JP2001227637A - 自動変速機の制御装置 - Google Patents
自動変速機の制御装置Info
- Publication number
- JP2001227637A JP2001227637A JP2000041680A JP2000041680A JP2001227637A JP 2001227637 A JP2001227637 A JP 2001227637A JP 2000041680 A JP2000041680 A JP 2000041680A JP 2000041680 A JP2000041680 A JP 2000041680A JP 2001227637 A JP2001227637 A JP 2001227637A
- Authority
- JP
- Japan
- Prior art keywords
- torque
- engagement element
- input shaft
- rotation speed
- engagement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Transmission Device (AREA)
Abstract
動変速機において、トルクフェーズにおける空吹け・ト
ルク引けを抑制する。 【解決手段】入力軸トルクの推定値,臨界トルク比,ラ
ンプ制御される余裕代から摩擦係合要素の油圧を決定す
る構成とする。そして、トルクフェーズ時に、変速前の
ギヤ比iと出力軸回転速度Noとから求められる基準タ
ービン回転速度に対する実際のタービン回転速度Ntの
単位時間当たりの変化量を積算し、トルクフェーズ開始
から所定時間TIMER8が経過した時点での前記積算値に基
づき、締結側の余裕代のランプ勾配を補正する補正係数
GAINを設定し、その後のトルクフェーズでは、前記補正
係数GAINで補正した余裕代に従って締結側の油圧を演算
させる。
Description
置に関し、詳しくは、異なる2つの摩擦係合要素の締結
制御と解放制御とを同時に行う摩擦係合要素の掛け替え
によって変速を行うよう構成された自動変速機の制御装
置に関する。
油圧によって制御するよう構成すると共に、異なる2つ
の摩擦係合要素の締結制御と解放制御とを同時に行う摩
擦係合要素の掛け替えによって変速を行わせる構成の自
動変速機が知られている(特開平9−133205号公
報等参照)。
合要素の掛け替えによって変速を行わせる場合、締結制
御に対して相対的に解放制御が早すぎるとエンジン回転
の空吹けが発生し、逆に解放制御が遅すぎると、駆動ト
ルクの引けを生じることになり、この空吹け及びトルク
の引けの発生を抑制しつつ、摩擦係合要素間でのトルク
の掛け替えを行わせることが要求される。
し、該入力軸トルクを伝達し得るトルク容量を解放側摩
擦係合要素と締結側摩擦係合要素とで分担して確保しつ
つ、解放側摩擦係合要素から締結側摩擦係合要素へと分
担を徐々に移すように制御を行っていた。
化、更には、入力軸トルクの推定誤差などによって、伝
達トルク容量の制御を最適に行えなくなり、空吹け及び
トルクの引けが大きくなってしまう場合があった。
あり、摩擦係合要素のばらつきや経時変化、更には、入
力軸トルクの推定誤差などがあっても、空吹け及びトル
クの引けを許容範囲に抑制できる自動変速機の制御装置
を提供することを目的とする。
発明は、異なる2つの摩擦係合要素の締結制御と解放制
御とを同時に行う摩擦係合要素の掛け替えによって変速
を行うよう構成された自動変速機の制御装置であって、
トルクフェーズにおける変速機構の入力軸回転速度の変
化量に応じて、前記トルクフェーズにおける締結側摩擦
係合要素の伝達トルク容量を変更する構成とした。
ける変速機構の入力軸回転速度の変化量から、空吹け又
はトルク引けの別、更には、空吹け又はトルク引けの大
きさを判別することが可能であり、これに応じて締結側
摩擦係合要素の伝達トルク容量を変更することで、空吹
け又はトルク引けを抑制する。具体的には、締結側摩擦
係合要素の伝達トルク容量(係合油圧)を増大させるこ
とで空吹けを抑制でき、逆に、締結側摩擦係合要素の伝
達トルク容量(係合油圧)を減少させることでトルク引
けを抑制できる。
速度の変化量を、前記入力軸回転速度と、変速前のギヤ
比と変速機構の出力軸回転速度とから算出される基準入
力軸回転速度との偏差として算出する構成とした。
速機構の出力軸回転速度とから、変速が行われる前のギ
ヤ比に対応する入力軸回転速度を基準入力軸回転速度と
して求め、該基準入力軸回転速度に対する実際の入力軸
回転速度の偏差を、トルクフェーズにおける入力軸回転
速度の変化量として算出する。
速度の変化量を、単位時間当たりの変化量として算出す
る構成とした。かかる構成によると、トルクフェーズに
おいて単位時間当たりの入力軸回転速度の変化量を算出
し、該単位時間当たりの変化量に基づいて締結側摩擦係
合要素の伝達トルク容量を変更する。
速度の変化量の積算値に応じて、前記トルクフェーズに
おける締結側摩擦係合要素の伝達トルク容量を変更する
構成とした。
化量を積算し、該積算値から空吹け又はトルクの引けの
大きさを判断し、空吹け又はトルクの引けを抑制できる
方向に締結側摩擦係合要素の伝達トルク容量を変更す
る。
ーズの開始から所定時間が経過した時点の前記入力軸回
転速度の変化量に基づいて、その後のトルクフェーズに
おける締結側摩擦係合要素の伝達トルク容量を変更する
構成とした。
始から所定時間が経過した時の入力軸回転速度の変化量
(変化方向、変化量、変化量の積算値)から、空吹け又
はトルクの引けの状態を判断し、空吹け又はトルクの引
けを抑制できる方向にその後のトルクフェーズにおける
締結側摩擦係合要素の伝達トルク容量を変更する。
を、前記トルクフェーズで締結させる摩擦係合要素の種
類に応じて変更する構成とした。かかる構成によると、
変速毎に決められる締結側摩擦係合要素の種類によっ
て、トルクフェーズの開始から入力軸回転速度の変化方
向を判別するまでの時間を変更する。
素の伝達トルク容量を、変速機構の入力軸トルク,臨界
トルク比及び余裕代に基づいて決定する構成であって、
前記余裕代を時間と共に変化させてトルクフェーズにお
ける各摩擦係合要素の伝達トルク容量を決定する構成で
あり、前記締結側摩擦係合要素の余裕代の変化勾配を変
更することで、前記締結側摩擦係合要素の伝達トルク容
量を変更する構成とした。
界トルク比から、そのときの入力軸トルクを伝達できる
最小の伝達トルク容量(臨界伝達トルク容量)が求めら
れ、該臨界伝達トルク容量に対する余裕分(プラス又は
マイナス分)を余裕代で設定する。そして、前記余裕代
を時間と共に変化させて解放側の伝達トルク容量を臨界
伝達トルク容量よりも大きな値から徐々に減少させつ
つ、締結側の伝達トルク容量を臨界伝達トルク容量より
も小さい値から徐々に増大させて、解放側から締結側へ
