用される。
 蒸気タービン4は、排熱回収ボイラ2で生成された蒸気が供給されて、タービンを駆動する。蒸気タービン4の主軸は、発電機と連結され、タービンと共に回転することで、発電機を駆動させて発電を行う。なお、発電機は、1台の発電機がガスタービン3と蒸気タービン4の両者に連結されてもよいし、ガスタービン3と蒸気タービン4それぞれに異なる発電機が連結されてもよい。
 図1に示す例では、蒸気タービン4は、排熱回収ボイラ2の再熱系統5、高圧系統6、低圧系統8それぞれから再熱蒸気、高圧蒸気、低圧蒸気が供給されて、タービンを駆動する。
 次に、図2を参照して、本実施形態に係るガスタービン冷却システムについて説明する。
 本実施形態では、高圧ドラム11(第1ドラム)と中圧ドラム12(第2ドラム)を連結する蒸気供給管20が設けられる。蒸気供給管20には、図2に示すように、制御弁21と、流量計22と、オリフィス23、汽水分離装置24などからなる。
 蒸気供給管20の制御弁21は、中圧蒸気管19の制御弁25の指令に応じて、開閉動作する。ガスタービン3の冷却において、中圧系統7で生成された蒸気では足りない場合は、蒸気供給管20を介して、高圧ドラム11内の飽和蒸気が、中圧ドラム12へ供給される。高圧ドラム11から中圧ドラム12へ供給される飽和蒸気の蒸気量は、中圧蒸気管19を流れる蒸気量に基づいて決定される。
 例えば、ガスタービン3の冷却に要する蒸気量に対して、中圧ドラム12から供給された水に基づいて中圧系統7で生成される中圧蒸気だけでは、不足していると判断された場合、制御弁21が開放側に調整されて、飽和蒸気の蒸気量を増加させる。一方、ガスタービン3を過剰に冷却していると判断されたとき、制御弁21が閉鎖側に調整されて、飽和蒸気の蒸気量を減少させる。
 流量計22は、蒸気供給管20に設けられ、蒸気供給管20を流れる飽和蒸気の蒸気量を測定する。オリフィス23は、蒸気供給管20のうち制御弁21の後段に設けられる。オリフィス23は、制御弁21における圧力の急激な低下を抑制でき、蒸気供給管20を流れる蒸気によって生じる制御弁21への飽和水の衝突を低減できる。その結果、制御弁21の破損や腐食を防止できる。なお、オリフィス23で飽和蒸気を減圧する際に発生する水によるトラブルを防止するため、オリフィス23の後段に邪魔板が設けられてもよい。
 汽水分離装置24は、蒸気供給管20の下流側であって、中圧ドラム12の上流側又は中圧ドラム12内に設けられる。汽水分離装置24は、蒸気供給管20を流れる飽和蒸気から蒸気と液体を分離する。汽水分離装置24は、流体を金網や波板に通過させて蒸気と液体を分離させる方式や、遠心力を利用して蒸気と液体を分離させる方式などいずれでもよい。分離して得られる蒸気は、中圧系統7へそのまま供給され、分離して得られる液体は、中圧ドラム12内に一旦貯留される。
 汽水分離装置24が設けられない場合、蒸気供給管20を介して供給された飽和蒸気の一部が中圧ドラム12にて凝縮し、その結果、最悪の条件下では、供給される飽和蒸気量によって、中圧ドラム12の水位が急激に上昇するおそれがある。一方、汽水分離装置24が設けられることによって、中圧ドラム12内の水位は、汽水分離装置24で分離された液体のみに影響を受ける。したがって、中圧ドラム12内の水位変動を最小化できる。
 また、中圧ドラム12内の水位は、通常三要素(水位、給水量、発生蒸気量)によって制御されるが、本実施形態では、高圧ドラム11から中圧ドラム12へ供給される飽和蒸気の蒸気量を測定することによって、高圧ドラム11も中圧ドラム12も通常と同じドラム水位制御が可能である。また、上述したとおり、汽水分離装置24が中圧ドラム12の上流側又は中圧ドラム12内に設けられることによって、中圧ドラム12内の水位変動を最小化できることから、中圧ドラム12への飽和蒸気の供給の有無による中圧ドラム12の運転変動も最小化できる。
 以下、本実施形態の作用効果について説明する。
 ガスタービン3への冷却系統へ供給する蒸気合計量を増加させるため、本実施形態と異なり、図3の関連技術のプラント10に示すように、高圧系統6で発生した高圧蒸気を使用することが考えられる。すなわち、高圧系統6から蒸気タービン4までの高圧蒸気管17を分岐して、高圧蒸気を減温器31へ導き、高圧蒸気を減温、減圧する。そして、減温、減圧された高圧蒸気が蒸気管32及び中圧蒸気管19を介してガスタービン3の冷却系統へ供給される。しかし、この方法によれば、中圧系統7からガスタービン3への冷却系統へ供給する蒸気を増加させずにすむが、高温かつ高圧である蒸気をわざわざ減温、減圧することになり、このような減温プロセスは、プラント効率の低下を招きかねない。
 また、減温プロセスを要する高圧系統6からではなく、高圧ドラム11から低温の飽和蒸気を抽出してガスタービン3の冷却水とすることも考えられる。しかし、高圧ドラム11から飽和蒸気を抽出して減圧した後に飽和水が発生し、その発生した水が後段の機器や配管に損傷を与える可能性があり、採用することは困難である。
 一方、本実施形態によれば、高圧ドラム11の飽和蒸気を減圧して中圧ドラム12へ供給し、中圧ドラム12内にて汽水分離を行う。そして、中圧ドラム12自体の制御を従来方法と変更することなく、中圧蒸気をガスタービンの冷却蒸気として使用する。このとき、高圧蒸気量を抑制し、中圧蒸気量を増加させる設計を採用することなく、ガスタービン3を冷却する蒸気を増加させることができる。したがって、中圧蒸気量を増加させて、プラント性能への寄与度が高い高圧蒸気量を抑制することなく、経済的な排熱回収ボイラ2とすることができる。また、冷却用蒸気中に含まれる水滴やミスト状の水を低減できるため、高熱負荷にさらされている尾筒冷却系統等において、熱衝撃等によるトラブルを回避できる。
 なお、本実施形態では、高圧ドラム11と中圧ドラム12を連結して、高圧ドラム11から中圧ドラム12へ飽和蒸気を供給し、その蒸気を用いて、中圧系統7で生成する蒸気量を増加させる場合について説明したが、本発明はこの例に限定されない。例えば、低圧ドラム13から他の機器類へ蒸気を供給するシステムにも、本発明を適用できる。この場合、高圧ドラム11と低圧ドラム13を連結、又は中圧ドラム12と低圧ドラム13を連結し、高圧ドラム11又は中圧ドラム12から低圧ドラム13へ飽和蒸気を供給することによって、低圧系統8で生成する蒸気量を増加させる。
1,10 プラント
2 排熱回収ボイラ
3 ガスタービン
4 蒸気タービン
5 再熱系統
6 高圧系統(第1系統)
7 中圧系統(第2系統)
8 低圧系統
11 高圧ドラム(第1ドラム)
12 中圧ドラム(第2ドラム)
13 低圧ドラム
14 排ガス供給路
15 低温再熱蒸気管
16 高温再熱蒸気管
17 高圧蒸気管
18 低圧蒸気管
19 中圧蒸気管(第1流路)
20 蒸気供給管(第2流路)
21 制御弁(蒸気量調整手段)
22 流量計
23 オリフィス
24 汽水分離装置
25 制御弁
31 減温器
32 蒸気管

Claims (4)

  1.  ガスタービンと、
     前記ガスタービンからの排熱と熱交換して第1蒸気を発生させる第1系統と、前記第1系統へ水及び蒸気を供給する第1ドラムと、前記ガスタービンからの排熱と熱交換して前記第1蒸気よりも低圧の第2蒸気を発生させる第2系統と、前記第2系統へ水及び蒸気を供給する第2ドラムとを有する排熱回収ボイラと、
     前記第2系統と前記ガスタービンの冷却系統とを接続し、前記第2系統から前記冷却系統へ前記第2蒸気を供給する第1流路と、
     前記第1ドラムと前記第2ドラムとを接続し、前記第1ドラムから前記第2ドラムへ前記第1ドラム内の飽和蒸気を供給する第2流路と、
    を備えるガスタービン冷却システム。
  2.  前記ガスタービンの冷却状態に基づいて、前記第2流路を流れる前記飽和蒸気の蒸気量を調整する蒸気量調整手段を更に備える請求項1に記載のガスタービン冷却システム。
  3.  前記第2流路の下流であって、前記第2ドラムの上流又は前記第2ドラム内に汽水分離装置が設けられる請求項1又は2に記載のガスタービン冷却システム。
  4.  ガスタービンと、
     前記ガスタービンからの排熱と熱交換して第1蒸気を発生させる第1系統と、前記第1系統へ水及び蒸気を供給する第1ドラムと、前記ガスタービンからの排熱と熱交換して前記第1蒸気よりも低圧の第2蒸気を発生させる第2系統と、前記第2系統へ水及び蒸気を供給する第2ドラムとを有する排熱回収ボイラと、
    を備えるガスタービン冷却システムにおけるガスタービン冷却方法であって、
     前記第2系統から前記ガスタービンの冷却系統へ前記第2蒸気を供給するステップと、
     前記第1ドラムから前記第2ドラムへ前記第1ドラム内の飽和蒸気を供給するステップと、
    を備えるガスタービン冷却方法。
PCT/JP2012/073274 2011-09-15 2012-09-12 ガスタービン冷却システム及びガスタービン冷却方法 WO2013039088A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12832650.1A EP2752566B1 (en) 2011-09-15 2012-09-12 Gas turbine cooling system, and gas turbine cooling method
KR1020147006649A KR101520238B1 (ko) 2011-09-15 2012-09-12 가스 터빈 냉각 시스템 및 가스 터빈 냉각 방법
CN201280044710.3A CN103975143B (zh) 2011-09-15 2012-09-12 燃气涡轮冷却系统及燃气涡轮冷却方法
US14/344,465 US20140338362A1 (en) 2011-09-15 2012-09-12 Gas-turbine cooling system and gas-turbine cooling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011201856A JP5901194B2 (ja) 2011-09-15 2011-09-15 ガスタービン冷却システム及びガスタービン冷却方法
JP2011-201856 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013039088A1 true WO2013039088A1 (ja) 2013-03-21

Family

ID=47883314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073274 WO2013039088A1 (ja) 2011-09-15 2012-09-12 ガスタービン冷却システム及びガスタービン冷却方法

Country Status (6)

Country Link
US (1) US20140338362A1 (ja)
EP (1) EP2752566B1 (ja)
JP (1) JP5901194B2 (ja)
KR (1) KR101520238B1 (ja)
CN (1) CN103975143B (ja)
WO (1) WO2013039088A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150075450A1 (en) * 2013-09-13 2015-03-19 Uop Llc Heat recovery from a high pressure stream
CN114607477A (zh) * 2022-04-01 2022-06-10 邹平滨能能源科技有限公司 一种单元制机组汽轮机快速冷却方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101801686B1 (ko) 2016-07-28 2017-11-27 두산중공업 주식회사 배기 가스 냉각 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1037711A (ja) 1996-07-24 1998-02-10 Mitsubishi Heavy Ind Ltd コンバインドサイクル発電プラント
JP2001027133A (ja) * 1999-07-13 2001-01-30 Mitsubishi Heavy Ind Ltd 蒸気発生設備及びタービン発電設備
JP2002004807A (ja) 2000-04-18 2002-01-09 Mitsubishi Heavy Ind Ltd タービンの蒸気制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3751886A (en) * 1971-08-31 1973-08-14 Westinghouse Electric Corp Vertical steam drum
US3965675A (en) * 1974-08-08 1976-06-29 Westinghouse Electric Corporation Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control
US4572110A (en) * 1985-03-01 1986-02-25 Energy Services Inc. Combined heat recovery and emission control system
JPH0443803A (ja) * 1990-06-08 1992-02-13 Toshiba Corp 複合サイクル発電プラントの制御方法
EP0523467B1 (de) * 1991-07-17 1996-02-28 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
US5778657A (en) * 1995-09-22 1998-07-14 Kabushiki Kaisha Toshiba Combined cycle power plant
DE19609912A1 (de) * 1996-03-14 1997-09-18 Asea Brown Boveri Verfahren zum Betrieb einer Kraftwerksanlage
WO1999037890A1 (fr) * 1996-07-24 1999-07-29 Mitsubishi Heavy Industries, Ltd. Centrale a cycle combine
JP3500020B2 (ja) * 1996-11-29 2004-02-23 三菱重工業株式会社 蒸気冷却ガスタービンシステム
US6301874B1 (en) * 1998-01-23 2001-10-16 Mitsubishi Heavy Industries, Ltd. Combined cycle power plant with steam-cooled gas turbine
DE59912179D1 (de) * 1998-10-20 2005-07-21 Alstom Technology Ltd Baden Turbomaschine und Verfahren zum Betrieb derselben
JP3800384B2 (ja) * 1998-11-20 2006-07-26 株式会社日立製作所 コンバインド発電設備
US6220013B1 (en) * 1999-09-13 2001-04-24 General Electric Co. Multi-pressure reheat combined cycle with multiple reheaters
JP2003013708A (ja) * 2001-06-27 2003-01-15 Mitsubishi Heavy Ind Ltd タービン設備
JP4395275B2 (ja) * 2001-07-05 2010-01-06 三菱重工業株式会社 コンバインドプラントの運転方法
US6851265B2 (en) * 2002-02-19 2005-02-08 Siemens Westinghouse Power Corporation Steam cooling control for a combined cycle power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1037711A (ja) 1996-07-24 1998-02-10 Mitsubishi Heavy Ind Ltd コンバインドサイクル発電プラント
JP2001027133A (ja) * 1999-07-13 2001-01-30 Mitsubishi Heavy Ind Ltd 蒸気発生設備及びタービン発電設備
JP2002004807A (ja) 2000-04-18 2002-01-09 Mitsubishi Heavy Ind Ltd タービンの蒸気制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150075450A1 (en) * 2013-09-13 2015-03-19 Uop Llc Heat recovery from a high pressure stream
CN105612243A (zh) * 2013-09-13 2016-05-25 环球油品公司 由高压料流回收热
CN114607477A (zh) * 2022-04-01 2022-06-10 邹平滨能能源科技有限公司 一种单元制机组汽轮机快速冷却方法
CN114607477B (zh) * 2022-04-01 2023-08-01 邹平滨能能源科技有限公司 一种单元制机组汽轮机快速冷却方法

Also Published As

Publication number Publication date
CN103975143A (zh) 2014-08-06
EP2752566A4 (en) 2015-05-06
KR20140059810A (ko) 2014-05-16
JP5901194B2 (ja) 2016-04-06
CN103975143B (zh) 2017-03-15
KR101520238B1 (ko) 2015-05-13
EP2752566B1 (en) 2018-05-30
EP2752566A1 (en) 2014-07-09
US20140338362A1 (en) 2014-11-20
JP2013064328A (ja) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5604074B2 (ja) 給水ポンプサイズを縮小するために燃料ガス加熱器の排水を使用する蒸気温度調節用装置
KR101594323B1 (ko) 통합형 연료 가스 예열을 갖는 발전소
JP2010242753A (ja) 熱回収蒸気発電機を含む複合サイクル発電プラント
JP6203600B2 (ja) コンバインドサイクルプラント
JP2010084765A (ja) ピーキングサイクル排熱回収を利用した複合サイクル発電増強によるピーク負荷管理
JP2010249505A (ja) 蒸気発生設備を運転する方法及びシステム
US20160273406A1 (en) Combined cycle system
JP5901194B2 (ja) ガスタービン冷却システム及びガスタービン冷却方法
US10287922B2 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
JP4373420B2 (ja) コンバインド発電プラントおよびクローズド空気冷却ガスタービンシステム
WO2016047400A1 (ja) ボイラ、コンバインドサイクルプラント並びにボイラの蒸気冷却方法
JP4718333B2 (ja) 貫流式排熱回収ボイラ
JP4488631B2 (ja) コンバインドサイクル発電設備およびその運転方法
JP7066572B2 (ja) ボイラのブローイングアウト用仮設配管系統およびボイラのブローイングアウト方法
JP5812873B2 (ja) コンバインドサイクル発電プラント
JP2013249745A (ja) ガスタービン冷却システム、石炭ガス化複合発電システム及びガスタービン冷却方法
JP4842071B2 (ja) 貫流式排熱回収ボイラの運転方法、ならびに発電設備の運転方法
JP3872407B2 (ja) コンバインド発電プラントおよびクローズド空気冷却ガスタービンシステム
JP2008075996A (ja) 排熱回収ボイラとその蒸気圧力制御方法
JP5475315B2 (ja) コンバインドサイクル発電システム
JPH10131716A (ja) ガスタービン蒸気冷却系統の制御方法及び装置
JP2020125700A (ja) 発電設備、発電設備制御装置、および発電設備制御方法
JP5675516B2 (ja) コンバインドサイクル発電プラント
EP0978636B1 (en) Combined cycle power plant
JP2012140910A (ja) コンバインドサイクル発電プラント及びガスタービンシステム並びにガスタービン燃料ガス加熱システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147006649

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14344465

Country of ref document: US