JP2017147311A - 薄膜熱電素子 - Google Patents

薄膜熱電素子 Download PDF

Info

Publication number
JP2017147311A
JP2017147311A JP2016027517A JP2016027517A JP2017147311A JP 2017147311 A JP2017147311 A JP 2017147311A JP 2016027517 A JP2016027517 A JP 2016027517A JP 2016027517 A JP2016027517 A JP 2016027517A JP 2017147311 A JP2017147311 A JP 2017147311A
Authority
JP
Japan
Prior art keywords
thin film
type semiconductor
semiconductor thin
film
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016027517A
Other languages
English (en)
Inventor
麻谷 崇史
Takashi Asatani
崇史 麻谷
和也 前川
Kazuya Maekawa
和也 前川
柴田 誠
Makoto Shibata
誠 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2016027517A priority Critical patent/JP2017147311A/ja
Publication of JP2017147311A publication Critical patent/JP2017147311A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

【課題】p型半導体薄膜およびn型半導体薄膜それぞれの本来有すべき性能を積層段階で損なわず適用が可能な薄膜熱電素子を提供すること。【解決手段】薄膜熱電素子は、一対のp型半導体薄膜14とn型半導体薄膜20とが、p型半導体薄膜14及びn型半導体薄膜20のそれぞれの膜面内方向の両端である第1端部と第2端部のうちの少なくともいずれか一方の端部側で電気的に接続され、一対のp型半導体薄膜14とn型半導体薄膜20とが膜厚方向で積層され、p型半導体薄膜14とn型半導体薄膜20との境界面全面に、膜面内方向に一様な材料から構成される境界膜20Aを備えている。【選択図】図2

Description

本発明は、薄膜熱電素子の技術分野に関する。
複数対のp型半導体薄膜とn型半導体薄膜とを、p型半導体薄膜及びn型半導体薄膜のそれぞれの膜面内方向の両端である第1端部と第2端部で電気的に接続して構成した熱電素子が特許文献1には記載されている。
特許文献1記載の熱電素子では、一対のp型半導体薄膜とn型半導体薄膜とが膜厚方向で積層されている。このため、特許文献1記載の熱電素子は、p型半導体薄膜とn型半導体薄膜とを隣接して形成するよりも場所を少なくでき、薄膜熱電素子の小型化に有利である。
特開2002−335021号公報
特許文献1記載の熱電素子では、p型半導体薄膜に電気的接合層(内部電極層)および絶縁層を介してn型半導体薄膜を形成して積層している。このため、積層されるn型半導体薄膜の下地を最適な状態に確保できず、n型半導体薄膜自体の本来有すべき特性に大きく影響を与えてしまう問題点がある。また、p型半導体薄膜とn型半導体薄膜の積層順が反対の場合には、積層されるp型半導体薄膜の下地を最適な状態に確保できず、p型半導体薄膜自体の本来有すべき特性に大きく影響を与えてしまう問題点がある。
本発明は、前記問題点を解決するべくなされたもので、p型半導体薄膜およびn型半導体薄膜それぞれの本来有すべき性能を積層段階で損なわず適用が可能な薄膜熱電素子を提供することを目的とする。
本発明の薄膜熱電素子は、一対以上のp型半導体薄膜とn型半導体薄膜とが、前記p型半導体薄膜及び前記n型半導体薄膜のそれぞれの膜面内方向の両端である第1端部と第2端部のうちの少なくともいずれか一方の端部側で電気的に接続され、前記一対以上のp型半導体薄膜とn型半導体薄膜とが膜厚方向で積層され、前記p型半導体薄膜と前記n型半導体薄膜との境界面全面に、膜面内方向に一様な材料から構成される境界膜を備えていることを特徴とする。
ここで、「p型半導体薄膜とn型半導体薄膜との境界面全面に、膜面内方向に一様な材料から構成される境界膜を備えている」とは、境界膜がp型半導体薄膜とn型半導体薄膜のうちのいずれか一方の膜の一部として境界面全面に形成されている場合の他、p型半導体薄膜とn型半導体薄膜とは別個の境界膜が、p型半導体薄膜とn型半導体薄膜との境界面に挿入されている場合も含む意味である。
これによれば、薄膜熱電素子のp型半導体薄膜とn型半導体薄膜との境界面全面に、膜面内方向に一様な材料から構成される境界膜が備えられている。このため、積層されるp型半導体薄膜またはn型半導体薄膜の下地を相応に適切な状態に確保することが可能となり、p型半導体薄膜およびn型半導体薄膜それぞれの本来有すべき性能を積層段階で損なわず適用が可能となる。
さらに、本発明の薄膜熱電素子は、前記p型半導体薄膜と前記n型半導体薄膜のうちの少なくともいずれか一方の膜がエピタキシャル成長した膜であることを特徴とする。
さらに、本発明の薄膜熱電素子は、前記境界膜は、前記p型半導体薄膜とn型半導体薄膜のうちの少なくともいずれか一方の膜を積層時にエピタキシャル成長可能とする膜であることを特徴とする。
さらに、本発明の薄膜熱電素子は、前記境界膜は、前記エピタキシャル成長した膜の母材の格子定数とほぼ同一の格子定数を備えることを特徴とする。
さらに、本発明の薄膜熱電素子は、前記境界膜の母材は、前記p型半導体薄膜と前記n型半導体薄膜のうちの少なくともいずれか一方の膜の母材と同じであることを特徴とする。
さらに、本発明の薄膜熱電素子は、前記境界膜は、前記p型半導体薄膜と前記n型半導体薄膜のうちのいずれか一方の膜の一部であることを特徴とする。
さらに、本発明の薄膜熱電素子は、前記境界膜は半導体であり、前記p型半導体薄膜及び前記n型半導体薄膜の間に形成される空乏層の厚みが前記境界膜の膜厚を下回らないことを特徴とする。
さらに、本発明の薄膜熱電素子は、前記p型半導体薄膜及び前記n型半導体薄膜はそれぞれ、前記境界膜よりも電気抵抗率の小さい膜を含むことを特徴とする。
さらに、本発明の薄膜熱電素子は、前記p型半導体薄膜と前記n型半導体薄膜熱電薄膜のうちの少なくともいずれか一方の膜が、超格子構造を有する多層膜であることを特徴とする。
さらに、本発明の薄膜熱電素子は、前記多層膜は、シリコンとゲルマニウムとの合金に不純物が添加されたSiGe膜と、前記SiGe膜と交互に積層されるSi膜とを備えることを特徴とする。
さらに、本発明の薄膜熱電素子は、前記境界膜は、Si膜またはシリコンとゲルマニウムとの合金膜であることを特徴とする。
さらに、本発明の薄膜熱電素子は、前記境界膜は、Si膜と、シリコンとゲルマニウムとの合金膜とを積層した多層膜であることを特徴とする。
さらに、本発明の薄膜熱電素子は、更に、前記p型半導体薄膜及び前記n型半導体薄膜の膜厚方向外側にそれぞれ配置されるとともに、前記第1端部に熱的に接続された第1伝熱部材と前記第2端部に熱的に接続された第2伝熱部材とを備えることを特徴とする。
さらに、本発明の薄膜熱電素子は、前記第1端部と前記第2端部のうちのいずれか一方の端部側に設けられ、前記p型半導体薄膜と前記n型半導体薄膜との電気的な接続をする内部電極と、前記p型半導体薄膜における前記内部電極の設けられていない他方の端部側に設けられ、前記p型半導体薄膜と外部との電気的な接続をする第1の外部電極と、前記n型半導体薄膜における前記内部電極の設けられていない他方の端部側に設けられ、前記n型半導体薄膜と外部との電気的な接続をする第2の外部電極と、を備え、前記内部電極と前記第1の外部電極との間の前記p型半導体薄膜の膜抵抗、及び前記内部電極と前記第2の外部電極との間の前記n型半導体薄膜の膜抵抗がそれぞれ、前記p型半導体薄膜と前記n型半導体薄膜との間の境界抵抗よりも低いことを特徴とする。
さらに、本発明の薄膜熱電素子は、前記第1端部と前記第2端部のうちのいずれか一方の端部側に設けられ、前記p型半導体薄膜と前記n型半導体薄膜との電気的な接続をする内部電極と、前記p型半導体薄膜における前記内部電極の設けられていない他方の端部側に設けられ、前記p型半導体薄膜と外部との電気的な接続をする第1の外部電極と、前記n型半導体薄膜における前記内部電極の設けられていない他方の端部側に設けられ、前記n型半導体薄膜と外部との電気的な接続をする第2の外部電極と、を備え、前記内部電極を介した前記p型半導体薄膜と前記n型半導体薄膜との間の接続抵抗と、前記p型半導体薄膜と前記第1の外部電極との間の接続抵抗と、前記n型半導体薄膜と前記第2の外部電極との間の接続抵抗とがそれぞれ、前記p型半導体薄膜と前記n型半導体薄膜との間の境界抵抗よりも低いことを特徴とする。
さらに、本発明の薄膜熱電素子は、前記p型半導体薄膜と前記n型半導体薄膜のうちのいずれか一方の膜上に前記n型半導体薄膜と前記p型半導体薄膜のうちの他方の膜が積層された状態で、前記他方の膜の前記第1端部と前記第2端部とが、前記膜面内方向で、前記一方の膜の前記第1端部と前記第2端部よりも内側にあるように形成されていることを特徴とする。
さらに、本発明の薄膜熱電素子は、前記第1端部と前記第2端部のうちのより低温とされる一方の端部側に前記内部電極が設けられていることを特徴とする。
この発明は、薄膜熱電素子において、p型半導体薄膜およびn型半導体薄膜それぞれの本来有すべき性能を積層段階で損なわず適用が可能となるという効果を奏する。
実施形態1に係わる薄膜熱電素子の一例を示す模式図 実施形態1の薄膜熱電素子の一対のp型半導体薄膜とn型半導体薄膜の積層部分の一例を示す模式図 実施形態1の薄膜熱電素子の製造工程の一例を示す模式図 実施形態1の薄膜熱電素子の製造工程の一例を示す模式図 実施形態1の薄膜熱電素子の製造工程の一例を示す模式図 実施形態1の薄膜熱電素子の製造工程の一例を示す模式図 実施形態1の薄膜熱電素子の製造工程の一例を示す模式図 実施形態1の薄膜熱電素子におけるp型熱電半導体薄膜とn型半導体薄膜との間の境界抵抗(pn接合抵抗)の合成膜抵抗に対する比率と相対最大出力電力との関係を示した模式図 実施形態2に係わる薄膜熱電素子の一対のp型半導体薄膜とn型半導体薄膜の積層部分の一例を示す模式図 実施形態3に係わる薄膜熱電素子の一対のp型半導体薄膜とn型半導体薄膜の積層部分の一例を示す模式図 実施形態4に係わる薄膜熱電素子の一対のp型半導体薄膜とn型半導体薄膜の積層部分の一例を示す模式図
以下、添付図面を参照しつつ、本発明の実施の形態について詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、均等の範囲のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
(実施形態1)
最初に、本発明の実施形態1に係わる薄膜熱電素子10の構成について、図1を用いて説明する。実施形態1の薄膜熱電素子10は、図1に示す如く、一対のp型半導体薄膜14とn型半導体薄膜20とが、p型半導体薄膜14及びn型半導体薄膜20の膜面内方向の長尺方向(図1に示すX方向)の両端である第1端部16、22と第2端部18、24のうちの第1端部16、22側で、互いに電気的に接続されて構成されている。
以下、詳細に説明する。薄膜熱電素子10は、図1に示す如く、p型半導体薄膜14とn型半導体薄膜20と第1伝熱部材32と第2伝熱部材34とを有する。
図1に示す如く、p型半導体薄膜14はn型半導体薄膜20と対を成している。p型半導体薄膜14とn型半導体薄膜20はそれぞれ、積層時にエピタキシャル成長した超格子構造を有する多層膜である。
具体的には、図2に示す如く、p型半導体薄膜14は、ボロン(B)が1015cm−3の濃度でドープされた、エピタキシャル成長した抵抗率10Ω・cmのシリコン(Si)膜(膜厚10nm、以下では単に膜14m1と称する)と、高濃度(1018〜1019cm−3)のボロン(B)がドープされた、エピタキシャル成長したシリコンとゲルマニウムとの合金(SiGe)膜(膜厚10nm、ゲルマニウムの組成比率は10〜35atomic%。以下では単に膜14m2と称する。)と、が交互に複数積層された多層膜である。n型半導体薄膜20は、アンチモン(Sb)が1014cm−3の濃度でドープされた、エピタキシャル成長した抵抗率10Ω・cmのn型のシリコン(Sin型)膜(膜厚10nm、以下では単に膜20m1と称する)と、高濃度(1018〜1019cm−3)のアンチモン(Sb)がドープされた、エピタキシャル成長したシリコンとゲルマニウムとの合金(SiGe)膜(膜厚10nm、以下では単に膜20m2と称する)と、が交互に複数積層された多層膜である。なお、本明細書では、上記ドープされる材料やゲルマニウムなどの組成比率が50atomic%未満の材料以外の材料を母材と称する。
図2に示す如く、シリコンの単結晶から切り出された基板12に、最初にn型半導体薄膜20の膜20m1が形成される。そして、n型半導体薄膜20の最上層にも、膜20m1が形成されている。次に、p型半導体薄膜14の膜14m2が形成されている。そして、p型半導体薄膜14の最上層にも、膜14m2が形成されている。
ここで、n型半導体薄膜20上にp型半導体薄膜14が直接的に積層されている。このため、薄膜熱電素子10は、p型半導体薄膜14とn型半導体薄膜20との境界面全面に、膜面内方向に一様な材料から構成される膜20m1(境界膜20A)を備えている。即ち、境界膜20Aは、n型半導体薄膜20の一部であり、p型半導体薄膜14を積層時にエピタキシャル成長可能である。境界膜20Aの母材は、p型半導体薄膜14の母材であるシリコンと同じである。同時に、境界膜20Aは、シリコンを多く含むので、p型半導体薄膜14の母材であるシリコンの格子定数とほぼ同一の格子定数を備えている。ここで、ほぼ同一とは、格子定数の差異が、母材であるシリコンの格子定数の1.5%以内であることである。
膜14m2の電気抵抗率および膜20m2の電気抵抗率は、膜20m1の電気抵抗率よりも小さくなっている。つまり、p型半導体薄膜14は、境界膜20Aよりも電気抵抗率の小さい膜14m2を含んで構成され、n型半導体薄膜20は、境界膜20Aよりも電気抵抗率の小さい膜20m2を含んで構成されている。
図1に示す如く、p型半導体薄膜14の第1端部16と第2端部18との距離は、n型半導体薄膜20の第1端部22と第2端部24との距離よりも短くされている。そして、p型半導体薄膜14の第1端部16と第2端部18とが、膜面内方向(X方向)で、n型半導体薄膜20の第1端部22と第2端部24よりも内側にあるように形成されている。そして、p型半導体薄膜14とn型半導体薄膜20とを電気的に接続する内部電極26が第1端部16、22側に設けられている。また、p型半導体薄膜14と外部との電気的な接続をする第1の外部電極28がp型半導体薄膜14における第2端部18側に設けられ、n型半導体薄膜20と外部との電気的な接続をする第2の外部電極30がn型半導体薄膜20における第2端部24側に設けられている。
ここで、内部電極26と第1の外部電極28との間の距離と、内部電極26と第2の外部電極30との間の距離と、p型半導体薄膜14の膜厚と、n型半導体薄膜20の膜厚とは、次の条件に基づき定められている。その条件とは、内部電極26と第1の外部電極28との間のp型半導体薄膜14の膜抵抗、及び内部電極26と第2の外部電極30との間のn型半導体薄膜20の膜抵抗がそれぞれ、p型半導体薄膜14とn型半導体薄膜20との間の境界抵抗よりも低い、というものである。本実施形態においては、例えばp型半導体薄膜14及びn型半導体薄膜20のそれぞれの電気抵抗率が1mΩ・cmで、それぞれの膜厚を5μmとした場合には、内部電極26と第1の外部電極28との間の距離および内部電極26と第2の外部電極30との間の距離を500μm以下とすることが望ましい。
また、内部電極26と第1の外部電極28と第2の外部電極30の大きさは、次の条件に基づき定められている。その条件とは、内部電極26を介したp型半導体薄膜14とn型半導体薄膜20との間の接続抵抗と、p型半導体薄膜14と第1の外部電極28との間の接続抵抗と、n型半導体薄膜20と第2の外部電極30との間の接続抵抗とがそれぞれ、p型半導体薄膜14とn型半導体薄膜20との間の境界抵抗よりも低い、というものである。
また、p型半導体薄膜14及びn型半導体薄膜20の間に形成される空乏層の厚みが、境界膜12Aの膜厚を下回らないことが好ましい。
第1伝熱部材32と第2伝熱部材34はそれぞれ、p型半導体薄膜14及びn型半導体薄膜20の膜厚方向(Y方向)外側に、p型半導体薄膜14及びn型半導体薄膜20を挟むように配置されている。同時に、第1伝熱部材32は、内部電極26に直接的に当接している。また、第2伝熱部材34は、第2端部18、24の下方に、n型半導体薄膜20に直接的に当接して配置されている。即ち、第1伝熱部材32は第1端部16、22に熱的に接続され、第2伝熱部材34は第2端部18、24に熱的に接続されている。なお、第1伝熱部材32は、内部電極26以外からの大気などを介した熱伝導を低減するために、内部電極26に当接する部分32Aのみを凸形状としている。また、半導体薄膜のX方向での温度差が生じやすいように、第2端部18、24付近のみのn型半導体薄膜20に第2伝熱部材34が当接されている。つまり、半導体薄膜のX方向は温度勾配の方向である。
なお、第1伝熱部材32、第2伝熱部材34は、例えばシリコン基板などを用いることができる。第1伝熱部材32については、内部電極26との密着性だけを考慮すればよいので、熱伝導率の高いセラミック材料(アルミナや窒化アルミなど)や内部電極との導通を回避するための絶縁処理を施した金属などを用いることもできる。第2伝熱部材34は、例えば孔34Aが形成された基板12の一部を用いることができる。
次に、薄膜熱電素子10の製造方法について、図3を用いて説明する。
最初に、基板12上に、上述した超格子構造を有する多層膜のn型半導体薄膜20を、大気を遮断した環境でエピタキシャル成長させる。このとき、n型半導体薄膜20の母材がシリコンであるので、n型半導体薄膜20は、(シリコン)基板12の格子に倣い、整然とエピタキシャル成長する。即ち、n型半導体薄膜20の多層膜における各層が整然とエピタキシャル成長し、各層の界面の乱れを回避することができる。
次に、膜表面を大気に触れさせることなく、同様に上述した超格子構造を有する多層膜のp型半導体薄膜14を直接的にn型半導体薄膜20上にエピタキシャル成長させて、一対のp型半導体薄膜14とn型半導体薄膜20とを膜厚方向(Y方向)で積層する(図3A)。なお、このとき、p型半導体薄膜14とn型半導体薄膜20との境界面全面に、膜面内方向に一様な材料から構成される、n型半導体薄膜20の一部とされている境界膜20Aが備えられる。ここで、境界膜20Aは、n型半導体薄膜20の一部とされていることから、境界膜20Aにおいても整然とエピタキシャル成長がなされている。境界膜20Aの母材とp型半導体薄膜14の母材とは共にシリコンで共通しており、格子定数がほぼ同一である。このため、p型半導体薄膜14も境界膜20Aの格子に倣い、整然とエピタキシャル成長する。
次に、n型半導体薄膜20とp型半導体薄膜14をエッチングして、n型半導体薄膜20の第1端部22と第2端部24とを形成し、p型半導体薄膜14の第1端部16と第2端部18とを形成する(図3B)。即ち、p型半導体薄膜14の第1端部16と第2端部18とが、膜面内方向(X方向)で、n型半導体薄膜20の第1端部22と第2端部24よりも内側にくるように、第1端部22と第2端部24とをエッチングで形成する。なお、ここでエッチング処理は、上記の端部を形成するのみでなく、p型半導体薄膜14とn型半導体薄膜20とを所定の形状にパターニングするためのものである。
次に、p型半導体薄膜14及びn型半導体薄膜20の第1端部16、22側に、p型半導体薄膜14とn型半導体薄膜20との電気的な接続をする内部電極26を設け、p型半導体薄膜14の第2端部18側に、p型半導体薄膜14と外部との電気的な接続をする第1の外部電極28を設け、n型半導体薄膜20の第2端部24側に、n型半導体薄膜20と外部との電気的な接続をする第2の外部電極30を設ける(図3C)。第1の外部電極28および第2の外部電極30に対しては、それぞれ、更に外部へ電力を取り出すための配線が接続される。
次に、第1伝熱部材32を内部電極26に接合する(図3D)。なお、同時に、第1伝熱部材32を機械的に支持するとともに、基板12からの熱の流入を最低限に抑制可能な図示しない断熱部材を基板12と第1伝熱部材32との間に設けても良い。
次に、第2端部18、24付近のみのn型半導体薄膜20に基板12が当接するように、孔34Aがエッチングにより設けられる(図3E)。孔34Aが設けられた基板12の一部は第2伝熱部材34として機能する。
次に、薄膜熱電素子10の動作について説明する。
例えば、第2伝熱部材34の温度を上昇させて、第1伝熱部材32との間に温度差を設ける。すると、第1伝熱部材32、第2伝熱部材34の熱抵抗に従い、第1伝熱部材32と第2伝熱部材34の温度がそれぞれ、第1端部16、22と第2端部18、24とに伝わる。即ち、第1端部16、22が第2端部18、24よりも低温とされて、p型半導体薄膜14及びn型半導体薄膜20の膜面内方向(X方向)において温度差が生じる。このため、p型半導体薄膜14及びn型半導体薄膜20で、ゼーベック効果により起電力が生じる。本実施形態では、例えば、温度差として数百度を想定したときに、1Vに近い電圧を得ることができる。
このように、本実施形態では、一対のp型半導体薄膜14とn型半導体薄膜20とが膜厚方向(Y方向)で積層されることで、薄膜熱電素子10の小型化が可能である。加えて、薄膜熱電素子10はp型半導体薄膜14とn型半導体薄膜20との境界面全面に、膜面内方向に一様な材料から構成される境界膜20Aを備えている。このため、積層されるp型半導体薄膜14の下地を相応に適切な状態に確保することが可能となり、p型半導体薄膜14の本来有すべき性能を積層段階で損なわず適用が可能となる。また、本実施形態においては、境界膜20Aはn型半導体薄膜20の一部とされている。このため、本実施形態においては、工数増加を伴わずに低コスト化が可能となるとともに、製造工程の途中で大気への暴露をしないで済むため、積層されるp型半導体薄膜14の下地を最適な状態に確保することも可能となる。
また、本実施形態においては、p型半導体薄膜14とn型半導体薄膜20とがエピタキシャル成長した膜である。そして、更に、p型半導体薄膜14とn型半導体薄膜20とが、超格子構造を有する多層膜である。このため、薄膜熱電素子10の性能指数を極めて高くすることができるので、より高効率な薄膜熱電素子10を実現することができる。同時に、薄膜熱電素子10の小型化に更に有利となり、膜形成のための材料を極めて少なくすることができる。
また、本実施形態においては、境界膜20Aは、n型半導体薄膜20の一部とされ、エピタキシャル成長した膜である。このため、積層時には境界膜20Aの格子定数とほぼ同じ格子定数を有する膜を容易にエピタキシャル成長させることができる。ここで、境界膜20Aの母材は、p型半導体薄膜14の母材と同じシリコンであるので、境界膜20Aはそのシリコンの格子定数とほぼ同一の格子定数を備えている。即ち、境界膜20Aとエピタキシャル成長したp型半導体薄膜14との格子整合が良好であり、エピタキシャル成長したp型半導体薄膜14の膜質は良好で、より高い性能指数を得ることができる。同時に、母材が同一なので材料や工程条件の兼用化が可能である。
また、本実施形態においては、薄膜熱電素子10は、p型半導体薄膜14及びn型半導体薄膜20の膜厚方向(Y方向)外側にそれぞれ配置されるとともに、第1端部16、22に熱的に接続された第1伝熱部材32と第2端部18、24に熱的に接続された第2伝熱部材34とを備えている。ここで、p型半導体薄膜14及びn型半導体薄膜20の膜厚自体は薄い。このため、膜面内方向(X方向)に第1伝熱部材と第2伝熱部材とを設ける場合に比べて、薄膜熱電素子10を、より小さくすることができる。
また、本実施形態においては、内部電極26と第1の外部電極28との間のp型半導体薄膜14及び内部電極26と第2の外部電極30との間のn型半導体薄膜20の膜抵抗がそれぞれ、p型半導体薄膜14とn型半導体薄膜20との間の境界抵抗よりも低くされている。このため、より高い性能の薄膜熱電素子10を得ることができる。
図4には、pn接合抵抗の合成膜抵抗に対する抵抗比率を横軸とした相対最大出力電力(pn間が絶縁されている場合を1とする)が示されている。なお、pn接合抵抗とは、p型半導体薄膜14とn型半導体薄膜20との間の境界抵抗である。また、合成膜抵抗とは、内部電極26と第1の外部電極28との間のp型半導体薄膜14の膜抵抗と内部電極26と第2の外部電極30との間のn型半導体薄膜20の膜抵抗との和である。ここで、図4から、例えば合成膜抵抗がpn接合抵抗(境界抵抗)よりも十分小さい(pn接合抵抗が合成膜抵抗よりも十分大きい)のであれば、p型半導体薄膜14とn型半導体薄膜20との間が完全に絶縁状態とされていなくても出力電力をそれほど低下させないことがわかる。即ち、完全な絶縁状態を構成することに拘らずに、p型半導体薄膜14とn型半導体薄膜20の性能向上を図ることも、高い性能の薄膜熱電素子10を実現する有力な手段であることがわかる。本実施形態では、p型半導体薄膜14とn型半導体薄膜20とを膜質の劣化を防止できる条件で形成することで、結果的に高い性能の薄膜熱電素子10を実現することが可能となっている。
pn接合抵抗に寄与する伝導キャリアに対するエネルギー障壁は、p型半導体薄膜14とn型半導体薄膜20との間で形成されるpn接合の空乏層に生じ、空乏層厚みが薄い場合には空乏層を伝導キャリアがトンネルするトンネル電流によるリーク電流が大きくなるため、空乏層の厚みは可能な限り厚くすることが望ましい。しかしながら、空乏層がキャリア濃度の比較的高いp型半導体薄膜14とn型半導体薄膜20とで挟まれている結果として、空乏層厚みの上限は、ほぼ、境界膜20Aの膜厚で規定されるため、境界膜20Aの不純物濃度は、空乏層厚みが境界膜20Aの膜厚を下回らない程度に低濃度であればよく、極端に不純物濃度を低減する必要はない。このことは境界膜20Aの成膜条件に対する要求を緩和する。
また、本実施形態においては、内部電極26を介したp型半導体薄膜14とn型半導体薄膜20との間の接続抵抗と、p型半導体薄膜14と第1の外部電極28との間の接続抵抗と、n型半導体薄膜20と第2の外部電極30との間の接続抵抗とがそれぞれ、p型半導体薄膜14とn型半導体薄膜20との間の境界抵抗よりも低い。このため、より高い性能の薄膜熱電素子10を得ることができる。本実施形態では、例えば発電用途として適用すると、上記条件を満たすことにより、p型半導体薄膜14とn型半導体薄膜20との間で短絡して流れる電流よりも第1の外部電極28および第2の外部電極30から取り出せる電流を、より大きくすることができる。
また、本実施形態においては、n型半導体薄膜20上にp型半導体薄膜14が積層された状態で、p型半導体薄膜14の第1端部16と第2端部18とが、前記膜面内方向(X方向)で、n型半導体薄膜20の第1端部22と第2端部24よりも内側にあるように形成されている。このため、p型半導体薄膜14及びn型半導体薄膜20の第1端部16、22同士、及び第2端部18、24同士が重なることなく、内部電極26と、p型半導体薄膜14及びn型半導体薄膜20とのそれぞれの接合面積を第1端部におけるそれぞれの膜の断面積(X方向に垂直な面による断面の面積)よりも大きくすることが可能であり、p型半導体薄膜14と第1の外部電極28との接合面積をp型半導体薄膜14の第2端部18における膜の断面積(X方向に垂直な面による断面の面積)よりも大きくすることが可能であり、n型半導体薄膜20と第2の外部電極30との接合面積をn型半導体薄膜20の第2端部24における膜の断面積(X方向に垂直な面による断面の面積)よりも大きくすることが可能であり、第1の外部電極28と第2の外部電極30との間の短絡を防止することも容易である。即ち、内部電極26を介したp型半導体薄膜14とn型半導体薄膜20との間の接続抵抗と、p型半導体薄膜14と第1の外部電極28との間の接続抵抗と、n型半導体薄膜20と第2の外部電極30との間の接続抵抗とを低減することが可能であるとともに、電極形成を容易とすることができる。
また、本実施形態においては、第1端部16、22と第2端部18、24のうちのより低温とされる第1端部16、22側で、内部電極26によってp型半導体薄膜14とn型半導体薄膜20との電気的な接続がなされている。このため、境界膜20Aに印加される電界の方向がpn接合の逆バイアス方向となるため、順バイアス方向の場合と比較してリーク電流を抑制でき、熱電変換効率ロスを低減することができる。
即ち、本実施形態は、p型半導体薄膜14、n型半導体薄膜20それぞれの本来有すべき性能を積層段階で損なわず適用が可能となるという効果を奏する。
本発明について本実施形態を挙げて説明したが、本発明は本実施形態に限定されるものではない。即ち本発明の要旨を逸脱しない範囲においての改良並びに設計の変更が可能なことは言うまでも無い。
例えば、実施形態1においては、境界膜20Aがn型半導体薄膜20の一部である膜20m1(エピタキシャル成長した抵抗率10Ω・cmのn型のシリコン(Sin型)膜(膜厚10nm))であったが、本発明はこれに限定されない。例えば、p型半導体薄膜とn型半導体薄膜とが実施形態1と同一であっても、実施形態2〜実施形態4の如くであってもよい。
(実施形態2)
本実施形態は、図5に示す如く、p型半導体薄膜38の最初の膜を、ボロンドープされた、エピタキシャル成長した抵抗率10Ω・cmのシリコン(Sip型)膜(膜厚10nm、実施形態1の膜14m1と同じ構成の膜であり、以下では単に膜38m1と称する)としており、この膜を境界膜38Aとしている。そして、p型半導体薄膜38の2番目の膜を、高濃度にボロン(B)がドープされた、エピタキシャル成長したシリコンとゲルマニウムとの合金(SiGe)膜(膜厚10nm、実施形態1の膜14m2と同じ構成の膜であり、以下では単に膜38m2と称する)としている。p型半導体薄膜38は、膜38m1と膜38m2とが交互に複数積層された多層膜である。p型半導体薄膜38の最上層には、膜38m2が形成されている。
n型半導体薄膜40は、高濃度にアンチモン(Sb)ドープされた、エピタキシャル成長したシリコンとゲルマニウムとの合金(SiGe)膜(膜厚10nm、実施形態1の膜20m2と同じ構成の膜であり、以下では単に膜40m2と称する)と、アンチモン(Sb)ドープされた、エピタキシャル成長した抵抗率10Ω・cmのn型のシリコン(Sin型)膜(膜厚10nm、実施形態1の膜20m1と同じ構成の膜であり、以下では単に膜40m1と称する)と、が交互に複数積層された多層膜である。図5に示す如く、シリコンの単結晶から切り出された基板12に、最初にn型半導体薄膜40の膜40m2が形成される。そして、n型半導体薄膜40の最上層にも、膜40m2が形成されている。実施形態2のその他の構成は、実施形態1と同じである。
(実施形態3)
本実施形態は、図6に示す如く、実施形態1における境界膜20Aと同一の材質の膜を膜厚を変えて境界膜54Aとしたものである。本実施形態では、境界膜54Aは、エピタキシャル成長した抵抗率10Ω・cmのn型のシリコン(Sin型)膜(膜厚30nm)である。この場合にあっても、n型半導体薄膜54の材料と境界膜54Aの材料を兼用でき、薄膜熱電素子の製造工数の増加を抑えることができる。同時に、境界膜54Aの膜厚が30nmと実施形態1の境界膜20Aの膜厚10nmよりも厚いため、p型半導体薄膜48とn型半導体薄膜54の間のキャリアのトンネル伝導を抑制することができる。このため、より高効率な薄膜熱電素子を実現することができる。
(実施形態4)
本実施形態では、図7に示す如く、p型半導体薄膜72とn型半導体薄膜74の各層の材質とは異なるものの母材が同一である境界膜74Aが形成されている。具体的には、実施形態2における境界膜38Aにかえて境界膜74Aが形成されており、境界膜74Aは、エピタキシャル成長した抵抗率10Ω・cm以上のシリコンとゲルマニウムとの合金(SiGe)膜(膜厚10nm以上、ゲルマニウムの組成比率は10〜35atomic%。)である。その他の膜構成は実施形態2と同じである。本実施形態では、n型半導体薄膜74の最上層を、シリコンとゲルマニウムとの合金(SiGe)をエピタキシャル成長させてそこに高濃度にアンチモン(Sb)をドープした膜(膜厚10nm)とし、次に境界膜74Aを積層し、次にp型半導体薄膜72の最初の膜として、シリコンとゲルマニウムとの合金(SiGe)をエピタキシャル成長させてそこに高濃度にボロン(B)をドープした膜(膜厚10nm)を形成している。
この場合にも、p型半導体薄膜72と境界膜74Aの母材が同一で格子定数がほぼ同一なので、p型半導体薄膜72の膜質を良好にすることができる。同時に、境界膜74Aがシリコンとゲルマニウムとの合金からなるため、シリコンと比較して熱伝導率が低く、境界膜74Aの膜厚を10nm以上に厚くしても、境界膜の材質がシリコンである場合よりも、膜全体の熱伝導の増大を抑制することが出来る。このため、より高効率な薄膜熱電素子を実現することができる。
上記実施形態1〜4においては、一対のp型半導体薄膜とn型半導体薄膜とで、薄膜熱電素子が構成されていたが、本発明はこれに限定されず、一対以上のp型半導体薄膜とn型半導体薄膜とを備えていればよい。その際に、p型半導体薄膜とn型半導体薄膜のいずれから積層がなされてもよい。なお、複数対のp型半導体薄膜とn型半導体薄膜とを備えていれば、その対の数に応じて(ゼーベック効果を用いる場合には)起電力を増加させることが可能となる。
また、上記実施形態1〜4においては、p型半導体薄膜とn型半導体薄膜とが、エピタキシャル成長した膜で且つ超格子構造を有する多層膜とされていたが、本発明はこれに限定されない。例えば、p型半導体薄膜とn型半導体薄膜のいずれかだけがエピタキシャル成長していてもよいし、いずれかが、膜の積層方向にはエピタキシャルであるが、膜面内方向でみれば多結晶である、局所エピタキシャル成長膜でもよい。更に、エピタキシャル成長した膜であっても、必ずしも超格子構造を有する多層膜とされていなくてよい。上記実施形態1〜4では、良好な熱電特性を備える薄膜の一例が、エピタキシャル成長した膜や超格子構造を有する多層膜であって、相応に良好な熱電特性を備えるその他の薄膜を排除するものではない。なお、上記実施形態1〜4の場合には、薄膜熱電素子を確実に高効率とすることができる。
また、上記実施形態1〜4においては、境界膜の母材がp型半導体薄膜とn型半導体薄膜を構成する母材と同一とされ、更に、境界膜の格子定数がp型半導体薄膜とn型半導体薄膜を構成する母材の格子定数とほぼ同一とされていたが、本発明はこれに限定されない。例えば、境界膜の母材は必ずしもp型半導体薄膜とn型半導体薄膜を構成する母材と同一とされていなくてもよい。更に、境界膜の格子定数は必ずしもp型半導体薄膜とn型半導体薄膜を構成する母材とほぼ同一とされていなくてもよい(なお、母材が同一でなくても格子定数がほぼ同一となる場合もある)。上記実施形態1〜4では、良好な熱電特性を備える積層薄膜のための下地としての一例として、境界膜に母材の同一性や格子定数の一致を求めたものであって、良好な熱電特性を備える積層薄膜のための他の下地の可能性を排除するものではない。なお、上記実施形態1〜4の場合には、p型半導体薄膜及びn型半導体薄膜の膜質を確実に向上させることができる。
また、上記実施形態1〜4においては、境界膜は単層の膜であるが、境界膜を多層膜としてもよい。例えば、境界膜は、Si膜と、シリコンとゲルマニウムとの合金膜とを積層した多層膜であってもよい。
また、上記実施形態1〜4においては、p型半導体薄膜及びn型半導体薄膜の膜厚方向(Y方向)外側にそれぞれ配置されるとともに、第1端部に熱的に接続された第1伝熱部材と第2端部に熱的に接続された第2伝熱部材とを備えていたが、本発明はこれに限定されない。例えば、第1伝熱部材と第2伝熱部材が膜面内方向に配置されてもよい。なお、上記実施形態1〜4の場合には、薄膜熱電素子を、より小さくすることができる。
また、上記実施形態1〜4においては、n型半導体薄膜上にp型半導体薄膜が積層された状態で、p型半導体薄膜の第1端部と第2端部とが、膜面内方向(X方向)で、n型半導体薄膜の第1端部と第2端部よりも内側にあるように形成されていたが、本発明はこれに限定されない。例えばp型半導体薄膜とn型半導体薄膜の第1端部同士、およびp型半導体薄膜とn型半導体薄膜の第2端部同士が重なった状態で、p型半導体薄膜からn型半導体薄膜までを貫通して電気的な接続を行ってもよい。なお、上記実施形態1〜4の場合には、内部電極と外部電極を設けるのが容易となる。
また、上記実施形態1〜4においては、第1端部と第2端部のうちのより低温とされる第1端部側に内部電極が設けられて、p型半導体薄膜とn型半導体薄膜との電気的な接続がなされていたが、本発明ではこれに限定されず、第2端部のほうがより低温とされてもよい。この場合にはp型半導体薄膜とn型半導体薄膜との間に形成されるpn接合が順バイアス状態となる(境界膜に印加される電界の方向がpn接合の順バイアス方向となる)が、第1端部と第2端部との間の温度差が十分小さく、順バイアス方向にpn接合に印加される電圧がk×T/e(kはボルツマン定数、Tは絶対温度、eは電荷素量)よりも小さい場合には、上記実施形態1〜4に比較してリーク電流の増大は小さい。なお、上記実施形態1〜4の場合には、内部電極における熱電変換効率のロスを低減することができる。
本発明の薄膜熱電素子は、薄膜特性を損なわずに薄膜を積層して構成した熱電素子であって、ゼーベック効果により生じた起電力を利用した発電素子やセンサーなどに好適であるが、ペルチェ効果を用いた冷却用途にも利用可能である。
10…薄膜熱電素子
12…基板
14、38、48、72…p型半導体薄膜
16、22…第1端部
18、24…第2端部
20、40、54、74…n型半導体薄膜
20A、38A、54A、74A…境界膜
26…内部電極
28…第1の外部電極
30…第2の外部電極
32…第1伝熱部材
34…第2伝熱部材

Claims (17)

  1. 一対以上のp型半導体薄膜とn型半導体薄膜とが、前記p型半導体薄膜及び前記n型半導体薄膜のそれぞれの膜面内方向の両端である第1端部と第2端部のうちの少なくともいずれか一方の端部側で電気的に接続され、
    前記一対以上のp型半導体薄膜とn型半導体薄膜とが膜厚方向で積層され、
    前記p型半導体薄膜と前記n型半導体薄膜との境界面全面に、膜面内方向に一様な材料から構成される境界膜を備えていることを特徴とする薄膜熱電素子。
  2. 請求項1において、
    前記p型半導体薄膜と前記n型半導体薄膜のうちの少なくともいずれか一方の膜がエピタキシャル成長した膜であることを特徴とする薄膜熱電素子。
  3. 請求項2において、
    前記境界膜は、前記p型半導体薄膜とn型半導体薄膜のうちの少なくともいずれか一方の膜を積層時にエピタキシャル成長可能とする膜であることを特徴とする薄膜熱電素子。
  4. 請求項3において、
    前記境界膜は、前記エピタキシャル成長した膜の母材の格子定数とほぼ同一の格子定数を備えることを特徴とする薄膜熱電素子。
  5. 請求項1乃至4のいずれかにおいて、
    前記境界膜の母材は、前記p型半導体薄膜と前記n型半導体薄膜のうちの少なくともいずれか一方の膜の母材と同じであることを特徴とする薄膜熱電素子。
  6. 請求項1乃至5のいずれかにおいて、
    前記境界膜は、前記p型半導体薄膜と前記n型半導体薄膜のうちのいずれか一方の膜の一部であることを特徴とする薄膜熱電素子。
  7. 請求項1乃至6のいずれかにおいて、
    前記境界膜は半導体であり、前記p型半導体薄膜及び前記n型半導体薄膜の間に形成される空乏層の厚みが前記境界膜の膜厚を下回らないことを特徴とする薄膜熱電素子。
  8. 請求項1乃至7のいずれかにおいて、
    前記p型半導体薄膜及び前記n型半導体薄膜はそれぞれ、前記境界膜よりも電気抵抗率の小さい膜を含むことを特徴とする薄膜熱電素子。
  9. 請求項1乃至8のいずれかにおいて、
    前記p型半導体薄膜と前記n型半導体薄膜のうちの少なくともいずれか一方の膜が、超格子構造を有する多層膜であることを特徴とする薄膜熱電素子。
  10. 請求項9において、
    前記多層膜は、シリコンとゲルマニウムとの合金に不純物が添加されたSiGe膜と、前記SiGe膜と交互に積層されるSi膜とを備えることを特徴とする薄膜熱電素子。
  11. 請求項10において、
    前記境界膜は、Si膜またはシリコンとゲルマニウムとの合金膜であることを特徴とする薄膜熱電素子。
  12. 請求項10において、
    前記境界膜は、Si膜と、シリコンとゲルマニウムとの合金膜とを積層した多層膜であることを特徴とする薄膜熱電素子。
  13. 請求項1乃至12のいずれかにおいて、更に、
    前記p型半導体薄膜及び前記n型半導体薄膜の膜厚方向外側にそれぞれ配置されるとともに、前記第1端部に熱的に接続された第1伝熱部材と前記第2端部に熱的に接続された第2伝熱部材とを備えることを特徴とする薄膜熱電素子。
  14. 請求項1乃至13のいずれかにおいて、
    前記第1端部と前記第2端部のうちのいずれか一方の端部側に設けられ、前記p型半導体薄膜と前記n型半導体薄膜との電気的な接続をする内部電極と、
    前記p型半導体薄膜における前記内部電極の設けられていない他方の端部側に設けられ、前記p型半導体薄膜と外部との電気的な接続をする第1の外部電極と、
    前記n型半導体薄膜における前記内部電極の設けられていない他方の端部側に設けられ、前記n型半導体薄膜と外部との電気的な接続をする第2の外部電極と、を備え、
    前記内部電極と前記第1の外部電極との間の前記p型半導体薄膜の膜抵抗、及び前記内部電極と前記第2の外部電極との間の前記n型半導体薄膜の膜抵抗がそれぞれ、前記p型半導体薄膜と前記n型半導体薄膜との間の境界抵抗よりも低いことを特徴とする薄膜熱電素子。
  15. 請求項1乃至14のいずれかにおいて、
    前記第1端部と前記第2端部のうちのいずれか一方の端部側に設けられ、前記p型半導体薄膜と前記n型半導体薄膜との電気的な接続をする内部電極と、
    前記p型半導体薄膜における前記内部電極の設けられていない他方の端部側に設けられ、前記p型半導体薄膜と外部との電気的な接続をする第1の外部電極と、
    前記n型半導体薄膜における前記内部電極の設けられていない他方の端部側に設けられ、前記n型半導体薄膜と外部との電気的な接続をする第2の外部電極と、を備え、
    前記内部電極を介した前記p型半導体薄膜と前記n型半導体薄膜との間の接続抵抗と、前記p型半導体薄膜と前記第1の外部電極との間の接続抵抗と、前記n型半導体薄膜と前記第2の外部電極との間の接続抵抗とがそれぞれ、前記p型半導体薄膜と前記n型半導体薄膜との間の境界抵抗よりも低いことを特徴とする薄膜熱電素子。
  16. 請求項1乃至15のいずれかにおいて、
    前記p型半導体薄膜と前記n型半導体薄膜のうちのいずれか一方の膜上に前記n型半導体薄膜と前記p型半導体薄膜のうちの他方の膜が積層された状態で、前記他方の膜の前記第1端部と前記第2端部とが、前記膜面内方向で、前記一方の膜の前記第1端部と前記第2端部よりも内側にあるように形成されていることを特徴とする薄膜熱電素子。
  17. 請求項14または15において、
    前記第1端部と前記第2端部のうちのより低温とされる一方の端部側に前記内部電極が設けられていることを特徴とする薄膜熱電素子。
JP2016027517A 2016-02-17 2016-02-17 薄膜熱電素子 Pending JP2017147311A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016027517A JP2017147311A (ja) 2016-02-17 2016-02-17 薄膜熱電素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016027517A JP2017147311A (ja) 2016-02-17 2016-02-17 薄膜熱電素子

Publications (1)

Publication Number Publication Date
JP2017147311A true JP2017147311A (ja) 2017-08-24

Family

ID=59682496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016027517A Pending JP2017147311A (ja) 2016-02-17 2016-02-17 薄膜熱電素子

Country Status (1)

Country Link
JP (1) JP2017147311A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244023A (ja) * 1999-02-18 2000-09-08 Kansai Research Institute 熱電変換装置
JP2004193200A (ja) * 2002-12-09 2004-07-08 Japan Science & Technology Agency 超格子熱電材料
JP2008205181A (ja) * 2007-02-20 2008-09-04 Ngk Spark Plug Co Ltd 熱電モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244023A (ja) * 1999-02-18 2000-09-08 Kansai Research Institute 熱電変換装置
JP2004193200A (ja) * 2002-12-09 2004-07-08 Japan Science & Technology Agency 超格子熱電材料
JP2008205181A (ja) * 2007-02-20 2008-09-04 Ngk Spark Plug Co Ltd 熱電モジュール

Similar Documents

Publication Publication Date Title
JP6855700B2 (ja) 半導体装置およびその製造方法
US20130000688A1 (en) Thermoelectric device
TWI626746B (zh) 半導體結構
KR20120100294A (ko) 전기 에너지 발생장치
US20130306125A1 (en) Seebeck Solar Cell
JP5603495B2 (ja) ナノ粒子がドープされた熱電素子を含む熱電モジュール及びその製造方法
JP7283768B2 (ja) Igbt半導体構造
US9182294B2 (en) Differential temperature sensor and its capacitors in CMOS/BICMOS technology
JP2011082331A (ja) 半導体素子
WO2019031067A1 (ja) 電気的接続構造、半導体装置及び電子機器
JP2015088756A (ja) 基板構造体とそれを含むcmos素子及びその製造方法
JP6976631B2 (ja) 熱電モジュールおよび熱電発電装置
JP2013179116A (ja) 半導体装置、半導体装置の製造方法、保護素子、及び保護素子の製造方法
US11101439B2 (en) Thin-film PN junctions and applications thereof
US20180287038A1 (en) Thermoelectric conversion device
JP6665464B2 (ja) 薄膜熱電素子
JP2017147311A (ja) 薄膜熱電素子
JP2013232578A (ja) ショットキーバリアダイオード
JP4100680B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2012140483A1 (en) Quantum well thermoelectric component for use in a thermoelectric device
US9178126B2 (en) Thermoelectric elements using metal-insulator transition material
JP2017135278A (ja) 熱電変換デバイス
JP6817917B2 (ja) ダイヤモンド半導体素子
US20190252593A1 (en) Thermoelectric conversion device and manufacturing method thereof
JP2017028118A (ja) 吸熱素子及びそれを備えた半導体装置並びに吸熱素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200310