のトルクの掛け替えを行わせる。ここで、前記余裕代の
変化勾配(ランプ勾配)を変更することで締結側摩擦係
合要素の伝達トルク容量が変更される。
ェーズにおける入力軸回転速度の変化量から空吹け又は
トルク引けの状態を判断し、締結側摩擦係合要素の伝達
トルク容量を変更することで、摩擦係合要素のばらつき
や経時変化、更には、入力軸トルクの推定誤差などがあ
っても、大きな空吹け又はトルク引けを生じさせること
なく変速を行わせることができるという効果がある。
トルク引けによる入力軸回転速度の変化を精度良く検出
することができるという効果がある。請求項3記載の発
明によると、単位時間当たりの変化量として入力軸回転
速度の変化量を求めることで、締結側摩擦係合要素の伝
達トルク容量の修正を的確に行えるという効果がある。
速度の変化量の積算値から、空吹け又はトルク引けの大
きさをより的確に判断し、締結側摩擦係合要素の伝達ト
ルク容量を適切に修正することができるという効果があ
る。
ーズの途中で空吹け又はトルク引けの状態を的確に判断
し、その後の締結側摩擦係合要素の伝達トルク容量を変
更することで、可及的速やかに空吹け又はトルク引けを
抑制できるという効果がある。
ーズの途中で空吹け又はトルク引けの状態を判断するタ
イミングを適切に設定でき、以って、その後のトルクフ
ェーズにおける締結側摩擦係合要素の伝達トルク容量を
適切に変更できるという効果がある。
トルク引けを抑制するための締結側伝達トルク容量の変
更を簡便かつ的確に行え、特に、トルクフェーズの途中
からの締結側伝達トルク容量の変更による空吹け又はト
ルク引けの抑制を効果的に行わせることができるという
効果がある。
する。図1は、実施の形態における自動変速機の変速機
構を示すものであり、エンジンの出力がトルクコンバー
タ1を介して変速機構2に伝達される構成となってい
る。
G2、3組の多板クラッチH/C,R/C,L/C、1
組のブレーキバンド2&4/B、1組の多板式ブレーキ
L&R/B、1組のワンウェイクラッチL/OWCで構
成される。
れ、サンギヤS1,S2、リングギヤr1,r2及びキ
ャリアc1,c2よりなる単純遊星歯車である。前記遊
星歯車組G1のサンギヤS1は、リバースクラッチR/
Cにより入力軸INに結合可能に構成される一方、ブレ
ーキバンド2&4/Bによって固定可能に構成される。
力軸INに直結される。前記遊星歯車組G1のキャリア
c1は、ハイクラッチH/Cにより入力軸Iに結合可能
に構成される一方、前記遊星歯車組G2のリングギヤr
2が、ロークラッチL/Cにより遊星歯車組G1のキャ
リアc1に結合可能に構成され、更に、ロー&リバース
ブレーキL&R/Bにより遊星歯車組G1のキャリアc
1を固定できるようになっている。
組G1のリングギヤr1と、前記遊星歯車組G2のキャ
リアc2とが一体的に直結されている。上記構成の変速
機構2において、1速〜4速及び後退は、図2に示すよ
うに、各クラッチ・ブレーキの締結状態の組み合わせに
よって実現される。
し、記号が付されていない部分は解放状態とすることを
示すが、特に、1速におけるロー&リバースブレーキL
&R/Bの黒丸で示される締結状態は、1レンジでのみ
の締結を示すものとする。
結状態の組み合わせによると、例えば、4速から3速へ
のダウンシフト時には、ブレーキバンド2&4/Bの解
放を行う共にロークラッチL/Cの締結を行い、3速か
ら2速へのダウンシフト時には、ハイクラッチH/Cの
解放を行うと共にブレーキバンド2&4/Bの締結を行
うことになり、2速から3速へのアップシフト時には、
ブレーキバンド2&4/Bの解放を行うと共にハイクラ
ッチH/Cの締結を行い、3速から4速へのアップシフ
ト時には、ロークラッチL/Cの解放を行うと共にブレ
ーキバンド2&4/Bの締結を行うことになり、上記の
ように、クラッチ・ブレーキ(摩擦係合要素)の締結と
解放とを同時に制御して摩擦係合要素の掛け替えを行う
変速を掛け替え変速と称するものとする。
素)は、供給油圧によって動作するようになっており、
各クラッチ・ブレーキに対する供給油圧は、図3に示す
ソレノイドバルブユニット11に含まれる各種ソレノイ
ドバルブによって調整される。
ソレノイドバルブを制御するA/Tコントローラ12に
は、A/T油温センサ13,アクセル開度センサ14,
車速センサ15,タービン回転センサ16,エンジン回
転センサ17,エアフローメータ18等からの検出信号
が入力され、これらの検出結果に基づいて、各摩擦係合
要素における係合油圧を制御する。
機と組み合わされるエンジンを示す。ここで、前記A/
Tコントローラ12による掛け替え変速の様子を、エン
ジンの駆動トルクが加わっている状態でのアップシフト
(以下、パワーオンアップシフトという)の場合を例と
して、以下に説明する。
トを参照しつつ、図5のブロック図に従って制御の概略
を説明する。まず、入力軸トルク推定部101で変速機
構の入力軸トルクを推定し、解放側F/F制御部102
及び締結側F/F制御部103では、前記入力軸トルク
に基づき解放側摩擦係合要素及び締結側摩擦係合要素に
おける伝達トルク容量のフィードホワード分F/Fを算
出する。ここで、解放側摩擦係合要素の伝達トルク容量
を徐々に低下させる一方、解放側摩擦係合要素だけでは
トルク容量不足となる分を締結側摩擦係合要素で分担で
きるように、締結側摩擦係合要素の伝達トルク容量を増
大させていく。
クフェーズになったことが検出されると、ソフトOWC
制御部105では、トルク容量不足による空吹けの発生
を抑制すべく補正トルク容量を設定し、これを解放側摩
擦係合要素(及び締結側摩擦係合要素)のフィードホワ
ード分F/Fに加算する。
イナーシャフェーズ判定部106で検出されると、回転
フィードバック制御部107で、タービン回転速度(入
力軸回転速度)を目標速度に一致させるためのフィード
バック補正分を設定し、これを締結側摩擦係合要素のフ
ィードホワード分F/Fに加算する。
び締結側摩擦係合要素それぞれにおける伝達トルク容量
が決定されると、トルク−油圧変換部108で伝達トル
ク容量を油圧に変換し、更に、この油圧を逆フィルタ1
09で処理して動特性補償を行い、該処理後の油圧を油
圧−デューティ変換部110でソレノイドバルブの制御
デューティに変換して、各ソレノイドバルブの通電を前
記制御デューティで制御させる。
フィルタ109の詳細を、図6の制御ブロック図に従っ
て説明する。前記トルク−油圧変換部108には、解放
側摩擦係合要素及び締結側摩擦係合要素それぞれにおけ
る伝達トルク容量Tが入力されると共に、摩擦係合要素
(クラッチ)の摩擦係数μが入力される。
回転速度Ntとから設定されるクラッチ速度vに基づい
て設定される。前記トルク−油圧変換部108は、前記
伝達トルク容量T及び摩擦係数μと、クラッチ面積A,
リターンスプリング力Frtn,クラッチ枚数N,クラッ
チ径Dとから、指示油圧Pを、 P=1/A(Frtn+k・T/NμD):(kは定数) として算出する。
タ(過渡時油圧補償フィルタ)109は、油圧制御系の
減衰率をζreal、減衰率の目標値をζtgt、油圧制御系
の固有振動数をωreal、固有振動数の目標値をωtgtと
したときに、ラプラス変換を用いて、変換関数(伝達関
数)を(s2+2ζrealωreals+ωreal2)/(s2+
2ζtgtωtgts+ωtgt2)とし、フィルタゲインGAI
Natfを、GAINatf=ω2tgt/ω2realとするフィル
タである。
動数ωrealは、そのときのATF温度(油温)に応じて
設定される構成としてある。一般に、指示油圧に対する
実油圧の動特性は無駄時間と2次遅れとを有し、前記2
次遅れは、固有振動数と減衰率とをパラメータとする伝
達関数で近似され、固有振動数での共振により油圧応答
が悪化することになる。そこで、前記共振点を相殺すべ
く、システム同定したモデル(実際の伝達特性)と、過
渡応答で共振を示さない規範モデル(目標の伝達特性)
との乗算から逆フィルタを構成し、該逆フィルタで油圧
の指示値を処理してソレノイドバルブを制御させること
で、油圧応答を改善している。
衰率をζreal及び固有振動数ωrealが増加するので、A
TF温度(油温)に応じて減衰率をζreal及び固有振動
数ωrealを変更して、精度の良い逆フィルタを設定でき
るようにしてある。
摩擦係合要素に対しては、後述するように変速開始時に
油圧のプリチャージを行うが、該プリチャージにおいて
は、油経路に空気が混じっているため、トルクフェーズ
時等に対して固有振動数ωrealが低く、また、プリチャ
ージ開始からの経過時間によって固有振動数ωrealが変
化する。このため、プリチャージにおける減衰率ζreal
及び固有振動数ωrealを、ATF温度(油温)と空気混
入量に推移に相関するプリチャージ開始からの経過時間
tとに応じた別マップで持たせ、プリチャージ時にこの
マップから検索した減衰率ζreal及び固有振動数ωrea
を用いることで、プリチャージにおける油圧応答を確保
できるようにしてある。
細を、図7のブロック図に従って説明する。前記入力軸
トルク推定部101では、エンジン回転速度Ne[rp
m]と吸入空気流量Qa[リットル/h]とから、シリ
ンダ吸入空気量Tpを求め、該シリンダ吸入空気量Tp
とエンジン回転速度Neとからエンジン発生トルク[N
m]を求める。
度(以下、油温という)に基づいてエンジンフリクショ
ン分を推定し、前記エンジン発生トルクを前記エンジン
フリクション分で減算補正する。
ンジンイナーシャトルクを求め、前記エンジン発生トル
クに加算する。そして、前記エンジン発生トルクに対し
て、エンジン回転速度Ne及び吸入空気流量Qaと、実
際の発生トルクとの間の動特性(一次遅れ及び無駄時
間)に基づく遅れ補正を施す。
/(1+T2s)としてあり、無駄時間時定数T1及び一次遅れ時
定数T2は、それぞれエンジン回転速度Neに応じて設定
される。
転速度Ntとからトルクコンバータの速度比を算出し、
該速度比からトルクコンバータのトルク比を求める。そ
して、前記遅れ補正が施されたエンジン発生トルクに前
記トルク比を乗算することでタービントルクを求め、更
に変速時には変速中の回転変化に見合う変速時イナーシ
ャトルクで前記タービントルクを補正して最終的な入力
軸トルクとする。
の種類に応じたイナーシャ(慣性モーメント)と、目標
変速時間、ギヤ比変化及びイナーシャフェーズ開始時の
タービン回転速度に基づいて求められる目標加速度とか
ら算出される。
摩擦係合要素それぞれの伝達トルク容量の設定制御、即
ち、前記解放FF制御部102、締結FF制御103、
ソフトOWC制御部105、回転フィードバック制御部
107の詳細を、図4のタイムチャートを参照しつつ、
以下に説明する。
圧への変換を、定数を用いて簡易的に行うものとして説
明する。図8のフローチャートは、締結側摩擦係合要素
と解放側摩擦係合要素とに共通のトルク容量制御のメイ
ンルーチンを示す。
トの変速判断を行う。A/Tコントローラ12には、車
速VSPとアクセル開度(スロットル開度)とに応じて
変速段を設定した変速マップが予め記憶されており、例
えば、現在(変速前)の変速段と前記変速マップから検
索した変速段とが異なり、かつ、それがアップシフト方
向であって、かつ、アクセルが全閉でない場合にパワー
オンアップシフトとして判断する。
れると、ステップS2へ進み、トルクフェーズに移行し
たか否かを判別する。例えば、変速機構の出力軸回転速
度No[rpm]に変速前のギヤ比(ギヤ比=タービン回
転Nt/出力軸回転速度No)を乗算して基準タービン
回転速度を求め、この基準タービン回転速度±ヒステリ
シス値HYSの範囲を超えて変速機構の入力軸回転速度
(タービン回転速度)Nt[rpm]が変化したときに、
トルクフェーズへの移行を判別する。
テップS3の準備フェーズ処理を実行させる。前記ステ
ップS3の準備フェーズ処理は、解放側の処理と締結側
の処理とに分かれる。
要素の準備フェーズ処理のメインルーチンを示すもので
あり、ステップS31では、変速の種類、解放制御する
摩擦係合要素の種類及び油温に応じて予め記憶されてい
る所定時間TIMER1だけ変速判断から経過したか否
かを判別する。
テップS32へ進み、解放初期油圧の演算を行う。前記
解放初期油圧は、解放制御を行う初期圧であり、非変速
時の油圧から前記解放初期油圧まで、前記所定時間TI
MER1内で低下させるようにする。
は、図10のフローチャートに詳細に示してあり、ステ
ップS321では、今回解放制御を行う摩擦係合要素の
非変速時油圧Po0(指示圧)を算出する。
o として算出される。
伝達トルク容量を油圧に変換するための係数であり、変
速の種類及び解放制御する摩擦係合要素の種類に応じて
予め記憶されている。Ttは、変速機構の入力軸トルク
の推定値である。Tr-oは、前記入力軸トルクTtに対
して、解放側摩擦係合要素が滑りを生じる臨界伝達トル
ク容量を求めるための解放臨界トルク比である。余裕代
初期値は、前記臨界伝達トルク容量に対して余裕分のト
ルク容量を付加するための補正係数である余裕代の初期
値であり、例えば3.0程度の値として予め記憶されてい
る。Prtn-oは、解放側のスタンバイ圧(解放側リターン
スプリング圧)であり、摩擦係合要素毎に予め記憶され
る。
を行う。前記余裕代は、前記余裕代初期値(=3.0)か
ら所定時間TIMER1経過後に目標値(余裕代
(1))にまで低下させるものとして算出され、具体的
には、経過時間tに対応する余裕代を、 余裕代=初期値×(1−ゲインα×t1/2) として求めるものとする。
裕代の目標値(余裕代(1))を1.2とすれば、所定時
間TIMER1を前記tに代入し、余裕代に1.2を代入
すれば、ゲインαが決定されることになり、このゲイン
αを用いることで経過時間t毎の余裕代が求められるこ
とになる。
の目標値は、入力軸トルクの推定誤差が予想される範囲
内で発生しても、解放側摩擦係合要素が締結状態を保持
できる値として設定される。
求められる経過時間t毎の余裕代を用い、所定時間TI
MER1内における解放側油圧Po1を下式に従って算
出する。
圧を徐々に低下させた後、ステップS33で、トルクフ
ェーズへの移行が判断されるようになるまでの間におい
ては、ステップS34以降へ進む。
行う。前記ステップS34の分担比ランプ制御の詳細
は、図11のフローチャートに示してあり、ステップS
341では、変速の種類及び解放制御する摩擦係合要素
の種類に応じて予め記憶されている所定時間TIMER
2内で、余裕代(1)から余裕代(2)(例えば0.8)
まで一定速度で低下させるものとして、所定時間TIM
ER2内における余裕代を決定する(図12参照)。
ップS341で決定される余裕代を用い、解放側の油圧
Po2を下式に従って算出する。 Po2=K1×(Tt×Tr-o)×余裕代+Prtn-o 尚、前記余裕代(2)(=0.8)は、入力軸トルクの推
定誤差が予想される範囲内で発生しても、解放側摩擦係
合要素を確実に解放状態に移行させることができる値と
して設定される。
行う。前記ステップS35の分担比ランプ制限の詳細
は、図13のフローチャートに示してあり、ステップS
351では、入力軸トルクTtが所定値以下であるか否
かを判別する。
は、前記ステップS34で算出される解放側の油圧Po
2をそのまま用いるべく、ステップS352〜354を
ジャンプして終了させるが、入力軸トルクTtが所定値
以下であればステップS352へ進む。
り小さい値に変更する。例えば標準値を0.8とするとき
に、これを0.6に変更する。上記変更により余裕代(解
放側の油圧Po2)の変化速度がより速くなり、低トル
ク時に変速時間が間延びしてしまうことを防止する。
(2)に基づいて所定時間TIMER2内における余裕
代をステップS341と同様にして再決定する。ステッ
プS354では、新たに決定された余裕代に基づいて解
放側油圧Po2を算出する。
行う。前記ステップS36の分担比ランプ学習の詳細
は、図14のフローチャートに示してあり、ステップS
361では、入力軸トルクTtの推定誤差を補正するト
ルク推定学習が収束しているか否かを判別する。尚、前
記トルク推定学習については後述する。
していると判別されたときには、ステップS362へ進
み、余裕代(1)及び余裕代(2)をそれぞれより1.0
に近い値に変更し、所定時間TIMER2内における余
裕代の勾配を緩くする。例えば、余裕代(1)を1.2か
ら1.1に変更し、余裕代(2)を0.8から0.9に変更す
る。上記余裕代の変更によって、トルクフェーズ初期の
回転変化を緩やかにでき、トルクフェーズにおける制御
性を向上できる。
(1)(2)に基づいて所定時間TIMER2内におけ
る余裕代をステップS341と同様にして再決定する。
ステップS364では、新たに決定された余裕代に基づ
いて解放側油圧Po2を算出する。
間TIMER1内における余裕代の変化も変更されるこ
とになる。上記のように、余裕代の減少設定に伴って解
放側の油圧を所定時間TIMER2内で徐々に減少させ
ると、基準タービン回転(No×ギヤ比)とヒステリシ
ス値HYSとの加算値よりもタービン回転速度Ntが高
いエンジンの空吹け状態が検出されることで、解放側の
伝達トルク容量が臨界付近にまで低下したことを間接的
に知ることができる。
で、基準タービン回転(No×ギヤ比)とヒステリシス
値HYSとの加算値よりもタービン回転速度Ntが高く
なることが理想であるが、入力軸トルクTtの推定誤差
があると、余裕代が1.0よりも大きい状態又は1.0よりも
小さくなってからエンジンの空吹けが生じることにな
り、前記入力軸トルクTtの推定誤差を見込んで、前記
所定時間TIMER2内での余裕代の変化範囲を、1.0
を中心に広く(例えば1.2〜0.8)確保する必要が生じ
る。
でギヤ比が変化し始めたとすると、入力軸トルクの推定
において実際値よりも小さく推定したため、本来、伝達
トルク容量に余裕があることで締結状態を保持できる油
圧であるのに滑り始めたものと判断され、逆に、例えば
余裕代=0.9に相当する解放側油圧でギヤ比が変化し始
めたとすると、入力軸トルクの推定において実際値より
も大きく推定したため、本来の締結状態を保持できない
油圧(伝達トルク容量)まで既に低下しているのに、滑
り始めが遅れたものと判断される。
比)とヒステリシス値HYSとの加算値よりもタービン
回転速度Ntが初めて高くなった時点で、ステップS3
7へ進み、そのときの余裕代に基づいて入力軸トルク推
定値を補正するための補正係数を求めるトルク推定学習
を行う前記ステップS37のトルク推定学習の詳細は、
図15のフローチャートに示してあり、ステップS37
1では、基準タービン回転(No×ギヤ比)とヒステリ
シス値HYSとの加算値よりもタービン回転速度Ntが
初めて高くなった時点での余裕代を求める。尚、空吹け
の検出には遅れが生じるので、基準タービン回転(No
×ギヤ比)とヒステリシス値HYSとの加算値よりもタ
ービン回転速度Ntが初めて高くなったと判断された時
点から所定時間前の余裕代を、空吹け発生時の余裕代と
することが好ましい。
に、1.0とエンジンの空吹け発生時の余裕代Trとの偏
差(Tr−1)に応じて入力軸トルクの補正係数Kttを
記憶したテーブルを予め記憶しており、前記ステップS
371で求められた余裕代Trに基づいて前記テーブル
を参照し、補正係数Kttを求める。
0であるときに1.0に、余裕代Trが1.0よりも小さい時
には1.0よりも小さい値に、余裕代Trが1.0よりも大き
い時には1.0よりも大きい値に設定され、前記余裕代T
rが1.0のときにエンジンの空吹けが発生するように、
入力軸トルクの推定値を補正する。
補正係数Kttによる補正要求を含んで入力軸トルクを推
定するように学習される構成としてある。また、前記補
正係数Kttは、所定の上下限値内に制限されると共に、
前記補正係数Kttの学習は、ATF温度が所定温度以上
であるときに行わせるようになっている。
7のフローチャートに示される。ステップS41では、
トルクフェーズへの移行を判定する。そして、トルクフ
ェーズへの移行を判定されるまでの準備フェーズの間、
ステップS42へ進む。
の基準プリチャージ圧(スタンバイ圧)を、摩擦係合要
素の種類に応じて設定する。ステップS43では、前記
逆フィルタ(過渡時油圧補償フィルタ)109において
用いる減衰率ζreal及び固有振動数ωrealを、ATF温
度とプリチャージ開始からの経過時間tとに応じてプリ
チャージ用のマップから検索させるようにする。そし
て、プリチャージ用のマップから求めた減衰率ζreal及
び固有振動数ωrealによる逆フィルタ(過渡時油圧補償
フィルタ)109で、前記基準プリチャージ圧(スタン
バイ圧)を処理させて、その結果を最終的な締結側油圧
Po0として出力する。
経過時間が前記所定時間TIMER1を超えたか否かを
判別し、前記所定時間TIMER1を超えるとステップ
S45の分担比ランプ制御へ進む。
は、図18のフローチャートに示してあり、ステップS
451では、所定時間TIMER2内で、余裕代(1)
(例えば0.8)から余裕代(2)(例えば1.2)まで一定
速度で増大させるものとして、所定時間TIMER2内
における余裕代(単位時間当たりの余裕代のステップ増
加量)を決定する(図19参照)。
ップS451で決定される余裕代を用い、締結側の油圧
Pc2を下式に従って算出する。 Pc2=K2×(Tt×Tr-c)×余裕代+Prtn-c ここで、K2は、締結側の摩擦係合要素の伝達トルク容
量(必要伝達トルク容量)を油圧に変換するための係数
であり、変速の種類及び解放制御する摩擦係合要素の種
類に応じて予め記憶されている。Tr-cは、入力軸トル
クTtに対して、締結側の摩擦係合要素が締結し始める
臨界伝達トルク容量を求めるための締結臨界トルク比で
ある。Prtn-cは、締結側のスタンバイ圧(締結側リター
ンスプリング圧)であり、摩擦係合要素毎に予め記憶さ
れる。
て説明を続けると、ステップS2でトルクフェーズへの
移行が判定されると、ステップS4へ進み、ギヤ比がF
/B(フィードバック)開始ギヤ比を超えてアップシフ
ト方向に変化したか否かを判別する。そして、エンジン
の空吹けが判定されてから、F/B開始ギヤ比を超えて
アップシフト方向に変化するまでは、ステップS5のト
ルクフェーズ処理を行わせる。
(ソフトOWC制御)では、前記準備フェーズにおける
余裕代の減少制御をそのままの速度で継続させて求めら
れる解放側油圧Po2に、伝達トルク容量の不足を補っ
て空吹けを抑制するための補正油圧Po3を加算して、
最終的な解放側油圧Po4を求める。
されるように、まず、ステップS51で、タービン回転
速度Ntの微分値ΔNt及びタービン回転速度Ntの変
化量に応じた解放補正油圧Po3を、下式に従って算出
する。
×ΔNt+1/g(Nt−No×i)} ここで、INSは変速の種類毎に決められるイナーシャ
(慣性モーメント)、gはクラッチトルクを回転速度に
変換するゲインであり、変速の種類及びタービン回転速
度Ntに応じて設定される。また、iは変速前のギヤ比
であり、No×iは基準タービン回転速度(基準入力軸
回転速度)となる。
tとして求められる第1補正値、又は、第2補正値とし
てのK1×1/g×(Nt−No×i)のいずれか一方
を最終的な補正値としても良いが、回転変化に伴うイナ
ーシャトルクに対応して伝達トルク容量を補正する第1
補正値と、回転の上昇変化分に見合う第2補正値との加
算値を最終的な補正値とすることで、伝達トルク容量の
不足をより精度良くかつ応答良く補正することができ、
空吹けをより効果的に抑制できる。
けを抑制するための、タービン回転速度Ntの微分値Δ
Ntに応じた油圧(伝達トルク容量)の補正は、解放側
と締結側との少なくとも一方に施す構成であれば良い。
る余裕代の減少制御をそのままの速度で継続させて設定
される余裕代に基づき算出される解放側油圧Po2に、
前記解放補正油圧Po3を加算して、その結果を最終的
な解放側油圧Po4とする(Po4=Po2+Po
3)。
油圧Po2を下回ることがないように、制限を加えるよ
うにしてある。また、解放補正油圧Po3の演算に用い
るタービン回転速度の微分値ΔNtとして、ローパスフ
ィルタ処理後の値を用いるようにしてある。
ズ処理の様子は、図21のフローチャートに示してあ
る。図21のフローチャートにおいて、ステップS61
で、トルクフェーズへの移行が判定されると、ステップ
S62へ進み、ギヤ比がF/B開始ギヤ比を超えてアッ
プシフト方向に変化したか否かを判別する。そして、F
/B開始ギヤ比を超えていないと、ステップS63へ進
む。
おける余裕代の増大制御をそのままの速度で継続させて
設定される余裕代に基づき締結側油圧Pc2を求める。
ステップS64では、前記ステップS51と同様にし
て、締結補正油圧Pc3を、下式に従って算出する。
×ΔNt+1/g(Nt−No×i)} そして、Pc2+Pc3=Pc4として最終的な締結側
油圧Pc4を求める。
t(入力軸回転速度)と基準タービン回転速度(No×
変速前ギヤ比i;基準入力軸回転速度)との偏差の微分
値を、タービン回転速度Ntの変化量を示す空吹け量と
して算出する。
tの変化量であって、かつ、前記変化量は、基準タービ
ン回転速度(No×i)に対する偏差として算出され
る。
称を用いたが、上記d/dt・(Nt−No×i)は、
プラスの値であれば空吹けによる回転上昇変化を示し、
マイナスであればトルク引けによる回転減少変化を示す
ことになる。
で求められた上記空吹け量を積算して空吹け量積算値を
求める。
から所定時間TIMER8が経過した時点であるか否か
を判別する。前記所定時間TIMER8は、当該変速で
締結制御される摩擦係合要素の種類に応じて設定され
る。尚、変速の種類毎(2速→3速、3速→4速等)
に、締結制御される摩擦係合要素が決定されるので、変
速の種類毎に前記所定時間を設定する構成としても実質
的には同じである。
所定時間TIMER8が経過した時点であることが判別
されると、ステップS68へ進み、それまでに積算され
た空吹け量積算値=Σ(d/dt・(Nt−No×
i))に応じて、締結側摩擦係合要素の余裕代のランプ
勾配(単位時間当たりの余裕代のステップ増加量)を変
更するための補正係数GAIN(>0)を設定する。
ときにランプ勾配を実質的に変更せず、1.0を超えると
き{GAIN>1.0}に締結側摩擦係合要素の余裕代
(伝達トルク容量)の上昇速度をより速くし、1.0を下
回るとき{0<GAIN<1.0}に締結側摩擦係合要素の
余裕代(伝達トルク容量)の上昇速度を遅くするもので
ある。
吹け量積算値が、プラスの所定値yyよりも大きく、大き
な空吹けが発生していると判断されるときには、締結側
の余裕代(伝達トルク容量)の増大速度をより速めるべ
く、前記補正係数GAINとして1.0を超える値を設定
する。ここで、図22に示すように、0≦空吹け量積算
値≦所定値yyであるときに、補正係数GAINを1.0と
し、空吹け量積算値が所定値yyよりも大きくなるほど、
補正係数GAINをより大きな値とすることが好まし
い。
点の空吹け量積算値が、マイナスの所定値xxよりも小さ
く、大きなトルク引けが発生していると判断されるとき
には、締結側の余裕代(伝達トルク容量)の増大速度を
遅くすべく、前記補正係数GAINとして1.0を下回る
値を設定する。ここで、図22に示すように、所定値xx
≦空吹け量積算値≦0であるときに{xx≦空吹け量積算
値≦yy}、補正係数GAINを1.0とし、空吹け量積算
値が所定値xxよりも小さくなるほど、補正係数GAIN
をより小さな値とすることが好ましい。
から所定時間TIMER8以上経過しているか否かを判
別し、所定時間TIMER8以上経過しているときに
は、ステップS70へ進み、前記ステップS68で設定
された補正係数GAINにより締結側摩擦係合要素の余
裕代のランプ勾配を変更して、締結側摩擦係合要素の油
圧を演算させる。
において空吹けが発生すると、トルクフェーズ開始から
所定時間TIMER8が経過した時点での空吹け量積算
値がプラスの所定値yyよりも大きいことで空吹けの発生
が判別され、補正係数GAINとして1.0よりも大きな
値が設定されることで、所定時間TIMER8が経過し
た時点以降のトルクフェーズにおける締結側余裕代の上
昇速度がそれまでよりも速くなる。従って、締結側摩擦
係合要素の伝達トルク容量(係合油圧)が、所定時間T
IMER8の経過後にそれまでよりもより急に増大する
ことで、絶対的な伝達トルク容量が余裕代のランプ勾配
を補正しない場合に比べて大きくなり、空吹けを可及的
速やかに抑制する。
が発生すると、上記の空吹け発生時とは逆に、締結側摩
擦係合要素の伝達トルク容量(係合油圧)が、所定時間
TIMER8の経過後にそれまでよりもより速度を遅く
して増大することで、絶対的な伝達トルク容量が余裕代
のランプ勾配を補正しない場合に比べて小さくなり、ト
ルク引けを可及的速やかに抑制する。
補正係数GAINを設定させたが、トルクフェーズ開始
から所定時間TIMER8が経過した時点での空吹け量
=d/dt・(Nt−No×i)に基づいて、補正係数
GAINを設定させる構成としても良い。この場合も、
前記空吹け量積算値に基づく補正係数GAINの設定と
同様に、所定時間TIMER8が経過した時点での空吹
け量がプラスの所定値よりも大きいときに、補正係数G
AINを1.0よりも大きな値に設定し、所定時間TIM
ER8が経過した時点での空吹け量がマイナスの所定値
よりも小さいときに、補正係数GAINを1.0よりも小
さな値に設定すれば良い。
点での空吹け量又は空吹け量積算値が、プラスの所定値
よりも大きいとき、又は、マイナスの所定値よりも小さ
いときに、補正係数GAINとして一律の値を設定する
構成としても良い。
合要素のトルクフェーズまでの制御を、図23のブロッ
ク図に従って概略説明する。尚、前記図23のブロック
図は、図5における解放側F/F制御部102、締結側
F/F制御部103、トルクフェーズ判定部104、ソ
フトOWC制御部105の詳細な構成を示すことにな
る。
力軸トルクと変速の種類に応じた臨界トルク比とから求
められる臨界トルクに余裕代を付加して決定される構成
である。尚、締結側の油圧については、変速開始時にプ
リチャージが行われる。
裕代の増大として増大変化させる一方、解放側の油圧
(トルク容量)を余裕代を減少させることで減少させて
いき、必要トルク容量の分担が解放側から締結側へ徐々
に推移するようにする。また、トルク容量不足による空
吹けに対しては、本実施形態でソフトOWC制御として
説明したタービン回転速度の変化に応じた補正を施して
対応している。
tはタービン回転角速度を示し、ω(ドット)tは、タ
ービン回転角速度ωtの微分値であり、油圧(トルク容
量)の補正結果としては、前記Po3と同じになる。
ギヤ比がF/B開始ギヤ比を超えたと判別されると、ス
テップS6へ進み、ギヤ比がF/B終了ギヤ比(<F/
B開始ギヤ比)を超えたか否かを判別する。
ヤ比との間であるときには、ステップS7のイナーシャ
フェーズ処理を行わせる。解放側のイナーシャフェーズ
処理は、図24のフローチャートに示してあり、ステッ
プS71でトルクフェーズ終了時の油圧(油圧=0)を
保持させる設定を行う。
は、図25のフローチャートに示される。図25のフロ
ーチャートにおいて、ステップS81では、図26のフ
ローチャートに示される基本制御を行う。
S811で、目標イナーシャトルクTinr[Nm]を、
下式に従って算出する。 Tinr=イナーシャINS×目標タービン角加速度[rad
/sec2] 上式でイナーシャINS(慣性モーメント)[Nm/rad
/sec2]は、変速の種類に応じて決定される値である。
は、 目標タービン角加速度[rad/sec2]=2×π×目標ター
ビン加速度[1/sec2]/60 として算出され、前記目標タービン加速度[1/sec2]
は、 目標タービン加速度[1/sec2]=(Nt×ギヤ段差)
/(目標変速時間[sec]) 上式でギヤ段差は、ギヤ段差=1−(変速後ギヤ比/変
速前ギヤ比)として算出される値であり、Nt[rpm]
はイナーシャフェーズ開始時のタービン回転速度であ
る。
ャトルクTinrに基づいて締結側油圧Pc7を下式に従
って算出する。 Pc7=K2×Tt×Tr×Tr-c+Prtn-c+K2×Tr
-c×Tinr 上記基本制御に加え、ステップS82では、回転フィー
ドバック(F/B)制御を実行する。
制御部107)を、図27のフローチャートに従って説
明する。ステップS821では、目標タービン回転速度
[rpm]を算出する。
フェーズ開始時のタービン回転速度Nt[rpm]と前記
目標タービン加速度[1/sec2]とに基づき、イナーシ
ャフェーズ開始時のタービン回転速度Nt[rpm]から
目標タービン加速度[1/sec2]で減少変化する特性と
して算出される(目標タービン速度(n)=目標タービン
速度(n-1)+目標タービン加速度)。
速度と実際の目標タービン回転速度との偏差(偏差=目
標タービン回転速度−実際の目標タービン回転速度)に
基づき、比例・積分・微分(PID)動作によってフィ
ードバック補正油圧を算出する。
c7にフィードバック補正油圧を加算して、締結側油圧
Pc8を求める。更に、ステップS83では、目標ター
ビン回転速度を得るために前記PIDと並行して実行さ
せる、本実施の形態において外乱オブザーバ制御と称す
る制御を行う。
のブロック図を参照しつつ、図28のフローチャートに
従って説明する。ステップS831では、前記目標ター
ビン回転速度に、目標タービン回転速度と実際の目標タ
ービン回転速度との偏差(偏差=目標タービン回転速度
−実際の目標タービン回転速度)を加算して、該加算結
果を微分し、更に、該微分値をローパスフィルタで処理
して高周波成分をカットする。また、実際のタービン回
転速度を微分し、該微分値をローパスフィルタで処理し
て高周波成分をカットする。
を、18Hz程度とすることが好ましい。ステップS8
32では、目標タービン回転速度と偏差(偏差=目標タ
ービン回転速度−実際の目標タービン回転速度)との加
算値を微分し、ローパスフィルタで処理した値を、2次
遅れフィルタで処理する。
/(s2+2ζωns+ωn 2)とするフィルタであり、減
衰率ζ及び固有振動数ωをATF温度(油温)に応じて
変更するようにしてある。
及び2次遅れフィルタで処理された[目標タービン回転
速度+偏差]の微分値と、ローパスフィルタで処理した
実際のタービン回転速度の微分値との偏差である微分値
偏差から、補正油圧Pobsを下式に従って演算する。
ec2]は、変速の種類に応じて決定される値である。
側油圧Pc8に補正油圧Pobsを加算して最終的な締結
側油圧Pc9を求める。ギヤ比がF/B終了ギヤ比より
も小さくなったことが、図8のフローチャートのステッ
プS6で判別されると、ステップS6からステップS8
へ進み、ギヤ比がF/B終了ギヤ比よりも初めて小さく
なった時点から所定時間TIMER7だけ経過したか否
かを判別する。
ば、ステップS9へ進んで、終了フェーズ処理を行う。
解放側摩擦係合要素についての終了フェーズ処理は、図
30のフローチャートに示してあり、ステップS91で
イナーシャフェーズ終了時の油圧を保持する設定を行
う。即ち、解放側摩擦係合要素の油圧は、イナーシャフ
ェーズ及び終了フェーズにおいて、ギヤ比がF/B開始
ギヤ比よりも小さくなった時点の値に保持されることに
なる。
処理は、図31のフローチャートに示され、ステップS
101では、ギヤ比がF/B終了ギヤ比よりも初めて小
さくなった時点から所定時間TIMER7内であるか否
かを判別し、所定時間TIMER7内であればステップ
S102へ進んで、終了フェーズ処理を実行する。
の詳細は、図32のフローチャートに示してあり、ステ
ップS111では、締結臨界トルクに相当する油圧から
締結臨界トルクの1.2倍に相当する油圧まで、前記所定
時間TIMER7内で上昇させるランプ勾配Rmp-Tr2の
設定を行う。尚、前記所定時間TIMER7は、変速及
び摩擦係合要素の種類に応じて設定される。
10を、 Pc10=K2×Tt×Tr-c×(1+0.2×Rmp-Tr2)
+Prtn-c+K2×Tr-c×Tinr として算出する。
した時点で、締結側の指示圧を、前記Pc10から、最
大圧までステップ変化させる。
す図。
の組み合わせと変速段との相関を示す図。
よる変速の様子を示すタイムチャート。
ク図。
クを示す制御ブロック図。
ブロック図。
速制御のメインルーチンを示すフローチャート。
フローチャート。
ける解放初期油圧演算を示すフローチャート。
ける分担比ランプ制御を示すフローチャート。
を示す線図。
ける分担比ランプ制限を示すフローチャート。
ける分担比ランプ学習を示すフローチャート。
けるトルク推定学習を示すフローチャート。
補正係数の特性を示す線図。
すフローチャート。
ける分担比ランプ制御を示すフローチャート。
ける余裕代の変化を示す線図。
示すフローチャート。
示すフローチャート。
のランプ勾配の補正係数の特性を示す線図。
及び空吹け制御を行うブロックを示す制御ブロック図。
理を示すフローチャート。
理を示すフローチャート。
理における基本制御を示すフローチャート。
理における回転フィードバック制御を示すフローチャー
ト。
理における外乱オブザーバ制御を示すフローチャート。
理における回転フィードバック制御及び外乱オブザーバ
制御を行うブロックを示す制御ブロック図。
すフローチャート。
すフローチャート。
細を示すフローチャート。
Claims (7)
- 【請求項1】異なる2つの摩擦係合要素の締結制御と解
放制御とを同時に行う摩擦係合要素の掛け替えによって
変速を行うよう構成された自動変速機の制御装置であっ
て、 トルクフェーズにおける変速機構の入力軸回転速度の変
化量に応じて、前記トルクフェーズにおける締結側摩擦
係合要素の伝達トルク容量を変更することを特徴とする
自動変速機の制御装置。 - 【請求項2】前記入力軸回転速度の変化量を、前記入力
軸回転速度と、変速前のギヤ比と変速機構の出力軸回転
速度とから算出される基準入力軸回転速度との偏差とし
て算出することを特徴とする請求項1記載の自動変速機
の制御装置。 - 【請求項3】前記入力軸回転速度の変化量を、単位時間
当たりの変化量として算出することを特徴とする請求項
1又は2に記載の自動変速機の制御装置。 - 【請求項4】前記入力軸回転速度の変化量の積算値に応
じて、前記トルクフェーズにおける締結側摩擦係合要素
の伝達トルク容量を変更することを特徴とする請求項1
〜3のいずれか1つに記載の自動変速機の制御装置。 - 【請求項5】前記トルクフェーズの開始から所定時間が
経過した時点の前記入力軸回転速度の変化量に基づい
て、その後のトルクフェーズにおける締結側摩擦係合要
素の伝達トルク容量を変更することを特徴とする請求項
1〜4のいずれか1つに記載の自動変速機の制御装置。 - 【請求項6】前記所定時間を、前記トルクフェーズで締
結させる摩擦係合要素の種類に応じて変更することを特
徴とする請求項5記載の自動変速機の制御装置。 - 【請求項7】前記摩擦係合要素の伝達トルク容量を、変
速機構の入力軸トルク,臨界トルク比及び余裕代に基づ
いて決定する構成であって、前記余裕代を時間と共に変
化させてトルクフェーズにおける各摩擦係合要素の伝達
トルク容量を決定する構成であり、前記締結側摩擦係合
要素の余裕代の変化勾配を変更することで、前記締結側
摩擦係合要素の伝達トルク容量を変更することを特徴と
する請求項1〜6のいずれか1つに記載の自動変速機の
制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000041680A JP3859927B2 (ja) | 2000-02-18 | 2000-02-18 | 自動変速機の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000041680A JP3859927B2 (ja) | 2000-02-18 | 2000-02-18 | 自動変速機の制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001227637A true JP2001227637A (ja) | 2001-08-24 |
JP3859927B2 JP3859927B2 (ja) | 2006-12-20 |
Family
ID=18564877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000041680A Expired - Fee Related JP3859927B2 (ja) | 2000-02-18 | 2000-02-18 | 自動変速機の制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3859927B2 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005172230A (ja) * | 2003-12-05 | 2005-06-30 | Hyundai Motor Co Ltd | 自動変速機の変速制御システム及びそのパワーオン2−3アップシフト制御方法 |
US9315193B2 (en) | 2012-05-08 | 2016-04-19 | Toyota Jidosha Kabushiki Kaisha | Speed change control system for vehicles |
US9333973B2 (en) | 2012-05-08 | 2016-05-10 | Toyota Jidosha Kabushiki Kaisha | Speed change control system for vehicles |
CN115199419A (zh) * | 2022-06-24 | 2022-10-18 | 潍柴动力股份有限公司 | 发动机转速的控制方法以及其装置 |
-
2000
- 2000-02-18 JP JP2000041680A patent/JP3859927B2/ja not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005172230A (ja) * | 2003-12-05 | 2005-06-30 | Hyundai Motor Co Ltd | 自動変速機の変速制御システム及びそのパワーオン2−3アップシフト制御方法 |
JP4730763B2 (ja) * | 2003-12-05 | 2011-07-20 | 現代自動車株式会社 | 自動変速機のパワーオン2−3アップシフト制御方法 |
US9315193B2 (en) | 2012-05-08 | 2016-04-19 | Toyota Jidosha Kabushiki Kaisha | Speed change control system for vehicles |
US9333973B2 (en) | 2012-05-08 | 2016-05-10 | Toyota Jidosha Kabushiki Kaisha | Speed change control system for vehicles |
DE112012006363B4 (de) | 2012-05-08 | 2019-05-23 | Toyota Jidosha Kabushiki Kaisha | Drehzahlveränderungssteuersystem für Fahrzeuge |
DE112012006344B4 (de) | 2012-05-08 | 2019-06-13 | Toyota Jidosha Kabushiki Kaisha | Drehzahlveränderungssteuersystem für Fahrzeuge |
DE112012006363B8 (de) * | 2012-05-08 | 2019-08-01 | Toyota Jidosha Kabushiki Kaisha | Drehzahlveränderungssteuersystem für Fahrzeuge |
DE112012006344B8 (de) * | 2012-05-08 | 2019-08-08 | Toyota Jidosha Kabushiki Kaisha | Drehzahlveränderungssteuersystem für Fahrzeuge |
CN115199419A (zh) * | 2022-06-24 | 2022-10-18 | 潍柴动力股份有限公司 | 发动机转速的控制方法以及其装置 |
CN115199419B (zh) * | 2022-06-24 | 2024-04-16 | 潍柴动力股份有限公司 | 发动机转速的控制方法以及其装置 |
Also Published As
Publication number | Publication date |
---|---|
JP3859927B2 (ja) | 2006-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001235024A (ja) | 自動変速機の制御装置 | |
JP2001221337A (ja) | 自動変速機の制御装置 | |
JP2001227637A (ja) | 自動変速機の制御装置 | |
JP2001227634A (ja) | 自動変速機の制御装置 | |
JP3816710B2 (ja) | 自動変速機の制御装置 | |
JP3395561B2 (ja) | 自動変速機の変速制御装置 | |
JP3759362B2 (ja) | 自動変速機の制御装置 | |
JP2001182820A (ja) | 自動変速機の制御装置 | |
JP2001221333A (ja) | 自動変速機の制御装置 | |
JP3905675B2 (ja) | 自動変速機の制御装置 | |
JP3685653B2 (ja) | 自動変速機の変速制御装置 | |
JP3762175B2 (ja) | 自動変速機の制御装置 | |
JP2001182822A (ja) | 自動変速機の制御装置 | |
JP2001182819A (ja) | 自動変速機の油圧制御装置 | |
JP2000170890A (ja) | 自動変速機 | |
JP3691293B2 (ja) | 自動変速機の変速制御装置 | |
JP2002039362A (ja) | 車両用自動変速機の制御装置 | |
JP3712894B2 (ja) | 自動変速機の変速制御装置 | |
JP3685652B2 (ja) | 自動変速機の変速制御装置 | |
JP2002039361A (ja) | 車両用自動変速機の制御装置 | |
JP2002039354A (ja) | 車両用自動変速機の制御装置 | |
JP2002276788A (ja) | 自動変速機の変速制御装置 | |
JP2001021030A (ja) | 自動変速機の変速制御装置 | |
JP2002039355A (ja) | 車両用自動変速機の制御装置 | |
JP3730470B2 (ja) | 自動変速機の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20041217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060530 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060920 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110929 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |