JP2000244023A - 熱電変換装置 - Google Patents

熱電変換装置

Info

Publication number
JP2000244023A
JP2000244023A JP11040017A JP4001799A JP2000244023A JP 2000244023 A JP2000244023 A JP 2000244023A JP 11040017 A JP11040017 A JP 11040017A JP 4001799 A JP4001799 A JP 4001799A JP 2000244023 A JP2000244023 A JP 2000244023A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
layer
type
conversion layer
carrier supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11040017A
Other languages
English (en)
Other versions
JP3002466B1 (ja
Inventor
Masayuki Abe
正幸 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP11040017A priority Critical patent/JP3002466B1/ja
Application granted granted Critical
Publication of JP3002466B1 publication Critical patent/JP3002466B1/ja
Publication of JP2000244023A publication Critical patent/JP2000244023A/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

(57)【要約】 【課題】 p型半導体を備えてなるp型熱電変換層7と
n型半導体を備えてなるn型熱電変換層4を熱吸収導電
体11を介して電気的に直列接続し、その両端に熱起電
力を取り出す電極12,13を設けてなる熱電変換装置
であって、高感度・高検出能化が可能なものを提供す
る。 【解決手段】 p型熱電変換層7とn型熱電変換層4の
少なくとも何れか一方が、不純物を添加したキャリア供
給層4b,7bと、バンドギャップがキャリア供給層4
b,7bのバンドギャップより小さい高純度層4a,7
aとからなるヘテロ構造を有する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、p型またはn型半
導体を備えてなる熱電変換層の両端に熱起電力を取り出
す電極を設けてなる熱電変換装置、或いは、p型半導体
を備えてなるp型熱電変換層とn型半導体を備えてなる
n型熱電変換層を熱吸収導電体を介して電気的に直列接
続し、その両端に熱起電力を取り出す電極を設けてなる
熱電変換装置に関し、より具体的には、かかる熱電変換
装置の高感度・高検出能化技術に関する。
【0002】
【従来の技術】この種の熱電変換装置は、半導体の熱電
効果であるゼーベック効果によって熱吸収導電体と電極
間の温度差によってp型及びn型各半導体内で発生する
熱起電力を両電極から取り出す構成となっている。
【発明が解決しようとする課題】上記した熱電変換装置
を赤外線センサ等として利用する場合において、高感度
・高検出能化を図るためには、以下に説明するように、
熱電変換層の導電性を高める必要がある。 感度R(単位:V/W)は数1、検出能D(単位:cm
(Hz)1/2 /W)は数2で夫々表される。
【0003】
【数1】R=αSRth
【数2】D=R(AΔf/(4kB TRel))1/2
【0004】ここで、αは熱吸収係数、Sはゼーベック
係数、Rthは熱抵抗、Aは熱吸収体の面積、Δfは帯域
幅、kB はボルツマン定数、Tは絶対温度、Relは電気
抵抗を示す。数2より、導電性を高めると、即ち、Rel
の低抵抗化を図ると熱雑音(4kBTRel)が減少して
検出能Dの向上が図れる。
【0005】しかしながら、図5に示すように、ゼーベ
ック係数と不純物濃度が、不純物濃度が増加するとゼー
ベック係数値が低下する関係にあるため、熱電変換層の
導電性を高めるために熱電変換層の不純物濃度を高くす
ると、逆にゼーベック係数値が低下し、感度が低下す
る。この結果、不純物濃度を高くして熱電変換層の導電
性を高めても、感度特性の改善を図ることは極めて困難
であることが分かる。
【0006】本発明は、上述の問題点に鑑みてなされた
ものであり、その目的は、p型半導体を備えてなるp型
熱電変換層とn型半導体を備えてなるn型熱電変換層を
熱吸収導電体を介して電気的に直列接続し、その両端に
熱起電力を取り出す電極を設けてなる熱電変換装置であ
って、高感度・高検出能化が可能なものを提供する点に
ある。
【0007】
【課題を解決するための手段】この目的を達成するため
の本発明に係る熱電変換装置の第一の特徴構成は、特許
請求の範囲の欄の請求項1に記載した如く、p型半導体
を備えてなるp型熱電変換層とn型半導体を備えてなる
n型熱電変換層の内の少なくとも何れか一方の熱電変換
層を有し、その熱電変換層の両端に熱起電力を取り出す
電極を設けてなる熱電変換装置であって、前記熱電変換
層が、不純物を添加したキャリア供給層と、バンドギャ
ップが前記キャリア供給層のバンドギャップより小さい
高純度層とからなるヘテロ構造を有する点にある。
【0008】同第二の特徴構成は、特許請求の範囲の欄
の請求項2に記載した如く、p型半導体を備えてなるp
型熱電変換層とn型半導体を備えてなるn型熱電変換層
を熱吸収導電体を介して電気的に直列接続し、その両端
に熱起電力を取り出す電極を設けてなる熱電変換装置で
あって、前記p型熱電変換層と前記n型熱電変換層の少
なくとも何れか一方が、不純物を添加したキャリア供給
層と、バンドギャップが前記キャリア供給層のバンドギ
ャップより小さい高純度層とからなるヘテロ構造を有す
る点にある。
【0009】尚、熱吸収導電体は、p型及びn型各半導
体を電気的に接続して両熱電変換層で発生した熱起電力
を直列して両電極間から取り出せるようにするための電
気接続媒体として機能するとともに、雰囲気中の熱エネ
ルギを吸収して各熱電変換層の熱吸収導電体に接する部
分に熱を伝導して電極に接する部分と熱吸収導電体に接
する部分との間に温度差を形成するための熱吸収体とし
て機能する。また、熱吸収導電体は、電気接続媒体及び
熱吸収体としての両機能を具備している限りにおいて、
両機能を夫々個別の材料で形成した複合体であっても、
単一材料で形成した単一体であっても構わない。
【0010】同第三の特徴構成は、特許請求の範囲の欄
の請求項3に記載した如く、上記第二の特徴構成に加え
て、前記p型熱電変換層と前記n型熱電変換層の両方が
前記ヘテロ構造を有する点にある。
【0011】同第四の特徴構成は、特許請求の範囲の欄
の請求項4に記載した如く、上記第二または第三の特徴
構成に加えて、前記高純度層の前記キャリア供給層との
界面近傍の内、少なくとも前記熱吸収導電体と前記電極
と前記熱電変換層の厚み方向に重なる部分に2次元電子
ガス或いは2次元正孔ガスが形成されてなる点にある。
【0012】同第五の特徴構成は、特許請求の範囲の欄
の請求項5に記載した如く、上記第二、第三または第四
の特徴構成に加えて、所定の基板上に前記n型熱電変換
層と前記p型熱電変換層が積層されてなる点にある。
【0013】同第六の特徴構成は、特許請求の範囲の欄
の請求項6に記載した如く、上記第五の特徴構成に加え
て、前記n型熱電変換層と前記p型熱電変換層と前記熱
吸収導電体と前記電極とを備えてなる前記熱電変換装置
を前記基板上に複数形成してなる点にある。
【0014】同第七の特徴構成は、特許請求の範囲の欄
の請求項7に記載した如く、上記第一、第二、第三、第
四、第五または第六の特徴構成に加えて、前記キャリア
供給層と前記高純度層の材料構成(キャリア供給層/高
純度層)が、InP/InGaAs、InAlAs/I
nP、InAlAs/InGaAs、AlGaAs/A
lGaAs、AlGaAs/InGaAs、AlGaA
s/GaAs、AlGaAs/InAs、InGaP/
InGaAs、InGaP/AlGaAs、InGaP
/GaAs、InGaP/InAs、AlGaN/Ga
N、AlGaN/AlGaN、AlGaN/InGa
N、AlGaN/SiC、GaN/SiC、GaN/I
nGaN、及び、Si/SiGeの内の何れかである点
にある。
【0015】以下に作用並びに効果を説明する。本発明
に係る熱電変換装置の第一または第二の特徴構成によれ
ば、例えば、n型熱電変換層に前記ヘテロ構造を採用す
ると、n型の前記キャリア供給層において電極に接する
部分と熱吸収導電体に接する部分の温度差により高温側
から低温側にかけてドナー不純物から発生した電子の濃
度傾斜が発生し、それに伴う電子の拡散を抑制する方向
に電界が形成される。また、高温側の高濃度の電子は、
高抵抗の前記キャリア供給層を拡散せずに、バンドギャ
ップが前記キャリア供給層のバンドギャップより小さい
前記高純度層側へ移動する。また、前記キャリア供給層
のバンドギャップが前記高純度層より大きいため、前記
高純度層側の界面近傍にポテンシャルの低い領域が形成
されることにより、前記キャリア供給層側から供給され
た当該電子はこの界面近傍に集中し、また、その界面が
前記高純度層側から見て電子に対してエネルギ障壁とな
るため、所謂2次元電子ガスを形成し、界面に沿って極
めて高い移動度、つまり高導電性を示すのである。この
結果、熱電変換機能と導電機能を前記ヘテロ接合界面を
挟んで分離し、独立して制御できるため、ゼーベック係
数値を低下させることなく、高導電性を確保でき、従来
困難とされていた熱電変換層の高感度・高検出能化が図
れるのである。また、n型熱電変換層についての上記説
明において、電子を正孔と、ドナーをアクセプタと読み
替えて、正負極性を反転すれば、前記ヘテロ構造をp型
熱電変換層に採用した場合についても、同様の作用効果
を奏することが説明される。
【0016】同第三の特徴構成によれば、p型及びn型
の両熱電変換層で、高感度・高検出能化が図れるため、
片方の熱電変換層のみを前記ヘテロ構造とする場合と比
べてより高感度・高検出能化が図れる。
【0017】ところで、上記した2次元電子ガス或いは
2次元正孔ガスは前記キャリア供給層の膜厚や熱吸収導
電体と電極間の膜厚方向の電界強度等の条件に依存して
形成されない場合もあり得る。つまり、前記キャリア供
給層の膜厚が薄いと、n型の熱電変換層の場合では、ド
ナー不純物から発生した自由電子の前記高純度層に移動
する電子の数が十分に得られなくなり、2次元電子ガス
が形成されないわけである。尚、2次元電子ガスはn型
の熱電変換層に対して、2次元正孔ガスはp型の熱電変
換層に対して形成されることは既に説明した通りであ
る。
【0018】さて、同第四の特徴構成によれば、前記高
純度層の前記キャリア供給層との界面近傍の内の前記熱
吸収導電体と前記電極と前記熱電変換層の厚み方向に重
なる部分の間に、2次元電子ガス或いは2次元正孔ガス
が形成されない場合もあり得るが、かかる場合であって
も、高温側の高濃度の電子或いは正孔が前記高純度層に
移動することで、かかる電子または正孔が低温側へ前記
高純度層を通って伝導するので、前記ヘテロ構造を採用
しない場合と比較して高導電性が確保されるのである。
【0019】また、前記熱吸収導電体或いは前記電極と
前記界面近傍の内のそれらと重なる部分との間の直列抵
抗成分も十分に低く抑制する必要があるが、少なくとも
当該部分に2次元電子ガス或いは2次元正孔ガスが形成
されることにより、当該直列抵抗成分を十分に低くでき
るのである。
【0020】同第五の特徴構成によれば、MBE(分子
線エピタキシ)法やMOCVD(有機金属化学気相成
長)法等の薄膜積層技術を利用して、前記所定の基板上
に前記n型またはp型の熱電変換層を成膜し、その上に
他方の熱電変換層を成膜し、下層側の熱電変換層の一部
を露出させて、前記n型またはp型の各熱電変換層に前
記熱吸収導電体と前記電極を夫々形成することにより、
本発明に係る熱電変換装置を一連の工程によって作製す
ることができるのである。更に、前記熱電変換装置の出
力電力を増幅等する信号処理用の周辺回路を同一基板上
に形成することで、前記熱電変換装置の高機能化を図る
ことができる。
【0021】尚、前記所定の基板としては、Si、Ga
As、サファイア、ガラス等、種々のものを、熱電変換
層の材料との組み合わせにおいて適宜選択して使用可能
である。
【0022】同第六の特徴構成によれば、例えば、複数
の前記熱電変換装置を直列接続して高電圧を取り出すこ
とができ、また、並列接続することで大電流を取り出
せ、高性能化を図ることができるのである。また、前記
基板を複数チップにダイシングすることで、同一特性の
複数の熱電変換装置を、或いは、出力電圧や出力電流の
仕様値の異なる複数の熱電変換装置を同一基板から作製
することができるのである。
【0023】同第七の特徴構成によれば、前記キャリア
供給層と前記高純度層に、前記高純度層のバンドギャッ
プが前記キャリア供給層のバンドギャップより小さな組
み合わせのものが得られ、前記高純度層の前記界面近傍
に2次元電子ガス或いは2次元正孔ガスが形成され、上
記第一乃至第六の特徴構成による作用効果を具体的に実
現できるのである。
【0024】また、本特徴構成の材料構成では、前記キ
ャリア供給層と前記高純度層間で概ね格子定数の近いも
のを選択してヘテロ接合界面での格子不整合を回避する
構成となっているが、Si/SiGeの組み合わせで
は、格子不整合を積極的に利用したひずみ超格子による
2次元電子ガス或いは2次元正孔ガスが形成される。
【0025】
【発明の実施の形態】本発明に係る熱電変換装置の一実
施の形態を図面に基づいて説明する。図1に示すよう
に、本発明に係る熱電変換装置の基本構造は、基板1上
に、ラテラルエッチングストッパ層2、第1分離層3、
n型半導体を備えてなるn型熱電変換層4、第1オーミ
ック接触層5、第2分離層6、p型半導体を備えてなる
p型熱電変換層7、第2オーミック接触層8を順番に積
層し、前記n型熱電変換層4と前記第1オーミック接触
層5、及び、前記第2分離層6から前記第2オーミック
接触層8までを各別に選択的にフォトエッチングして前
記n型熱電変換層4と前記p型熱電変換層7を階段状に
パターニングし、その上に絶縁保護膜9を成膜し、その
絶縁保護膜9の所定箇所にフォトエッチングによりオー
ミック接触用の窓10を開口して前記n型熱電変換層4
と前記p型熱電変換層7の境界部の前記第1オーミック
接触層5と前記第2オーミック接触層8を露出させ熱吸
収導電体11で接続し、前記n型熱電変換層4の端部の
前記第1オーミック接触層5及び前記p型熱電変換層7
の端部の前記第2オーミック接触層も同様にフォトエッ
チングにより露出させ、夫々の上に電極12,13を形
成した構造となっている。尚、この基本構造は従来のサ
ーモパイルと略同様の構造となっている。
【0026】ここで、前記熱吸収導電体11は、前記n
型熱電変換層4と前記p型熱電変換層7の夫々に対し
て、各電極12,13との間で温度差を形成し、かかる
温度差により発生した熱起電力を直列して高電圧として
前記電極12,13から取り出せるように設けられてい
る。
【0027】また、本実施形態では、特に下層側の前記
n型熱電変換層4の熱抵抗を高くして感度を改善し、更
に、熱電変換装置の応答時間を短縮すべく前記各熱電変
換層4,7の熱容量を低減するために、前記各熱電変換
層4,7を中空支持するためのブリッジ構造を採用して
いる。前記ラテラルエッチングストッパ層2は、前記基
板1の前記各熱電変換層4,7の下方に位置する部分を
エッチングしてブリッジ構造を形成する際のエッチング
ストッパである。前記n型熱電変換層4は前記第1分離
層3により前記基板1側から電気的に絶縁分離され、前
記n型熱電変換層4と前記p型熱電変換層7が前記第2
分離層6により相互に電気的に絶縁分離されている。
【0028】本発明に係る熱電変換装置では、前記n型
熱電変換層4と前記p型熱電変換層7の少なくとも何れ
か一方が、不純物を添加したキャリア供給層と、バンド
ギャップが前記キャリア供給層のバンドギャップより小
さい高純度層とからなるヘテロ構造を有する。以下に示
す実施形態では、図1に示すように、前記両熱電変換層
4,7とも前記ヘテロ構造を有し、前記n型熱電変換層
4は高純度層4aとn型キャリア供給層4bからなる前
記ヘテロ構造を有し、前記p型熱電変換層7は高純度層
7aとp型キャリア供給層7bからなる前記ヘテロ構造
を有する。
【0029】次に、本実施形態における各構成要素の材
料構成について説明する。前記基板1に半絶縁性のIn
P基板1aを使用し、前記ラテラルエッチングストッパ
層2として膜厚100nmのi−Inx Ga1-x As
を、前記高純度層4a,7aとして膜厚900nmのi
−Inx Ga1-x Asを、前記n型キャリア供給層4b
として膜厚100nmのn−InPを、前記p型キャリ
ア供給層7bとして膜厚100nmのp−InPを、前
記第1及び第2分離層3,6として膜厚200nmのi
−InPを、前記第1オーミック接触層5として膜厚1
00nmのn+ −Inx Ga1-x Asを、前記第2オー
ミック接触層8として膜厚100nmのp + −Inx
1-x Asを、夫々、MBE法やMOCVD法等の半導
体薄膜積層技術を利用して形成する。
【0030】前記各熱電変換層4,7において、Inx
Ga1-x AsとInPは、図2に示す各種半導体のバン
ドギャップEg と格子定数の関係より、InPのバンド
ギャップEg2がInx Ga1-x AsのバンドギャップE
g1に対してEg2>Eg1なる関係が満足されていることが
分かる。また、前記n型キャリア供給層4bであるn−
InPはSi、Se、S等の不純物を変調ドープにより
添加して形成し、前記p型キャリア供給層7bであるp
−InPはMg等の不純物を変調ドープにより添加して
形成し、前記n型及びp型キャリア供給層4b,7bの
不純物濃度は夫々1017〜1×1018cm-3程度であ
り、前記高純度層4a,7aのキャリア濃度は1014
-3程度である。 また、Inx Ga1-x Asの組成比x
はInPと格子整合を取る場合、x=0.53となり、
前記組成比xは0.53近傍であるのが好ましい。従っ
て、上記のような材料構成の前記ヘテロ構造と変調ドー
プ構造とを採用することにより、前記n型熱電変換層4
の前記高純度層4aのヘテロ接合界面近傍に2次元電子
ガス14及びp型各熱電変換層7の前記高純度層7aの
ヘテロ接合界面近傍に2次元正孔ガス15が形成され
る。また、Inx Ga1-x AsはGaAsよりも高い電
子移動度を持つ材料として知られており、前記2次元電
子ガス14や前記2次元正孔ガス15の形成と相まって
前記各熱電変換層4,7の高導電性に寄与する。
【0031】ところで、前記n型及びp型キャリア供給
層4b,7bの膜厚は2次元電子ガス14及び2次元正
孔ガス15が確実に形成される膜厚として100nmと
しているが、当該膜厚は50nmから80nm程度の範
囲で前記2次元電子ガス14及び2次元正孔ガス15が
形成されなくなる臨界値程度まで薄くすることも可能で
ある。
【0032】前記第1オーミック接触層5であるn+
Inx Ga1-x AsもSi、Se、S等の不純物を添加
して形成され、その不純物濃度は前記n型キャリア供給
層4bより高濃度で5×1018cm-3程度である。ま
た、前記第2オーミック接触層8であるp+ −Inx
1-x AsもMg等の不純物を添加して形成され、その
不純物濃度は前記p型キャリア供給層7bより高濃度で
5×1018cm-3程度である。前記第1オーミック接触
層5の不純物濃度を前記n型キャリア供給層4bより高
濃度とすることにより、前記第1オーミック接触層5の
バンドギャップが前記n型キャリア供給層4bより小さ
いことによる自由電子の流入を防止でき、更には、前記
第1オーミック接触層5内の電子も前記高純度層4aに
移動して前記2次元電子ガス14の形成に供せられるも
のと考えられる。これにより前記第1オーミック接触層
5内が空乏化して横方向の電気抵抗が高抵抗となり、更
に膜厚も薄いため、前記第1オーミック接触層5を介し
ての横方向の電気伝導が抑制される。また、本実施形態
の場合、電極金属としてAu合金を使用する場合、前記
第2オーミック接触層8を設けなくてもオーミック接触
が可能と考えられるが、前記第2オーミック接触層8を
設けることにより電極金属としてAl等のAu合金以外
の金属の使用が可能となる。この結果、材料コストの低
減が図れ量産適応性が増すのである。
【0033】また、前記第1及び第2分離層3,6とし
て高純度のi−InPを使用することで、高抵抗の絶縁
層として機能するとともに、InPのバンドギャップが
In x Ga1-x Asより大きいことからキャリアの閉じ
込め効果も期待できるのである。尚、前記第1分離層3
は、前記基板1が絶縁性の高い高抵抗材料である場合は
必ずしも設ける必要はない。
【0034】前記絶縁保護膜9は、階段状に形成された
前記n型及びp型熱電変換層4,7の各オーミック接触
層5,8上に膜厚100nmのSiON膜、SiN膜、
SiO2 膜等をCVD法やスパッタリング法等で成膜し
て形成される。前記オーミック接触用の窓10は前記n
型及びp型熱電変換層4,7の境界部と端部のn及びp
領域の各2カ所にフォトエッチングにより設けられてい
る。先ず、p領域の窓10にp型オーミック接触金属1
6であるTiPtAuを蒸着し、次に、n領域の窓10
にn型オーミック接触金属17であるAuGeNiを蒸
着し、両オーミック接触金属16,17をアニールして
n型及びp型オーミック接触を形成する。引き続き、前
記n型及びp型熱電変換層4,7の両端部の両オーミッ
ク接触金属16,17と電気的に接続すべくCr/Au
金属配線18を前記両端部の両オーミック接触金属1
6,17上と前記絶縁保護膜9上に蒸着形成する。従っ
て、前記両端部の両オーミック接触金属16,17と前
記Cr/Au金属配線18により前記電極12,13が
構成される。また、前記Cr/Au金属配線18は、後
述する複数の熱電変換装置を直列接続する場合の配線や
パッケージングする際のボンディング用パッドとしてパ
ターニングされる。
【0035】前記n型及びp型熱電変換層4,7の境界
部の窓10に形成された両オーミック接触金属16,1
7は一方の一部が他方の一部または全部に重なって形成
されており、前記n型及びp型熱電変換層4,7が電気
的に直列接続されている。次に、当該境界部の前記両オ
ーミック接触金属16,17上にAuクラスタ等の熱吸
収体19が蒸着され、リフトオフ法等により所定の平面
形状にパターニングされる。前記n型及びp型熱電変換
層4,7の境界部の両オーミック接触金属16,17と
前記熱吸収体19により前記熱吸収導電体11が構成さ
れる。
【0036】最終的に、前記n型及びp型熱電変換層
4,7一対で構成される単体の熱電変換装置をマイクロ
マシーニング技術を用いて前記InP基板1aを横方向
に異方性エッチングしてブリッジ構造とする。先ず、前
記ラテラルエッチングストッパ層2、前記第1分離層
3、前記絶縁保護膜9に異方性エッチング用の開口を形
成し、この開口部より所定のエッチャントで前記基板1
をエッチングして熱電変換装置の下部に深さ200乃至
300μm程度の空隙部20を形成する。このとき、前
記ラテラルエッチングストッパ層2であるInx Ga
1-x Asのエッチング速度が前記InP基板1aより遅
いためエッチングストッパとして機能する。尚、前記I
nP基板1aは、前記空隙部20を逆ピラミッド形状に
異方性エッチングすべく、(100)結晶面のものを使
用する。尚、上記した異方性エッチングは前記ブリッジ
構造を形成するマイクロマシーニング技術の一例であっ
て、前記空隙部20は、前記異方性エッチング以外のエ
ッチング技術を使用して形成しても構わない。更に、本
実施形態においては、熱電変換装置は中空支持されるブ
リッジ構造を備えた形態のものを例示したが、必ずしも
中空支持されるブリッジ構造でなくても構わない。例え
ば、前記n型熱電変換層4より幅の狭い支柱を前記基板
1に形成して、前記n型熱電変換層4を下方から支持す
る構造であってもよい。かかる構造でも、前記n型熱電
変換層4に対して熱抵抗値を高くでき、熱容量を低減す
ることができる。
【0037】上記した製造工程で作製された単体の熱電
変換装置の平面形状は、図3に示すように、検出能を高
めるために、熱吸収面積を大きくすべく前記熱吸収導電
体11の面積を大きくし、前記n型及びp型熱電変換層
4,7の熱抵抗を高くすべく夫々細長くなるように、前
記n型及びp型熱電変換層4,7を階段状に形成する過
程でパターニングされる。前記n型及びp型熱電変換層
4,7の参考的な寸法は両者結合した状態で長さ約1m
m、幅約20μmである。
【0038】更に、図4に示すように、上記した製造工
程で前記基板1上に前記単体の熱電変換装置を複数個を
同時に形成する場合、前記単体の熱電変換装置の隣接す
るもの同士が一方の前記n型熱電変換層4の前記電極1
2と他方の前記p型熱電変換層の前記電極13を接続し
て、複数の熱電変換装置を蛇行させながら直列に接続し
ている。かかる構成により、取り出せる熱起電力の電圧
値が高くなり、感度が直列個数分改善される。また、複
数の熱電変換装置を蛇行させる際に、前記熱吸収導電体
11を隣接する熱電変換装置の前記n型またはp型熱電
変換層4,7の細長い形状部分に隣接するように配置す
ることで、複数の熱電変換装置を高密度に集積すること
ができるのである。
【0039】次に、本発明に係る熱電変換装置の別実施
形態について説明する。 〈1〉上記実施の形態において、前記高純度層4a,7
aとして膜厚900nmのi−Inx Ga1-x Asを、
前記n型及びp型キャリア供給層4b,7bとして膜厚
100nmのn−InPとp−InPを使用したが、前
記高純度層4a,7a及び前記n型及びp型キャリア供
給層4b,7bの材料構成は上記以外のものであっても
構わない。他の材料構成としては、表1に示すものが、
前記高純度層4a,7a内に夫々前記2次元電子ガス1
4と前記2次元正孔ガス15を形成するヘテロ構造を取
り得る。また、前記高純度層4a,7a及び前記n型及
びp型キャリア供給層4b,7bを含む各層の膜厚も必
ずしも上記実施の形態の値に限定されるものではなく、
適宜変更可能である。
【0040】
【表1】
【0041】〈2〉上記実施の形態では、前記n型熱電
変換層4の上に前記p型熱電変換層7を積層させた構造
としたが、両者の積層順序は逆であっても構わない。ま
た、前記ヘテロ構造は前記n型及びp型熱電変換層4,
7の両方に適用したが、何れか一方にのみ適用しても構
わない。
【0042】〈3〉上記実施の形態においては、各半導
体層は単結晶がエピタキシャル成長される場合を想定し
ていたが、必ずしも単結晶でなくても構わない。
【0043】〈4〉前記n型及びp型熱電変換層4,7
の材料の選択によっては、前記オーミック接触金属1
6,17と直接オーミック接触が可能な場合は、前記第
1及び第2オーミック接触層5,8は必ずしも設ける必
要はない。
【0044】〈5〉上記実施の形態においては、前記n
型及びp型熱電変換層4,7の両熱電変換層を使用した
相補型構成であったが、何れか一方の熱電変換層4,7
を使用するものであっても構わない。
【図面の簡単な説明】
【図1】本発明に係る熱電変換装置の構造を模式的に示
す断面図
【図2】各種半導体のバンドギャップEg と格子定数の
関係を示す関係図
【図3】本発明に係る単体の熱電変換装置を示す平面図
【図4】本発明に係る直列接続された複数の熱電変換装
置を示す平面図
【図5】ゼーベック係数と不純物濃度の関係を示す関係
【符号の説明】
1 基板 1a InP基板 2 ラテラルエッチングストッパ層 3 第1分離層 4 n型熱電変換層 4a,7a 高純度層 4b n型キャリア供給層 5 第1オーミック接触層 6 第2分離層 7 p型熱電変換層 7b p型キャリア供給層 8 第2オーミック接触層 9 絶縁保護膜 10 オーミック接触用の窓 11 熱吸収導電体 12,13 電極 14 2次元電子ガス 15 2次元正孔ガス 16 p型オーミック接触金属 17 n型オーミック接触金属 18 Cr/Au金属配線 19 熱吸収体 20 空隙部

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 p型半導体を備えてなるp型熱電変換層
    とn型半導体を備えてなるn型熱電変換層の内の少なく
    とも何れか一方の熱電変換層を有し、その熱電変換層の
    両端に熱起電力を取り出す電極を設けてなる熱電変換装
    置であって、前記熱電変換層が、不純物を添加したキャ
    リア供給層と、バンドギャップが前記キャリア供給層の
    バンドギャップより小さい高純度層とからなるヘテロ構
    造を有する熱電変換装置。
  2. 【請求項2】 p型半導体を備えてなるp型熱電変換層
    とn型半導体を備えてなるn型熱電変換層を熱吸収導電
    体を介して電気的に直列接続し、その両端に熱起電力を
    取り出す電極を設けてなる熱電変換装置であって、 前記p型熱電変換層と前記n型熱電変換層の少なくとも
    何れか一方が、不純物を添加したキャリア供給層と、バ
    ンドギャップが前記キャリア供給層のバンドギャップよ
    り小さい高純度層とからなるヘテロ構造を有する熱電変
    換装置。
  3. 【請求項3】 前記p型熱電変換層と前記n型熱電変換
    層の両方が前記ヘテロ構造を有する請求項2記載の熱電
    変換装置。
  4. 【請求項4】 前記高純度層の前記キャリア供給層との
    界面近傍の内、少なくとも前記熱吸収導電体と前記電極
    と前記熱電変換層の厚み方向に重なる部分に2次元電子
    ガス或いは2次元正孔ガスが形成されてなる請求項2ま
    たは3記載の熱電変換装置。
  5. 【請求項5】 所定の基板上に前記n型熱電変換層と前
    記p型熱電変換層が積層されてなる請求項2、3または
    4記載の熱電変換装置。
  6. 【請求項6】 前記n型熱電変換層と前記p型熱電変換
    層と前記熱吸収導電体と前記電極とを備えてなる前記熱
    電変換装置を前記基板上に複数形成してなる請求項5記
    載の熱電変換装置。
  7. 【請求項7】 前記キャリア供給層と前記高純度層の材
    料構成(キャリア供給層/高純度層)が、InP/In
    GaAs、InAlAs/InP、InAlAs/In
    GaAs、AlGaAs/AlGaAs、AlGaAs
    /InGaAs、AlGaAs/GaAs、AlGaA
    s/InAs、InGaP/InGaAs、InGaP
    /AlGaAs、InGaP/GaAs、InGaP/
    InAs、AlGaN/GaN、AlGaN/AlGa
    N、AlGaN/InGaN、AlGaN/SiC、G
    aN/SiC、GaN/InGaN、及び、Si/Si
    Geの内の何れかである請求項1、2、3、4、5また
    は6記載の熱電変換装置。
JP11040017A 1999-02-18 1999-02-18 熱電変換装置 Expired - Fee Related JP3002466B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11040017A JP3002466B1 (ja) 1999-02-18 1999-02-18 熱電変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11040017A JP3002466B1 (ja) 1999-02-18 1999-02-18 熱電変換装置

Publications (2)

Publication Number Publication Date
JP3002466B1 JP3002466B1 (ja) 2000-01-24
JP2000244023A true JP2000244023A (ja) 2000-09-08

Family

ID=12569150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11040017A Expired - Fee Related JP3002466B1 (ja) 1999-02-18 1999-02-18 熱電変換装置

Country Status (1)

Country Link
JP (1) JP3002466B1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4516625B1 (ja) * 2009-08-11 2010-08-04 正幸 安部 電子装置
WO2010151012A2 (ko) * 2009-06-24 2010-12-29 (주)아이뷰테크 열전변환장치 및 그 제조 방법
WO2010151010A2 (ko) * 2009-06-24 2010-12-29 (주)아이뷰테크 열전변환장치 및 그 제조 방법
JP2017147311A (ja) * 2016-02-17 2017-08-24 Tdk株式会社 薄膜熱電素子
US9780277B2 (en) 2014-03-05 2017-10-03 Tdk Corporation Thermoelectric device
JP2019509632A (ja) * 2016-02-18 2019-04-04 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique 熱電装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087832A1 (en) * 2009-01-29 2010-08-05 Hewlett-Packard Development Company, L.P. Semiconductor heterostructure thermoelectric device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010151012A3 (ko) * 2009-06-24 2011-04-21 (주)아이뷰테크 열전변환장치 및 그 제조 방법
WO2010151012A2 (ko) * 2009-06-24 2010-12-29 (주)아이뷰테크 열전변환장치 및 그 제조 방법
WO2010151010A2 (ko) * 2009-06-24 2010-12-29 (주)아이뷰테크 열전변환장치 및 그 제조 방법
KR101127642B1 (ko) * 2009-06-24 2012-03-23 (주)아이뷰테크 열전변환장치 및 그 제조 방법
WO2010151010A3 (ko) * 2009-06-24 2011-03-03 (주)아이뷰테크 열전변환장치 및 그 제조 방법
JP2011040585A (ja) * 2009-08-11 2011-02-24 Masayuki Abe 電子装置
JP4516625B1 (ja) * 2009-08-11 2010-08-04 正幸 安部 電子装置
US20120139074A1 (en) * 2009-08-11 2012-06-07 Masayuki Abe Electronic apparatus
DE112010002834T5 (de) 2009-08-11 2012-12-06 3D-Bio Co., Ltd. Elektronische Vorrichtung
US8872302B2 (en) * 2009-08-11 2014-10-28 Eyeviewtech Co., Ltd. Electronic apparatus
DE112010002834B4 (de) 2009-08-11 2018-07-19 3D-Bio Co., Ltd. Thermoelektrische Vorrichtungen
US9780277B2 (en) 2014-03-05 2017-10-03 Tdk Corporation Thermoelectric device
JP2017147311A (ja) * 2016-02-17 2017-08-24 Tdk株式会社 薄膜熱電素子
JP2019509632A (ja) * 2016-02-18 2019-04-04 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique 熱電装置

Also Published As

Publication number Publication date
JP3002466B1 (ja) 2000-01-24

Similar Documents

Publication Publication Date Title
US9184266B2 (en) Transistor having graphene base
US9219137B2 (en) Vertical gallium nitride transistors and methods of fabricating the same
JPH0626242B2 (ja) 半導体集積回路装置
US4912451A (en) Heterojunction magnetic field sensor
JP3002466B1 (ja) 熱電変換装置
JPH0855979A (ja) ヘテロ接合電界効果トランジスタ
JP2010056250A (ja) 半導体装置及び半導体装置の製造方法
JP6348451B2 (ja) ヘテロ接合バイポーラトランジスタ
US6469315B1 (en) Semiconductor device and method of manufacturing the same
US11799047B2 (en) Avalanche photodiode and method for manufacturing same
KR101127642B1 (ko) 열전변환장치 및 그 제조 방법
KR20100138774A (ko) 열전변환장치 및 그 제조 방법
JP2639358B2 (ja) 接合型fet
JP2000286412A (ja) 半導体素子構造およびその製造方法
JP3066006B1 (ja) 電子デバイス装置及びその製造方法
JP3119207B2 (ja) 共鳴トンネルトランジスタおよびその製造方法
JPS59181069A (ja) 半導体装置
US11749773B2 (en) Avalanche photodiode and method for manufacturing same
JPH0567056B2 (ja)
JP2001102644A (ja) 熱電変換装置
JPH0691287B2 (ja) ヘテロ接合磁気センサ
JP5737137B2 (ja) 温度センサの製造方法
JP2621854B2 (ja) 高移動度トランジスタ
JP2658934B2 (ja) トンネルトランジスタ
JPH0687509B2 (ja) ヘテロ接合磁気センサ

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees