JP2001042269A - 光透過性光学用材料 - Google Patents

光透過性光学用材料

Info

Publication number
JP2001042269A
JP2001042269A JP11211364A JP21136499A JP2001042269A JP 2001042269 A JP2001042269 A JP 2001042269A JP 11211364 A JP11211364 A JP 11211364A JP 21136499 A JP21136499 A JP 21136499A JP 2001042269 A JP2001042269 A JP 2001042269A
Authority
JP
Japan
Prior art keywords
light
optical material
fine particles
refractive index
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11211364A
Other languages
English (en)
Other versions
JP3980793B2 (ja
Inventor
Mitsuo Saito
光雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP21136499A priority Critical patent/JP3980793B2/ja
Publication of JP2001042269A publication Critical patent/JP2001042269A/ja
Application granted granted Critical
Publication of JP3980793B2 publication Critical patent/JP3980793B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)

Abstract

(57)【要約】 【課題】1)(透明性が良く、高屈折率な光学用材
料)、2)(透明性が良く、光反射率の低い光学用材
料)、3)(透明性が良く、紫外線透過率の低い光学用
材料)を提供する事にある。 【解決手段】1)500nm波長光に対する屈折率が1.
62〜3.1である微粒子が結合剤中に分散され、該微
粒子が水溶性高分子の0.10〜20.0重量%水溶液
中で金属エステルまたは金属塩の加水分解過程またはそ
の縮合過程を経て形成され、ハロゲン化銀粒子を含まな
い光学用材料。 2)該屈折率が1.0〜1.40である微粒子が分子間
架橋された有機高分子結合剤中に分散され、ハロゲン化
銀粒子を含まない光学用材料。 3)該1)の光学用材料の紫外光透過率(透過紫外光光量
/入射した紫外光光量)が0.0〜0.90である光学
用材料。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は光透過性光学用材料
に関し、整形が容易で、屈折率を広い範囲で自由に選択
できる光透過性光学用材料と、光反射防止用光学用材
料、および紫外線吸収の光学用材料に関する。
【0002】
【従来の技術】光透過性光学材料には従来、無機光学材
料(B1)(例えば酸化ケイ素系ガラス等)と有機高分子
光学材料(B2)(例えばプラスチックレンズ等)があ
る。B2は整形加工し易く、迅速な大量生産性があり、
非球面レンズ形成もでき、割れにくいという利点を有す
るが、屈折率が低く、軟らかく、傷つき易い事、吸湿性
があり(大気の湿度により膨潤し、光学特性が変化す
る)、耐性が低い事、レンズの光学像の解像度が低く、
透明性が劣るという欠点を有する(例えば複屈折性があ
り、色収差が大きい事等)。一方、B1 は硬くて傷つき
にくく、耐熱性が高く、該吸湿性が小さい事、屈折率は
2 よりは少し大きく、該解像度が高いという利点を有
するが、衝撃で割れ易く、整形性が悪く(射出成形がで
きなく、非球面加工ができない等)、迅速な大量生産性
が悪いという欠点を有する。従って現状では、両者とも
不満足で、それらの欠点のない新しい光学材料が求めら
れている。即ち、1)該整形加工性が良く、2)屈折率
値を自由に連続的に選択でき、高い屈折率が得られる
事、3)耐衝撃性があり、割れにくい事、4)着色性が
少なく、広い波長域において可視光の光透過率が高い
事、5)耐熱性が良く、6)レンズの該解像が高く、光
線収差や色収差の少ない非球面レンズが提供できる事、
7)吸湿性が小さく、8)傷つきにくい、光学材料が求
められている。材料の屈折率値が高い場合、より薄いレ
ンズで目的物を作る事ができ、より軽量なレンズを提供
する事ができる。従って高屈折率である事が要求されて
いる。しかし、例えばダイヤモンドは高屈折率で光透過
波長域が広いが、硬すぎて該整形性に難点があり、大き
な単結晶が得られないという欠点がある。一方、目の中
に入れるコンタクトレンズの場合は水に対する膨潤性を
有し、軟らかく、かつ、高屈折率で酸素を通過させる特
性も要求される。パーソナルコンピューターやワードプ
ロセッサーやテレビの画面の表面がテカテカ光って画面
が見にくいという問題がある。スリガラスの如く、物質
表面に凹凸を形成し、表面で乱反射させる事によっても
該光沢を抑制できるが、それにより識字率が低下すると
いう問題がある。これは画面上により低屈折率の反射防
止膜を設置すれば、該光反射が抑制され、見易くなる。
その為、500nm波長光に対する屈折率が1.10〜
1.45領域の光反射防止用の低屈折率材料も求められ
ているが、希望通りの屈折率材料が簡単に得られないと
いう状況である。紫外線カット用の光学材料の場合、整
形性、耐光性、安価性、曲げ易さが要求される。有機化
合物の紫外線吸収剤は光劣化が大きいし、無機材料では
整形性、曲げ易さに難点がある。本発明はこれらの要求
を実現するものである。有機高分子材料中に種々の金属
酸化物微粒子を混入し、該材料の屈折率を高め、これを
プラスチックレンズ上に塗布し、該レンズの表面特性を
改良する試み、またそれを光学材料に用いる試みが多く
提案されているが、その多くは市販の該微粒子をそのま
ま該材料と混合して調製したものが多い。市販の微粒子
は小さい一次粒子から成るが、一次粒子どうしが30個
以上合着凝集し3次元構造をもつ粒子が全粒子の90モ
ル%以上を占める粒子である。例えば特開平10−62
904号にはこの状況を反映して、一次粒子径の規定が
記載されている。該凝集粒子を用いた場合、それらの改
良効果は小さく、更なる改善が望まれている。これらに
関しては特表平9−500974号、特開平2−178
219号、同5−264806号、同7−76671
号、同9−21901号、同8−48940号、同7−
247306号、同5−295391号の記載を参考に
する事ができる。
【0003】
【発明が解決しようとする課題】整形が容易で、耐熱性
が良く、耐衝撃性があり、屈折率を自由に選択でき、広
い波長範囲の光に対して透過性が良く、かつ、染色性が
良い光透過性光学用材料、光反射防止用光学材料を提供
する。更には水に対する膨潤性を有し、酸素を通過させ
る高屈折率コンタクトレンズを提供する事にある。更に
は整形性、耐光性、曲げ易さに優れた安価な紫外線カッ
ト用光学材料を提供する。
【0004】
【課題を解決するための手段】(I)本発明の目的は次
項によって達成された。 (1)重量平均分子量が103 〜3×106 、好ましく
は3000〜106 である有機高分子または無機ガラス
から成る結合剤中に球相当直径(nm)〔粒子と等体積の球
の直径で表わした値〕が0.10〜300、好ましくは
0.10〜100、より好ましくは0.10〜50で、
500nm波長光に対する屈折率が1.62〜3.1、好
ましくは1.70〜3.1である微粒子が分散された光
透過性光学用材料であり、その500〜600nm、好ま
しくは450〜650nm、より好ましくは400〜70
0nm波長光に対する平行光濃度〔=−log(透過平行光量
/入射平行光量)〕が0.0〜1.0、好ましくは0.
0〜0.30、より好ましくは0.0〜0.10であ
り、該微粒子の体積含率(該微粒子が占める総体積/該
材料の総体積)が0.05〜0.98、好ましくは0.
10〜0.95、より好ましくは0.20〜0.90で
あり、該材料がハロゲン化銀粒子を実質的に含まない非
感光性材料であり、該微粒子が下記(a) 項に記載の元素
の1種以上の酸化物または含水酸化物であり、該材料の
該波長光に対する屈折率が、該微粒子が存在しない場合
の屈折率よりも0.05〜0.80、好ましくは0.1
〜0.80、より好ましくは0.20〜0.80だけ高
い事、該微粒子が水溶性高分子を0.01〜20、好ま
しくは0.1〜10重量%含有する水溶液中で金属エス
テルまたは金属塩の加水分解過程またはその縮合過程を
経て形成された事を特徴とする光透過性光学用材料。 (a)長周期型元素周期表において原子番号5〜92、
好ましくは12〜83であり、第16〜第18族元素、
好ましくは第1族、第15〜第18族元素を除く元素。
【0005】(2)重量平均分子量が103 〜3×10
6 、好ましくは3000〜106 である有機高分子が共
有結合または配位結合で分子間架橋された分散媒を重量
%で10.0〜100、好ましくは30〜100、より
好ましくは60〜100、更に好ましくは80〜100
含有するバインダー中に球相当直径(nm)〔粒子と等体積
の球の直径で表わした値〕が0.10〜300、好まし
くは0.1〜100、より好ましくは0.10〜50で
あり、500nm光に対する屈折率が1.62〜3.1、
好ましくは1.70〜3.1である無機質の微粒子が分
散された光透過性光学用材料であり、その500〜60
0nm、好ましくは450〜650nm、より好ましくは4
00〜700nm波長光に対する平行光濃度〔=−log(透
過平行光量/入射平行光量)〕が0.0〜1.0、好ま
しくは0.0〜0.30、より好ましくは0.0〜0.
10であり、該微粒子の体積含率(該微粒子が占める総
体積/該材料の総体積)が0.05〜0.98、好まし
くは0.10〜0.95、より好ましくは0.20〜
0.90であり、該材料がハロゲン化銀粒子を実質的に
含まない非感光性材料であり、該材料の該波長光に対す
る屈折率が該微粒子が存在しない場合の屈折率よりも
0.05〜0.80だけ高い事を特徴とする光学用材
料。
【0006】(3)該有機高分子が水溶性高分子であ
り、水に対する平衡溶解度〔50℃の水1000mlに対
する溶解量(g) 〕が1.0〜∞、好ましくは5.0〜
∞、より好ましくは25〜∞であり、該微粒子が下記
(a) 項記載の元素の1種以上の酸化物または含水酸化物
である事を特徴とする上記(2) 記載の光学用材料。 (a)長周期型元素周期表において原子番号5〜92、
好ましくは12〜83であり、第16〜第18族元素、
好ましくは第1族、第15〜第18族元素を除く元素。
【0007】(4)重量平均分子量が103 〜3×10
6 、好ましくは3000〜106 で分子間が共有結合ま
たは配位結合により分子間架橋された有機高分子を1
0.0〜100、好ましくは30〜100、より好まし
くは60〜100、更に好ましくは80〜100重量%
含有する分散媒中に、波長500nmの光に対する屈折率
が1.0〜1.40、好ましくは1.0〜1.30、よ
り好ましくは1.0〜1.20で球相当直径(nm)〔粒子
と等体積の球の直径で表わした値〕が0.5〜300、
好ましくは0.5〜100、より好ましくは0.5〜5
0である気体または液体または固体の微粒子が分散され
た光反射防止用光学用材料であり、その500〜600
nm波長光に対する平行光濃度〔=−log(透過平行光量/
入射平行光量)〕が0.0〜1.0、好ましくは0.0
〜0.30、より好ましくは0.0〜0.10であり、
該微粒子の体積分率〔該微粒子が占める体積/該材料の
総体積〕が0.05〜0.98、好ましくは0.10〜
0.95、より好ましくは0.20〜0.90であり、
該材料がハロゲン化銀粒子を含まない非感光性光学材料
であり、該材料の該波長光に対する屈折率値が該微粒子
が存在しない場合の屈折率値よりも0.05〜0.6
0、好ましくは0.10〜0.50、より好ましくは
0.20〜0.50だけ低く、かつ、該材料を他の物質
1 と接触させる事により、該入射光がA1 中に入るま
でに反射される反射光量が、該材料を存在させない時の
反射光量の0.0〜0.95倍、好ましくは0.0〜
0.70倍、より好ましくは0.0〜0.50倍である
事を特徴とする光学用材料。
【0008】(5)該有機高分子の10〜100、好ま
しくは30〜100、より好ましくは60〜100、更
に好ましくは80〜100重量%が共有結合または配位
結合により分子間架橋されている事を特徴とする前記
(1) 記載の光学用材料。 (6)該有機高分子が水溶性高分子であり、水に対する
平衡溶解度〔50℃の水1.0リットルに対する溶解量(g) 〕
が1.0〜∞、好ましくは5.0〜∞、より好ましくは
25〜∞である事を特徴とする前記(1) または(4)記載
の光学用材料。 (7)該微粒子のTi含率〔Tiのモル数/(酸素と水
素と炭素を除く元素の総モル数)〕が0.20〜1.
0、好ましくは0.50〜1.0、より好ましくは0.
70〜1.0、更に好ましくは0.90〜1.0である
事を特徴とする前記(1) または(2) 記載の光学用材料。 (8)該水溶性高分子の20〜100、好ましくは60
〜100、より好ましくは80〜100重量%がゼラチ
ンである事を特徴とする前記(1) または(3)記載の光学
用材料。 (9)該光学用材料が紫外線カット用の光学用材料であ
り、波長200〜350、好ましくは200〜360nm
の紫外光透過率(透過した紫外光光量/入射した紫外光
光量)が0.0〜0.90、好ましくは0.0〜0.5
0、より好ましくは0.0〜0.10、更に好ましくは
0.0〜0.01である事を特徴とする前記(1) または
(2)記載の光学用材料。 (10)該分子間架橋が原子数3〜300、好ましくは3
〜100の分子間架橋剤を添加し、該有機高分子と反応
させ、共有結合、または配位結合を形成する事により形
成された事を特徴とする前記(2) 、(4) 又は(5)に記載
の光学用材料。
【0009】その他の好ましい態様は次の通り。 (11)該紫外線カット用光学材料が、現像処理後のハロ
ゲン化銀カラー写真像の表面上に積層して用いられる事
を特徴とする前記(9) 記載の光学用材料。 (12)該微粒子が水溶液中での金属エステル化合物の加
水分解反応と、次に水溶液中における30〜100℃、
好ましくは40〜90℃で1.0〜106 分間、好まし
くは3.0〜103 分間の加熱による結晶化反応により
形成された事を特徴とする前記(1) または(2) 記載の光
学用材料。
【0010】(13)該微粒子は実質的に粒子間合着して
いなく、(4個以上合体した粒子中の1次微粒子の総数
/全1次微粒子の総数)=A7 が0.0〜0.20、好
ましくは0.0〜0.05、より好ましくは0.0〜
0.01、最も好ましくは0.0〜0.001である事
を特徴とする前記(1) 、(2) 、(4) 、(9) 記載の光学用
材料。 (14)該微粒子が水溶性分散媒を0.01〜20、好ま
しくは0.1〜10重量%含有する水溶液中で粉砕法に
より粉砕された微粒子である事を特徴とする前記(13)
記載の光学用材料。
【0011】(15)該含水酸化物の平均含水量が、該元
素1.0モル当りモル数で10-5〜1.5、好ましくは
10-4〜0.60、より好ましくは10-4〜0.20で
ある事を特徴とする前記(1) または(2) 記載の光学用材
料。 (16)該光学用材料が、水溶性高分子を重量%で0.0
1〜20、好ましくは0.1〜10、より好ましくは
0.5〜5.0だけ含む水溶液中で先ず、該微粒子分散
物を形成し、次に架橋剤を添加し、均一化混合した後、
該液を支持体上に塗布し、乾燥させ、かつ、架橋反応を
進行させる事により、または該溶液をそのまま、もしく
は該分散物中の全水分量の1.0〜99.8%、好まし
くは3.0〜95%を予め除去した後に予め形成された
型に注入し、射出成型し、かつ架橋反応を進行させる事
により形成された事を特徴とする前記(1) または(2) 記
載の光学用材料。
【0012】(17)該水溶性高分子が分子量105 あた
り -COOH基を1〜3×103 基、好ましくは3〜3×1
3 基有する高分子である事を特徴とする前記(3) また
は(6) 記載の光学用材料。 (18)該水溶性高分子が分子量105 あたり-NH2基を1
〜3×103 基、好ましくは3〜3×103 基有する高
分子である事を特徴とする前記(3) または(6)記載の光
学用材料。 (19)前記(1) 、(2) 、(4) 、(9) の光学用材料の光散
乱濃度〔=-log(平行光の受光量I3 /透過した全光量
4)〕が0.0〜1.0、好ましくは0.0〜0.3
0、より好ましくは0.0〜0.10である事を特徴と
する前記(1) 、(2) 、(4) 、(9) 記載の光学用材料。 (20)該微粒子のTi含率が0.5〜1.0、好ましく
は0.70〜1.0、より好ましくは0.90〜1.0
であり、かつ、1個の粒子中のTi原子数が1〜10、
好ましくは1〜3である事を特徴とする前記(7) 記載の
光学用材料。
【0013】(21)該光学材料が目に入れるコンタクト
レンズ用であり、該レンズを25℃の純水中に15分間
入れた時の吸水率(吸水後の全重量/乾燥後の全重量)
が1.2〜20、好ましくは1.5〜20である事を特
徴とする前記(3) 、(6) 記載の光学用材料。 (22)前記(1) または(2) 記載の光学用材料上に前記
(4) 記載の光反射防止用光学材料を接合させた態様であ
る事を特徴とする光学用材料。 (23)前記(1) 、(2) 、(4) 記載の光学用材料が無機質
光学材料上に表面コート剤としてコートされた態様であ
る事を特徴とする光透過性光学用材料。 (24)該光学材料がゴム弾性を有し、〔(弾性限界時の
長さ−元の長さ)/元の長さ〕=B3 が0.002〜
2.0、好ましくは0.006〜1.0である事を特徴
とする前記(1) 、(2) 、(4) 、(9) 記載の光学用材料。
【0014】(25)該光学用材料が該高分子の長鎖軸が
特定方向に配向した膜を2〜104枚、好ましくは4〜
103 枚重ね合わせて形成された光学材料であり、その
最近接膜の配向軸が互いに15°〜165°ずれている
事を特徴とする前記(1) 、(2) 、(4) 、(9) 記載の光学
用材料。 (26)該光学用材料の厚さが30〜3×104 μm 、好
ましくは120〜3×104 μm である事を特徴とする
前記(1) 、(2) 、(4) 、(9) 記載の光学用材料。 (27)該ゼラチンが脱色処理されたゼラチンであり、4
00〜450nmにおけるゼラチンの同一条件水溶液の
(吸収光量/入射光量)が、該処理前のゼラチンの0.
0〜0.90、好ましくは0.0〜0.50である事を
特徴とする前記(8) 記載の光学用材料。 (28)該ゼラチンのメチオニン含率(μmol/g) が0〜
30、好ましくは0〜10、より好ましくは0〜3であ
る事を特徴とする前記(8) 記載の光学用材料。
【0015】(29)該分子間架橋剤が活性なジオレフィ
ン化合物である事を特徴とする前記(10)記載の光学用
材料。 (30)該分子間架橋剤がジビニルスルホン類である事を
特徴とする前記(10)記載の光学用材料。 (31)該分子間架橋剤が(A-1)〜(A-4)、(A-10)式で
表わされる化合物である事を特徴とする前記(10)記載
の光学用材料。 (32)該微粒子が該水溶液中で金属エステルまたは金属
塩の加水分解と次の水溶液での結晶化反応を経た段階で
〔ルチル型結晶量/(アナターゼ型結晶量+ルチル型結
晶量)〕が0.70〜1.0、好ましくは0.90〜
1.0である事を特徴とする前記(7) 記載の光学用材
料。 (33)該架橋結合の10〜100%、好ましくは30〜
100%、より好ましくは80〜100%が0.01〜
104 、好ましくは0.1〜104 、より好ましくは
1.0〜104(kg/cm2)の圧力下で形成された事を特徴
とする前記(2) 、(4) 、(5) 、(10)記載の光学用材料。
【0016】(34)該微粒子が光を吸収し、その伝導帯
に電子が生じ、価電子帯に正孔が生じた場合、その70
〜100%が粒子内と粒子表面で再結合する事を特徴と
する前記(1) 〜(3) 、(9) 記載の光学用材料。 (35)該加水分解後の工程で脱塩処理され、溶液中に含
まれる可溶性塩の30〜100%、好ましくは70〜1
00%、より好ましくは90〜100%が除去された事
を特徴とする前記(1) 記載の光学用材料。 (36)該脱塩処理が、該分散媒に対する凝集沈降剤を添
加し、該分散物を凝集沈降させ、上澄み液を除去する事
によりなされた事を特徴とする前記(1) 記載の光学用材
料。 (37)該脱塩処理が電気透析処理によってなされた事を
特徴とする前記(1) 記載の光学用材料。
【0017】(38)前記(1) または(2) 記載の光学用材
料上に、該光学用材料の分散媒と実質的に同じ分散媒
で、(該微粒子の含有モル量/単位体積)が該光学用材
料の0〜70%、好ましくは0〜40%、より好ましく
は0〜20%である材料を厚さ(μm)0.10〜1
3 、好ましくは0.30〜102 で積層または塗布し
た事を特徴とする前記(1) 、(2) 記載の光学用材料。こ
こで実質的に同じとは、該分散媒組成の50〜100
%、好ましくは80〜100%が同じである事を指す。 (39)該光学用材料が人間の身体、好ましくは顔に塗布
される紫外線除去用化粧品として使用される事を特徴と
する前記(9) 記載の光学用材料。 (40)該光学材料が該微粒子分散物を形成した後で、成
形加工前に、該分散物中の泡の30〜100%、好まし
くは60〜100%、より好ましくは90〜100%を
0.01〜0.95気圧、好ましくは0.05〜0.7
0気圧の減圧脱泡処理により除去された事を特徴とする
前記(1) 、(2) 記載の光学材料。
【0018】(41)該光反射防止用光学材料が、現像処
理後のハロゲン化銀カラー写真像の表面上に積層して用
いられる事を特徴とする前記(4) 記載の光学用材料。 (42)該光反射防止用光学材料が未露光のハロゲン化銀
感光材料の入射光側表面上に積層して用いられる事を特
徴とする前記(4) 記載の光学用材料。
【0019】
【発明の実施の形態】(II−1)平行光濃度、光散乱濃
度、反射光量の測定、紫外光カット率、屈折率の測定、
平行光濃度は〔-log(透過平行光量I1 /入射平行光量
2)〕で定義される。入射平行光線は1.0KWのタング
ステン光源10から50cm離れた所に置いた光学フィル
ター12と3.5mm直径の円形穴13を通過した光線1
4を指す(図1参照)。透過した平行光量は試料15か
ら12cm後方に置いた直径5.0mmの円形穴16(円形
穴13と同軸)を通過した光17の光量とする。円形穴
13と試料15間の距離は10cmである。入射平行光量
はこの試料表面に入射した光線の光量を指す。一方、光
散乱濃度は〔-log(平行光の受光量I3 /透過した全光
量I4)〕で定義される。I3 はI1 と同じ光量を指し、
4 は図2に示したように試料と接して積分球集光器2
1付き光量計を設置して測定した光量を指す。
【0020】物質表面A10における反射光量は、次の方
法で求める事ができる。A10の平坦面に対し、入射角5
°で平行ビーム光線を照射し、その反射光光量を反射角
40°の方向で測定する。該ビーム光線は光線14と同
じ態様の光線であり、反射光光量は該反射光線軸上に受
光器31を設置し、その光量を測定すればよい。下面側
からの反射光線は位置がずれる事により除かれる。該測
定の概略図を図3に示した。光反射率は(該受光量/入
射光量)から求まる。
【0021】紫外線カット率は(透過した紫外光の全光
量I5 /入射した紫外光光量I6)で定義される。I6
光線14と同態様で入射した光量を指す。I5 はI4
同態様で受光測定した光量を指す。光学材料(以下、
「B0 」と記す)の屈折率の測定は従来公知の測定法で
測定する事ができ、偏角法、臨界角法、干渉法、反射率
法、偏光解析法を挙げる事ができ、文献1の第3章、文
献2の第7章の記載を参考にする事ができる。
【0022】(II−2)有機高分子材料 ここで高分子とは重量平均分子量が103 〜107 、好
ましくは3×103 〜3×106 、より好ましくは7×
103 〜106 である有機化合物を指す。高分子化合物
は多数の低分子化合物を互いに重合させて形成される。
元になる該低分子化合物をモノマーと呼ぶ。高分子が得
られる由来で分類すると、天然高分子(例えば多糖類、
タンパク質、核酸)、合成高分子(逐次重合物と連鎖重
合物)、改質した天然高分子(酢酸セルロースのように
天然高分子を化学修飾した高分子)に分類される。高分
子を分子形状で分類すると線状高分子(例えば高密度ポ
リエチレン)、分枝高分子(側鎖を有する高分子で例え
ば低密度ポリエチレン)、網状高分子(例えば加硫ゴ
ム、フェノール樹脂、硬膜剤で分子架橋したポリアクリ
ル酸やゼラチン)に分類され、前2者は一般に熱すると
融解し、溶剤にも可溶であるが、後者は熱硬化性で不
溶、不融である。
【0023】高分子を重合方式で分類すると次の通り。 (1)逐次重合法。これは重合により水のような低分子
成分の脱離を伴う重縮合重合と、該脱離を伴わない重付
加重合に分類される。重縮合重合例:(HOOC-R 1-COOH +
HO-R2-OH →ポリエステル +H2O)、(H2N-R1-NH2 + HOOC
-R2-COOH→ポリアミド+ H2O)、(H3CO2C-R1-CO2CH3 + HO
-R2-OH→ポリエステル + CH3OH) 、(HO-R1-OH + COCl2
→ポリエステル + HCl) 。重付加重合例:(OCN-R1-NCO
+ HO-R2-OH →ポリウレタン)、〔(ジアミン+ジイソ
シアナート)、(ジアミン+炭酸エステル)、(ジアミ
ン+ビスウレタン)、(ジアミン+尿素)の反応による
ポリ尿素の生成〕、がある。ここでR1、R2は炭素数1
〜10のアルキル基を表わす。
【0024】(2)連鎖重合法。逐次機構に対する語で
あり、連鎖機構により重合が進行する。不飽和結合基
(ビニル基、アセチル基、アルデヒド類、-C=S基、ビニ
リデン基、-N=0基、-S=O基、-C≡N 基、-C=C=O、-N=C=O
基等) を有する化合物の付加重合や、開環重合(環状化
合物が開環し、それらが互いに付加して高分子となる重
合)は連鎖機構で重合する。重合活性種の違いによりラ
ジカル重合とイオン重合(カチオン重合とアニオン重合
に分けられる)、配位重合(いわゆるチーグラー・ナッ
タ触媒を用いた重合法)に分類される。該付加重合によ
り例えばポリビニル化合物、ポリアセチレン化合物、ポ
リオキシメチレン化合物が得られる。開環重合例として
(エチレンイミン→ポリエチレンイミン)、(エポキシ
→ポリエチレンオキシド)、(環状シリコーン→鎖状ポ
リシリコーン)、(環状エステル→鎖状ポリエステル)
を挙げる事ができる。
【0025】また、分子の一次構造で分類すると、ホモ
ポリマーと2種以上のモノマーが共重合したコポリマー
に分類され、コポリマーは単量体の重合順序が不規則な
ランダムコポリマーと規則配列した規則配列コポリマ
ー、ブロック状に共重合したブロックコポリマー、主鎖
の所々に枝のように異種モノマーが結合したグラフトコ
ポリマーに分類される。これらの有機高分子材料全般の
詳細に関しては後述の文献(3) の第11、第12章、文
献(4) の第8、第15章、文献(5) 、(17)、(18)、(26)
の記載を参考にする事ができる。
【0026】高分子を実用的観点から分類すると、水溶
性高分子、非水溶性高分子に分類される。前者について
は(II-3)で説明する。後者は、50℃の水1.0リットル
に対する平衡溶解量(g) 〔これを平衡溶解度と呼ぶ〕が
0.0〜0.90、好ましくは0.0〜0.50である
化合物を指す。該溶解量は、25℃の水に3時間浸水し
た後、温度を80〜90℃に上昇させ、3時間溶解し、
次に50℃に降温し、3時間恒温した時に溶解している
溶解量を指す。該合成有機高分子の具体的化合物例とし
て次の化合物を挙げる事ができる。付加重合物類〔ポリ
エチレン、ポリプロピレン、ポリメタクリル酸メチル、
ポリスチレン、ポリビニルエステル類、ポリビニルケト
ン類、フッ素系樹脂、ポリアクリロニトリル、ポリイソ
プレン、ポリクロロプレン、ホスファゼン系、フッ素ゴ
ム等〕。開環重合物〔ポリプロピレンオキシド、エポキ
シ樹脂(脂肪族系、芳香族系)等〕、ポリエステル類
〔ポリエチレンテレフタレート、アルキド樹脂類、ポリ
カーボネート、不飽和ポリエステル樹脂等〕、ポリウレ
タン類〔ポリウレタン、ウレタンゴム、ウレタン樹脂
等〕、ポリイミド類、ポリアミド類〔ナイロン、芳香族
ポリアミド(ケブラー、メノックス)等〕、尿素樹脂
類、ポリベンズイミダゾール類、フェノール樹脂類、メ
ラミン樹脂類、シリコン樹脂類、およびそれらの2〜2
0種のあらゆる比率の共重合物を挙げる事ができ、該光
学材料中で長鎖分子間が共有結合または配位結合により
分子間架橋された態様がより好ましい。
【0027】(II−3)水溶性高分子 重量平均分子量が1000〜3×106 、好ましくは3
000×106 であり、40℃の水1.0リットルに対する
平衡溶解量(g)が1.0〜∞、好ましくは5.0〜
∞、より好ましくは25〜∞である化合物を指す。ま
た、該高分子を水に均一に溶解し、その3.0重量%液
の35℃における静的表面張力(dyn/cm) を測定した
時、pH2.0〜10.0(NaOHとHNO3で調節、白金板
でWilhelmy法で測定)において30〜73が好ましく、
40〜70がより好ましく、50〜70が更に好まし
い。該高分子は分子構造的には、分子内に親水性基を有
する。強い親水性基として-SO3H 、-SO3M 、-OSO3M、-O
SO3H、-COOM 、ピロリドン基、オニウム塩基〔例えば
(アンモニウム塩基、ピリジニウム塩基、ホスホニウム
塩基)等であり、N 、S 、P 、Se、I 、As、Sb、Snのオ
ニウム塩基がある〕があり、中レベルの親水性基として
-COOH 、-NH2、-CN 、-OH 、-NHCONH2、-CONH2があり、
弱い親水性基として-CH2OCH3、-SO2- 、-OCH3 、-COOCH
3 、-CS 、-(CH2CH2O)- 、-SO2- がある。ここでMはア
ルカリ金属、 NH4 + を指す。これらの親水性基を分子量
104 あたり0.1〜750基、好ましくは0.3〜1
00基有する事が好ましい。更には、該強親水性基と中
親水性基を分子量104 あたり0.1〜750基、好ま
しくは0.3〜100基有する事がより好ましい。
【0028】具体的化合物例は次の通り。 (II-3-1) 天然高分子、人工的に改質された天然高分
子。 (1)タンパク質。タンパク質は次の3つに分類され
る。1)単純タンパク質、アミノ酸のポリペプチド体の
みで分子が構成されている。例えばアルブミン、グロブ
リン、プロラミン、グルテリン、ヒストン、プロタミ
ン、硬タンパク質を挙げる事ができる。2)複合タンパ
ク質。単純タンパク質と他の有機原子団(補欠分子族と
よぶ)との結合体を指す。例えば核タンパク質、糖タン
パク質、色素タンパク質、リンタンパク質を挙げる事が
できる。3)誘導タンパク質。天然タンパク質に軽い処
理を施して誘導生成されたタンパク質を指す。例えばゼ
ラチン、アルブモース、ペプトンを挙げる事ができる。
該ゼラチンはあらゆる動物のコラーゲンより得る事がで
き、背ツイ動物が好ましく、ホ乳類、魚類の骨、皮、ウ
ロコのコラーゲンがより好ましく、重量平均分子量は前
記規定に従う。ゼラチンは動物のコラーゲンを水溶性化
したタンパク質であり、アルカリで処理して水溶性化し
たアルカリ処理ゼラチン、酸で処理して水溶性化した酸
処理ゼラチン、中性の水で煮沸して水溶性化した中性処
理ゼラチンがあり、アルカリ処理ゼラチンがより好まし
い。
【0029】通常のゼラチンはα鎖、β鎖、γ鎖を含有
し、重量平均分子量が約9×104〜15×104 であ
るが、該分子量を増加させる時は硬膜剤で分子間を架橋
する事によりなされ、該分子量を低下させる時は酵素分
解法、低pH又は高pHでの加水分解法、熱分解法等に
よりアミド結合を加水分解する事によりなされる。その
詳細に関しては米国特許第5,318,889号、同
5,187,259号、特開平6−214329号、同
5−265113号、同1−158426号、井村伸正
ら編、生化学ハンドブック、第20章、第21章、丸善
(1984年)の記載を参考にする事ができる。
【0030】ゼラチンの官能基の1種以上を化学修飾し
たゼラチン。例えばメチオニン基中のチオエーテル基数
の1.0〜100%をスルホキシド化、又はスルホン
化、又はアルキル化した態様。アミノ基数の1.0〜1
00%を化学修飾したゼラチン。例えば酸無水物(無水
フタル酸、無水コハク酸、無水トリメリト酸等)や有機
カルボン酸類でアシル化した態様、sultone 類でsulton
e 化した態様がある。イミダゾール基の1〜100%を
化学修飾(例えばカルベトキシ化)した態様や、水酸基
数の1〜100%を酸エステル化(例えばリン酸エステ
ル化した態様、それらの1種以上を併用した態様を挙げ
る事ができる。その他、濾過膜で分子量分画し、分子量
分布を変動係数(分布の標準偏差値/平均分子量)で
0.01〜0.40、好ましくは0.01〜0.20に
して用いる事もできる。
【0031】ゼラチン分子量は種々の官能基(チオエー
テル基、イミダゾール基、-COOH 基、アミノ基、-OH
基、グアニジル基)を有し、これらが協同して該粒子表
面に吸着し、粒子間の合体を防止し、好ましい結果を与
えるものと考えられる。従って特に好ましく用いる事が
できる。しかし、ゼラチン中に不純物として含まれるNH
3 は、該微粒子のサイズをより大きく作用を有するので
該含量(モル/gゼラチン)を0〜10-3、好ましくは
0〜10-4、より好ましくは0〜10-5に抑える事が好
ましい。その為に次の方法を好ましく用いる事ができ
る。1)その発生源の1つは(-CONH2 + H2O→ -COOH +
NH3) であるので、pH11〜13のアルカリ処理で処
理し、該基の30〜100%、好ましくは80〜100
%を除去したゼラチンを用いる。2)該発生源である-N
H2の30〜100%、好ましくは80〜100%を前記
化学修飾したゼラチンを用いる。重量平均分子量は30
00〜5×104 、好ましくは5000〜3×104
特に好ましい。また、タラの皮から抽出したゼラチン
(ヒスチジン基含量が1000のアミノ酸残基あたり1
0〜70、好ましくは20〜60のゼラチン)を好まし
く用いる事ができる。
【0032】該微粒子に対する保護コロイド作用は、微
粒子の直径と保護コロイド分子の分子長が同等レベルで
ある時に、より大きい。それは分子全体が粒子にからみ
つける為である。ここで同等レベルとは分子長が、該直
径の0.1〜10倍、好ましくは0.2〜4倍を指す。
該微粒子サイズは小さいので、分子量は103 〜6×1
5 が好ましく、5000〜5×105 がより好まし
い。分子鎖長が長すぎると、粒子は分子の一部にくっつ
くだけで、分子全体が粒子にからみついて吸着する事が
できない。ゼラチンは多くの場合、アメ色に着色してい
る。これはアミノ基と糖の-OH 間のMaillard反応による
アゾメチン色素の生成が原因といわれている。該着色
は、厚い光学材料にとっては特に好ましくない。該着色
度を低下させる方法として次の方法を好ましく用いる事
ができる。1)自然平均寿命の5〜80%、好ましくは
5〜50%の前記動物より採取したゼラチンを用いる。
2)死後、野ざらしにされていない動物から採取したゼ
ラチンを用いる。太陽光照射されると着色度が高くなる
為、ト殺直後に採取した骨や皮から抽出したゼラチンが
好ましい。
【0033】3)ゼラチンを酸化する事により、脱着す
る。例えばゼラチン水溶液(pH1.0〜11.0、好
ましくは2.0〜10.0、温度20〜90℃、好まし
くは30〜60℃)中にH2O2をゼラチン1.0gに対し
10-4〜10-2g、好ましくは10-3〜10-2g添加
し、混合し、0.3〜100時間静置する。または酸素
含率50〜100%の気体中で20〜120℃、好まし
くは40〜100℃で0.3〜100時間ゼラチン粉末
を置く事によりなす。これにより、ゼラチンのメチオニ
ン基含率(μmol/g) は低下し、40〜70から好まし
くは0〜30、より好ましくは0〜10、更に好ましく
は0〜3になる。
【0034】4)ゼラチンを還元し、脱色する。例えば
ゼラチン粉末をH2含率50〜100%の気体中で20〜
120℃、好ましくは40〜100℃で0.3〜100
時間置く事によりなす。4)ゼラチン水溶液を活性炭層
に通す。着色成分は分極率が大きく、活性炭への吸着能
が大きい為、活性炭に選択的に吸着され、除去される。
特に3)〜5)の処理により、400〜450nmにおけるゼ
ラチンの同一条件水溶液(濃度、pH、測定条件が同
一)の(吸収光量/入射光量)が、元のゼラチンの0.
0〜0.90、好ましくは0.0〜0.50になったゼ
ラチン(これを脱色ゼラチンと呼ぶ)を好ましく用いる
事ができる。
【0035】(2)多糖類。マンナン、海藻類(例えば
ふのり、カンテン、アルギン酸Na)、植物性粘質(例え
ばトロロアオイ、トラガントゴム、アラビアゴム)、微
生物による粘質物(例えばデキストラン、レバン)。改
質セルロース類(例えばビスコース、メチルセルロー
ス、エチルセルロース、ヒドロキシエチルセルロース、
カルボキシメチルセルロース)。ペクチン類、デンプン
類(例えば可溶性デンプン、カルボキシメチルデンプ
ン)、ポリグルコサミン類およびその誘導体〔キチン、
ムコ多糖類、糖タンパク質、糖脂質、ペプチドグリカ
ン、リポ多糖類〕。
【0036】(3)核酸。リボ核酸(RNA)とデオキシリ
ボ核酸(DNA)。 (II-3-2) (1)合成高分子。合成高分子に関しては
(II-2)の記載を参考にする事ができ、従来公知の合成
高分子の中から、前記規定に従う水溶性高分子を用いる
事ができる。化合物例としてポリビニルアルコール、ポ
リビニルピロリドン、ポリアクリルアミド、ポリアクリ
ル酸、ポリビニルイミダゾール、ポリアミノトリアゾー
ル、ポリメチレンオキシド、ポリエチレンオキシド、ポ
リビニルアミン、ポリソープ、ポリペプチド(ホモポリ
マー、コポリマーで例えばポリグリシン、ポリグルタミ
ン酸、ポリリジン等)、ポリアミン、ポリウレタン、ポ
リエステル(例えばコハク酸とグリコールのポリエステ
ル)、不飽和ポリエステル(例えばマレイン酸とグリコ
ールのポリエステル。これに例えばビニル化合物を加え
て橋かけ架橋すると、本発明の1つの態様となる)、ポ
リ塩化ビニリデン、ポリアクリルニトリル、ポリシロキ
サン(過酸化物の添加で架橋できる)、ポリスルホン、
ポリスルホンアミド、ポリエーテルサルフォン、ポリ尿
素、ポリビニルアセタール、ポリビニルピリジン、ポリ
ビニルブチラール、(II-2)項に記載の高分子、特開平
7−175169号記載のポリビニル化合物、それらの
2〜30種のあらゆる比率の共重合体を挙げる事ができ
る。
【0037】該ブロックコポリマー例としてA11−B10
−A12、A11−B10(O)-A12、A11−B10(O2)−A12
11−B10 + (R1)−A12、A13 - なる2価連結基で組合
されたコポリマーを好ましく用いる事ができる。ここで
10はS、Se原子を、A13 - は陰イオンを表わし、A
11はポリビニルアルコールを、A12はポリアクリル酸ま
たはポリアクリルアミドを表わす。化合物例として(ポ
リビニルアルコール−S−ポリアクリル酸、ポリビニル
アルコール−S(O)−ポリアクリルアミド)を挙げる事が
でき、その詳細については特願平10−123878号
の記載を参考にする事ができる。
【0038】その他、A11−B10−A14で表わされるブ
ロックホモポリマーを挙げる事ができ、A11−B10−A
12、A11−B10−A14型のポリマーで、B10間が分子間
架橋されたポリマーがより好ましい。A14はA11と同
じ、又は分子量が異なるポリビニルアルコールを表わ
す。アクリルアミド、アクリル酸、ビニルイミダゾー
ル、H2C=CHR3においてR3 が-COO-(CH2)2-S-C2H5、-COO
(CH2)3SO3Naであるモノマー、およびその2種以上のあ
らゆる比率の共重合体を挙げる事ができ、その詳細に関
しては米国特許第5,370,984号、Journal of I
maging Science, 31巻、148〜156(1987
年)の記載を参考にする事ができる。該水溶性高分子全
般の詳細に関しては後述の文献(5) 、文献(6) の第2
章、(7) の第II章、(9) 〜(12)、(3) の第8、第9、第
15、第16章、(4) の第1、第11、第12章、(13)
の第19章の記載を参考にする事ができる。
【0039】(II−4)無機ガラス 一般にはガラス状態にある無機物質を指す。網状高分子
であり、その網目形成体(Si、B、P、Ge、As、
V等の酸化物が形成しえる)と網目修飾体(網目構造の
すき間に入って安定な構造をとる原子やイオンで、アル
カリ金属、アルカリ土類金属等の酸化物がある)から成
る。両方の役割をする中間酸化物イオンとして、Al、
Ti、Zr等がある。該ガラスは殆どの元素をその構造
中に取り込む性質がある。ガラスの種類として、次のも
のを挙げる事ができる。 (1)網目構造だけからなるガラス。網目修飾体酸化物
の含量(重量%)は0.0〜2.99である。例えば石
英ガラスを挙げる事ができる。 (2)網目構造と網目修飾体から成り、該修飾体の含量
(重量%)が3.0〜50であるガラス。網目構造の9
0〜100重量%がケイ酸塩であるガラスと、網目構造
の0〜89.9重量%がケイ酸塩であるガラス。例えば
ソーダガラス、ホウケイ酸ガラス、鉛ガラス、アルミノ
ケイ酸塩ガラス、リン酸塩ガラス、ホウ酸塩ガラス、ゲ
ルマン酸塩ガラス、タングステン酸塩ガラス、モリブデ
ン酸塩ガラス、 (3)ブッ化物ガラス。酸素の代わりにブッ素を陰イオ
ンとするガラス。例えばZrF4を主成分とし、これにアル
カリ土類金属のフッ化物とf−ブロック元素のフッ化物
を加えたもの。ガラスは加熱する事により容易に変形で
きる為に、食器、装飾品、光ファイバー、光透過性光学
材料(窓ガラス、電灯のカサやカバー、電球、ケイ光
灯、メガネ、レンズ、干渉フィルター等)に加工して使
われている。該無機ガラスの詳細に関しては(II-6-3)
項の記載、後述の文献(3) 、(4) 、(19)、(26)の記載を
参考にする事ができる。
【0040】(II−5)分子間架橋 有機高分子の分子間を共有結合または配位結合により架
橋する方法として次の方法を挙げる事ができる。 (II-5-1) 架橋剤を添加する事による架橋。線状または
分岐有機高分子に原子数3〜300の架橋剤を添加し、
該有機高分子の官能基と反応させ、共有結合または配位
結合を形成する事により、該高分子間を分子間架橋する
方法。高分子がもっている官能基と反応する事のできる
基を2〜6基、好ましくは2〜4基もっている化合物が
該架橋剤になりうる。該官能基として-NH2、-COOH 、イ
ミノ基、-OH 、-S- 、-Se-、COOMe 、不飽和結合基(例
えばビニル基、ビニリデン基、アルデヒド基)、-COCl
、-COBr を挙げる事ができる。通常、高分子濃度の低
い溶液中で架橋剤を反応させると、各高分子は互いに離
れて存在する為に架橋剤は1分子の高分子中の2つ以上
の官能基と反応し、分子内架橋を形成する確率が高くな
る。この確率を抑制する為にも、高分子濃度の高い条件
で両者を反応させてやる事が好ましい。
【0041】該架橋剤は高分子1.0モルに対し0.1
〜104 モル、好ましくは1.0〜103 モル、より好
ましくは3.0〜102 モルだけ添加し、高分子と均一
混合化される。各高分子鎖間が1次元的に1分子の架橋
剤で架橋された態様の時、両者の(高分子モル量:架橋
剤モル量)は(1.0:1.0)であり、2次元的に該架橋され
た態様の時は(1.0:2.0)であり、3次元的に該架橋され
た態様の時は(1.0:3.0)である。実際には有効に架橋さ
れずに失活するもの、高分子間に2分子以上の架橋剤が
反応した個所も生ずる事から、完全に3次元網架橋が形
成される為には、その1.2〜5倍の架橋剤を添加する
必要がある。これは架橋剤の架橋手数が2である為であ
り、該手数が3〜6領域では増す程、該架橋剤の必要モ
ル比率は減少する。
【0042】該架橋反応は多くの場合、両官能基間の化
学反応により形成される。両官能基が激しくぶつかり合
う回数を増す程、架橋反応速度は速くなる。その為には
両者の混合溶液から溶媒を除去し、反応種濃度を高く
し、かつ、加熱すればよい。溶媒の含有量(重量%)を
0〜90、好ましくは1.0〜60、より好ましくは
3.0〜30に減少させ、温度(℃)を20〜150、
好ましくは30〜90にし、時間は0.1〜103 、好
ましくは0.5〜102 時間、静置すればよい。溶媒の
除去方法は、大気中への蒸発乾燥、減圧下(10-10
0.99気圧、好ましくは10-8〜0.90気圧)での
蒸発乾燥、真空凍結乾燥法を挙げる事ができる。該物質
全体が均一に乾燥する速度で乾燥させる事がより好まし
い。物質表面が先に乾燥し、固くなると、内部に溶媒が
閉じ込められた態様になる。これを防ぐ為には、表面か
らの蒸発速度と、内部から表面への溶媒の拡散速度を±
50%以内、好ましくは±30%以内に合わせる事であ
る。
【0043】該乾燥時の温度を高くすればする程、各高
分子はランダムな形態をとる確率が増す。該分子の存在
確率が90〜100%、好ましくは98〜100%のも
のをホット膜と称する。一方、低温で先ず溶液をゲル化
させ、次に低温でそれを乾燥させると、高分子は安定な
高次構造の形態をとる確率が増す。即ち、分子がhelix
を巻き、各高分子鎖が互いに規則性をもって水素結合配
列した、小さい結晶化部(結晶子)を生じる。しかしそ
れらは互いにランダム配向している。該結晶化部の存在
確率が60〜100%、好ましくは90〜100%のも
のをコールド膜と称する。両者の中間状態のものを中間
膜と称する。
【0044】光学的解像力は(ホット膜>中間膜>コー
ルド膜)であり、好ましい順序も該順序である。中間膜
では両者が混在し、電磁波に乱れを生じる為に解像力が
低くなる。コールド膜ではランダム配向した結晶子を沢
山有し、電磁波の乱れがより大きくなる。これは、結晶
化度の高いポリビニルオレフィン膜の透明度が低い事と
対応する。しかし、該結晶化部が互いに規則正しく配向
し、更にはそれが大きくなり、1つの結晶体になると、
逆に透明度は最も高くなる。これは人間の目の角膜にそ
の例が見られる。該架橋反応は制御された温度、湿度条
件下で行う事が好ましい。湿度は20〜100が好まし
く、40〜80℃がより好ましい。簡便的には該濃縮物
を容器中に入れ、密封し、恒温空気槽中に入れ、前記条
件で静置すればよい。容器は金属製がよく、ステンレ
ス、アルミ製が好ましい。該反応が終了した後に、更に
前記条件で溶媒を除去すれば該光学材料ができ上がる。
【0045】共有結合形成反応は前記の如く反応に時間
を要するが、金属イオンとの配位結合形成はより容易に
進行する為、20〜50℃で両者を混合すると、短時間
(0.01〜60分間、好ましくは0.1〜15分間)
で架橋が形成される事が多い。多くの場合、結合力は
(共有結合>配位結合)であり、加熱により配位結合位
置は変化しえる。従って高温にすると可塑性を有し、整
形性が容易で、室温では架橋高分子としての好ましい特
性が得られる。該架橋剤として次のものを挙げる事がで
き、その全般の詳細に関しては後述の文献(6) の第2章
のIII 、文献(7) の第II章、文献(4) の第8章の記載を
参考にする事ができる。
【0046】(A)金属イオン系架橋剤 (A−1)多価金属塩。例えば金属イオン(M+n) を-C
OO- 基を有する前記水溶性高分子含有の水溶液に添加す
ると、M+nに対して該-COO- 基が配位し、配位結合によ
る分子間架橋が形成される。これから水分を除去し、乾
燥させれば分子間架橋された目的物が得られる。ここで
nは1〜6の整数を表わす。1価イオンには該架橋効果
がなく、効果の大きさの順は(1価イオン≪2価イオン
≪3〜6価)である。それは1価イオンは1つの該基と
しか配位できない為、分子間架橋点になり得ない事、該
配位力が小さい事による。2価イオンよりも3価イオン
の方が-COO- 基とのクーロン相互作用はより大きいし、
配位力も大きいので、より強い結合の分子間架橋が形成
される。該結合力は1価の長鎖脂肪酸(炭素数7〜1
5)との溶解度積、錯体安定度定数の比較により、更に
は該平衡定数の温度変化より求めた該錯体生成の標準エ
ンタルピー変化(△H0)やGibbs の標準自由エネルギー
変化(△G0)の比較により定量的に比較する事ができ
る。従って2〜6価イオンが好ましく、3〜6価イオン
がより好ましく、3〜5価イオンが更に好ましい。該効
果の順序はSchultz-Hardy 則(親水性コロイドに対する
凝析価の順)やHotmeister系列(タンパク質水溶液に対
する塩析効果の序列)と一致する。しかし、該効果は塩
析ではなく、M+nと-COO- 間の不溶性塩(金属セッケ
ン)の形成現象と理解した方がよい。
【0047】2〜6価イオンの具体例として長周期型表
の第2〜第14族金属イオンを挙げる事ができ、該配位
後の400〜700nm、好ましくは380〜750nm波
長光域のモル吸光係数(リットル・ mol-1・cm-1)が0〜1
3 、好ましくは0〜102、より好ましくは0〜10
であるイオンが好ましい。金属イオンは通常、金属塩の
形で添加され、塩の対イオンとして、強酸〜弱酸の塩基
〔例えば NO3 - 、SO4 2 -、F - 、Cl- 、Br- 、I- 、CH3
COO- 、SO3 2-、PO4 3-、CO3 2-〕を挙げる事ができる。A
3+は無色であり、より好ましい。Cr+3も好ましく用
いる事ができる。次のミョウバンの効果は、該M+n効果
の1種と見なせる。(ミョウバン)3価の金属
(MIII ) の硫酸塩が、1価の金属(MI ) の硫酸塩を
つくる〔MI II I (SO4)2・12H2O 〕なる形の複塩を指
す。MI とMIII の種類により、多くの組合せのミョウ
バンが存在する。MI の具体例としてLi+ 、Na+ 、K
+ 、Rb+ 、Cs + 、 (NH4)+ 、 (NH3OH)+ 、(H2NN
H3)+ 、 (CH3-NH3)+ を挙げる事ができ、MII I の具体
例としてAl、Ga、In、Tl、Ti、V、Cr、M
n、Fe、Co、Rh、Irを挙げる事ができる。SO4
の代わりにSeO4が入ったセレンミョウバンも知られてい
る。これらの組合せの内、MIII =Al、Cr、Fe、
I =K + 、Na+ 、 NH4 + が好ましく、無色のクロムミ
ョウバン、アルミミョウバンがより好ましい。ミョウバ
ンの1分子は高分子の-COO- 基の2個以上と配位結合を
形成し、分子間架橋を形成する。例えばCr3+に配位し
た配位子の結合強度の大きさ順は次の通り。〔 -OH> -
COOH> SO4 2->Cl- > NO3 - >ClO4 - 〕。従ってSO4 2-
やCl- を配位したCr錯体を-COO- 基や-OH 基を有する
水溶性高分子を含有する水溶液中に添加すると、弱い配
位子がはずれ、該-COO- や-OH 基が配位し、目的物が得
られる。
【0048】(A−2)多価金属の酸化物。例えば該酸
化物をカルボキシル基を有する前記水溶性高分子含有の
水溶液に添加すると、該金属イオン部に-COO- 基が配位
し、分子間架橋が形成される。これから水分を除去し、
乾燥させれば、該目的物が得られる。該金属種は前記
(A-1)の記載に従う。これらの架橋はすべてM+nに対す
る高分子中の官能基の配位結合による架橋と見なせる。
【0049】(B)有機架橋剤 (B−1)アルデヒド類架橋剤。化合物例としてホルム
アルデヒド、アセトアルデヒド、dialdehyde類〔 OHC-
(CH2)n -CHOにおいてn=0〜4の整数、芳香族ジアル
デヒド類〕、クロトンアルデヒド、アクロレイン、ジグ
リコアルデヒド、ジアルデヒドスターチ、保護されたア
ルデヒド架橋剤(N−メチロール、2,3−ジヒドロキ
シジオキサン等)を挙げる事ができる。高分子のアミノ
基、酸アミド基と縮合し、共有結合による架橋を形成す
る。ホルムアルデヒドは単官能基化合物であるが、アミ
ノ基との反応物が、他のアミノ基、アミド基、グアニジ
ノ基とも反応するので架橋しえる。
【0050】(B−2)ジケトン類。特にα−、γ−ジ
ケトン類。例えば2,3−ブタンジオン、1,2−シク
ロペンタジオン、3−ヘキセン−2,5−ジオンがあ
る。 (B−3)カルボン酸誘導体、カルバミン酸誘導体。具
体例は多価酸の無水物、酸クロリド類、活性エステル
類。 (B−4)スルホン酸エステル類、スルホニルハライド
類。 (B−5)活性オレフィン類。2個以上の2重結合を有
し、特にその隣接位置に電子吸引基を有する化合物。例
えばジアクリルアミド、(CH2=CH-SO2-CH2)-基(=A1)を
2個有する化合物〔例。A1-CH(OH)-A1、A1-CONH-(CH2)2
-NHCO-A1〕。 (B−6)保護された活性オレフィン。例えばビス(2
−アセトキシエチル)ケトン。 (B−7)2個以上の活性ハロゲン原子をもつ化合物。
例えばビス(2−クロロエチル尿素)、ビス(2−クロ
ロエチル)スルホン。
【0051】(B−8)s−トリアジン類。例えば2,
4−ジクロロ−6−ヒドロキシ−s−トリアジン。 (B−9)エポキサイド類。例えばブタジエンジオキサ
イド。 (B−10)ビスアジリジン類。(B-9)と(B-10)はアミ
ノ基、カルボキシル基、-OH 基と反応して、該架橋点を
形成する。 (B−11)カルボジイミド類とイソオキサゾリウム塩
類。これらは先ず高分子の-COO- 基と活性エステル型複
合体を形成する。次にこれに高分子の-NH2基が反応し、
結局、(-COO- + N2H-→ -CONH- )の反応による架橋が
形成される。 (B−12)イソシアネート類。例えばジイソシアネート
類と亜硫酸水素の付加物。 (B−13)高分子架橋剤。例えば多糖類のジアルデヒド
化物、〔ポリビニルアルコールまたは部分的にアセチル
化されたセルロースとマレイン酸のhalf-ester体〕、グ
リシジルアクリレート共重合体、(アクロレイン−アク
リル酸)共重合体。
【0052】その他、(B−14)ムコクロル酸、ムコブ
ロム酸、(B−15)オニウム置換アクロレイン類、(B
−16)ジカチオンエーテル類、(B−17)imidic acid
塩とchloroformamidinium 塩のヒドロキシルアミン類、
(B−18)2−アルコキシ−N−carboxydihydro quino
line、(B−19)N−carbamoyl pyridinium塩、carbam
oyl oxypyridinium 塩、(B−20)bis(imoniomethyl)e
ther塩。 (B−21)これら架橋剤の2種以上のあらゆる比率での
併用。(B−22)架橋反応促進剤の併用。1,3−ジヒ
ドロキシベンゼン類はホルムアルデヒドによる架橋反応
を促進する。多くの有機塩基やカルボン酸のアルカリ金
属塩は特に活性オレフィン系と活性ハロゲン系の架橋剤
による架橋を加速する。(B−23)マイクロ波加熱によ
る架橋反応の促進。
【0053】これらの有機架橋剤は電子吸引基で活性化
され、カチオン性を帯びた部位がアミノ基、イミノ基の
窒素原子や、水酸基の酸素原子等の孤立電子対と反応
し、共有結合を形成するタイプのものが殆どである。但
し(B-9)〜(B-11)の架橋剤はカルボキシル基とも反応
し、(B-9) 、(B-10)は-OH 基とも反応し架橋する。これ
らの架橋剤の内、(B-1) 、(B-5) の化合物がより好まし
く、ジアルデヒド類、ホルムアルデヒド、(B-5) 類が更
に好ましい。(B-5) の化合物でより好ましい化合物は次
式で表わされる。 (H2C=CH-X1)m2-X2 (a−1) ここでX1 =CO、OSO2、SO2 、SO2NR2、CONR4 2、m2
2〜4の整数、X2 =炭素数1〜15、好ましくは1〜
10の有機化合物基、R4 =水素または炭素数1〜10
のアルキル基。更に好ましい化合物は次式で表わされ
る。 (H2C=CHSO2)m3-X2 、ここでm3 =2〜6の整数 (a−2) 好ましい化合物例は次の通り。
【0054】
【化1】
【0055】
【化2】
【0056】
【化3】
【0057】その他、米国特許第5,879,870
号、同3,490,911号、同5,411,856
号、同4,894,324号、同4,897,344
号、特開平2−110544号記載の化合物を好ましく
用いる事ができる。特に好ましい化合物は、(A-1) 〜
(A-4)、(A-10)である。
【0058】(II-5-2) 電磁波または高エネルギー線照
射による感光性樹脂の架橋。感光性樹脂またはそれに増
感剤を混合した系に光(350〜500nm波長光)、紫
外線(180〜349nm波長光)、X線(0.1〜10
nm波長)、電子線(5〜200KeV)を照射すると、高分
子間架橋反応が生じ、分子間が該架橋され、該樹脂は硬
化する。照射エネルギー(eV) は2.4〜1010が好ま
しく、2.6〜105eVがより好ましく、2.8〜12e
Vが更に好ましい。該架橋後に現像処理すると、未硬化
物が除去される。現像処理して用いる事もできるし、現
像処理しないで用いる事もできる。感光性樹脂は該光ま
たは紫外線に感光し、架橋するものであり、分子内に特
別な感光性を有するものである。該感光性樹脂の具体的
化合物例は次の通り。
【0059】(1)ゼラチン、カゼイン、ポリビニルア
ルコール等の水溶性高分子に1〜10wt%のニクロム酸
塩を加え、光照射すると、生成した3価Crが高分子を
架橋し、不溶化させる。 (2)ポリビニルアルコール水溶液に塩化シンナモイル
を添加し、エステル化し、ポリケイ皮酸ビニルを得る。
これに波長300nm付近の光を照射すると、分子間架橋
が起こる。これに分光増感剤として5−ニトロアセナフ
テン、1,2−ベンズアントラキノン等の増感剤を加え
ると、より長波長光でも感光する。 (3)多官能のアクリルモノマー(例えばペンタエリト
リトールトリアクリレート、メチレンビスアクリルアミ
ド)に光重合触媒(例えばベンゾインメチルエーテル、
2−エチルアントラキノン)を加え、光照射すると、重
合反応が生じる。感光波長域は光重合触媒の種類によっ
て決まり、色素増感を利用すれば感光域をより長波光に
まで広げる事ができる。該アクリルモノマーは適当な高
分子と混合して用い、該高分子間を光重合架橋する。 (4)光照射により酸を発生する化合物と酸の存在によ
り重合、架橋を起こす化合物を混合した系。例えばジア
ゾニウム、ヨードニウム、スルホニウム等のオニウム塩
は光照射により分解し、酸を発生する。エポキシ基含有
化合物の架橋反応や、メラミン系架橋剤によるフェノー
ル樹脂の架橋反応は該酸の存在により進行する。
【0060】(5)環化ゴムにその1〜10重量%、好
ましくは2〜8重量%の芳香族ビスアジド類を混合し、
光照射すると、該アジド基はナイトレンとなる。次にこ
れが環化ゴム分子と反応し、結合し、分子間架橋を形成
する。 (6)その他、Kodak Metal Etch Resist 、ポリグリシ
ジルメタクリレート、ポリグリシジルエチルアクリレー
ト、(ポリビニルフェノールと芳香族ビスアジドの混合
物)を挙げる事ができる。これらの感光性樹脂の詳細に
関しては後述の文献(15)、(4) の第14章−4節、(3)
の第12章−5節の記載を参考にする事ができる。
【0061】(II-5-3) 放射線照射による架橋。反応性
基としてビニル型不飽和基を主鎖あるいは側鎖に有する
反応性ポリマーや熱可塑性ビニルポリマー(例えばポリ
エチレン、ポリプロピレン、ポリスチレン、ポリアクリ
レート等)に高エネルギー(1.5〜1010eV)放射線
を照射すると、高分子中にイオンやラジカルが生じ、そ
れらが反応し、分子間架橋が形成される。従って用いる
事ができるが、着色したりする事、放射線照射作業は危
険であるという欠点も有する。一方、ビニリデン系ポリ
マー〔例えばポリイソブチレン、ポリメタクリレート、
ポリ塩化ビニリデン等であり、 -(CH2-CR5 2)n - におい
てR5 がH以外の有機基であるポリマー〕に該放射線を
照射すると、高分子鎖が切断され、材質が劣化する。従
ってこの場合には用いない方がよい。放射線は高エネル
ギーの電磁波(X線、γ線等)、粒子線(α粒子、電
子、陽子、中性子、重陽子等)を指し、公知の放射線放
射装置を用いる事ができるが、工業的には放射性コバル
トCo高速電子線が多用される。
【0062】(II-5-4) 過酸化物架橋。過酸化物を高分
子に混合し、加熱分解により生成するラジカルを利用し
て高分子鎖間を架橋させる。不飽和結合を有しないゴム
を架橋する為に用いられている手法であり、多くのゴム
(フッ素ゴム、シリコーンゴム、多硫化ゴム、EPM 、EP
DM)で多用され、過酸化物加硫法と呼ばれており、これ
を利用する事ができる。該過酸化物として例えば過酸化
ジベンゾイル、ジクミルペルオキシド、2,5−ジメチ
ル−2,5−ジ(t−ブチルペルオキシ)ヘキシン−3
を利用する事ができる。過酸化物は分子中に酸素橋(-O
-O-)を有する化合物を指し、H-O-O-H の誘導体であり、
Hを置換する基の種類によって無機過酸化物(金属過酸
化物と非金属過酸化物に分類される)と有機過酸化物に
分類される。有機物の方が強い酸化力をもつものが多
く、かつ、不安定である。従ってその作用力は(有機過
酸化物>非金属過酸化物>金属過酸化物)の順である。
2重結合への付加反応は過酸化物の存在により促進され
る。従って不飽和結合基を有する高分子(例えばポリイ
ソプレンゴム、不飽和ポリエステル)に1分子中に2〜
6個、好ましくは2〜3個の不飽和結合基を有する架橋
剤(例えばジビニルベンゼン)と有機過酸化物を混合
し、加熱する事により、該基同志が反応し、分子間架橋
を形成する事ができる。
【0063】(II-5-5) ゴムの加硫法の利用。疎性をも
つ物質を弾性物質に変化させる事を加硫と呼ぶ。初めは
イオウ粉末を添加する事による不飽和結合基間のイオウ
による分子間架橋を加硫と呼んだが、現在では他の架橋
剤による架橋も含めて加硫と呼んでいる。次の例を挙げ
る事ができる。1)ジエン系ゴムに対してイオウ、チウ
ラム化合物、2)クロロプレンゴム、多硫化ゴムに酸化
亜鉛等の金属酸化物、3)ブチルゴムにキノンジオキシ
ムや変性アルキルフェノール樹脂、4)エチレン−プロ
ピレンゴム、シリコーンゴムに有機過酸化物、5)ウレ
タンゴムにジイソシアナートやジアミン、有機過酸化
物、6)フッ素ゴムにジアミンや有機過酸化物、7)ア
クリルゴムにポリアミンや金属石ケン、8)セルロース
やポリビニルアルコールの酸触媒存在下でのアルデヒド
による架橋、9)カルボキシル基を含むポリマーの金属
塩によるイオン架橋、10)ノボラック樹脂に対するヘキ
サメチレンテトラミン、11)エポキシ樹脂に対するポリ
アミンや酸無水物、12)不飽和結合基を有するポリマー
に対するジビニルベンゼン、ジメタクリル酸エチレン等
の多ビニル基含有化合物。これらの架橋方式を好ましく
用いる事ができる。天然ゴムにイオウを練り込んで行う
加硫では、天然ゴムに2〜5重量%のイオウを練り込ん
で140〜200℃で10〜60分間加熱して行う。加
硫反応を促進する為に最適の加硫促進剤を添加する事が
できる。例えばジエン系ゴムの場合は、加硫促進剤とし
てチアゾール系とスルフェンアミド系が多用される。前
記加硫法の詳細に関しては後述の文献(3) の第11章、
文献4の第8章、文献26の記載を参考にする事ができ
る。
【0064】(II−6)高屈折率微粒子の物性と種類 該微粒子は結晶、アモルファス、両者の混合物でもよ
い。また、結晶相とアモルファス相が混在した態様でも
よい。導電性固体は通常、電導電子濃度が高く、これが
可視光を吸収する為に可視光に対する吸光度が大きい
が、非導電性固体では、電導電子濃度が低く、これによ
る該吸光度は小さい。従って、後者の材料、特に絶縁体
が好ましく用いられる。該比抵抗(Ω・cm)は25℃で
10-2以上が好ましく、1.0〜1023がより好まし
く、103 〜1023が更に好ましく、106 〜1023
最も好ましい。絶縁体の光吸収はそのエネルギーバンド
構造において、充満帯から伝導帯へのバンド間遷移に主
に基づく。該光に対して透明である為には(その禁制帯
幅>該光のエネルギー)が必要である。従ってそれぞれ
の態様において該光に対して該関係を満足する事が好ま
しい。該禁制帯幅は2.8〜30eVが好ましく、3.0
〜20eVがより好ましい。
【0065】該微粒子は実質的に粒子間合着していない
状態で該分散媒層中に存在する微粒子である事が好まし
い。即ち、(7個以上、好ましくは4個以上、より好ま
しくは2個以上合体した粒子中の1次微粒子の総数/全
1次微粒子の総数)=A20が0.0〜0.20、好まし
くは0.0〜0.05、より好ましくは0.0〜0.0
1、最も好ましくは0.0〜0.001が好ましい。合
着粒子は、一次粒子どうしが接触合着したもので、合着
部にくびれを有する。くびれ部の接合断面積は、その一
次微粒子の中央部の垂直断面積の1〜90%、好ましく
は3〜70%、より好ましくは6〜50%である。該粒
子は針状晶を該粉砕した粒子が好ましい。ここで針状晶
とは結晶の投影形状が縦横比(長軸方向の長さ/短軸方
向の長さ)が3.0〜104 、好ましくは5.0〜10
4 、より好ましくは10〜104 の針状晶を指す。多く
の場合、該針状晶は図4に示す如く、2〜104 本、好
ましくは2〜103 本が凝集した態様である。
【0066】該無機材料は天然品と人工合成品がある。
多くの場合、天然品は不純物含量が高く、かつ、目的元
素組成で目的物性物を得難い。人工合成品の方が、これ
らを制御して目的物を得る事ができる為に、人工合成品
の方がより好ましい。
【0067】該無機微粒子の物質例として次の物質を挙
げる事ができる。 (II-6-1) 酸化物。前記(I)項記載の元素の1種以上
の酸化物であり、1種類の元素の酸化物、またはその2
〜30種、好ましくは2〜10種の混合物、2〜30
種、好ましくは2〜10種の元素の複酸化物がある。特
に好ましい酸化物はTi、Sn、Zn、Al、Pb、B
a、In、Si、Sb、As、Ge、Te、La、Z
r、W、Ta、Th、Nbのいずれかを主成分とする酸
化物でTi、Sn、Zn、Al、Siのいずれかを主成
分とする酸化物がより好ましい。ここで主成分とは、
(主成分元素の総原子数/酸素と水素原子以外の元素の
総原子数)=A21が該物質中で最大である事を指し、好
ましくはA21=0.60〜1.0、より好ましくは0.
80〜1.0を指す。ここで酸化物とは下記含水酸化物
を含めたものを指す。含水酸化物は、水酸基を有する酸
化物を指す。これは脱水反応や脱水縮合反応を行わせる
と、次例の如くH2O を生成する為に含水酸化物と命名さ
れる。M(OH)4→ MO2 + 2H2O 、O=M(OH)2→ MO2 + H2O、
n[O=M(OH)2] →nMO2 + nH2O 。含水率=0.0の酸化物
を〔MO〕で表わすと、含水酸化物は〔MO・m1H2O, m1=10
-5〜1.5 〕で表わされる。ここでm1 値は該微粒子の元
素組成分析値より求める事ができる。
【0068】該酸化物および含水酸化物(以下、「酸化
物」と記す)は元素と酸素との結合様式に応じて次の3
種に分類される。1)イオン結合性酸化物〔電気陽性な
アルカリ、アルカリ土類金属の酸化物。水に溶けるとOH
- を生じるので塩基性酸化物と呼ばれる。〕。2)共有
結合性酸化物〔電気陰性な第17族や第16族元素の酸
化物。水と化合してオキソ酸を生じる為、酸性酸化物と
呼ばれる。〕。3)両者の中間の酸化物(第3〜第15
族元素の酸化物。この内、塩基性物質に対しては酸性
を、酸性物質に対しては塩基性を示す酸化物は両性酸化
物と呼ばれる。)。これらの内、3)がより好ましい。
【0069】酸化物は1種類の元素からなる物と、2種
以上の元素からなる物を挙げる事ができ、後者の物を複
酸化物と呼ぶ。後者の場合、その主要な物の結晶構造は
次の3つに分類される。1)スピネル型構造。鉱物のス
ピネルとして存在するMgAl2O 4 と同型構造。2)チタン
鉄鉱型構造。鉱物のチタン鉄鉱と同型構造。3)ペロブ
スカイト型構造。鉱物のペロブスカイトCaTiO3と同型構
造。これらの酸化物の詳細、具体例に関しては、後述の
文献の記載を参考にする事ができる。該酸化物はTi含
率が前記含率である酸化物がより好ましい。複酸化物例
としてスピネル型酸化物〔例、MgAl2O4 〕、同種の金属
が2種以上の酸化数で共存する場合〔例、FeII Fe2 III
O4、PbIV Pb2 IIO4〕、〔MTiO3 においてM=Mn、Fe、Co、
Ni、Cd、Mg、Ca、Sr、Ba、Pb〕、〔MNbO3 においてM=L
i、Na 、K 〕、〔MZrO3 においてM=Ca、Sr、Ba、Cd、P
b〕を挙げる事ができる。好ましくはチタン酸ジルコン
酸塩類(例えば相手イオンがPbIIのもの)、チタン酸ス
トロンチウム、チタン酸鉛、チタン酸バリウムを挙げる
事ができる。その他の酸化物として酸化亜鉛、鉛白を挙
げる事ができる。
【0070】(II-6-2) Tiを主成分とする酸化物。該
粒子構造としてはアモルファス、結晶、その混合型を挙
げる事ができ、結晶構造としてはルチル型、アナターゼ
型、ブルッカイト型を挙げる事ができ、目的に応じて最
適のもの、またはそれらの最適混合物を選んで用いる事
ができる。アナターゼ型は、屈折率値の結晶軸依存性が
小さく、結晶のあらゆる方向に対して屈折率値がより均
一である。従って分散媒層のより均一な屈折率値調節が
可能であるという点で好ましい。一方、ルチル型は前記
可視光に対する屈折率値がアナターゼ型よりも高い為、
同一の微粒子添加量で分散媒の屈折率値をより高くする
事ができるという点で好ましい。但し、屈折率値の結晶
軸依存性が大きく、400nm近傍まで固有吸収を有し、
青光の一部を吸収するという欠点を有する。該無機微粒
子の固有吸収端は一般に粒子直径が20nm以下、好まし
くは10nm以下になると直径が減少するにつれ、より短
波側にシフトする。特にルチル型酸化チタンでは、この
為に青感光光に対する透明性が向上し、好ましい。ま
た、固有光吸収が起こった時、生成した電子と正孔の再
結合確率が高くなる。この特性も本発明には好ましい特
性であり、この点でも直径を該サイズ以下に調製する事
は特に好ましい。アモルファス体は結晶格子が既に乱れ
ている為に粉砕で容易に破粉され微粒子化できるという
利点があるが、屈折率値は550nm波長光に対して、近
似的に〔ルチル型(2.65、2.95〕>アナターゼ型(2.5
9、2.51)>、アモルファス型(≒2.1)〕であり、最も
小さいという欠点がある。ここで(2.65、2.95)は結晶
軸に垂直な光に対する屈折率が2.65で、結晶軸に平
行な光に対する屈折率が2.95である事を示す。ま
た、分散媒中に多くの微粒子を分散させた系では、光波
は1波長内に102〜104 個のランダム配向の微粒子
の誘電率を感受する為、それらの平均的誘電率を感受す
る事になり、該複屈折性の欠点は抑制される。また、微
粒子化による該バンド構造変化(通常、量子効果、久保
効果と呼ばれる)に伴い、該複屈折性も減少する為、好
ましく用いる事ができる。
【0071】(II-6-3) ガラス。一般に融解した液体を
冷却すると、一定温度で凝固し、結晶となるが、ある種
の物質は凝固結晶化せずに、しだいに粘性を増し、つい
には固い固形物となる。このような非結晶固体を一般に
ガラス状態と称し、無機物でこの状態になったものをガ
ラスと称する。ガラス状態になりうる無機物は次の通
り。セレン、イオウ等のカルコゲン元素物質。ケイ素、
ホウ素、リン、ゲルマニウムの酸化物や酸化物塩類、硫
化物、セレン化物等のカルコゲナイト系ガラス。
【0072】1)ケイ酸を主成分とするケイ酸塩ガラ
ス。SiO2のみでガラス状態になったものは石英ガラスと
呼ばれる。これにホウ素の酸化物(B2O3等)が加わった
ものがホウケイ酸ガラスである。これらに(II-6-1) 項
記載の他の金属の酸化物が添加され、該ガラスの特性が
修飾される。ガラスの多くの性質(屈折率、比重、膨張
率等)と、その成分間には近似的に加成性が成り立つと
いわれている。多くの場合、該金属種として、アルカリ
金属類、アルカリ土類金属類、周期表の第13族元素が
用いられる。
【0073】一般に物質を構成する分子の分子屈折が増
す程、また分子容が減る程、(b-1)式より物質の屈折率
は増す。分子屈折は分子を構成する原子や原子団の分極
率が増す程、大きくなる。これは陽イオン原子のイオン
半径が増す程、またその原子価が増す程、大きくなる。
従って、原子番号が20〜90、好ましくは45〜85
の金属元素の酸化物を添加すると、生成ガラスの屈折率
は増加する。具体例としてBa、Pb、ランタノイド類
元素の酸化物を挙げる事ができる。微細な該ケイ素酸化
物をコロイダルシリカの製法に基づいて調製する事がで
きる。即ち、ケイ酸ナトリウムを主成分とする水溶液を
加熱熟成して、SiO2を主成分とする微粒子のケン濁物を
得る事ができる。表面に水酸基を有し、組成は(SiO2
m1H2O)で表わされる。
【0074】2)その他。鉛ガラス(PbO を3.0〜6
0mol %、好ましくは10〜60mol %含むケイ酸ガラ
ス)、アルミノケイ酸塩ガラス(Al2O3 を3.0〜30
mol%含むケイ酸塩ガラスやアミノホウケイ酸ガラ
ス)、リン酸塩ガラス(P2O5を主成分とし、好ましくは
30〜100mol %含む)、ホウ酸塩ガラス(B2O3を主
成分とするガラス)、ゲルマン酸塩ガラス、タングステ
ン酸塩ガラス、モリブデン酸塩ガラス。光学材料用ガラ
スのNaのD線に対する屈折率は1.45〜2.0のも
のが得られている。これらを含め、該ガラスの詳細に関
して後述の文献(3)、(4) 、(19)、(26)の記載を参考に
する事ができる。
【0075】(II-6-4) 共有結合性結晶の粒子。例えば
炭素原子の共有結合結晶であるダイヤモンド、炭化ケイ
素、窒化ケイ素、窒化ホウ素またはその2種以上の混晶
または混合物を挙げる事ができる。
【0076】(II-6-5) 多重構造微粒子。該微粒子の構
造として次の構造例を挙げる事ができる。1)粒子全体
が均一な組成物。2)粒子が互いに元素組成が異なるコ
ア部とシェル部から構成された(コア/シェル)型であ
る。この場合、同一の可視波長光に対する屈折率はコア
部の屈折率をn1 、シェル部の屈折率をn2 とした時、
(n1 <n2 )の態様よりは(n1 <n2 )の態様の方
がより好ましい。高屈折率のコア部と低屈折率の分散媒
が直接に接触する事による大きな屈折率段差を、中屈折
率のシェル部が入る事により、小さくし、光散乱を生じ
にくくする効果があり、好ましい。バインダーの屈折率
をn0 とすると、(n1 >n2 >n0 )である事が好ま
しく、(n1 −n2)、(n2 −n0)値が0.01〜1.
2である事が好ましく、0.02〜0.70がより好ま
しい。3)該シェル部が2〜10層の互いに元素組成が
異なる多層構造である粒子。この場合、それぞれの層の
屈折率を自由に選ぶことができるが、コア部から最外層
まで順に屈折率が0.01〜0.70、好ましくは0.
01〜0.30ずつ低下した態様がより好ましい。屈折
率の急激な段差がより解消される。
【0077】TiO2を主成分とする粒子の場合、該粒子に
TiO2含率(モル%)が10〜100、好ましくは50〜
100だけ低い他の1種以上の金属酸化物で表面を被覆
すればよい。該酸化物として(I)項記載の酸化物を挙
げる事ができ、Al、Si、Zr、Sb、Sn、Zn、
Pbの1種以上の酸化物がより好ましい。具体例として
SnO2、Al2O3 、SiO2、(TiO2 とこれらの共沈殿物)を挙
げる事ができる。例えば、TiO2微粒子を含有する水溶液
中にAl、Si、Ti、Zr、Sb、Sn、Zn等の塩
類水溶液とこれを中和する酸またはアルカリを添加し、
生成する含水酸化物で該微粒子表面を被覆する。または
TiO2微粒子上にSi、Ti、Alのアルコキシドの混合
物を加水分解により共沈させ、これを焼成する方法。該
表面被覆は気相中で行う事もできる。例えば酸化チタン
粉体にAlCl3 やSiCl 4 蒸気を通じ、その後、水蒸気を流
入して、Al、Si酸化物の表面被覆を行う。
【0078】(II−7)高屈折率微粒子の人工合成方法
次の3種類に分類される。 (II-7-1) 気相反応法。物質を構成する原子、分子、イ
オン等の化学種を種々の方法〔電気ヒーター加熱、高周
波誘導加熱、電子線照射、レーザー光線照射、アーク放
電法、スパッター法等〕で気体化し、気相反応、又は気
相中で分解する事により、目的物質を形成する方法。反
応物質濃度や濃度比、反応時間、反応温度を制御する事
により、生成物の粒径を制御する事ができる。配管中で
気相をフローさせながら反応させ、生成した粒子を種々
の方法で回収する方法。例えばフィルターを通して回収
する方法、(II-3)、(II-8)項記載の水溶性分散媒溶
液中に気相を吹き込み回収する方法を挙げる事ができ
る。
【0079】(1)該元素の蒸気と酸素との反応で該酸
化物(ZnO、MgO 等)の微粒子が合成される。該蒸気濃度
と酸素濃度、両者の比率が生成粒子の形状、粒径に影響
を与える。また、Ti、Zr、B、V、Al等の金属を
Nz中やNH3 ガス中で蒸発させ、窒化物微粒子が合成され
る。 (2)金属化合物の蒸気と他の化合物蒸気との反応。例
えば金属塩化物とNH3ガスとの反応で金属窒化物が合成
され、金属塩化物とCH4 ガスとの反応で金属炭化物が得
られる。例えば(TiCl4 + NH3 → TiN) 、(TiCl4 + CH4
→ TiC) 、(ZrCl4 + NH3→ ZrN) 、(M0O3 + CH4 →MO
2C)、〔Ti(OR1)4 + 2H2O → TiO2 + 4ROH〕。 (3)金属塩化物やオキシ塩化物の気体を酸素や水蒸気
と反応させ、金属酸化物を形成する反応。この方法でSi
O2、Al2O3 、TiO2等、多くの金属酸化物微粒子が合成さ
れる。該気体を2〜20種の金属塩化物の混合気体とし
て反応させると、前記複合酸化物微粒子が得られる。例
えばTiCl4 + O2→ TiO2 + 2Cl2により、TiO2を生成する
方法。TiCl4 +4H2O → Ti(OH)4 + 4HCl。
【0080】(4)合成する目的物成分をすべて含んで
いる化合物の気体分子を気相中で熱分解や放電分解し
て、該微粒子を得る方法。例、アルコキシドや水酸化物
から酸化物の形成〔Ti(OR1)4→ TiO2 、2Al(OH)4→ Al2
O3〕。〔(CH3)2SiCl2 やCH3SiH 3 ガスからSiC の生
成〕。〔Si(NH)2 → Si3N4の生成〕。(II-7-2)液体か
らの合成方法。溶液中のイオン、分子、又はその重合
体、クラスタ等が合体して粒子が生成する。 (1)有機金属化合物の加水分解法。アルコールの水酸
基を金属原子で置換したものはアルキル金属と呼ばれ、
該-OH 基のHを金属原子で置換したものはアルコキシド
と呼ばれ、これらは水溶液中で容易に加水分解して金属
水酸化物になる。該有機金属化合物は精製し易いので、
高純度生成物が得られる。2種以上の該化合物の混合物
を加水分解すると、目的組成比の水酸化物や酸化物が得
られる。該混合の均一性も良い。生成した該水酸化物
を、脱水縮合すると、該金属酸化物粒子が得られる。該
縮合を適度な所で停止させると、目的サイズの微粒子が
得られる。温度を高くする程、該水溶液の水を脱水する
程、該縮合は進行し、生成物のm1 値は減少する。
【0081】(2)金属塩の加水分解法。例えばAlCl3
やTiCl4 、Ti(SO4)2、Al(NO3)3の如き、金属塩は、金属
水酸化物と酸(HCl 、H2SO4 、HNO3) 間のエステル化合
物と見る事ができ、これを水に溶解し、pHを調節する
事により、金属水酸化物を作る事ができる。該塩が水に
溶け、金属イオンが形成され、それがOH- と反応して金
属水酸化物が形成されたと解する事もできる。アルカ
リ、アルカリ土類元素以外の大部分の金属の水酸化物は
水に難溶で、酸に溶解するのみであるが、Al(OH) 3 やZn
(OH)2 の如き両性水酸化物は酸にもアルカリにも溶け
る。該水酸化物を加熱乾燥すると、m1 値が減少し、遂
には酸化物になる。
【0082】(3)噴霧乾燥法。(1) 、(2) で得られた
水酸化物を加熱、乾燥させ、脱水縮合させる場合、該溶
液を微細孔や多孔膜、アトマイザーを通して噴霧飛散さ
せると、乾燥速度が速く、かつ、微粒子を形成できる。
生成粒子はサイクロンやフィルターを用いて回収する。
噴霧は気相中、減圧気相中、または火炎中に行う事もで
きるし、加熱した回転ベルト上に行い、目的物に変化し
た個所でベルトから微粒子を採取すればよい。縮合反応
が微滴内に限定される為に粗粒子の生成が抑制され、好
ましい。溶液中に可燃性の有機溶媒(後述の記載参照)
を最適量で添加する事もできる。乾燥法としてはその
他、凍結乾燥法、熱石油乾燥法、溶液乾燥法を挙げる事
ができる。
【0083】(4)前記(1) 、(2) の加水分解法の詳
細。例えば4価金属の場合、(1) 、(2) 式の反応を挙げ
る事ができる。ここでMは金属原子、Rはアルキル基、
5 は整数を表わす。 M(OR)4 + 4H2O → M(OH)4 + 4ROH (1) m5M(OH)4 → m5MO2 + 2m5H2O (2)
【0084】実際の反応にはその中間の加水分解物〔MO
・m1H2O 〕、〔MO・m2(R-O-R) ・m3H2O 〕、〔MO・m4(R
-O-R) 〕間の脱水反応、脱R-OH反応、脱R-O-R 反応によ
る縮合反応が寄与している。該縮合反応が終了していな
いものを含水酸化物と呼ぶ。ここでm1〜m4は該酸化物多
量体の平均含数を表わし、10-5〜1.5、好ましくは
10-5〜0.6、より好ましくは10-5〜0.2を表わ
す。
【0085】該加水分解は、水溶液中に該金属アルコキ
シドを添加する事により、または該金属アルコキシドに
水溶液を添加する事により、または両者を同時混合添加
する事により行う事ができる。該添加期間は0.1秒間
〜200分が好ましく、0.5秒〜30分間がより好ま
しい。該加水分解時のpHに特に制限はなく、−1.0
〜14.0、好ましくは(-0.5〜13.0)の内の好ましい
値を選んで用いる事ができる。用いる酸、アルカリに関
しては後述の記載を参考にする事ができる。加水分解時
の温度は0〜200℃が好ましく、5.0〜80℃がよ
り好ましく、5.0〜50℃が更に好ましい。酸の内、
特にハロゲン化水素(HF、HCl 、HBr 、HI) が好まし
く、HCl 、HBr がより好ましい。酸素酸はO を介して酸
化物粒子の架橋剤として作用する傾向があるが、ハロゲ
ン酸は該作用しない為と解される。濃度(モル/リットル)
は0.1〜10が好ましく、0.3〜5.0がより好ま
しい。
【0086】該加水分解開始前〜該加熱終了の1分前、
好ましくは該加水分解開始前〜該昇温前の工程で水溶性
分散媒(前記水溶性高分子、界面活性剤、写真用かぶり
防止剤、リン酸、ケイ酸、有機酸の1種以上を含む)を
添加する事がより好ましい。それらの合計濃度(重量
%)は0.01〜15が好ましく、0.05〜10.0
がより好ましく、0.20〜10.0が更に好ましい。
該分散媒としては特に水溶性タンパク質が好ましく、前
記規定のゼラチンをより好ましく用いる事ができる。該
溶液の溶媒としては1種以上の有機溶媒、水、またはそ
れらのあらゆる比率の混合液を挙げる事ができる。その
水の重量%は20〜100が好ましく、50〜100が
より好ましく、80〜100が更に好ましい。該加水分
解物の粒子直径(nm)が300以下、好ましくは30以
下、より好ましくは3.0以下、より好ましくは1.0
以下の段階で添加する事が好ましい。該分散媒が粒子表
面に吸着し、M-O-M 結合の網目構造の成長を抑制し、か
つ粒子間合体を抑制し、より微粒子化された粒子が得ら
れる為である。
【0087】該縮合反応は加熱により促進される。この
為、該縮合反応過程の温度を加水分解時の温度よりも
5.0〜1200℃、好ましくは10〜600℃だけ高
くする事が好ましい。これにより、該酸化物中のH2O 含
率とROH 含率は低下する。該縮合反応温度は30〜12
00℃、好ましくは50〜600℃で行う事ができる
が、該水溶液中において30〜100℃、好ましくは4
0〜90℃で、前記(I)記載の態様で行う事が特に好
ましい。
【0088】該加水分解途中で反応を制御する為に、ま
た加水分解後の該縮合反応を制御する為に、反応溶液に
酸、または塩基を添加し、溶液のpHを制御する事がで
きる。溶液が酸性の時は塩基を添加し、pHを0.1以
上、好ましくは0.5以上上げる事が好ましく、溶液が
アルカリ性の時は酸を添加し、pHを1.0以上、好ま
しくは0.5以上、下げる事が好ましい。該加水分解後
から該縮合反応の終了時までの間に酸化物の水洗洗浄過
程を1〜10回入れる事が好ましい。不要なアルコール
や酸、塩基を除去する事ができ、好ましい。水洗法とし
て、従来、AgX 乳剤の水洗法として知られている方法を
用いる事ができ、後述の記載を参考にする事ができる。
これらの含有量(モル量)を元の0.0〜0.5倍、好
ましくは0.0〜0.10倍、より好ましくは0.0〜
0.01倍に減らす事が好ましい。
【0089】該加水分解法による金属酸化物形成法は、
(I)項記載の酸化物の形成方法として好ましく用いる
事ができ、好ましくは原子番号43〜47、75〜7
9、84〜89、93〜103の元素を除く全金属元素
の酸化物形成法として用いる事ができる。該加水分解時
に、また、該縮合反応時に、水に可溶な可溶性塩を濃度
(モル/リットル)で1.0〜10-8、好ましくは10-1
10-7で共存させる事ができる。該可溶性塩に関しては
後述の記載を参考にする事ができる。該加水分解後の加
熱を固形状態で行う事は好ましい。例えば支持体上に塗
布し、乾燥させ、固化した後に加熱する方法。この場
合、加熱による粒子サイズ成長は、抑制され、小サイズ
粒子が得られる。該成長の為の溶質供給が抑制される為
である。該ハロゲン酸の0.1〜4モル/リットル水溶液中
にTi(OR)4 液を室温(15〜35℃)で添加し、次に6
5〜90℃に昇温して形成されるTi酸化物粒子はルチ
ル型が殆ど(80〜100%、好ましくは95〜100
%)を占める為に好ましい。他の酸(H2SO4 、HNO3、CH
3COOH)ではアナターゼ型が殆どで、H3PO4 とNaOHではア
モルファスが殆どである。HCl やHBr で加水分解する
と、オルトチタン酸が生じ易い事、HNO3やH3PO4 で加水
分解するとメタチタン酸(アナターゼ微結晶の集合体と
見なされる)が生成する事、オルトチタン酸はpH0.
1〜2.0でHCl やHBr に溶解し、より安定型の結晶成
長を可能にする事が効いていると考えられる。
【0090】加水分解により金属酸化物微粒子形成しえ
る化合物種をMYn で表わした場合、Y=アルコキシ、ハ
ロゲン、オキシ酸化物(例えば-OCl) 、カルボン酸(例
えばCH3COO- )、NO3 - 、-OH 、アルキル、アリール、
カルボニル、シクロペンタジエニル、アセチルアセト
ン、アセト酢酸エチルの各基を挙げる事ができる。
【0091】(II-7-3) 溶融物からの形成。金属酸化物
を一度、高温加熱し、溶融した後、冷却し、固化する。
液滴にした後に固化する事もできる。2種以上の酸化物
を均一混合する事ができる。生成物の粒径が大きくなる
為、固化後、粉砕して用いる事ができる。本願では該微
粒子が前記に記載の如く、水溶液中で金属エステルまた
は金属塩の加水分解と、次の水溶液中での結晶化反応を
経た段階で、〔(ルチル型結晶量/(ルチル型結晶量+
アナターゼ型結晶量)〕が0.70〜1.0、好ましく
は0.90〜1.0である〔I〕の(7) 記載の微粒子を
好ましく用いる事ができる。該結晶量は微粒子粉末のX
線または電子線回折シグナルのピーク角度とシグナル面
積の比較により求める事ができる。
【0092】(II-7-4) 固体を出発原料とする合成法 (1)2種類以上の酸化物固体を混合し、互いに接触さ
せ、高温に加熱する事によって固体間でイオンが拡散
し、固溶体や複合酸化物を得る。この場合、強固な凝集
粒子を生成するので、次に粉砕する必要がある。 (2)金属化合物固体を加熱し、熱分解し、酸化物を得
る方法。例えばMg(CH3COO)2 ・4H2OやMgSO4 ・7H2Oを加
熱分解し、MgO を得る反応。 (3)金属粉末を酸化し、酸化物を得る方法。酸素ガス
気流中で加熱し、酸化する方法、水熱酸化する方法、水
中で金属間で放電を行わせて酸化する方法。該複合物の
合成は、前記合成を2種以上の金属元素、または金属化
合物を存在させ、その混合組成物を析出させる事によ
り、または更に該縮合反応を行わせる事により合成する
事ができる。
【0093】(II-7-5) 粉砕方法。天然鉱石、人工合成
物として得られた粒子の直径が目的の直径より大きい場
合、該粒子を粉砕し、より微粒子化する。該粉砕とは該
3次元合着粒子の平均体積を元の10-8〜0.5倍、好
ましくは10-8〜0.1倍にする事を指す。人工合成物
としては(II-7-1) 〜(II-7-4) で調製した粒子を指
す。粉砕法としては粉砕を乾燥状態で行う乾式処理と、
溶液と混合した後に行う湿式処理を挙げる事ができ、湿
式処理がより好ましい。それは、微粒子表面上に溶媒や
溶質が吸着し、表面エネルギーを下げ、粒子の再合着を
防止できる為である。湿式処理の場合、溶媒としては1
種以上の有機溶媒液、水、またはそのあらゆる比率の混
合液を挙げる事ができる。水を主成分とする溶媒がより
好ましい。即ち、水の重量%は20〜100が好まし
く、50〜100がより好ましく、80〜100が更に
好ましい。有機溶媒の具体例に関しては後述の記載を参
考にする事ができる。該水溶液は、水溶性分散媒(水溶
性高分子、界面活性剤、写真用かぶり防止剤、リン酸、
ケイ酸、有機酸の1種以上を含む)をその合計重量%で
0.01〜15、好ましくは0.05〜10、より好ま
しくは0.20〜10含有する事が好ましい。該分散媒
が粒子表面上に吸着し、表面エネルギーを更に下げ、粒
子の再合着が更に防止される。該分散媒としては特に水
溶性タンパク質が好ましく、前記規定のゼラチンをより
好ましく用いる事ができる。該湿式処理時の温度に特に
制限はないが、通常0〜90℃が好ましく、5〜50℃
がより好ましい。粉砕時の雰囲気圧力(気圧)に特に制
限はないが通常0.01〜10が好ましく、0.5〜3
がより好ましい。粉砕時の雰囲気ガス種に特に制限はな
く、あらゆるガスを用いる事ができ、通常は、N2、A
r、空気がより好ましい。
【0094】該水溶液のpHとしては、特に制限はない
が、pH1.0〜13.0が好ましく、pH2.0〜1
2.0がより好ましい。pH調節剤としては公知の酸、
アルカリを用いる事ができ、後述の文献の記載を参考に
する事ができる。金属酸化物粒子の場合、粒子の表面電
荷は、通常pHによって変化し、等電点pHよりも高p
Hでは負に荷電し、該pHよりも低pHでは正に荷電す
る。従って該高pH又は該低pHでは粒子間の荷電反発
による粒子合体防止機構が存在し、これを好ましく用い
る事ができる。
【0095】粉砕すべき粒子の直径が大きい場合、これ
を2〜20ステップ、好ましくは3〜10ステップに分
け、順に小さく砕いていく事が好ましい。通常、粒径が
大きい順に粗砕機、中砕機、微粉砕機、分散機(コロイ
ドミル)と分類される。圧縮粉砕型、衝突圧縮粉砕型、
せん断粉砕型、摩擦粉砕型が好ましく、挽うすや茶うす
の如く、狭い間隙間に粒子を存在させ、粒子に圧縮力と
ずり力を与えて粉砕する方式をより好ましく用いる事が
できる。コロイドミルは該間隙を0.01〜10μm 、
好ましくは0.01〜1.0μm に制御して粉砕する方
式である。(II-7-2) 項の加水分解法において、加水分
解物の粒子直径(μm)が0.01〜100、好ましくは
0.10〜10の段階で該粉砕工程を入れる事ができ
る。この場合、該分散媒溶液中で粉砕する事が好まし
い。粒子の含水量が多い状態ではその重合体のO-H 結合
が弱い為に、粒子が粉砕で破砕され易く、好ましい。該
加水分解後の該縮合反応を40〜150℃、好ましくは
50〜97℃で該溶液状態で行う事が特に好ましい。時
間は1分間〜5日間が好ましく、10分間〜1日間がよ
り好ましい。該縮合反応を該分散溶液中で行う事が更に
好ましい。
【0096】該粉砕方法、装置と理論の詳細に関しては
後述の文献19〜24の記載を参考にする事ができる。
粉砕器として特願平11−3264号の図11に記載の
コロイドミルを好ましく用いる事ができる。現在市販さ
れている該酸化チタン微粒子は図11に示す如く一次粒
子が30個以上合着した凝集粒子であるが、それは微粒
子を200℃以上の高温で焼成し、結晶化率を高める工
程で合着が促進される事が一因である。該合着粒子をそ
のまま用いた場合、本願の目的は達成されない。該市販
の粒子を本発明法に従って粉砕して用いれば本願の光学
材料を得る事ができる。
【0097】(II-7-6) 分級。前記の方法で得られた微
粒子は更に分級し、大きい粒子を除去した後に用いる事
が好ましい。分級とは固体粒子をその粒径別に分離する
事を指す。分級の方法として例えば次の方法を挙げる事
ができる。1)粒径の違いによって流体中で受ける重力
と流体抵抗の差が異なる事を利用して分級する方法。例
えば重力場分級と遠心場分級を挙げる事ができる。2)
フィルター濾過法を用い、ふるい分けする方法。フィル
ターは小さい粒子を通過させ、大きい粒子を通さない。
粒子の平均体積をA30とすると、5A30以上、好ましく
は2A30以上の粒子を除去する事が好ましい。該分級法
の具体的装置例に関しては後述の文献20の第2章、文
献21の238〜272頁の記載を参考にする事ができ
る。
【0098】(II-7-7) 酸化チタン微粒子合成の補足事
項。酸化チタン(ルチル型、アナターゼ型)粒子の人工
合成物は、工業的には、主として硫酸法、または塩素法
により製造されている。含水酸化チタンは多くの場合硫
酸チタン溶液、塩化チタン溶液、チタンアルコキシド溶
液の加水分解反応により合成される。
【0099】該酸化チタンの合成方法を分類すると次の
ようになる。1)液相沈殿法。チタン塩の水溶液を中和
して水酸化チタン(または含水酸化チタン)を沈殿さ
せ、これを焼成する事により得る方法。陰イオンの影響
を除く為に金属アルコキシドを加水分解する事が多い。
2)液相水熱合成法。これは100℃以上の高温熱水を
該1)の反応の媒体として用いる方法である。この方法
で得られる粒子直径は大きい傾向にある。3)気相法。
TiCl4 を気相中で酸素と反応させ(TiCl4 + O2→TiO2 +
2Cl2)により生成する方法。その他、気相中で金属アル
コキシド蒸気をH2O 蒸気で加水分解する方法。溶質を蒸
気として供給する事もできるし、霧状の微滴として供給
する事もできる。配管中で気相をフローさせながら反応
させ、粒子が生成した後、粒子間合着防止用の後述の水
溶性分散媒溶液中に気相を吹き込む方式を好ましく用い
る事ができる。
【0100】4)有機溶媒法。有機溶媒中に金属アルコ
キシドを溶解させ、この中に水蒸気を入り込ませ、加水
分解させる。有機溶媒に対する酸化チタンの溶解度が小
さい為、水熱法で見られるような結晶成長は抑制され、
微粒子が得られる。例えばHyCOM 法を挙げる事ができ
る。その他、有機溶媒中で金属アルコキシドを熱分解す
るTD法、合成反応系内でアルコールの脱水により生成
する水を用いてアルコキシドを加水分解させるTHyCA 法
を挙げる事ができる。これらの詳細に関しては後述の文
献25の記載を参考にする事ができる。該高屈折率物質
の種類、調製方法、特性の詳細に関して、また該無機微
粒子の調製法とその特性、粉砕、分級、分散物の安定性
の詳細に関してはその他、田部浩三ら編、金属酸化物と
複合酸化物、講談社(1978年) 、化学総説 No.32、ペロ
ブスカイト関連化合物、学会出版センター(1997年) 、
中原勝儼著、無機化合物・錯体辞典、講談社(1997年)
、Sol-Gel Science, Academic Press(1990年) 、ゾル
−ゲル法の応用、アグネ承風堂(1997年) 、ゾル−ゲル
法の現状と展望、ゾル−ゲル法リポート刊行会(1992
年) 色材、71巻、 No.6、398 〜404(1998年)、ガラス
の事典、朝倉書店(1985年) 、新実験化学講座8、無機
化合物の合成I、II、III 、丸善(1976年) 、桐山良一
ら著、構造無機化学、I、II、共立全書(1964年) 、第
4版実験化学講座16、無機化合物、丸善(1993年) 、文
献15の第2章、文献13、16、17、久保輝一郎ら編、粉
体、丸善(1962年、1979年) 、工業材料、46巻、118(19
98年) 、作花済夫著、ゲル−ゾル法の科学、アグネス承
風社(1988年) 、神保元二ら編、微粒子ハンドブック、
朝倉書店(1991年) の記載を参考にできる。
【0101】(II−8)水溶性分散媒 水溶性分散媒として、前記水溶性高分子の他、次の物質
を挙げる事ができる。
【0102】(1)界面活性剤。本発明で用いる事ので
きる界面活性剤に特に制限はなく、既知のあらゆる界面
活性剤を用いる事ができる。具体例として陰イオン界面
活性剤(例えばRCOONa、RSO3Na、RSO4Na) 、陽イオン界
面活性剤〔(R−オニウム塩基)で例えばRNH4X 、アル
キルピリジニウム塩)、両性界面活性剤(例えばN−ア
ルキル−N,N−ジメチルアンモニウムベタイン)、非
イオン界面活性剤(例えばポリアルキレンオキシド類、
ソルビタン)を挙げる事ができる。界面活性剤は溶液表
面で高い表面活性を有する化合物であり、分子構造的に
は極性親水性基と非極性親油基(長鎖アルキル基)を有
する化合物を指す。該極性基が、該粒子に吸着した時、
該親油基は、その脱着を抑制する働きをする。ここでR
は炭素数3以上の有機化合物基を表わす。-COOH 基を有
する陰イオン界面活性とピリジニウム塩基を有する陽イ
オン界面活性剤をより好ましく用いる事ができる。該界
面活性剤の化合物例、特性に関しては文献3の第10・
7節、文献4の第16章、文献14の記載を参考にでき
る。
【0103】(2)かぶり防止剤。写真用かぶり防止剤
であり、N、S、Se 原子の1つ以上を含有する複素環
化合物、メルカプト基、-SeH基、-S- 、-Se-基の1つ以
上を含有する化合物である。具体例としてアゾール類、
アジン類、アザインデン類、テトラアザインデン類、メ
ルカプトテトラゾール類を挙げる事ができる。具体的化
合物例については文献7の第VII 章の記載を参考にでき
る。
【0104】(3)リン酸およびその塩。リン酸とはオ
ルトリン酸、メタリン酸、ポリリン酸の総称であり、好
ましくはポリリン酸である。ポリリン酸は2つ以上のP
を含み、P-O-P 構造をもつリン酸を指し、次の3種に分
類される。1)鎖状ポリリン酸。一般式(Pm O3m+1)
(m+2)-で示される陰イオンをもつ。2)環状ポリメタリ
ン酸。環状の(Pm O3m) m-構造をもつ。m=3はトリメ
タリン酸、m=6はヘキサメタリン酸を指す。m=2〜
104 、好ましくは3〜102の数を表わす。ポリリン
酸は各種金属と酸素によってキレーションをする性質を
有する。これにより粒子表面の金属原子とキレーション
を生じ、粒子に対する保護コロイド作用をなす。リン酸
塩の場合、カチオン種として金属イオンを挙げる事がで
きるが、水溶性塩が好ましく、アルカリ金属塩、アンモ
ニウム塩がより好ましい。
【0105】(4)ケイ酸およびケイ酸塩。ケイ酸はオ
ルトケイ酸H4SiO4およびその縮合酸〔例えばメタケイ
酸、ポリメタケイ酸(メタ2ケイ酸、メタ3ケイ酸
等)〕を指す。水に溶解した状態の他、コロイド状のコ
ロイドケイ酸の状態で用いる事もできる。ケイ酸塩は一
般式 x(Mn O m ) ・ySiO2 で表わされる化合物を指す。
Mは金属原子を表わし、(Mn O m ) はMが1価の場合は
M2O であり、2価の場合はMO、3価の場合はM2O3であ
る。MはAl、Fe、Ca、Mg、Na、Kの塩が多く
存在する。アルカリ塩がより好ましい。水に溶解した状
態の他、コロイド状のコロイドケイ酸塩の状態で用いる
事ができる。アルカリ塩は水に可溶で、それ以外は水に
難溶で、コロイド状態が多い。結晶構造は基本的には4
つのO原子が1つのSi原子に正四面体形配位した(Si
O4)4-、またはそれらがO原子を共有して連なったポリ
酸陰イオンが規則的に配列し、そのすきまにMのイオン
が入った構造である。例えばソロケイ酸塩、ケノケイ酸
塩、フィロケイ酸塩、テクトケイ酸塩を挙げる事ができ
る。該(3) 、(4) の詳細に関しては文献4の第3章、第
12章、文献19の記載を参考にできる。
【0106】(5)有機酸。1分子中に1種以上の酸基
を1〜20基有し、分子量が40〜999、好ましくは
50〜990の有機酸を指す。ここで酸基とは-COO
- 基、-SO3 - 基、-SO2 - 基、フェノール基、エノール
基、チオフェノール基、イミド基、オキシム基、芳香族
スルホンアミド基、第1級および第2級ニトロ化合物基
であり、好ましくは-COO- 基、-SO3 - 基、-SO2 - 基、よ
り好ましくは-COO- 基を指す。該酸基、特に-COO- 基は
該微粒子表面に吸着し、粒子の合体を防止する能力が高
い。特にTiO2を主成分とする粒子に強く吸着し、該効果
が大きい。
【0107】(II−9)光学材料(B0) (II-9-1) 微粒子の混合量はB0 の屈折率値の関係。分
散媒層に該高屈折率微粒子を混合し、該分散媒層を高屈
折率化させる時の考え方は次の通り。飽和炭化水素系化
合物では、通常、次の法則(分子屈折≒分子を構成して
いる各原子の原子屈折の和)が成立つ。但し、各原子の
結合態様で分子屈折が変化する為、(分子屈折=分子を
構成する各原子団、または電子グループの該屈折の和)
とした方がより多くの化合物で、より高精度で成立す
る。即ち、分子を種々の原子団の飽和結合体と見なせば
よい。この考えを多種の微粒子の混合集合体に拡大適用
すると、「物質の単位体積の単位屈折は、該単位体積を
構成する各微粒子の(微粒子屈折×微粒子容)の総和で
ある」といえる。ここで微粒子屈折は、1種類の該物質
のみで単位体積を占めた物質の屈折率を指し、微粒子容
は、(1つの微粒子が占める容積/単位体積)を指す。
分散媒層のような連続媒質層の場合は長方体微粒子が空
隙なしに密に充填された状態と考えればよい。空気中で
球状粒子を充填してできた充填体の場合、その空隙部は
屈折率=1.0の粒子が存在していると考えればよい。
物質が多くの成分を含む多成分系である場合、その比屈
折をr、各成分の重量%をc1 、c2 ……cn %、各成
分の比屈折を、r1 、r2 ……rn とすると、近似的に
次式が成立する場合が多い。但し、成分間の相互作用
で、成分原子の外殻電子の状態が変化する場合は、該加
成性則から、該変化の程度に応じてずれる。 100r=c1 1 +c2 2 +……+cn n (b−1) 該微粒子の混合量と該屈折率との関係は(b-1) 式によっ
て見積もる事ができる。但し、比屈折=(モル屈折R0
/分子量M1)であり、物質の屈折率n10と次式の関係に
ある。 (n10 2-1)/(n10 2+2)=R0 ・n0 /M1 (b−2) ここでn0 は物質の比重を表わす。c1 1 =(成分1
の存在モル%量×R0)である。一般に物質を構成する分
子の分子屈折が増す程、また分子容が減る程、また物質
中の空隙部容積が減る程、(b-1)式より物質の屈折率は
増す。分子屈折は分子を構成する原子や原子団の分極率
が増す程、大きくなる。これは陽イオン原子のイオン半
径が増す程、またその原子価が増す程、大きくなる。従
って、原子番号がより大きい金属元素の酸化物を添加す
ると、生成ガラスの屈折率は増加する。具体例としてB
a、Pb、ランタノイド類元素の酸化物を挙げる事がで
きる。Tiの酸化物はTi4+の原子価が大きい為にその
分子屈折値は大きい。該微粒子の屈折率値(n11)は該光
学材料の屈折率値(n12)、用いた分散媒のみの屈折率値
(n13)、と両者の混合容積比と前記関係を用いて求める
事ができる。
【0108】(II-9-2) 光学材料のその他の詳細。有機
高分子材料(B2)と無機光学材料(B1)のB0 としての
利点、欠点は前記記載の通りである。両者をうまく組合
せ、両者の欠点を抑制し、利点を残せばより優れた光学
材料を提供する事ができる。この場合、B2 中に高屈折
率であるB1 の微粒子(A40) を分散させた態様が好ま
しい。この態様は次の特徴をもつ。 (1)B2 がバインダーであるから、衝撃に対する割れ
難さは保持される。B 2 が耐衝撃性を有するのは、密な
三次元原子網を作っていないからである。例えばNaCl結
晶の場合、完全な三次元原子網結合を形成しており、衝
撃を受けた時に衝撃を緩和する機構を有しないから、該
結晶状態を維持するか、破損された状態になるからであ
り、両者の中間状態はとれない。一方、加硫ゴムが衝撃
を受けた時、分子鎖が互いにずれて、衝撃を緩和し、衝
撃がなくなるとまた元に戻り、衝撃を熱エネルギーにう
まく変換する機構を有する。従って破断限界伸び率
〔(破断時の長さ−元の長さ)/元の長さ=A41〕、弾
性限界伸び率〔(弾性限界時の長さ−元の長さ)/元の
長さ=A42〕が大きい。多くの高分子材料は両者の中間
のA41値、A42値を有している。本発明のB0 のA42
は0.002〜2.0が好ましく、0.006〜1.0
がより好ましい。分子間架橋された高分子をバインダー
に用いる事により実現する事ができる。
【0109】(2)B2 中にA40を分散させる事によ
り、B0 の屈折率を高くする事ができる。その原理は前
記に記載した通りである。無色透明のB2 は通常、その
屈折率は小さい。その理由は次の通り。1)その主な構
成原子が原子屈折値の小さい軽原子(C、H、O、N
等)である。2)長い不飽和結合を有する分子の分子屈
折は大きいが、可視光を吸収する為に導入できない。B
1 を混合すると、この不利な点は改善され、該屈折率を
高くする事ができる。この場合、B1 は微粒子の他、分
子、イオン、原子でもよい。可視光を吸収しなく、か
つ、原子屈折、分子屈折が大きければよい。これらの粒
子が該高分子鎖網の間に入る事により、高分子鎖網間の
空隙部容積が減少し、物質密度が上昇し、該材料の屈折
率が増す。該イオン、原子は遊離状態と化学結合(共有
結合、配位結合、イオン結合)状態で混入できるが、後
者の方がより好ましく、配位結合、イオン結合状態がよ
り好ましい。より高密度の混入ができる為である。
【0110】(3)通常、物質の硬さは(B1>B2)であ
り、耐傷性も(B1>B2)であり、硬い物質は傷つき難
い。モース硬さ計はこの関係を利用して物質の硬さを測
定する。B1 が硬いのは高密度の三次元原子網結合を形
成している為である。熱可塑性樹脂(A43) が軟らかい
のは、長鎖高分子間の結合が、ファン デア ワールス
カという弱い結合の為である。A43を分散媒に用いた場
合、耐傷性が悪い。これを改良する方法として次の方法
がある。1)長鎖高分子間を該化学結合で、好ましくは
共有結合または配位結合で架橋する。分子間力が強化さ
れ、硬くなる。この場合、架橋密度を高くすればする
程、物質は硬く、もろくなる。従って最適の架橋密度を
選ぶ事が好ましい。2)A40の硬さが硬く、かつ、それ
が高密度で存在すると、物質の耐傷性が上昇する。耐傷
性はA40の硬さと該密度に比例して上昇する。
【0111】(4)耐熱性。通常、物質の耐熱性は(B1
>A43)である。その理由は(3)と同じ理由による。従
って該分子間架橋により、分子間力を強化すると、該密
度の上昇に比例して、耐熱性が向上する。 (5)物質の吸湿性は通常、(B1<A43)である。これは
43の分子間結合が弱い為に分子間に水分子が入り込
み、膨潤する為であり、これも該分子間架橋をする事に
より、抑制する事ができる。A43の架橋部の官能基が-N
H2、-COOH 、-OH基の如き親水性基であり、架橋剤を添
加してこれらの基と反応させ、共有結合架橋を形成した
場合、該親水性基数が減少し、A43の親水性は低下す
る。この因子も該吸湿性を抑制する。 (6)有機高分子性透明光学レンズ(A44) はSiO2系無
機透明ガラスレンズ(A45) に比べて一般に解像力が劣
る。その原因は次の通り。1)A44では分子が局所的に
会合したり、部分的に結晶化して、局所的に光学特性の
不均一性が存在する事、2)高分子の分子軸方向と、そ
れと垂直な方向で分子の分極率が異なる。特に芳香族環
を有する高分子では該環の配向方向に依存して、分極率
の配向依存性が大きくなる。これらの要因は次のように
すればほぼ完全に改善される。
【0112】1)高屈折率のB1 が、B2 中に多数、均
一に分散されると、その光学効果が大きくなり、該不均
一性が緩和される。2)該架橋は高分子の分子軸と垂直
方向に架橋分子の分子軸を形成する為に、該分極率の不
均一性が緩和される。3)各高分子鎖間に架橋剤やA40
が入り込む事により、高分子同志の部分結晶化が抑制さ
れ、該不均一性は緩和される。この場合、架橋剤は架橋
された高分子(A46−A47−A48) において、A47の原
子鎖数は1〜20個が好ましく、1〜15個がより好ま
しく、2〜10個が更に好ましい。該数が多くなりすぎ
ると、分子間に空隙部が形成される事、0 では該部分結
晶化を抑制できない為である。ここでA 36、A38は高分
子鎖を表わす。該高分子は芳香族基を有する方が好まし
く、分子量104 あたり、0.1〜50個が好ましく、
0.2〜30個がより好ましい。分極率が大きくなり、
より高屈折率のB0 が得られる。但し、該基は前記平行
光濃度規定を満たす基であり、フェニル基類、フェニレ
ン基類がより好ましい。
【0113】このようにして形成された分散媒層は該結
晶化部を含有せず、そのモル量の90〜100%、好ま
しくは98〜100%、より好ましくは99.9〜10
0%は非晶質である。該高分子の物質密度は通常、(結
晶質>非晶質)であり、高屈折率化に対してはこの点は
不利に作用するが、該非晶質の分子間のすき間をB2
穴埋めする事により、光学的均一性と高屈折率化を実現
する。該高分子は非晶質であり、かつ、分子鎖が分子間
で互いに絡み合った状態が好ましい。各分子が糸まり状
化する事はよくない。ゼラチンの如き両性電解質の場
合、その等電点近傍のpH溶液中で分子は糸まり状にな
り、溶液の透明性が低下する。一方、高分子のアミド結
合やエステル結合は高pH(pH>10) や低pH(pH<2)
では経時で加水分解を起こす。従って溶液のpHは等電
点から0.3〜4.0、好ましくは0.5〜2.0離れ
ている事がより好ましい。B0 の透明性が高く、かつ、
解像力が高い為には更に次の事が必要である。
【0114】(7)B2 とA40の親和性が高い事。該酸
化物は一般に親水性が高く、水溶液中で分散させ易い。
従ってB2 が水溶性分散媒であり、B2 を含む水溶液中
でA 40を分散させる事が好ましい。B2 の親水性基が該
酸化物の親水基と結合し、両者の親和力が高まる。例え
ば金属原子M+nに-COO- 基、-NH2基が配位結合した態様
がある。又は該酸化物の O- に-NH3 + 基、オニウム基が
結合した態様がある。従ってB2 が1分子中に-COOH
基、又は-NH2基、又は-SH 基を1〜104 基、好ましく
は3〜104 基含有し、A40の粒子1個あたり、該基が
1〜104 基、好ましくは3〜103 基吸着した態様が
好ましい。一方、でき上がった光学材料の親水性は低い
事が好ましい。その為にはB2 中にA40を分散させた
後、該架橋反応を行わせ、親水性を低下させる事が好ま
しい。この場合、A40に吸着した親水基はそのまま保持
される為に、B2 とA40の親和性は保持される。
【0115】(8)A40が光学的独立相を形成しない
事。A40が光学的独立相を形成すると、A40とB1 の界
面で光反射を生じ、透明度、像の解像度が低下する。そ
れを抑制する為にはA40の粒子直径を用いる光の波長
(λ1)の0.3倍以下、好ましくは0.1倍以下、より
好ましくは0.03倍以下にすればよい。最も好ましく
は該粒子中の金属原子数が1〜20、好ましくは1〜1
0、より好ましくは1〜3の態様である。該架橋反応は
該添加から、該光学材料の使用時までの間に進行する
が、製品出荷時までに、好ましくは該整形終了時までに
終了している事が好ましい。
【0116】(9)該分散媒が光学的異方性を有しない
事。ケイ酸塩ガラスの透明性が良く、そのレンズの解像
力が高いのは、縦横に(Si-O) 結合が張り巡らされ、ど
の方向も同種結合である事、結晶の周期配列構造に近い
原子配列である事、である。有機高分子で該態様を厳密
に実現する事は難しいが次の態様をとる事により、それ
に近い特性のものを得る事ができる。高分子鎖を延伸等
により特定方向に配向させて膜を形成し、該配向膜を交
互に直交させて2〜104 枚、好ましくは4〜103
重ね合わせる。これにより該膜面上へ入射した光に対す
る光学特性は均一化される。即ち、光の入射面の光学特
性が均質化されていればよい。この場合、直交のさせ方
として表1に示した1)〜4)の4種の方法がある。表1で
矢印は該配向膜の配向方向を表わし、積層順序1〜5
は、該配向膜を1〜5の順に積層する事を表わす。積層
周期回数2は、積層回数が2で再び元の配向方向に戻る
事を示す。
【0117】3)、4)の場合、5層目以降の積層方向の組
合せを選ぶと、積層回数の増加と共に更に多くの組合せ
種類が存在する。しかし、1)〜4)の規則正しい繰り返し
積層態様がより好ましい。該配向フィルムの積層方法と
して、その他配向方向を順に60°または120°ずつ
ずらせて積層させる方法、また、その配向方向を表1の
如く2方向とる確率を加えたものがある。更には表1の
直交方法と、該60°、120°ずらし方法を組合せる
方法がある。しかし、光は規則性を好むので、複雑な組
合せよりは単純な繰り返し積層の方がより好ましい。表
1の1)〜4)、表2の1)、2)が好ましく、表1の4)、表2
の1)、2)が更に好ましい。これらをより一般的に記載す
れば、(I)の(25)の記載になる。それは、高分子鎖の
頭と尾を区別し、頭の方向まで揃える事は困難であり、
実際には分子軸しか揃えられないので、分子軸のみ規定
したものである。
【0118】該配向は、例えば長鎖高分子含有膜を25
℃〜(融点-1℃)、好ましくはガラス転位点〜(融点-5
℃)の温度で1.2〜30倍、好ましくは1.5〜20
倍に延伸する事によりなされる。該積層膜間は接着しな
いで枠に入れる事により固定し、使用する事ができる
し、該膜間を接着剤で接着して用いる事もできる。接着
剤としては公知の接着剤〔例えばゼラチン、カナダバル
サム、合成樹脂、合成ゴム、α−シアノアクリラート型
接着剤)、該膜の乾燥前の溶液分散物、を用いる事がで
き、後者がより好ましい。接着の詳細は文献31の記載
を参考にできる。該膜と同一組成物であり、光波の乱れ
が少なくなり好ましい。該接着後に更に乾燥させる事が
好ましい。公知の接着剤に関しては後述の文献3の第1
0章の記載を参考にする事ができる。
【0119】高分子を配向させる方法として、その他、
高分子含有溶液を狭いノズルから押し出す方法がある。
高分子鎖は流出方向と平行に配列する確率が高い為、押
し出された溶液をそのままゲル化し、乾燥させれば、該
配向膜が得られる。小孔径のノズルを一次元的に配列さ
せて押し出せばよい。分子が配向した度合いは、次の方
法で確認する事ができる。1)該膜は高分子が配向した
方向の方が伸び難く、ヤング率は大きくなる。膜の各方
向に対するヤング率比を求める事により、求める。2)
膜の各方向に対する光吸収の偏光度比を求める。高分子
のシグマ結合の光吸収は、分子鎖と平行な電場振幅を優
先的に吸収する態様で起こる。
【0120】(高分子配向方向の該値/その直角方向の
該値)=1.2〜100が好ましく、2.0〜100が
更に好ましい。この場合、各配向膜の厚さは薄い方が好
ましく、0.01〜100μm が好ましく、0.01〜
10μm がより好ましい。該高分子が芳香族基を有する
場合でも、その分子配向特性が緩和され、高屈折率の均
質なB0 が得られる。
【0121】
【表1】
【0122】
【表2】
【0123】(10)該分散媒が光散乱性の気泡を有しな
い事。該分散媒相に直径が0.3μm 以上の気泡が混入
すると、可視光を散乱し、透明度が低下する。これを抑
制する為に次の方法が有効である。1)溶液を調製した
後、脱泡する。脱泡法とてしは、減圧脱泡法(溶液を
0.01〜0.95気圧、好ましくは0.05〜0.7
気圧の減圧下に置く。徐々に減圧する方法と、パルス的
に減圧する事を2〜10 4 回、繰り返す方法がある)、
昇温脱泡法(60〜100℃に加熱する)、超音波照射
法(1.0〜500KHz 、1.0〜100W/リットルが好ま
しい) 、マイクロ波加熱法(電子レンジの使用)、およ
びそれら2種以上の併用を用いる事ができる。
【0124】(11)(II-9-1) の記載により、物質の密
度を高くすればする程、B0 の屈折率は高くなる。物質
の密度を高くするにはB0 を圧縮して形成すればよい。
その圧縮法として次の方法がある。1)高圧ガスでプレ
スする方法。該圧はB0 の表面を均一にプレスするとい
う利点があるが、ガス分子がB0 中に入り込むと、逆に
0 の光学密度が低下するという欠点もある。それは、
0 を大気中に取り出せば、入り込んだガスが再び放出
される事も一因である。2)溶液で高圧プレスする方
法。該圧はB0 の表面を均一にプレスするという利点が
あるが、同様に液体分子がB0 中に入り込むと逆にB0
の光学密度が低下するという欠点もある。3)型に入れ
てプレスする方法。通常は耐圧性の良い金型に入れ、プ
レスする。この場合もB0 を大気中に取り出した時にB
0 が体積膨張する事がある。これを抑制するには、プレ
ス状態で該架橋反応を進行させ、該化学結合で固定化す
ればよい。この場合、特に共有結合で架橋する事がより
好ましい。プレスする圧力(kg/cm2)は0.01〜10
4 が好ましく、0.1〜104 がより好ましい。該架橋
結合の10〜100%、好ましくは30〜100%、よ
り好ましくは70〜100%を該プレス下で行う事が好
ましい。
【0125】(12)前記無機ガラスを分散媒とした光学
材料の説明。該ガラスはアモルファス状態である為、S
iとO以外の原子を該アモルファス体中に固溶体として
組み込む事ができる。但し、異種原子は1〜30、好ま
しくは1〜10原子集合体で混合し、加熱、溶融し、ガ
ラス体となせばよい。Siおよび該金属原子のエステル
体、または塩の均一混合物を水溶液中で加水分解し、原
子状に混合した酸化物を形成し、それを100〜200
0℃、好ましくは300〜2000℃に加熱溶融し、B
0 に形成する。ガラス体の成形加工に関しては文献3の
第3章、文献19、27の記載を参考にできる。
【0126】(13)長鎖高分子の所々が架橋剤で分子間
架橋された高分子材料はゴムと同じ分子構造態様であ
り、ゴム弾性を有する。架橋点の数を増すと、分子は固
定され、ゴム弾性はなくなる。架橋点数を選ぶ事により
ゴム弾性B3 値を選ぶ事ができる。(I)の(24)記載の
0 の場合、ゴム弾性がある為、B0 の耐衝撃性が特に
良くなる。またレンズの厚さを変える事ができる。例え
ば凸レンズの場合、レンズ枠の締め付けネジを締めた
り、緩めたりする事により、人間の目の水晶体のように
レンズの厚さを変える事ができる。眼鏡の場合は他にピ
ント合わせ機構がない為、該調節機構を有する事は便利
である。逆にレンズを周囲から引っ張ればレンズの厚さ
は薄くなり、これによっても凹凸レンズの厚さを変える
事ができる。(B0 の厚さ変化量/元の厚さ)は0.0
1〜2.0が好ましく、0.03〜1.0がより好まし
い。
【0127】(14)金属酸化物粒子が光(例えば紫外
光)を吸収し、その伝導帯に電子が生じ、価電子帯に正
孔が生じた場合、該電子は粒子の周辺物を還元し、該正
孔は酸化し、該周辺物が経時変化する事が多い。これは
避ける為には、該粒子中または粒子表面でそれらを再結
合させ、消滅させればよい。その為に粒子中および/ま
たは粒子表面上に再結合中心を設置する事が好ましい。
該中心には、先ず該電子をトラップし、これが該正孔と
再結合する電子トラップ型再結合中心(A50) と、先ず
該正孔をトラップし、これが該電子と再結合する正孔ト
ラップ型再結合中心(A51) に分類される。真空中の電
子エネルギー準位E0 を基準として、A50の最低空位準
位をE1 、該伝導帯中の最低電子エネルギー準位を
2 、該価電子帯中の最高電子エネルギー準位をE3
51の最高被占電子エネルギー準位をE4 とした場合、
(E0>E2>E1) 、(E0>E4>E3) の関係にあり、(E2-E
1)と(E4-E3)は0.05〜2.8eVが好ましく、0.1
0〜2.4eVがより好ましく、0.15〜2.0eVが更
に好ましい。該中心はあらゆる無機化合物、有機化合物
の中から選ぶ事ができる。粒子表面の該中心は、粒子表
面に該化合物を吸着させる事により、設ける事ができ、
粒子内部の該中心は、粒子内部に該化合物を組み込む事
により設ける事ができる。前記光透過性を保持しえる化
合物を選んで用いる。
【0128】A50となる化合物は、(Ag/AgCl) 電極に対
する還元電位が0〜1.5eV、好ましくは0〜1.0e
V、より好ましくは0〜0.7eVであり、A51となる化
合物は該電極に対する酸化電位が0〜1.5eV、好まし
くは0〜1.0eV、より好ましくは0〜0.7eVの化合
物である。該電位測定法については Photographic Scie
nce and Engineering, 235〜244(1973年) 、同270 〜28
1(1978年) 、Journal ofPhysical Chemistry, 1298 〜1
301 (1990年) の記載を参考にできる。
【0129】該再結合中心の無機物例としてCr、M
n、Fe、Co、Ni、Cu、Zr、Nb、Mo、T
c、Ru、Rh、Pd、Hf、Ta、W 、Re、O
s、Ir、Pt、Hgのハロゲン化物塩、酸素酸塩、ア
ルコキシドを挙げる事ができる。金属酸化物形成時に、
好ましくは(II-7-2) 記載の加水分解時に存在させ、該
粒子中に組み込む事が好ましい。該分解前〜該分解後の
いずれの時期に添加する事もできる。Feを除く化合物
がより好ましい。無機化合物の場合は粒子中への原子の
組入れ方に依存して該電位が多少変化する為、実際には
種々の化合物を組み込み、該再結合確率を測定する事が
好ましい。該電位は化合物選択の目安として用いる事が
できる。該再結合確率は次のようにして求める事ができ
る。1)該酸化物粒子を形成し、同一体積、同一モル量
の水溶液を石英ガラス製セルに入れ、固有域光を照射
し、(酸素と水素の発生量/照射光量)を比較する。
2)該粒子分散物と透明電極と白金電極と電解液を用い
て光電変換セルを形成し、(光電流量/照射光量)を比
較する。該セルに関しては文献28の記載を参考にする
事ができる。3)該粒子を含む該光学材料膜をマイクロ
波光電導装置のキャビティーに入れ、試料を光照射した
時の自由電子と自由正孔に基づくマイクロ波吸収シグナ
ル量を測定する。該装置に関しては文献29の記載を参
考にできる。
【0130】有機化合物の場合も同様に該微粒子中およ
び該粒子表面上に組み込む事ができるが、無機物に比べ
て粒子内に組み込まれる率がより少ない。有機化合物の
場合も、該粒子中や粒子表面上への吸着態様によって該
電位が多少変化する為、該電位は化合物選択の目安とし
て用いる事ができる。更に次の方法も好ましく用いる事
ができる。該微粒子の外側に、よりバンド幅の大きい無
機物のシェル層(A52) を積層させる。この場合、A52
の伝導帯中の最低電子エネルギー準位をE5 、価電子帯
中の最高エネルギー準位をE6 とした時、(E5-E1)およ
び(E3-E6)が0.05〜2eV、好ましくは0.10〜
1.5eVである事が好ましい。該関係は図5の(1) で説
明される。伝導帯中の電子と、価電子帯中の正孔は粒子
内部に閉じ込められ、再結合確率が高められる。
【0131】これを逆に見ると、粒子内部にコア層(A
53) を設け、その伝導帯中の最低電子エネルギー準位を
7 、価電子帯の最高エネルギー準位をE8 とした時、
(E1-E7) 、(E8-E3) が0.05〜2eV、好ましくは0.
10〜1.5eVである態様を好ましく用いる事ができ
る。この場合、シェル層中で発生した電子と正孔は、コ
ア層に入り、コア層内で再結合し、消滅する。該関係は
図5の(2) で説明される。該再結合層は粒子の中間層ま
たはシェル層に入れる事もできる。しかし、シェル層に
入れた場合、電子と正孔が粒子周辺物と反応する確率が
増すし、バンド幅が小さい事による着色度が大きくな
る。これらの1つ以上の処置により、該再結合確率が好
ましくは1.3〜∞に、好ましくは3〜∞に高められ
る。または該再結合しない電子と正孔量の20〜100
%、好ましくは60〜100%、より好ましくは90〜
100%が、再結合するようになる。更に光吸収により
生じた電子と正孔の50〜100%、好ましくは90〜
100%、より好ましくは98〜100%が該粒子内と
粒子表面で再結合する。その他、該光学材料中および/
または表面に紫外線吸収剤を導入し、360nm以下、好
ましくは400nm以下の波長の入射光の30〜100
%、好ましくは70〜100%、より好ましくは90〜
100%を吸収させる事も好ましい。該吸収剤の化合物
例、使用法等の詳細に関しては、文献7のVIII章の記載
を参考にできる。
【0132】(II−10) 光反射防止用光学材料 物体表面における光反射を減少させる為には、物体表面
上に物体の屈折率値よりも0.05〜0.60だけ低
く、500nm光に対する屈折率値が1.10〜1.4
5、好ましくは1.10〜1.40、より好ましくは
1.10〜1.35である低屈折率の反射防止膜を設置
すればよい。該低屈折率膜は、ゼラチンを含む分散媒相
中に低屈折率の微粒子を分散させ、(II-9) 項記載の原
理を用いて作る。通常、多くの物質の屈折率の大きさは
(気体《液体<固体)であり、その点で気体が最も好ま
しい。気体としては1.0〜60℃、好ましくは−10
〜50℃で気体であるあらゆる種類の気体(純ガス、ま
たは2種以上の気体のあらゆる比率の混合ガス)を挙げ
る事ができ、具体例として不活性元素ガス、空気、窒
素、炭素含有ガス(メタン、エタン、プロパンガス等)
を挙げる事ができ、空気をより好ましく用いる事ができ
る。液体としては水、無機塩類を含む水溶液、油を挙げ
る事ができ、油がより好ましい。油は水に不溶で粘性が
あり、水中に分散すると油滴となり、5〜50℃で液体
である物質の総称であり、有機物油とシリコーン油があ
る。天然有機物油としては動植物油〔各種脂肪酸とグリ
セリンとのエステル〕、鉱物油〔直鎖構造を有するパラ
フィン系と環状構造を有するナフテン系がある〕があ
る。有機油としてはその他、高級アルコール類、ケトン
類、アルデヒド類を挙げる事ができる。一般に(親油性
/親水性)比が大きく、かつ、液体であれば油となる。
シリコーン油は有機基をもつケイ素と酸素が交互に結合
してできた主鎖よりなる化合物であり、−50〜+25
0℃でその物性値があまり変わらない為、好ましい。
【0133】固体で低屈折率の物質としては次の材料を
挙げる事ができる。 (1)長周期型周期表の第1〜14族元素のフッ化物で
20℃の水に対する溶解度(g/100g H2O)が0.0〜
0.2、好ましくは0.0〜0.02である化合物。多
くのフッ化物は水溶性であるが、Li、アルカリ土類金
属、ランタニド、アクチニド元素のフッ化物は水に難溶
である。具体的化合物例としてLiF 、MgF2、CaF2、Sr
F2、BaF2、LaF2、AlF3、BeF2、PbF2、CeF2、ThF2を挙げ
る事ができる。例えばNaのD線に対する屈折率(n1)
は Na3AlF6≒1.33、MaF2≒1.37、CaF2≒1.4
3、LiF ≒1.40である。
【0134】(2)フッ化物ガラス。酸化物ガラス中の
酸素の10〜100%、好ましくは30〜100%をフ
ッ素で置換した形式のガラス。主として(1) のフッ素化
合物の1〜11種が用いられる。該ガラスに関しては、
化学大辞典、共立出版(1963年)、「ふっかぶつガラ
ス」、「新種ガラス」の項の記載を参考にする事ができ
る。 (3)フッ素化高分子。例えばフッ素ゴム、フッ素樹
脂。モノー、ジー、トリー、テトラー、フルオロエチレ
ン樹脂。テトラフルオロエチレン樹脂のn1 ≒1.35
である。フッ素原子が強く電子を引きつけている事と1
重結合である為に、誘起分極率が小さい。その為、一般
に同一物質のハロゲン化物ではその屈折率は(フッ化物
<塩化物<臭化物<ヨウ化物)となる。該固体微粒子分
散物の調製法は、(II-7) の記載を参考にする事ができ
る。該油の乳化分散物は分散媒を含む水溶液中に油を微
滴として分散させればよく、従来公知の乳化分散法を用
いて分散する事ができる。ゼラチンを含む該分散物に硬
膜剤を添加し、成膜し、硬膜反応を進行させ、乾燥さ
せ、該光学材料とする事ができる。更には該膜を有機溶
剤(アルコール等で文献の記載を参考にする事ができ
る)、又は水と有機溶媒の混合液と接触させ、油滴を溶
出し、次に水洗、乾燥させ、膜中に微小空隙を作り、該
光学材料とする事もできる。
【0135】該ゼラチン水溶液中に水溶性で硬膜剤の架
橋反応を受けない分子量70〜10 6 の炭水化物等の親
水性の有機物(例えば有機酸、有機塩基、界面活性剤)
を加えて、次に硬膜剤を添加し、成膜する。乾燥させ、
かつ、硬膜反応を進行させる。次に水、又は水と有機溶
媒の混合液と接触させ、親水性有機物を溶出させ、膜中
に微小空隙を形成する方法。該混入物として難溶性無機
塩(例えばAgX 微粒子) を用い、該成膜し、硬膜した後
に該塩の可溶化液(AgX の場合は定着液) と接触させ、
該塩を溶出させ、微小空隙を形成する方法。また、可溶
性塩を分散媒溶液に溶解させ、塗布した後に急冷し、微
細な塩を析出させ、次に塗布膜を真空凍結乾燥し、加熱
硬膜化させた後に、水と接着させ、該塩を除去する方法
もある。該膜は硬膜剤を添加し、硬膜しておけば、該溶
出液温度が高くても、該処理に耐えうる。該溶出温度は
5〜80℃、好ましくは10〜60℃である。該膜をそ
のまま用いる事ができるが、成膜後から乾燥と硬膜が終
了する時点までの間に膜表面上に型で押印し、表面を凹
凸化する事もできる。凸部の形状は畝状、円丘状、楕円
丘状、直方体状のいずれでもよい。凹凸の段差(μm)は
0.20〜102 が好ましく、0.30〜10がより好
ましい。畝の幅、円丘状、楕円丘状、直方体の円相当投
影面積直径(μm)は0.20〜103 が好ましく、0.
30〜102 がより好ましい。また、表面に球相当直径
(μm)が0.20〜103 、好ましくは0.30〜10
2 の高分子固体球、即ちラテックスを塗布し、表面に凹
凸を作る事ができる。凹凸の深さ(μm)は0.20〜1
2 が好ましく、0.30〜10がより好ましい。
【0136】これらの場合、ゼラチン水溶液中で油を分
散させるから油が微滴で分散するのであり、また、製膜
後は、硬膜剤が親水性の官能基と反応し、親水性を低下
させる為に上記の態様が可能となる。また、ゼラチンを
用いる為に、ゼラチン中でのAgX 微粒子形成が可能とな
り、前記態様が可能となる。ゼラチンを含む水溶液中に
攪拌しながらAg+ と X- を添加する事により、該微粒子
が形成される。該溶液のAgX 溶解度が低い程、分散媒分
子のAgX 粒子への吸着力が大きい程、Ag+ の添加期間が
短い程、生成粒子の直径は小さくなる。該溶解度は温度
が低くなる程、AgX 溶剤(通常はAg+ と錯体を形成して
溶解する化合物)濃度が低い程、また、通常、Ag+ 濃度
に対する X- の過剰濃度が小さい程、低くなる。
【0137】AgX の溶解度は(AgCl>AgClBr>AgBr>Ag
BrI)であるから、同一条件で粒子形成すると、生成粒子
直径は(AgCl>AgClBr>AgBr>AgBrI)となる。従ってAg
BrI〔AgI 含率(モル%)が0.1〜40〕が好まし
く、1.0〜30がより好ましい。温度(℃)は0〜8
0℃が可能であるが、3〜50℃がより好ましい。AgX
溶剤は使用せず、アミノ基含有の水溶性高分子を使用し
た場合は、溶液のpHを、該アミノ基のpKa 値以下のp
Hとする。通常、pH2.0〜8.0が好ましく、2.
0〜7.0がより好ましい。Ag+ の添加期間は通常、3
0秒間〜100分間であるが、1.0〜50分間がより
好ましい。該油滴を安定化させる為に界面活性剤(W1)
を最適濃度で用いる事ができる。それは分子内に親水性
部と親油性部をもち、該親油性部が油滴表面に吸着し、
親水性部が水溶液側に配向する。親水性基の種類によ
り、アニオン性W1 、カチオン性W1 、ノニオン性
1 、両性W1 に分類される。該界面活性剤の詳細に関
しては後述の文献(4) の第16章、(3) の第10章、(1
4)の記載を参考にする事ができる。該ガス、油、固体に
関しては後述の文献(4) の第7章、(3) の第9章、(16)
の第2〜4、第8章、須賀恭一ら著、有機工業化学I、
油化学、講談社(1971年)の記載を参考にする事ができ
る。
【0138】(II−11)光学材料の製品形態と製造工程 (1)透明支持体上に本願の光学材料を積層した態様。
前記有機高分子からなる支持体または前記無機ガラスか
らなる支持体上に該光学材料を積層させ、乾燥させ、B
0 とする態様。支持体として例えばトリアセチルセルロ
ースベース、ポリエチレンテレフタレートベース、ポリ
エチレンナフタレートベース、ポリスチレン板、ケイ酸
塩ガラス板がある。該支持体上に積層したまま用いる場
合は、該支持体上に下塗り層を塗布し、その上に光学層
を設置する事がより好ましい。支持体と光学材料間の接
着力が高まり、両者のハガレ故障が抑制される。支持体
の厚さは1.0〜104 、好ましくは10〜103 であ
る。該下塗り層は支持体と、該材料の両方に対して接着
性の良いものを選ぶ。例えばケイ酸塩ガラス基板に対し
てはシランカップリング剤を含む有機高分子(例えばゼ
ラチン)溶液を塗布する。更には該高分子中に直径が
1.0〜104 nm、好ましくは1〜103 nmのコロイダ
ルシリカを該高分子重量の0.01〜10倍量、好まし
くは0.10〜3.0倍量だけ、該高分子中に混入する
と、両者の接着性がより高められる。シランカップリン
グ剤は該ガラス表面上の水酸基と反応し、共有結合を形
成し、接着力を高める。シランカップリング剤の詳細に
関しては後述の文献3の第11章3節、文献4の第15
章8節の記載を参考にでき、コロイダルシリカに関して
は文献4の第4章17節の記載を参考にする事ができ
る。また、支持体と下塗り層間の接着力を高める為に支
持体表面を紫外線照射、コロナ放電処理、グロー放電処
理、火炎処理、スパッター処理、プラズマジェット処理
で処理し、表面を酸化する事や、表面を溶剤でエッチン
グ処理し、表面に小さいでこぼこを形成し、接触面積を
増す事ができる。該下塗り層に前記架橋剤を前記添加量
で添加する事もできる。該下塗り層の詳細に関しては文
献7のXV章の記載を参考にする事ができる。
【0139】(2)支持体上に該材料を積層し、乾燥し
た後、支持体を除去した態様。この場合、乾燥後、支持
体が除去し易い態様が好ましく、前記下塗り層を支持体
全面上に設けるのではなく、全面積の0.1〜70%、
好ましくは1.0〜35%に設ける態様がより好まし
い。ゴ板の目の如き態様や円形枠態様で設ける事がより
好ましい。 (3)従来の光学用材料の表面上に、表面コート剤とし
てコートし、乾燥させ、用いる態様。例えば光学用レン
ズや鏡、ガラス板上にコートして用いる事ができる。こ
の場合、該コート剤は積層後は剥がれない事が好まし
く、前記(1) に記載の手法で接着力を高める事が好まし
い。レンズ等の非平面上に積層した後に、積層物が流動
すると困る。これを避ける為に次の方法をとる事ができ
る。1)積層液の粘度(センチポアズ)を高くする。1
0〜104 が好ましく、50〜104 がより好ましい。
2)積層後、迅速に(0.1秒〜60分間、好ましくは
0.01〜15分間)乾燥させる。3)積層後、冷却
し、積層物をゲル化し、ゲル化状態を保ったまま乾燥さ
せる。4)成形型を用いて積層する。例えば被積層物を
金型に入れ、金型中に積層物を注入し、金型中で固形化
反応を進行させる。蒸発物は金型の周辺部から除去すれ
ばよい。または低分子量のガス分子を透過または吸収す
る材料から成る成形器を用いる事もできる。例えば、小
さな穴が多数あいた(穴数が1〜104/cm2)金属製メッ
シュとガス透明膜の積層物を挙げる事ができる。該透過
材料に関しては文献3の第15章の記載を参考にする事
ができる。または、該積層後、予備乾燥した後、金型を
押しつけて、成形する事もできる。 (4)凹面物の成形。例えば凹レンズの場合、図6-(1)
の如く成形用の型中に高粘度溶液を入れ、予備乾燥させ
る。次に図6-(2)の如く上側の成形型を押しつけ、かつ
架橋反応を進行させ、成形し、図6-(3)の如く取り出
す。
【0140】(5)凸面物の成形。例えば凸レンズの場
合、図7-(1)の如く金型中に高粘度溶液を入れ、予備乾
燥し、次に図7-(2)の如く、上側の金型を押しつけ、か
つ架橋反応を進行させ、成形し、図7-(3)の如く取り出
す。これにより半凸レンズが出来上がる。これを凸レン
ズとして用いる事ができるし、図7-(4)に示す如くその
2個を接着し、両面凸レンズとして用いる事ができる。
接着法に関しては前記記載を参考にできる。両者を同一
組成物液で接着する事が好ましい。または図7-(1)の工
程後、図8-(2)に示す如くガス抜き穴を有する上面金型
を押しつけ、成形し、レンズを取り出す。該穴部の所に
生じたバリをナイフ等で切り落とす方法もある。また、
成形型として前記ガス透過材料を用いる事もできる。そ
の場合は、従来公知のプラスチック成型方式を用いる事
ができる。金型に溶液を注入し、溶媒の蒸発、架橋反応
の進行により、固形化し、金型の圧縮により成形する。
【0141】該材料は加熱により架橋反応が進行し、固
形化が進行するので、熱硬化型樹脂の成形加工法を好ま
しく用いる事ができる。該材料の金型への供給は、溶液
の外、粉末形態で供給できるし、2〜100回に分けて
該供給する事もできる。該溶液の粘度(センチポアズ)
は5〜104 が好ましく、20〜104 がより好まし
い。該加工物を成形器から取り出し易くする為に、離型
剤(または滑剤)を用いる事ができる。内部滑剤、外部
滑剤があり、最適量で用いる事ができる。離型剤に関し
ては高分子大辞典、丸善(1994年)の「離型剤」の記載
を参考にできる。該成形加工全般に関しては、文献3の
第11章4節、文献4の第8章5節の記載を参考にでき
る。該圧縮成形は、(圧縮→除圧)を繰り返して行う事
ができる。密閉系で圧縮し、B0 から放出されるガスを
除去する為に除圧工程(該ガスを大気中に放出する)を
1〜104 回入れる事ができる。
【0142】(6)前記加圧成形時や該加圧下で該架橋
結合を形成させる時の加圧方法は、(II-9-2) の(11)の
記載を参考にでき、型に入れて加熱し、プレスする方法
が好ましい。該プレス法に関してはプラスチックの圧縮
成形法を利用する事ができ、文献4の第8章5節、文献
26の該当項の記載を参考にできる。該架橋結合形成の
為のその他の条件に関しては(II-5) に記載されてい
る。該プレス中の温度は前記架橋温度に設定する事がで
き、電気ヒーター、高周波加熱等の既知加熱法を用いる
事ができる。 (7)これらの光学材料の厚さ、形状に制限はなく、目
的に応じて最適の厚さと形状を選ぶ事ができる。厚さ
(μm)は0.1〜3×104 が好ましく、0.5〜10
4 がより好ましい。大きさ(mm2)は1.0〜1010が好
ましく、10〜108 がより好ましい。該レンズとして
使用する場合、その表面形状に制限はなく、球面状、非
球面状のいずれの形状をとる事もできる。従来の他のレ
ンズと組合せて用いる事もできる。
【0143】(II−12)光学材料の用途 (II-12-1)前記(I)の(1) 、(2) 記載の高屈折率光学
材料の用途。 (1)光学レンズへの利用。光学レンズは、レンズに入
った光線束を集合または発散させて実像あるいは虚像を
結ばせるものであり、凸レンズ、凹レンズがある。その
利用分野として、メガネ(矯正用、ファッション用)、
顕微鏡、望遠鏡、拡大鏡、プロジェクション機器類(映
画、オーバーヘッドプロジェクター、スライド映写
機)、カメラ(ビデオカメラ、デジタルカメラ、写真用
カメラ、内視鏡カメラ)、CDを主とした光メモリー用
または読み取り用の対物レンズがある。
【0144】(2)光ファイバー用。光ファイバーは波
長(nm)が350〜104 、好ましくは380〜3×1
3 の光を伝送する事を目的とする光導波路の1種であ
る。その構造は、1)ステップ型単一モード型、2)ス
テップ型多モード型、3)グレーデッド型、に分類され
る。多くの場合、コア材に高屈折率材料が用いられ、そ
の外側のクラッド材に低屈折率材料が用いられる。従っ
て従来用いられている該高屈折率相用として用いる事が
できる。これらの詳細に関しては文献3の第12章、文
献17、18の記載を参考にする事ができる。
【0145】(3)コンタクトレンズへの利用。該光学
材料はコンタクトレンズとして好ましく用いる事ができ
る。コンタクトレンズの場合、目の中で酸素の透過性が
求められる。該レンズを水で膨潤させ、該水中で酸素を
通過させれば、該目的が達せられる。この場合、該架橋
密度を低くすればよい。この場合、25℃の純水に対す
る該膨潤度〔(膨潤平衡時の厚さ−乾燥時の厚さ)/乾
燥時の厚さ〕は0.05〜3.0が好ましく、0.10
〜1.0がより好ましい。
【0146】(4)ハーフミラー用。該高屈折率膜をハ
ーフミラーとして利用する事ができる。一般に屈折率が
20の媒質から屈折率n21の媒質へ光が垂直入射し、該
界面で光反射が生じた時、その反射強度R20は後述の
(b-3)式で表わされる。従って空気層から該膜に光が入
射した時、該界面で反射強度が大きくなり、ハーフミラ
ーの働きをする。 (II-12-2) 前記(I)の(9) 記載の紫外線カット用光学
材料の用途。該B0 の用途は次の通り。現像処理した該
写真像上に積層して用いる。紫外線がカラー像に吸収さ
れ、カラー像が退色する事を防止する。カラー写真の場
合、紫外線カット層が要るのは、現像処理後である。従
って現像処理前にはそれがない方が感材がよりシンプル
化され、現像薬の浸透速度もはやくなり、より好まし
い。また、メガネの入射光線側、および/またはその反
対側に積層して用い、目に紫外線が入射するのを防止す
る。窓ガラスに積層して用いた場合には、紫外線が室内
や自動車内部に入ってくる事を抑制する。これらの場
合、両者間の間隔(μm)は0.0〜104 が好ましく、
0.0〜102 がより好ましい。予め形成した該膜を密
着させて、または両者間の全面積の0.1〜100%、
好ましくは1.0〜100%に接着剤を入れ、接着させ
て用いる事もできる。また、該膜が熱可塑性の場合は、
該膜でB0 を包み込み、ヒートシールする事もできる。
0 と該膜間、または該膜同士をヒートシールする事が
できる。ヒートシールは高分子をガラス転移点近傍、ま
たはそれ以上の温度に加熱し、圧着させ、次に冷却し、
固まった後に、圧を除去する方法である。該膜に対する
溶剤を作用させると、より低温で接着する事ができる。
例えば水溶性高分子の場合は水を作用させ、含水量を
1.2〜100倍、好ましくは3.0〜10倍に上げ、
温度を2〜100℃、好ましくは10〜80℃だけ上昇
させる事により、接着する事ができる。また、溶液を表
面コート剤としてコートし、次に乾燥、加熱し、分子間
架橋し、硬化する事もできる。該接着の詳細に関しては
文献31と前記の記載を参考にする事ができる。
【0147】該材料は、人間の身体、好ましくは顔、
手、足に塗布される紫外線除去用化粧品として使用する
事ができる。該材料が紫外線を吸収し、皮膚への紫外線
照射量を減少させる。該水溶性分散媒は H2O、O2を通す
為、皮膚の呼吸機能を阻害しない。特にゼラチンの場合
は皮膚と同じタンパク質であり好ましい。また、可視光
の透明性がよく、電子と正孔の再結合確率が高く、皮膚
を痛めない。該材料に化粧品成分を適宜混入する事がで
きる。該成分に関しては文献3の第10章6節、文献4
の第17章4節の記載を参考にできる。
【0148】(II-12-3) 前記(I)の(4) 記載の低屈折
率光学材料の用途。該光学材料は、あらゆる物体表面上
に積層させ、該物体表面の光反射率を低下させる為に用
いる事ができる。例えばワードプロセッサーや、パーソ
ナルコンピューターの表示画面上に積層させて用いる事
ができる。その他、ハロゲン化銀感光材料の入射光側表
面上に積層させ、該感光材料中に入る入射光の光量を増
加させる為に用いる事ができる。また、その支持体側面
上に積層させ、該面における光反射を抑制し、ハレーシ
ョンを抑制させる事もできる。両側に積層する事もでき
る。また、光学レンズの入射光側に積層させ、レンズ中
に入る入射光の光量を増加させる為に用いる事ができ
る。またその反対側に積層させ、反対側界面における光
反射を抑制し、レンズから出射する光量を増加させる。
また固体撮像素子の入射側面上に積層し、該素子面上に
おける光反射を抑制し、該素子中への光の入射光量を増
加させる。
【0149】これらの場合、該光学材料を光透過率上昇
材として用いる場合は被積層体と密着させて使用する事
が好ましい。該感光材料上に積層させる場合、該光学材
料をカメラ内に設置しておき、撮影時に両者を密着させ
た状態になっている態様をとればよい。その他の材料上
に積層する場合は、密着させて用いる事もできるし、接
着剤で接着させ、密着させて用いる事ができるし、また
は表面上にコート剤としてコートし、次に硬化させて用
いる事もできる。ここで密着とは両者の間隔を0.0〜
1.0μm 、好ましくは0.0〜0.30μm 、より好
ましくは0.0〜0.10μm にする事を指す。単に光
反射防止用として用いる場合は、該間隔が1.0〜10
4 μm の態様もとり得る。該材料を光ファイバーの低屈
折率材料用(クラッド材用)に用いる事ができる。
【0150】(II−13)表面コート層 該光学材料の材料硬度、吸湿度が十分でなければ、該表
面上により疎水性の表面コート剤をコートし、より疎水
性の表面コート層を設ける事が好ましい。片側の表面上
にのみ設ける事もできるが両面上に設ける事がより好ま
しい。該表面コート層は、疎水性、親水性、硬度、屈折
率においてあらゆる可能な態様をとり得るが、内部層よ
りもより疎水性である事が好ましく、大気中で室温にお
ける水滴に対する静的接触角度が内部層のそれよりも
1.0°〜60°、好ましくは3.0〜60°だけ大き
い事が好ましい。屈折率値は内部相の屈折率値よりも
0.01〜0.50、好ましくは0.01〜0.30だ
け低い事がより好ましい。表面反射光が減少し、透過光
量が増す為である。
【0151】該コート層を2〜20層設け、各層の屈折
率が内部層から表面層にかけて順に0.01〜0.30
の差で減少した態様がより好ましい。各層間の屈折率差
は小さい方が各層間における反射光が減少し、より好ま
しい。一般に屈折率がn20の媒質から屈折率n21の媒質
へ光が垂直入射した時、該界面で光反射が生じた時、そ
の反射係数R1 は(b-3)式で表わされ、反射強度R2
(b-4)式で表わされる。 R1 =(n20−n21)/(n20+n21) (b−3) R2 =(R1)2 (b−4) 従って、|n20−n21|が小さくなる程、R2 は減少す
る。入射光の波長をλ1 、光学材料の屈折率をn22、そ
の上につけた薄膜の屈折率をn23、膜厚をd1 とすると
(n220.5 =n23、n23・d1 =λ1/4の時に該反射
防止効果が最も大きくなる。従って該条件の−30〜+
30%域、好ましくは−10〜+10%域を好ましく用
いる事ができる。この場合の反射防止は該薄膜中での干
渉効果に基づく、該膜を2〜10層設ける事も好まし
い。硬度は、内部相よりも高い事が好ましく、モース硬
度において0.1〜7.0、好ましくは0.3〜7.0
だけ高い事が好ましい。
【0152】該表面層は真空蒸着により設ける事もでき
るし、溶液物質、または(固/液)分散物を塗布し、乾
燥する事により設ける事ができる。更には厚さ(μm)が
0.3〜3×103 、好ましくは1.0〜102 の薄膜
を接合、または接着する事により設ける事もできる。該
膜として(II-10)項記載の光学材料を用いる事がより好
ましい。または疎水性有機高分子を溶媒に溶解し、塗布
する事もできるし、熱可塑性樹脂を加熱溶融し、塗布、
または予め形成された型を用い、射出成形法により設け
る事もできる。該真空蒸着用材料には(II-3) 項の(1)
、(2) に記載の材料やSiO2、Al2O3 、後述のあらゆる
金属酸化物、またはその2種以上の併用を用いる事がで
きる。蒸着中または蒸着後に該膜に熱をかけ、膜を引き
締める事もできる。温度(℃)は30〜400が好まし
く、60〜250がより好ましい。
【0153】溶液塗布の例としてMgF2の場合を説明す
る。MgCO3 またはMgO を白金皿中に入れ、HF水溶液を入
れ加熱し、溶解する。これを塗布し、乾燥すればMgF2
ート層ができる。即ち、金属の炭酸塩や酸化物をHF水溶
液で溶解し、これを塗布し、乾燥すれば、CO3 はCO2
して、酸素はH2O 、O2として除去され、金属フッ化物膜
が生成する。また、該表面コート層に有機高分子層(A
51)を設ける場合、該光学材料(A 50)とA51層の間に
両者の混合層を1〜19層設け、前記の屈折率が順に変
化した多層コート層を実現する事ができる。該混合層と
しては〔A50の材料の重量/(A50の材量の重量+A51
材量の重量)〕=0.01〜0.99、好ましくは0.
05〜0.90の値をとる事ができる。また、A50が完
全に乾燥しない内に、A51層を積層させ、次に加熱によ
り、該接合面で両高分子を混合させ、該混合層を設ける
事もできる。A51層の材料として従来公知の透明プラス
チック材料を用いる事ができる。
【0154】(II−14)その他 本発明で用いる事のできる酸、塩基に特に制限はなく、
既知のあらゆる有機、無機の酸、塩基を用いる事ができ
る。具体例は次の通り。無機酸〔水素酸(HF、HCl 、HB
r 、HIの如きハロゲン酸)、酸素酸(例えばHNO3、H2SO
4 、H3PO4 、HClO4)〕。無機塩基〔例えばアルカリ金
属、アルカリ土類金属および希土類元素の水酸化物。Na
OH、Ca(OH)2 、Sc(OH)3 、KOH 。塩基性酸化物、アルカ
リ金属の炭酸塩、炭酸水素塩も無機塩基である〕。有機
酸〔酸性を示す有機化合物の総称。前記(II-8) 項の
(5) 項の記載を参考にする事ができる〕。有機塩基(オ
ニウム塩基含有の有機化合物)を挙げる事ができる。
【0155】本発明で用いる事のできる可溶性塩に特に
制限はなく、既知のあらゆる可溶性塩を添加する事がで
き、(無機酸または有機酸)と(無機塩基または有機塩
基)との塩を挙げる事ができ、具体例としてNH4Cl、NaC
l、KCl 、NH4NO3、Na2SO3、CH3COONaを挙げる事ができ
る。本発明で用いる事のできる有機溶剤に特に制限はな
く、既知のあらゆる有機溶媒を用いる事ができる。具体
例としてアルコール類、エステル類、エーテル類、有機
酸類、ケトン類を挙げる事ができる。該有機酸、酸、塩
基、有機溶剤の具体例に関しては文献(3) の第7、第9
章、文献(4) の第3、第4、第7章、文献(8) の記載を
参考にする事ができる。
【0156】前記高屈折率微粒子の脱塩水洗方法とし
て、従来公知の該脱塩方法を用いる事ができ、後述の文
献の記載を参考にする事ができる。具体例として、1)
電気透析法、2)限外濾過法(粒子は通さないが可溶性
イオンと溶媒分子を通す濾過膜を利用)、3)遠心分離
し、上澄み液を除去する方法、4)ハイドロサイクロン
法、5)分散媒を不溶性にし析出沈降させる方法(pH
による分散媒の電荷調節、塩析法、不溶化溶媒の添
加)、6)凝集沈降水洗法、7)ゲル化法(溶液を冷却
し、ゲル化させ、水洗する。例えばヌードル水洗法)、
8)イオン交換樹脂の利用、9)分散媒の低分子量化法
(溶液粘度が減少し、粒子が沈降し易くなる)、を挙げ
る事ができ、その詳細に関しては文献7の第III 章、文
献30の記載を参考にできる。該脱塩は該微粒子形成の
いずれの段階においても行う事ができるが、微粒子形成
後、または焼成前、縮合反応前に行う事がより好まし
い。
【0157】6)は分散媒の電荷とイオン結合し、分散
媒を疎水性化し、不溶化凝集沈降させる凝集沈降剤を水
溶液に添加し、その上澄み液を除去する方法である。該
沈降剤例としてR10-(SO3H)m5、 R10-(SO3M+ ) m5を挙げ
る事ができる。ここでR10は炭素数3〜103 、好まし
くは6〜100の有機化合物基を表わし、m5 は1〜1
0の整数を表わす。該化合物を水溶液に添加すると、-S
O3 - 基が分散媒のカチオン基(例えばオニウム塩基で、
例えば-NH3 + 基)とクーロン相互作用し、一種の結合体
を形成する。R10が疎水性の場合、該結合体は疎水性と
なり、不溶化し、析出する。疎水基同志は合着し易い
為、凝集析出する。該凝集物がTiO2等の比重の大きい粒
子を含有する場合、該凝集物は沈降する。該凝集時のp
Hを1.0〜12、好ましくは2.0〜10.0域で選
ぶ事により、より少ない添加量で凝集させる事ができ
る。
【0158】ゼラチン分散媒の場合は、該化合物を添加
し、均一に混合し、溶液のpHを3.5〜4.5に調節
する事により凝集させえる。溶液のpHを下げるにつれ
ゼラチンの(-COO - + H+ → -COOH) の反応が進行し、
ゼラチンが疎水化し、析出する。しかし、pHを下げす
ぎると、析出物のプロトン化が進行し、再び水溶性が増
す。従って最適pH域で析出させる事が好ましい。沈降
剤の添加量とpHを系統的に変化させ、最適の組合せ条
件で析出させる事が好ましい。別の例としてR10-(COOH)
m5、 R10-(COOM+ ) m5を挙げる事ができる。この場合、
該-SO3 - 基が-COO- 基に変わるだけで他は同様である。
【0159】該沈降剤の添加量は、分散媒の該解像基数
の10〜100%、好ましくは35〜100%、より好
ましくは70〜100%を該失活させるに必要な添加量
である。化合物例としてナフタレンジスルホン酸、ポリ
スチレンスルホン酸、該R10が炭素数7〜13のアルキ
ル基でm5 =1.0のスルホン酸、ナフタリンスルホン
酸とホルマリンの共重合物で重合度が2〜10の化合
物、ポリアクリル酸、ポリメタクリル酸、アクリル酸と
ポリプロピレンの(1.0:0.01〜2.0)モル比の共重合物、
(イソブチレン:マレイン酸ナトリウム=1: 0.3〜3)
モル比の共重合物がある。該5)の例としてゼラチンの場
合、アミノ基の化学修飾率が30〜100%、好ましく
は60〜100%、より好ましくは90〜100%の前
記ゼラチンを挙げる事ができる。ベンゾイル化、フタル
化、トリメリト化、炭素数2〜20の有機酸によるアシ
ル化ゼラチンが好ましい。pHを下げると、(-COO- +
H + →-COOH)反応の進行によりゼラチンが疎水性化し、
凝集する。該カルボキシル基のpKa(Kaは酸解離定数)
は2〜5であり、pka より低pHに下げると析出する。
通常pH2.0〜5.0の最適条件下で析出させる事が
好ましい。該沈降水洗法は、ゼラチンだけでなく、解離
基(例えば-COO- 、-NH3 + 、-NH2 + )を有する該高分子
分散媒溶液に対して一般的に適用できる。(II-8) 項に
記載の種々の分散媒を用いた場合でも該高分子やゼラチ
ンを1〜100、好ましくは3〜20(g/リットル)だけ
追加添加し、5)、6)の方法で沈降し、不要物塩を除去す
る事が好ましい。該不要物塩例として、該加水分解促進
の為に添加する酸、塩基がある。該1)の方法として、分
散媒の等電点pHをpIとすると、(pI-1.0) 〜(pI+1.
0)、好ましくは(pI-0.5) 〜(pI+0.5)のpH条件下で電
気透析する事が好ましい。不要な可溶性塩を効率良く除
去する事ができ、好ましい。その詳細に関しては文献3
0の第II部2章、第III 部3章の記載を参考にできる。
【0160】8)の方法はイオン交換樹脂やイオン交換
膜と溶液を接触させ、溶液中のイオンをイオン交換樹脂
に吸着し、除去する方法であり、好ましい。その詳細に
関しては文献4の第15章9節、文献30の340〜3
54頁の記載を参考にできる。該有機高分子分散媒層の
特性はB0 の弾性率、剛性の特性に影響する。該特性を
改質する為に有機高分子用可塑剤を添加する事ができ
る。可塑剤は高分子の分子間に入り込み、分子間力を弱
め、B0 の剛直性を緩和する。可塑剤分子が高分子鎖に
溶媒和すると解する事もできる。可塑剤は該高分子重量
の0.001〜5.0、好ましくは0.01〜1.0倍
の割合で添加する事ができる。1〜20種、好ましくは
2〜10種の可塑剤を添加する事ができる。
【0161】可塑剤の詳細と具体的化合物例に関して
は、高分子大辞典、丸善(1994年) の「可塑剤」の記載
を参考にできる。親油性可塑剤としてフタル酸、脂肪酸
およびリン酸のエステル類が多用される。親水性可塑剤
としては種々の写真用界面活性剤を用いる事ができ、文
献7の記載を参考にできる。該分子間力を調整する方法
としてその他、該高分子の主鎖に結合する置換基構造を
調整する方法もある。該基の分子間相互作用が小さくな
ると、B0 の柔軟性が増し、分子間相互作用が大きくな
ると、B0 の剛性が増す。
【0162】(文献−I) 1.光学技術ハンドブック、朝倉書店(1975年) 。 2.実験物理学講座6、光学技術、共立出版(1984年)
。 3.化学便覧、応用化学編、丸善(1995年版) 。 4.化学便覧、応用化学編、丸善(1986年版) 。 5.水溶性高分子、化学工業社(1990年)。特開平7−
72574号、同6−75318号、米国特許第5,2
84,744号、同第5,370,984号、特願平1
0−123878号、同7−175169号、特開昭6
2−159139号。 6.Jams編、The Theory of the Photographic Proces
s, Macmillan 出版社(1977年) 。 7.リサーチ・ディスクロージャー(Research Disclos
ure)誌、アイテム(item) 38957(1996年9月)。 8.浅原昭三ら編、溶剤ハンドブック、講談社(1976
年) 、新版、溶剤ポケットブック、オーム社(1994年)
。 9.安孫子義弘編、にかわとゼラチン、丸善大阪支店出
版(1997年) 、特願平10−87535号、特開平8−
82883号、同7−209788号、同6−1007
00号、同6−214329号、米国特許第5,18
7,259号、同第531,889号、同第4,71
3,320号、同第4,942,120号。
【0163】10.A.G.Ward and A.Courts, The Science
and Technology of Gelatin, Academic Press, London
(1977年)。 11. 谷沢和隆ら著、タンパク質の化学修飾、広川書店
(1991年) 。 12.藤本大三郎著、コラーゲン、共立出版(1994年) 、
コラーゲンの秘密に迫る、裳華房(1998年)、タンパク
質研究奨励会編、タンパク質、東京化学同人(1983年)
。 13.P.Glakides著、写真の化学と物理(Chime et Physi
que Photographique)、第5版、Edition del, Usine No
uvelle,パリ(1987年) 。 14.堀口博著、新界面活性剤、三共出版(1975年) 。 15.山岡亜夫ら編、フォトポリマーテクノロジー、日刊
工業新聞社(1988年)、フォトポリマー技術の新展開、
東レリサーチセンター(1993年) 、野々垣三郎著、マイ
クロリングラフィー、丸善(1986年) 。 16.化学便覧、基礎編、丸善(1984年) 。 17.透明プラスチックの市場展望と光分野への応用。シ
ーエムシー社(1995年)。 18.TNC Report Series 、光学分野でのプラスチック製
品市場と新展開、東レリサーチセンター社等(1992年)
。 19.日本セラミックス協会編、セラミックス工学ハンド
ブック、技報堂(1989年) 。 20.98/99 科学機器総覧、東京科学機器協会発行(1998
年10月)。
【0164】21.分散・凝集の解明と応用技術、(株)
テクノシステム(1992年)。 22.粉砕・化学工業社(1985年) 、粉粒体プロセスと技
術、化学工業社(1995年) 。 23. 新実験化学講座18、界面とコロイド、丸善(1977
年) 。 24.久保輝一郎ら編、粉体(理論と応用)、丸善(1962
年、1979年) 。 25.酸化チタン光触媒の開発と環境エネルギー分野への
応用展開、技術情報協会(1997年)、清野学著、酸化チ
タン、技報堂(1991年)。G.Buxbaum 著、Industrial I
norganic Pigments, VCH Weinheim, Tokyo(1993年)。 26.高分子大辞典、丸善(1994年)、Polymer Handboo
k. 第4版、John Wiley& Sons.Inc.(1999年)、プラス
チック事典、朝倉書店(1992年)、新産業化学シリー
ズ、ゴム・エラストマー、大日本図書(1993年)、H.Ho
tman著、Rubber Technology Handbook, Hanser Publish
ers(1989年) 、高分子分析ハンドブック、紀伊国屋書店
(1995年) 。 27.ガラスハンドブック、朝倉書店(1975年)。
【0165】28.酸化チタン光触媒の開発と環境エネル
ギー分野への応用展開、技術情報協会(1997年) 。 29.Photographic Science and Engineering, 96〜 (19
75年) 、Journal of Applied Physics, 57巻、2806〜
(1985年) 、L.Kellogg ら、東亜国際写真シンポジウム
(1988年) 。 30.分離科学ハンドブック、共立出版(1993年)。 31.接着第百科、朝倉書店(1993年)、接着(理論と応
用)、丸善(1965年)。
【0166】
【実施例】実施例1 25℃のHCl(1.5N) 液1000ml中に攪拌しながらTi(O
-isopropxl)4の特級薬品(TTI) 液100mlを15秒間か
けて添加した。15分間攪拌した後、ゼラチン溶液1
〔脱イオン化した牛骨アルカリ処理ゼラチン(EAG) で、
重量平均分子量(MG)が4×104 で0.8重量%液10
00ml、pH2.0〕を1分間かけて添加し、混合し
た。1時間放置した後、温度を70℃に昇温させ、2時
間加熱し、結晶化を促進した。次に40℃に降温し化合
物−1(ナフタリンスルホン酸とホルマリンの共重合物
で平均重合度が約3.5の化合物)の10重量%水溶液
を6.4ml添加し、NaOH液でpH4.0近傍に調節して
攪拌を止めて凝集沈降させ、上澄み液を除去した。純水
を入れ、弱く攪拌した後、攪拌を止めて、上澄み液を除
去する事を2回行い、脱塩した。MGが約105 のEA
Gを含むゼラチン水溶液を添加し、NaOH液でpH6.0
とし、凝集物を分散させた。該溶液の電導度は約200
μυであった。該分散物0.5mlを採取し、水で希釈
し、コロジオン膜を張った電子顕微鏡観察用メッシュ上
に載せ、乾燥させ、−100〜−140℃に冷却し、そ
の透過型電子顕微鏡写真像(TEM像)を観察した。該
像を図10に示した。球相当直径が5nm以下の微細な酸
化チタンが見られる。該分散物に分子間架橋剤として化
合物(A-3)の4.0重量%液をゼラチン1.0gあたり
1.2mlの割合で添加し、更に化合物A−50の1.0重
量%液をゼラチン1.0gあたり0.06ml添加し、均
一に混合した後、pHを6.0に調節した。0.3気圧
の5秒間のパルス状減圧脱泡処理を50回行った。この
時、超音波(50KHz 、100W)を同時照射した。(プ
ランジャー+逆止弁)型減圧脱気処理により、溶液を濃
縮し、図8に示した凸レンズ型成型器に注入し、40℃
で予備乾燥させた。次に40℃で上部金型の圧縮、除圧
の繰り返しを17時間行ない、該架橋剤の分子間架橋を
進行させ、かつ凸レンズ整形を行った。金型をはずし、
バリを削除し、凸レンズとしての性能評価(解像カテス
トチャートを結像させ、5μm 直径の光透過性円孔を通
して光量を測定し、平行な白黒線のエッジの相対鮮鋭度
を測定)した。
【0167】
【化4】
【0168】比較例1 実施例1で該酸化チタン形成を分散媒なしで行う以外は
同じにして、凸レンズ形成を行った。 (比較実施例 1-1) 実施例1で化合物(A-3)の添加をな
くす以外は実施例1と同じにして凸レンズ形成を行っ
た。 (比較実施例 1-2) 実施例1で化合物−1の添加と、脱
塩工程を除去する以外は同じにして凸レンズ形成を行っ
た。 (比較実施例 1-3) 実施例1で25℃のHCl(1.5N) 溶液
にNa3RhCl6水溶液(0.1重量%)1.0mlを予め添加
しておく以外は同じにして該凸レンズ形成を行った。 (比較実施例 1-4) 実施例1で、化合物1の添加前に
〔AlCl3 ・6H2Oの水溶液(10重量%)を50ml添加
し、NaOHを添加し、pH3.0とし、70℃に昇温し、
1時間経時した後、40℃に降温する〕=(ALC) なる工
程を入れる以外は同じにして、該凸レンズ形成を行っ
た。該添加により、TiO2粒子表面上にアルミナ層を形成
した。
【0169】(比較実施例 1-5) 実施例1で脱泡処理を
除去する以外は同じにして該レンズ形成を行った。
【0170】
【表3】
【0171】表1の屈折率、光透過率、光学的均一性は
図8と同様の金型で厚さ4mmの平板状光学材料を形成
し、500nm波長光のビーム光を用い、測定した。光学
的不均一性は該材料に一様な円状ビーム光を透過させ、
透過光を直径5.0μm の円孔を通して受光し、その受
光場所による光量のバラツキの2乗平均値の根=〔(Ii-
I0)2/Ni〕0.5 より求めた。ここでIiはi点の受光
量、I0 は平均受光量、Niは受光点iの総数を表わ
す。小さい値は、バラツキが小さい事を示す。光透過率
は図2の装置で求めた。屈折率は、図9に示した方法で
入射ビーム点と出射ビーム点を求め、屈折の法則式より
求めた。光劣化性は350nm以下の光を照射し続けた時
のB0 の劣化程度を500nm光の透過率より判定した相
対値。小さい数値は劣化が小さい事を示す。
【0172】実施例2 (EAG) をHCl 酸性で加水分解し、重量平均分子量4×1
4 としたゼラチンの1.2重量%水溶液にHCl を入
れ、HCl 濃度を1.0mol/リットルとした水溶液1000ml
を25℃に保ち、攪拌しながら(TTI) 液100mlを15
秒間かけて添加した。30分間攪拌した後、温度を70
℃に昇温させ、3時間加熱した。次に40℃に降温し、
NaOHでpH4.9(これは該ゼラチンの等電点である)
とした。溶液を電気透析器に通し、脱イオン化し、溶液
の電導度を200μυ以下に下げた。該分散物0.5ml
を採取し、実施例1と同様に冷却TEM像を観察した
所、図11に示した粒子構造の酸化チタン粒子であっ
た。該分散物にMGが約105 のEAGを含むゼラチン
水溶液を添加した。更に分子間架橋剤(A-3) の4.0重
量%液をゼラチン1.0gあたり1.20mlの割合で添
加し、化合物(A-50)の1.0重量%液をゼラチン1.0
gあたり0.10ml添加した。均一に混合した後、pH
6.0とした。実施例1と同じように脱泡処理と濃縮を
行った後、成型器で凸レンズを形成した。
【0173】比較例2 該酸化チタン形成を分散媒なしで行う以外は実施例2と
同じにして該凸レンズ形成を行った。 (比較実施例 2-1) 実施例2で化合物(A-3) の添加をな
くす以外は実施例2と同じにして凸レンズ形成を行っ
た。 (比較実施例 2-2) 実施例2で該脱塩工程を除去する以
外は同じにして該凸レンズ形成を行った。 (比較実施例 2-3) 実施例2で、25℃のHCl 溶液にNa
3RhCl6水溶液(0.1重量%)1.0mlを予め添加して
おく以外は同じにして該凸レンズ形成を行った。 (比較実施例 2-4) 実施例2で電気透析の前に(ALC)の
工程を入れる以外は同じにして該レンズ形成を行った。 (比較実施例 2-5) 実施例2で脱泡処理を除去する以外
は同じにして該凸レンズ形成を行った。 図8と同様の金型で、これらの試料を用い、厚さ4mmの
平板状B0 を形成し、表1と同じ材料評価を行ない、結
果を表2に示した。
【0174】
【表4】
【0175】実施例3 HCl(1.1N) 水溶液1200mlを25℃に保ち、攪拌しな
がら(TTI) 液120mlを15秒間かけて添加した。1時
間攪拌した後、75℃に昇温し、2時間攪拌した。次に
温度を25℃に下げ、溶液0.5mlを採取し、前記同様
にTEM像を観察した。図4に生成した針状晶構造の粒
子を示した。該溶液にMGが約105 のEAGゼラチン
の1.0重量%液1000mlを添加し、混合し、溶液の
pHを6.0とした。これを特願平11−3264号の
図11に記載の粉砕器で粉砕し、TiO2微粒子分散物を得
た。HCl でpH4.9とした後、電気透析器に通して脱
塩し、溶液の電導度を200μυ以下に下げた。後は実
施例2と同様に処理して該凸レンズを形成した。また前
記同様に厚さ4mmの平板状B0 を形成し、同様に評価
し、結果を表5に示した。
【0176】
【表5】
【0177】(実施例 3-1) 市販の石原産業製 TTO-51A
(カタログ特性は、コア粒子がルチル型TiO2、シェルが
Al2O3 、一次粒子直径が30〜50nmの凝集粒子。該粒
子の該TEM像を図12に示した)の50gを、MGが
約105 のEAGゼラチンの1.0重量%液1000ml
液中に添加し、混合し、溶液のpHを6.0とした。こ
れを実施例3と同様に粉砕し、脱塩し、該凸レンズを形
成した。また前記同様に厚さ4mmの平板状B0 を形成
し、同様に評価し、結果を表5に示した。
【0178】比較例3 実施例3-1 で粉砕工程を除去する以外は同じにして該凸
レンズと平板状B0 を形成し、同様に評価し、結果を表
5に示した。表3〜表5の各平板状B0 に200〜36
0nmの紫外線を照射し、図2で示した態様で該紫外線透
過率を測定した所、いずれも1.0%以下であった。な
お、比較例1〜3に対する実施例の光透過率、光学的不
均一性、エッジの相対鮮鋭度の優位性は450〜650
nm波長域光のすべてに対して確認された。
【0179】実施例4 ゼラチン水溶液2000ml〔KBr 0.6g、タラの皮か
ら抽出したゼラチン30gを含み、pH9.0、温度1
7℃〕を激しく攪拌しながらAg−1液〔AgNO 3 を30
g/100ml含む〕とX−1液〔100ml中にKIを
3.0g、KBr を18.95g、該ゼラチンを0.5g
含む〕を60ml/分で30秒間同時混合し、続いて12
0ml/分で10分間、同時混合添加した。1−フェニル
−5−メルカプトテトラゾールを飽和吸着量の95%量
で添加した後、乳剤を遠心分離し、上澄み液を除去し
た。純水を入れ、攪拌し、遠心分離し、上澄み液を除去
した。MG≒105 のEAGの7.0重量%水溶液(p
H6.0、pBr 2.5)を加え、再分散した。該粒子の
TEM像を測定した所、平均粒子直径0.02μm であ
った。該乳剤に化合物(A-3)の4.0重量%液を(0.
6ml/gゼラチン)の割合で添加し、端部のみに下塗り
液を塗ったポリエチレンテレフタレートベース上に塗布
し、乾燥した。これを密閉カンに入れ、密封し、40℃
で15時間加熱し、分子間架橋した。試料を取り出し、
Super Fuji Fix定着液で25℃、8分間で粒子を溶解除
去し、水洗し、乾燥させた。該端部を切り落とし、約1
00μm 厚の該膜を取り出した。該膜の光透過率は90
%で、該膜の500nm波長光に対する屈折率を測定した
所、1.35であった。また該膜をカラーペーパー上に
積層させ、該光に対する反射率を図3の態様で測定した
所、反射率は該膜がない時の反射率の約61%に減少し
た。また、該膜をNEC 98 note パソコン画面上に積層さ
せ、該光に対する反射率を測定した所、該膜がない時の
反射率の約58%に減少した。
【0180】実施例5 実施例1〜3において化合物(A-3)の4.0重量%液の
添加量をゼラチン1.0gあたり0.30mlとし、成形
凸レンズのサイズを直径4mmにする以外は同じにしてソ
フトコンタクト凸レンズを形成した。該レンズを37℃
で水中に入れると2倍に膨潤した。また、該溶液を用い
て、厚さ4mmの平板状B0 を形成し、水で膨潤した該膜
を境界膜とした2室を有するセルを形成した。一方は窒
素ガスバブルで溶存酸素を除去した生理的食塩水
(A61)を入れ、他方には酸素ガスバブルで、酸素ガス
を満たした生理的食塩水(A62)を入れた。溶存酸素計
でA62からA61への溶存酸素の移動を37℃で経時測定
した。溶存酸素の移動速度はその自然拡散速度の約60
%であり、ほぼ自由な溶存酸素の通過が確認された。
【0181】実施例6 化粧液Iの重量成分は次の通り。〔ステアリン酸(2.5)
、セチルアルコール(1.5) 、ワセリン(5.0) 、流動パ
ラフィン(10.0)、ポリオキシエチレンモノオレイン酸エ
ステル(2.0) 、ポリエチレングリコール1500(3.0)
、トリエタノールアミン(1.0) 、精製水(73.5)、バニ
ラエッセンス(0.5) 、防腐剤(1.0) 〕。実施例1〜3、
比較例1〜3において(A-30) の添加をなくする以外は
同じにして、該成形加工前の溶液を調製した。化粧液I
液100mlを6個計量し、1:1対応で該溶液15mlを
添加し、均一に混合し、6種の溶液を調製した。溶液を
顔の頬に0.5ml塗り付け、白色度を比べた所、白色度
は(比較例1〜3》実施例1〜3)であった。該液を石
英板上に1.0mmの厚さで載せ、300〜360nmの紫
外光を照射し、その紫外光透過率を測定した所、実施例
1〜3対応試料では0.10以下であった。また、洗面
器に水を入れ、顔を該水で洗った時の洗面器の水の濁度
を比較した所、(比較例1〜3》実施例1〜3)であっ
た。また、実施例1〜3の入った化粧品を身体に塗って
プールに入っても、プールの水を汚す事はなかった。こ
れら実施例により本発明の効果が確認された。
【0182】
【発明の効果】(1)有機高分子をバインダーとする
(I)の(1) 〜(3) 、(5) 記載のB0 の効果は次の通
り。整形加工性が良く、屈折率値を自由に連続的に選ぶ
事ができ、かつ、従来のプラスチックレンズよりもより
高屈折率で、可視光の広い波長域において光透過率の高
いB0 が得られる。耐衝撃性があり割れ難く、耐熱性が
良い。レンズの解像度が高い。非球面状レンズ成形加工
ができる為に光学吸差の少ないレンズが得られる。吸湿
性が小さく、傷つきにくいB0 が得られる。 (2)無機ガラスをバインダーとする(I)の(1) 記載
のB0 は従来よりもより高屈折率でかつ、透明性の良い
0 が得られる。 (3)(I)の(21)記載のコンタクトレンズの場合、水
に対する膨潤性を有し、軟らかく、高屈折率で酸素や目
の涙成分を通過させ、目に障害が少ない。 (4)(I)の(4) 記載の低屈折率膜の場合、膜の屈折
率を広い範囲で連続的に自由に変える事ができ、最適の
膜を選ぶ事ができる。 (5)(I)の(9) 記載の紫外線カット用B0 の場合、
耐光性、整形性、曲げ易さがよく、安価なB0 が得られ
る。 (6)該材料は透明である為、紫外線吸収性化粧品とし
て男性の顔に塗っても顔が白くならず、違和感なく使用
できる。また、身体に塗ってプールで泳いでも、プール
の水が白くならない。 (7)該紫外線カット用B0 をメガネのレンズ(サング
ラス用、度付き矯正用、ファッション用)に使用した場
合、360nm以下の紫外光がカットされている為、目が
紫外線から保護される。
【図面の簡単な説明】
【図1】光学材料の平行光濃度の測定方法を説明する配
置断面図。
【図2】光学材料の光散乱濃度の測定法を説明する配置
断面図。
【図3】光学材料表面における反射光量の測定法を説明
する配置断面図。
【図4】針状晶ルチル型酸化チタン粒子の粒子構造例を
表わす。倍率は5×105 倍。
【図5】微粒子のコア層とシェル層のバンド構造の関係
を表わす断面図。
【図6】成形型中における凹レンズの形成過程を表わす
断面図。
【図7】成形型中における凸レンズの形成過程を表わす
断面図。
【図8】成形型中における凸レンズの形成過程を表わす
断面図。
【図9】光学材料の屈折率測定法を説明する配置断面
図。
【図10】酸化チタン粒子の粒子構造例を表わす。倍率
は2.5×105 倍。
【図11】酸化チタン粒子の粒子構造例を表わす。倍率
は5×105 倍。
【図12】酸化チタン粒子の粒子構造例を表わす。倍率
は2.5×105 倍。
【符号の説明】
図1、図2、図3で10は光源、11は反射鏡、12は
光学フィルター、13は光線透過用の円形穴、14は該
穴を透過した光線、15は光学材料、16は円形穴、1
7は穴16を透過した光線、21は散乱光量測定用積分
球、31は受光器、32は光線14の反射点を表わす。
図5の50はコア層のバンド構造を、51はシェル層の
バンド構造を表わす。52は伝導帯、53は価電子帯、
54は光励起電子、55は正孔、を表わす。図6、図
7、図8の61は成形型、62は注入物、63は上側の
押え型、64はガス抜き用の穴、65は凹レンズ、71
は凸レンズ部、72はバリ、を表わす。図9の91は光
学材料、92は入射ビーム光、93、94は光透過性ピ
ンホール、95は受光器を表わす。

Claims (10)

    【特許請求の範囲】
  1. 【請求項1】 重量平均分子量が103 〜3×106
    ある有機高分子または無機ガラスから成る結合剤中に球
    相当直径(nm)〔粒子と等体積の球の直径で表わした値〕
    が0.10〜300で500nm波長光に対する屈折率が
    1.62〜3.1である微粒子が分散された光透過性光
    学用材料であり、その500〜600nm波長光に対する
    平行光濃度〔=−log(透過平行光量/入射平行光量)〕
    が0.0〜1.0であり、該微粒子の体積含率(該微粒
    子が占める総体積/該材料の総体積)が0.05〜0.
    98であり、該材料がハロゲン化銀粒子を実質的に含ま
    ない非感光性材料であり、該微粒子が下記(a) 項記載の
    元素の1種以上の酸化物または含水酸化物であり、該材
    料の該波長光に対する屈折率が該微粒子が存在しない場
    合の屈折率よりも0.05〜0.80だけ高い事、該微
    粒子が水溶性高分子を重量%で0.10〜20.0含有
    する水溶液中で金属エステルまたは金属塩の加水分解過
    程またはその縮合過程を経て形成された事を特徴とする
    光透過性光学用材料。 (a)長周期型元素周期表において原子番号5〜92で
    あり、第16〜第18族元素を除く元素。
  2. 【請求項2】 重量平均分子量が103 〜3×106
    ある有機高分子が共有結合または配位結合で分子間架橋
    された分散媒を重量%で10.0〜100含有するバイ
    ンダー中に球相当直径(nm)〔粒子と等体積の球の直径で
    表わした値〕が0.10〜300であり、500nm光に
    対する屈折率が1.62〜3.1である無機質の微粒子
    が分散された光透過性光学用材料であり、その500〜
    600nm波長光に対する平行光濃度〔=−log(透過平行
    光量/入射平行光量)〕が0.0〜1.0であり、該微
    粒子の体積含率(該微粒子が占める総体積/該材料の総
    体積)が0.05〜0.98であり、該材料がハロゲン
    化銀粒子を実質的に含まない非感光性材料であり、該材
    料の該波長光に対する屈折率が該微粒子が存在しない場
    合の屈折率よりも0.05〜0.80だけ高い事を特徴
    とする光学用材料。
  3. 【請求項3】 該有機高分子が水溶性高分子であり、水
    に対する平衡溶解度〔50℃の水1000mlに対する溶
    解量(g) 〕が1.0〜∞であり、該微粒子が下記(a) 項
    記載の元素の1種以上の酸化物または含水酸化物である
    事を特徴とする請求項(2) 記載の光学用材料。 (a)長周期型元素周期表において原子番号5〜92で
    あり、第16〜第18族元素を除く元素。
  4. 【請求項4】 重量平均分子量が103 〜3×106
    分子間が共有結合または配位結合により分子間架橋され
    た有機高分子を10〜100重量%含有する分散媒中
    に、波長500nmの光に対する屈折率が1.0〜1.4
    0で球相当直径(nm)〔粒子と等体積の球の直径で表わし
    た値〕が0.5〜300である気体または液体または固
    体の微粒子が分散された光反射防止用光学用材料であ
    り、その500〜600nm波長光に対する平行光濃度
    〔=−log(透過平行光量/入射平行光量)〕が0.0〜
    1.0であり、該微粒子の体積分率〔該微粒子が占める
    体積/該材料の総体積〕が0.05〜0.98であり、
    該材料がハロゲン化銀粒子を含まない非感光性光学材料
    であり、該材料の該波長光に対する屈折率値が該微粒子
    が存在しない場合の屈折率値よりも0.05〜0.60
    だけ低く、かつ、該材料を他の物質A1 と接触させる事
    により、該入射光がA1 中に入るまでに反射される反射
    光量が、該材料を存在させない時の反射光量の0.0〜
    0.95倍である事を特徴とする光学用材料。
  5. 【請求項5】 該有機高分子の10〜100重量%が共
    有結合または配位結合により分子間架橋されている事を
    特徴とする請求項(1) 記載の光学用材料。
  6. 【請求項6】 該有機高分子が水溶性高分子であり、水
    に対する平衡溶解度〔50℃の水1000mlに対する溶
    解量(g) 〕が1.0〜∞である事を特徴とする請求項
    (1) または(4) 記載の光学用材料。
  7. 【請求項7】 該微粒子のTi含率〔Tiのモル数/
    (酸素と水素と炭素を除く元素の総モル数)〕が0.2
    0〜1.0である事を特徴とする請求項(1) または(2)
    記載の光学用材料。
  8. 【請求項8】 該水溶性高分子の20〜100重量%が
    ゼラチンである事を特徴とする請求項(1) または(3)記
    載の光学用材料。
  9. 【請求項9】 該光学用材料が紫外線カット用の光学用
    材料であり、波長200〜350nmの紫外光透過率(透
    過した紫外光光量/入射した紫外光光量)が0.0〜
    0.90である事を特徴とする請求項(1) または(2)記
    載の光学用材料。
  10. 【請求項10】 該分子間架橋が原子数3〜300の架
    橋剤を添加し、該有機高分子と反応させ、共有結合、ま
    たは配位結合を形成する事により形成された事を特徴と
    する請求項(2) 、(4) 、(5) 記載の光学用材料。
JP21136499A 1999-07-26 1999-07-26 光透過性光学用材料 Expired - Fee Related JP3980793B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21136499A JP3980793B2 (ja) 1999-07-26 1999-07-26 光透過性光学用材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21136499A JP3980793B2 (ja) 1999-07-26 1999-07-26 光透過性光学用材料

Publications (2)

Publication Number Publication Date
JP2001042269A true JP2001042269A (ja) 2001-02-16
JP3980793B2 JP3980793B2 (ja) 2007-09-26

Family

ID=16604753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21136499A Expired - Fee Related JP3980793B2 (ja) 1999-07-26 1999-07-26 光透過性光学用材料

Country Status (1)

Country Link
JP (1) JP3980793B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004530940A (ja) * 2001-06-20 2004-10-07 コロニス ゲーエムベーハー 光学部品
US7666704B2 (en) 2005-04-22 2010-02-23 Panasonic Corporation Solid-state image pickup element, method for manufacturing such solid-state image pickup element and optical waveguide forming device
US8300177B2 (en) 2007-06-28 2012-10-30 Sharp Kabushiki Kaisha Backlight device, liquid crystal display device and illuminating device
WO2015050171A1 (ja) * 2013-10-01 2015-04-09 コニカミノルタ株式会社 光学反射フィルムおよび光学反射体
EP2181346A4 (en) * 2007-08-21 2017-12-20 FUJIFILM Corporation Optical lens, optical system unit and imaging apparatus
CN110877973A (zh) * 2018-09-06 2020-03-13 石家庄日加精细矿物制品有限公司 一种高uv阻隔率、高太阳光反射率的陶瓷颗粒

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004530940A (ja) * 2001-06-20 2004-10-07 コロニス ゲーエムベーハー 光学部品
US7666704B2 (en) 2005-04-22 2010-02-23 Panasonic Corporation Solid-state image pickup element, method for manufacturing such solid-state image pickup element and optical waveguide forming device
US8300177B2 (en) 2007-06-28 2012-10-30 Sharp Kabushiki Kaisha Backlight device, liquid crystal display device and illuminating device
EP2181346A4 (en) * 2007-08-21 2017-12-20 FUJIFILM Corporation Optical lens, optical system unit and imaging apparatus
WO2015050171A1 (ja) * 2013-10-01 2015-04-09 コニカミノルタ株式会社 光学反射フィルムおよび光学反射体
CN110877973A (zh) * 2018-09-06 2020-03-13 石家庄日加精细矿物制品有限公司 一种高uv阻隔率、高太阳光反射率的陶瓷颗粒
CN110877973B (zh) * 2018-09-06 2022-08-05 石家庄日加材料技术有限公司 一种高uv阻隔率、高太阳光反射率的陶瓷颗粒
US11851882B2 (en) 2018-09-06 2023-12-26 Shijiazhuang Nikka Mintech Co., Ltd. Ceramic granules with high UV opacity and high solar reflectance

Also Published As

Publication number Publication date
JP3980793B2 (ja) 2007-09-26

Similar Documents

Publication Publication Date Title
US7582231B2 (en) Essentially water-free polymerized crystalline colloidal array composites having tunable radiation diffracting properties
JP5994849B2 (ja) 合わせガラス
JP5142472B2 (ja) 有機無機複合組成物および光学部品
WO2016017604A1 (ja) 光学フィルム及び光学フィルムの製造方法
KR101766556B1 (ko) 방사선 흡수 입자를 갖는 고반사성 결정질 콜로이드성 어레이
JP5880438B2 (ja) 近赤外反射フィルム、その製造方法及び近赤外反射フィルムを設けた近赤外反射体
KR102002236B1 (ko) 반사 방지 광학 부재
JP5786865B2 (ja) 近赤外反射フィルム及びそれを設けた近赤外反射体
CN104067149A (zh) 由超材料制成的滤光器
JP2008230218A (ja) 多層構造球状粒子
WO2014069507A1 (ja) 光学反射フィルム、赤外遮蔽フィルムおよびその製造方法
CN107111028A (zh) 光学膜及光学膜的制造方法
JP5910497B2 (ja) 近赤外反射フィルムの製造方法及びそれを設けた近赤外反射体
JP3980793B2 (ja) 光透過性光学用材料
CN109415577A (zh) 包含用α-羟基酸或盐官能化的纳米粒子的组合物、制品和方法
JP6732138B2 (ja) 赤外吸収材料、赤外センサー、波長選択光源及び放射冷却システム
JP2857193B2 (ja) ホトクロミック重合体膜
JP2009175671A (ja) 微細構造体用反射防止膜及びその製造方法
WO2007052580A1 (ja) 酸化物超微粒子を含有する樹脂組成物
JP6787336B2 (ja) 光学反射フィルムおよび光学反射体
CN112005135B (zh) 波长选择吸收材料、红外传感器、波长选择光源及辐射冷却系统
JP2006299001A (ja) 無機有機複合熱可塑性材料の作製方法及び光学素子用樹脂組成物
KR102119467B1 (ko) 다공성 무기입자의 제조방법 및 다공성 무기입자를 포함하는 광반사용 조성물
WO2016158603A1 (ja) ルチル型二酸化バナジウム含有粒子の製造方法、及び光学フィルムの製造方法
JP2004284233A (ja) 成形体及び光学部材

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees