JP2000182630A - 燃料電池セパレータ、その製造方法及び当該燃料電池セパレータを使用した固体高分子型燃料電池 - Google Patents

燃料電池セパレータ、その製造方法及び当該燃料電池セパレータを使用した固体高分子型燃料電池

Info

Publication number
JP2000182630A
JP2000182630A JP10358797A JP35879798A JP2000182630A JP 2000182630 A JP2000182630 A JP 2000182630A JP 10358797 A JP10358797 A JP 10358797A JP 35879798 A JP35879798 A JP 35879798A JP 2000182630 A JP2000182630 A JP 2000182630A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
weight
parts
cell separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10358797A
Other languages
English (en)
Other versions
JP4028940B2 (ja
Inventor
Kazuo Saito
一夫 斎藤
Atsushi Hagiwara
敦 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Nisshinbo Industries Inc
Priority to JP35879798A priority Critical patent/JP4028940B2/ja
Priority to CA002292445A priority patent/CA2292445A1/en
Priority to EP99125260A priority patent/EP1011164A3/en
Publication of JP2000182630A publication Critical patent/JP2000182630A/ja
Priority to US10/013,545 priority patent/US6881512B2/en
Application granted granted Critical
Publication of JP4028940B2 publication Critical patent/JP4028940B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

(57)【要約】 【課題】 従来技術の問題点を解決し、薄肉化してもセ
パレータに必要な強度を保つことができ、燃料電池の組
み立て時に割れ等の問題が発生することがなく、信頼性
の高い燃料電池セパレータを主として提供する。 【解決手段】 本発明の燃料電池セパレータは、少なく
ともバインダー、平均粒径10nm〜100μmの粉末
状炭素フィラー及び平均繊維長0.03〜6mmの短繊
維よりなると共に、これら成分の量比が、バインダー1
00重量部に対して、前記粉末状炭素フィラーが200
〜800重量部、前記短繊維が10〜300重量部であ
る組成物から得られる基材により形成されることを特徴
とする。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、燃料電池セパレー
タ、その製造方法及び当該燃料電池セパレータを使用し
た固体高分子型燃料電池に関するものであり、更に詳し
くは、薄肉化してもセパレータに必要な強度を保つこと
ができる燃料電池セパレータ、その製造方法及び当該燃
料電池セパレータを使用した固体高分子型燃料電池に関
するものである。
【0002】
【従来の技術】燃料電池は、資源の枯渇に留意する必要
のある化石燃料を使用する必要がほとんどない上に、発
電するに際して騒音をほとんど発生せず、エネルギー回
収率も他のエネルギー発電機関と比べて高くすることが
できる等の優れた性質を持つために、ビルや工場等にお
ける比較的小型の発電プラントとして開発が進められて
いる。
【0003】中でも固体高分子型燃料電池は、他のタイ
プの燃料電池と比べて低温で作動するので、電池を構成
する部品については材料面での腐食の心配が少ないばか
りか、低温作動の割りに比較的大出力を得ることができ
るといった特徴を持ち、車載用の内燃機関の代替電源と
して注目を集めている。
【0004】そして、現在では様々な製品や部品に関
し、小型化や薄型化が求められていて、前記固体高分子
型燃料電池についても、車載用の内燃機関の代替電源と
しての使用を考慮した場合は、容積が小さく、コンパク
トなものが求められることになる。
【0005】上記の固体高分子型燃料電池を構成する部
品の中で、セパレータは一般に、平板の両面又は片面に
複数の平行する溝を形成してなるもので、燃料電池セル
内で発電した電気を外部へ伝達するために使用されるも
のである。
【0006】従来より使用されていた上記のような燃料
電池セパレータとしては、高密度グラファイト或いはグ
ラファイト材に熱硬化性樹脂を含浸し、更にその両面又
は片面に複数の平行する溝を機械加工したものがある。
【0007】又、機械加工によらず、特殊な熱硬化性樹
脂と黒鉛粉末との混合体を圧力成形することによるセパ
レータの製造方法も提案されている(特公平1−574
66号公報参照)。
【0008】更に又、フェノール樹脂、炭素繊維ミルド
ファイバー、黒鉛粉を含む混合物をシート状に成形し、
これを黒鉛化することによって燃料電池セパレータを得
る方法も提案されている(特開平4−214072公報
参照)。
【0009】
【発明が解決しようとする課題】一方、前述の通り、容
積が小さく、コンパクトな燃料電池が求められるに連れ
て、燃料電池の大部分の容積を占めるこのセパレータに
ついても必然的に、小型化や薄肉化に耐えることがで
き、しかも、薄肉化してもセパレータに必要な強度を保
つことができるような、高強度で高靭性のものが求めら
れているのであるが、従来より使用されているような、
グラファイトを機械加工して得たセパレータや、特殊な
熱硬化性樹脂、具体的には分子鎖中にパラキシレン結合
を有するという非常に特殊なフェノール樹脂と黒鉛粉末
の混合体を圧力成形して得られたセパレータには、薄肉
化すると脆くなってしまい、燃料電池を組み立てる際に
割れ易く、信頼性に乏しいという問題があった。
【0010】又、樹脂、ファイバー、黒鉛粉の混合物を
黒鉛化してなる薄型の燃料電池セパレータには、シート
状物を1500℃〜3000℃という高温で焼成して黒
鉛化する必要があり、そのための特殊な装置や方法を考
慮すると、非常に高価なものになってしまうばかりか、
黒鉛化工程でシート状物が収縮するために寸法の再現性
が悪く、加えて、黒鉛化物に収縮時のひずみが残ってし
まうという問題点があった。
【0011】本発明は、上記従来技術の難点を解消し
て、薄肉化してもセパレータに必要な強度を保つことが
でき、燃料電池の組み立て時に割れ等の問題が発生する
ことがなく、信頼性の高い燃料電池セパレータ、黒鉛化
する行程を必要としない前記燃料電池セパレータの製造
方法、及び、耐久性に優れた固体高分子型燃料電池を提
供することを目的としてなされた。
【0012】
【課題を解決するための手段】上記目的を達成するため
に本発明が採用した燃料電池セパレータの構成は、少な
くともバインダー、平均粒径10nm〜100μmの粉
末状炭素フィラー及び平均繊維長0.03〜6mmの短
繊維よりなると共に、これら成分の量比が、バインダー
100重量部に対して、前記粉末状炭素フィラーが20
0〜800重量部、前記短繊維が10〜300重量部で
ある組成物から得られる基材により形成されることを特
徴とするものである。
【0013】又、同じく上記目的を達成するために本発
明が採用した燃料電池セパレータの製造方法の構成は、
少なくともバインダー、平均粒径10nm〜100μm
の粉末状炭素フィラー及び平均繊維長0.03〜6mm
の短繊維を、バインダー100重量部に対して、前記粉
末状炭素フィラーが200〜800重量部、前記短繊維
が10〜300重量部となる量比で混合し、得られる混
合物を粒径0.03〜5mmの顆粒状とし、得られる顆
粒状物を成形することを特徴とするものであり、更に本
発明が採用した固体高分子燃料電池の構成は、上記燃料
電池セパレータを使用したことを特徴とするものであ
る。
【0014】
【発明の実施の態様】以下に本発明を説明する。
【0015】本発明で用いられるバインダーとしては、
そのように称されているものであれば格別の制限はな
く、例えば熱硬化性樹脂、熱可塑性樹脂、ゴム等を挙げ
ることができる。
【0016】上記熱硬化性樹脂としては、例えば、フェ
ノール樹脂、ポリカルボジイミド樹脂、フルフリルアル
コール樹脂、エポキシ樹脂、セルロース、尿素樹脂、メ
ラミン樹脂、不飽和ポリエステル樹脂、シリコーン樹
脂、ジアリルフタレート樹脂、ビスマレイミドトリアジ
ン樹脂、ポリアミノビスマレイミド樹脂、芳香族ポリイ
ミド樹脂より選ばれた1種類或いは2種類以上の混合物
を挙げることができる。
【0017】又、上記熱可塑性樹脂としては、例えば、
ポリエチレン、ポリスチレン、ポリプロピレン、ポリメ
タクリル酸メチル、ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート、ポリエーテルスルフォン、ポ
リカーボネート、ポリオキサメチレン、ポリアミド、ポ
リイミド、ポリアミドイミド、ポリビニルアルコール、
ポリビニルクロライド、ポリフェニールサルフォン、ポ
リエーテルエーテルケトン、ポリスルフォン、ポリエー
テルケトン、ポリアリレート、ポリエーテルイミド、ポ
リメチルベンテン、フッ素樹脂、ポリオキシベンゾイル
エステル樹脂、液晶ポリエステル樹脂、芳香族ポリエス
テル、ポリアセタール、ポリアリルスルホン、ポリベン
ゾイミダゾール、ポリエーテルニトリル、ポリチオエー
テルスルホン、ポリフェニレンエーテルより選ばれた1
種類或いは2種類以上の混合物を挙げることができる。
【0018】更に、上記ゴムとしては、例えば、フッ素
ゴム、シリコーンゴム、ブチルゴム、クロロプレンゴ
ム、ニトリルゴム、ニトリルクロロプレンゴム、塩素化
ブチルゴム、エピクロルヒドリンゴム、エピクロルヒド
リン−エチレンオキサイドゴム、エピクロルヒドリン−
エチレンオキサイド−アクリルグリシルエーテル3次元
共重合体、ウレタンゴム、アクリルゴム、エチレン−プ
ロピレンゴム、スチレンゴム、ブタジエンゴム、天然ゴ
ムより選ばれた1種類或いは2種類以上の混合物を挙げ
ることができる。
【0019】本発明で用いられる粉末状炭素フィラーと
しては、導電性に優れた粉末状の炭素フィラーであれ
ば、以下に説明する粒径を除いて格別の制限はないが、
例えば、リン片状黒鉛、土塊状黒鉛等の天然黒鉛、膨張
黒鉛、人造黒鉛、メソフェーズカーボン、石炭コーク
ス、石油コークス、アセチレンブラック、カーボンブラ
ック、ケッチェンブラック、グラッシーカーボン等によ
るものを挙げることができる。
【0020】上記粉末状炭素フィラーの粒径としては、
平均粒径で10nm〜100μm、好ましくは20μm
〜80μmという範囲を挙げることができ、粉末状炭素
フィラーの平均粒径が10nm未満の場合には、粉末状
炭素フィラーが嵩高過ぎてセパレータの電気抵抗が高く
なるおそれや、バインダーと均一に混合することが難し
くなり、不均一に混合した場合に成形不良を起こすおそ
れがあり、逆に100μmを超える場合には、粉末状炭
素フィラー同士の間や粉末状炭素フィラーと短繊維との
間の電気的接触が少なくなるため、セパレータの電気抵
抗が高くなるおそれがあり、いずれも好ましくない。
【0021】又、本発明で用いられる短繊維としては、
高強度、高弾性率で、耐食性、導電性、耐熱性や耐電気
化学的腐食性に優れた素材によるものが好ましく、例え
ば、炭素繊維、耐炎化処理繊維、ステンレスファイバ−
より選ばれた1種類或いは2種類以上の混合物を挙げる
事ができる。
【0022】上記短繊維の繊維長としては、平均繊維長
で0.03mm〜6mm、好ましくは、0.07mm〜
3.0mm、更に好ましくは、0.1mm〜0.9mm
という範囲を挙げることができ、短繊維の平均繊維長が
0.03mm未満の場合には、強度が向上せず、薄肉化
した場合に強度が不足して燃料電池セパレータとして使
用できなくなるおそれがあり、又、6mmを超える場合
には、混合工程で繊維同士が絡み合ってしまって十分に
分散せず、その結果、強度の不均一が生じ、燃料電池の
組み立て時又は運転中に割れが発生するおそれがある。
【0023】上記炭素繊維としては、例えば、ピッチ系
繊維、ポリアクリロニトリル繊維、フェノール繊維、レ
ーヨン繊維、セルロース系繊維、アラミド繊維といった
原料を、不活性ガス雰囲気下で、450℃〜3000
℃、好ましくは、800℃〜2200℃の間の熱処理温
度でしたものを挙げることができ、耐炎化処理繊維とし
ては、炭素繊維と同様の原料を200℃〜450℃程度
の温度で加熱したものを挙げることができる。
【0024】尚、上記バインダー、粉末状炭素フィラー
及び短繊維の混合物には、成形時の離型性を向上させる
ために滑剤を入れてもよく、この滑剤としては特に制限
はないが、例えば、ステアリン酸、ステアリン酸亜鉛等
の脂肪酸或いは脂肪酸金属塩(金属セッケン)、脂肪酸
エステル、脂肪酸クロライド、アミン系脂肪酸、アミド
系脂肪酸、ワックス、高分子系ワックス等を挙げること
ができる。
【0025】上記バインダー、粉末状炭素フィラー及び
短繊維の混合物における成分の量比としては、バインダ
ー100重量部に対して、前記粉末状炭素フィラーが2
00〜800重量部、短繊維が10〜300重量部とい
う範囲を挙げることができる。
【0026】粉末状炭素フィラーが200重量部未満で
あると、導電性、とりわけ繊維間の電気導通路が不足
し、抵抗が高くなるおそれがあり、又、800重量部を
超えると、セパレータとしての強度が不足して、薄肉化
した場合に、燃料電池組み立て時又は発電中に割れが生
じ、燃料電池セパレータとして使用できなくなるおそれ
がある。
【0027】又、短繊維が10重量部未満であると、セ
パレータとしての強度が不足して、やはり薄肉化した場
合に、燃料電池組み立て時又は発電中に割れが生じ、
又、300重量部を超えると、成形不良が生じ、いずれ
の場合も燃料電池セパレータとして使用できなくなるお
それがある。
【0028】一方、本発明の燃料電池セパレータを製造
するためには、本発明の製造方法により、まず、上記バ
インダー、粉末状炭素フィラー及び短繊維を、上記量比
の範囲内となるように混合し、必要に応じて溶媒を滴下
し、顆粒化を行うのであり、この混合・顆粒工程には、
従来公知の混合方法、例えば、撹拌棒、ニーダー、ミキ
サー、スタティックミキサー、へンシェルミキサー、ス
パーミキサー、リボンミキサー、ニーダー等を用いるこ
とができ、特に制限はない。
【0029】上記混合・顆粒工程で必要に応じて使用さ
れる溶媒としては、例えば、水、メタノール、エタノー
ル、イソプロピルアルコール、ブタノール、トルエン、
キシレン、メチルエチルケトン、アセトン等を挙げるこ
とができるが、これらに限定されるものではなく、又、
溶媒の添加量としては、上記混合物の全固形分に対して
40重量%以下、好ましくは20重量%以下であり、4
0重量%を超える溶媒の添加は、顆粒化が困難になるだ
けでなく、乾燥時間を延長を招くことになって望ましく
ない。
【0030】上記のようにして得た顆粒状の混合物につ
いては、必要に応じて、流動層乾燥機、温風循環乾燥
機、真空乾燥機、真空流動層乾燥機等のような従来公知
の乾燥手段によって乾燥させ、溶媒等を蒸発させてもよ
い。
【0031】上記顆粒状の混合物の粒径としては、0.
03mm〜5mm、好ましくは0.1mm〜3.0mm
という範囲を挙げることができ、粒径が0.03mm未
満では、短繊維を顆粒物内に取込むことができず、その
結果、セパレータの強度にばらつきが生じるおそれがあ
り、又、5mmを超えると、成形のための金型内に投入
する際に充填密度が均一にならず、薄肉のセパレータを
製造する場合に成形不良が生じるおそれがある。
【0032】本発明の製造方法では次に、上記顆粒状の
混合物を用いて燃料電池セパレータ形状に製造するので
あるが、この際に採用し得る方法としては、例えば、射
出成形法、射出圧縮成形法、圧縮成形法を挙げることが
でき、好ましくは圧縮成形法である。
【0033】尚、上記工程における成形温度、成形圧
力、成形時間については、使用するバインダー等の特性
に応じて選択すればよいが、常温から樹脂が硬化、溶
融、加硫される範囲を例示することができる。尚、得ら
れた成形物を化学的に安定化させるために、成形後、更
に高温で熱処理をしてもよい。
【0034】又、生産性を向上させるために、タブレッ
ト成形、押出し成形、素押し成形、ベルトプレス、ロー
ルプレスのような手法を用いて、プレカーサー(前駆
体)を製造しておき、このプレカーサーを成形機に投入
し、最終的に燃料電池セパレータ形状に成形してもよ
い。
【0035】本発明の製造方法においては、上記顆粒状
の混合物の成形時に、酸化剤ガス供給溝、燃料ガス供給
溝、マニホールドその他の、燃料電池セパレータに必要
な形状を設けることができ、このような形状を設けるに
は、例えば、圧縮成形法においては用いる金型の上型/
下型(或いは、コア/キャビティ、押型/受型、オス板
/メス板)の少なくとも一方に、所望の酸化剤ガス供給
溝、燃料ガス供給溝、マニホールドその他の燃料電池セ
パレータに必要な形状に対応した凹凸を造作し、この金
型を用いて成形すればよい。
【0036】本発明によれば、肉薄化した燃料電池セパ
レータ、例えば、最肉薄部分の厚みが0.1〜2.0m
mの燃料電池セパレータを容易に得ることができ、しか
もこのセパレータの曲げ撓み量は0.5mm以上、曲げ
強度は4〜15kgf/mm 2、曲げ弾性率は2000
〜6000kgf/mm2であり、高強度、高靭性の燃
料電池セパレータということができる。
【0037】そして、このように薄肉化してもセパレー
タに必要な強度を保つことができる燃料電池セパレータ
を、従来公知の固体高分子型燃料電池と同様に、固体高
分子電解質膜、この固体高分子電解質膜を挟持するガス
拡散電極及びシール部材と共に挟持した後、それらを貫
通するボルト等を所定の圧力で締め付けることによっ
て、従来公知の固体高分子型燃料電池と比較して、より
コンパクトで耐久性の高い固体高分子型燃料電池とする
ことができるのである。
【0038】以下実施例によって、本発明を更に詳しく
説明する。
【0039】実施例1〜25 表1及び表2に示すバインダー、炭素フィラー、炭素繊
維を、表1及び表2に示す量比となるようにミキサーに
て混合し、全固形分に対してメタノールを15重量%滴
下して、粒度分布が0.1〜3.0mmの範囲にある顆
粒状物を作製した。この顆粒状物を40℃の乾燥機で3
時間乾燥した。成形温度150℃、成形圧力150kg
/cm2、5分で圧縮成形し、最も薄肉部分が0.3m
mの燃料電池セパレータを得た。このセパレータの物性
について、固有抵抗、ガス透過性、曲げ強度、曲げ弾性
率、曲げ撓み量を表1及び表2に示す。
【0040】尚、固有抵抗についてはJIS H060
2、ガス透過性についてはJISK7126の同圧法に
準拠し、曲げ強度、曲げ弾性率についてはJIS K6
911、曲げ撓み量については、曲げ強度・曲げ弾性率
試験の際の破断までの変形量を曲げたわみ量として測定
した。
【0041】又、実施例1〜25で得られたセパレータ
を使用して、固体高分子電解質膜、ガス拡散電極と及び
シール部材と共に挟持して固体高分子型燃料電池を組み
立て、1000時間運転し、初期セル電圧を100とし
たときの1000時間後のセル電圧を測定した。又、電
池を解体してセパレータの状況を観察した結果を表1及
び2に示す。
【0042】
【表1】
【0043】
【表2】
【0044】実施例26〜28 実施例5において、顆粒状混合物を表3に示す粒度分布
のものとした以外は同様にして燃料電池セパレータを得
た。このセパレータについて、実施例1〜25と同様
に、固有抵抗、ガス透過性、曲げ強度、曲げ弾性率、曲
げ撓み量を測定した。結果を表4に示す。又、実施例1
〜25と同様に高分子型燃料電池を組み立て、セル電圧
を測定し、セパレータの状況を観察した。結果を表4に
示す。
【0045】
【表3】
【0046】実施例29 実施例5において、射出成形法を採用した以外は同様に
して燃料電池セパレータを得た。このセパレータについ
て、実施例1〜25と同様に、固有抵抗、ガス透過性、
曲げ強度、曲げ弾性率、曲げ撓み量を測定した。結果を
表4に示す。又、実施例1〜25と同様に高分子型燃料
電池を組み立て、セル電圧を測定し、セパレータの状況
を観察した。結果を表4に示す。
【0047】実施例30 実施例5において、圧縮射出成形を採用した以外は同様
にして燃料電池セパレータを得た。このセパレータにつ
いて、実施例1〜25と同様に、固有抵抗、ガス透過
性、曲げ強度、曲げ弾性率、曲げ撓み量を測定した。結
果を表4に示す。又、実施例1〜25と同様に高分子型
燃料電池を組み立て、セル電圧を測定し、セパレータの
状況を観察した。結果を表4に示す。
【0048】
【表4】
【0049】比較例1 実施例1において、炭素繊維を炭素フィラーに置き換
え、炭素フィラーを358重量部とした以外は同様にし
て、燃料電池セパレータを得た。このセパレータについ
て、実施例1と同様に、固有抵抗、ガス透過性、曲げ強
度、曲げ弾性率、曲げ撓み量を測定した。結果を表5に
示す。又、実施例1と同様に高分子型燃料電池を組み立
て、セル電圧を測定し、セパレータの状況を観察した。
結果を表5に示す。
【0050】比較例2 実施例1において、炭素フィラーを炭素繊維に置き換
え、炭素繊維を358重量部とした以外は同様にして、
燃料電池セパレータを得た。このセパレータについて、
実施例1と同様に、固有抵抗、ガス透過性、曲げ強度、
曲げ弾性率、曲げ撓み量を測定した。結果を表5に示
す。又、実施例1と同様に高分子型燃料電池を組み立
て、セル電圧を測定し、セパレータの状況を観察した。
結果を表5に示す。
【0051】比較例3 実施例8において、炭素フィラーを炭素繊維に置き換
え、炭素繊維を358重量部とした以外は同様にして、
燃料電池セパレータを得た。このセパレータについて、
実施例8と同様に、固有抵抗、ガス透過性、曲げ強度、
曲げ弾性率、曲げ撓み量を測定した。結果を表5に示
す。又、実施例8と同様に高分子型燃料電池を組み立
て、セル電圧を測定し、セパレータの状況を観察した。
結果を表5に示す。
【0052】比較例4〜9 表5に示すバインダー、炭素フィラー、炭素繊維を、表
5に示す量比となるようにミキサーにて混合し、全固形
分に対してメタノールを15重量%滴下して、顆粒状物
を作製した。この顆粒状物を乾燥機により40℃で3時
間乾燥した。成形温度150℃、成形圧力150kg/
cm2で5分圧縮成形し、最も薄肉部分が0.3mmの
燃料電池セパレータを得た。このセパレータの物性につ
いて、実施例と同様に、固有抵抗、ガス透過性、曲げ強
度、曲げ弾性率、曲げ撓み量を測定した。結果を表5に
示す。又、このセパレータを使用して、固体高分子電解
質膜、ガス拡散電極と及びシール部材と共に挟持して固
体高分子型燃料電池を組み立てた。1000時間運転し
た後の初期セル電圧を100として、1000時間後の
セル電圧を測定した。又、電池を解体してセパレータの
状況を観察した。結果を表5に示す。
【0053】
【表5】
【0054】
【発明の効果】上記実施例及び比較例から明らかなよう
に、本発明の燃料電池セパレータは、薄肉化してもセパ
レータに必要な強度を保つことができ、燃料電池の組み
立て時やその後の発電中に割れ等の問題が発生すること
がなく、信頼性の高いものである。
【0055】又、本発明の燃料電池セパレータの製造方
法は、黒鉛化や機械加工する行程を必要とせずに、上記
のような優れた燃料電池セパレータを得ることができ、
更に、本発明の燃料電池セパレータを使用した固体高分
子型燃料電池は、非常に耐久性の高い、優れたものであ
る。
─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成12年3月17日(2000.3.1
7)
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】0011
【補正方法】変更
【補正内容】
【0011】本発明は、上記従来技術の難点を解消し
て、薄肉化してもセパレータに必要な強度を保つことが
でき、燃料電池の組み立て時に割れ等の問題が発生する
ことがなく、信頼性の高い燃料電池セパレータ、黒鉛化
する程を必要としない前記燃料電池セパレータの製造
方法、及び、前記セパレータを用いた耐久性に優れ
体高分子型燃料電池を提供することを目的としてなされ
た。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0017
【補正方法】変更
【補正内容】
【0017】又、上記熱可塑性樹脂としては、例えば、
ポリエチレン、ポリスチレン、ポリプロピレン、ポリメ
タクリル酸メチル、ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート、ポリエーテルスルフォン、ポ
リカーボネート、ポリオキサメチレン、ポリアミド、ポ
リイミド、ポリアミドイミド、ポリビニルアルコール、
ポリビニルクロライド、ポリフェニールサルフォン、ポ
リエーテルエーテルケトン、ポリスルフォン、ポリエー
テルケトン、ポリアリレート、ポリエーテルイミド、ポ
リメチルンテン、フッ素樹脂、ポリオキシベンゾイル
エステル樹脂、液晶ポリエステル樹脂、芳香族ポリエス
テル、ポリアセタール、ポリアリルスルホン、ポリベン
ゾイミダゾール、ポリエーテルニトリル、ポリチオエー
テルスルホン、ポリフェニレンエーテルより選ばれた1
種類或いは2種類以上の混合物を挙げることができる。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0020
【補正方法】変更
【補正内容】
【0020】上記粉末状炭素フィラーの粒径としては、
平均粒径で10nm〜100μm、好ましくは20μm
〜80μmという範囲を挙げることができ、粉末状炭素
フィラーの平均粒径が10nm未満の場合には、粉末状
炭素フィラー密度が低過ぎてセパレータの電気抵抗
が高くなるおそれや、バインダーと均一に混合すること
が難しくなり、不均一に混合した場合に成形不良を起こ
すおそれがあり、逆に100μmを超える場合には、粉
末状炭素フィラー同士の間や粉末状炭素フィラーと短繊
維との間の電気的接触が少なくなるため、セパレータの
電気抵抗が高くなるおそれがあり、いずれも好ましくな
い。
【手続補正4】
【補正対象書類名】明細書
【補正対象項目名】0028
【補正方法】変更
【補正内容】
【0028】一方、本発明の燃料電池セパレータを製造
するためには、本発明の製造方法により、まず、上記バ
インダー、粉末状炭素フィラー及び短繊維を、上記量比
の範囲内となるように混合し、必要に応じて溶媒を滴下
し、顆粒化を行うのであり、この混合・顆粒工程には、
従来公知の混合方法、例えば、撹拌棒、ミキサー、スタ
ティックミキサー、へンシェルミキサー、スパーミキサ
ー、リボンミキサー、ニーダー等を用いることができ、
特に制限はない。
【手続補正5】
【補正対象書類名】明細書
【補正対象項目名】0033
【補正方法】変更
【補正内容】
【0033】尚、上記工程における成形温度、成形圧
力、成形時間については、使用するバインダー等の特性
に応じて選択すればよいが、特に成形温度については、
常温から樹脂硬化、溶融、加硫までの範囲を例示す
ることができる。尚、得られた成形物を化学的に安定化
させるために、成形後、更に高温で熱処理をしてもよ
い。
【手続補正6】
【補正対象書類名】明細書
【補正対象項目名】0043
【補正方法】変更
【補正内容】
【0043】
【表2】
【手続補正7】
【補正対象書類名】明細書
【補正対象項目名】0048
【補正方法】変更
【補正内容】
【0048】
【表4】
【手続補正8】
【補正対象書類名】明細書
【補正対象項目名】0050
【補正方法】変更
【補正内容】
【0050】比較例2 実施例において、炭素フィラーを炭素繊維に置き換
え、炭素繊維を358重量部とした以外は同様にして、
燃料電池セパレータを得た。このセパレータについて、
実施例1と同様に、固有抵抗、ガス透過性、曲げ強度、
曲げ弾性率、曲げ撓み量を測定した。結果を表5に示
す。又、実施例1と同様に高分子型燃料電池を組み立
て、セル電圧を測定し、セパレータの状況を観察した。
結果を表5に示す。

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 少なくともバインダー、平均粒径10n
    m〜100μmの粉末状炭素フィラー及び平均繊維長
    0.03〜6mmの短繊維よりなると共に、これら成分
    の量比が、バインダー100重量部に対して、前記粉末
    状炭素フィラーが200〜800重量部、前記短繊維が
    10〜300重量部である組成物から得られる基材によ
    り形成されることを特徴とする燃料電池セパレータ。
  2. 【請求項2】 短繊維が、炭素繊維、耐炎化処理繊維又
    はステンレス繊維より選ばれた1種類或いは2種類以上
    の混合物である請求項1に記載の燃料電池セパレータ。
  3. 【請求項3】 少なくともバインダー、平均粒径10n
    m〜100μmの粉末状炭素フィラー及び平均繊維長
    0.03〜6mmの短繊維を、バインダー100重量部
    に対して、前記粉末状炭素フィラーが200〜800重
    量部、前記短繊維が10〜300重量部となる量比で混
    合し、得られる混合物を粒径0.03〜5mmの顆粒状
    とし、得られる顆粒状物を成形することを特徴とする燃
    料電池セパレータの製造方法。
  4. 【請求項4】 溶媒を使用して混合物を顆粒状とする請
    求項3に記載の燃料電池セパレータの製造方法。
  5. 【請求項5】 請求項1又は2に記載の燃料電池セパレ
    ータを使用したことを特徴とする固体高分子型燃料電
    池。
JP35879798A 1998-12-17 1998-12-17 燃料電池セパレータ、その製造方法及び当該燃料電池セパレータを使用した固体高分子型燃料電池 Expired - Fee Related JP4028940B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP35879798A JP4028940B2 (ja) 1998-12-17 1998-12-17 燃料電池セパレータ、その製造方法及び当該燃料電池セパレータを使用した固体高分子型燃料電池
CA002292445A CA2292445A1 (en) 1998-12-17 1999-12-16 Separator for fuel cell, process for production thereof, and solid polymer type fuel cell using said separator
EP99125260A EP1011164A3 (en) 1998-12-17 1999-12-17 Separator for fuel cell, process for production thereof, and solid polymer type fuel cell using said separator
US10/013,545 US6881512B2 (en) 1998-12-17 2001-12-13 Separator for fuel cell, process for production thereof, and solid polymer type fuel cell using said separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35879798A JP4028940B2 (ja) 1998-12-17 1998-12-17 燃料電池セパレータ、その製造方法及び当該燃料電池セパレータを使用した固体高分子型燃料電池

Publications (2)

Publication Number Publication Date
JP2000182630A true JP2000182630A (ja) 2000-06-30
JP4028940B2 JP4028940B2 (ja) 2008-01-09

Family

ID=18461167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35879798A Expired - Fee Related JP4028940B2 (ja) 1998-12-17 1998-12-17 燃料電池セパレータ、その製造方法及び当該燃料電池セパレータを使用した固体高分子型燃料電池

Country Status (4)

Country Link
US (1) US6881512B2 (ja)
EP (1) EP1011164A3 (ja)
JP (1) JP4028940B2 (ja)
CA (1) CA2292445A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325967A (ja) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc 燃料電池セパレータの製造方法、燃料電池セパレータ及び固体高分子型燃料電池
JP2002056854A (ja) * 2000-08-09 2002-02-22 Hitachi Chem Co Ltd 燃料電池用セパレータ及び燃料電池用セパレータを用いた燃料電池
JP2003017085A (ja) * 2001-06-27 2003-01-17 Ibiden Co Ltd 固体高分子型燃料電池のセパレータ
WO2003056648A1 (en) * 2001-12-27 2003-07-10 Hitachi Chemical Company, Ltd. Fuel cell-use separator
JP2004505418A (ja) * 2000-07-24 2004-02-19 コミツサリア タ レネルジー アトミーク 導電性複合材料ならびにこの導電性複合材料を使用した燃料電池用電極
JP2007157725A (ja) * 2006-12-18 2007-06-21 Ntn Corp 導電性樹脂成形体およびその製造方法
CN100337357C (zh) * 2003-05-08 2007-09-12 大日本油墨化学工业株式会社 燃料电池双极板的生产方法、燃料电池双极板和燃料电池
KR100978534B1 (ko) * 2007-12-28 2010-08-27 한국과학기술연구원 연료전지용 고분자 복합재료 분리판 제조방법
US10622643B2 (en) 2015-09-25 2020-04-14 Nippon Steel Corporation Carbon separator for solid polymer fuel cell, solid polymer fuel cell, and solid polymer fuel cell stack

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60016295T2 (de) 1999-02-16 2005-05-04 Nichias Corp. Harzzusammensetzung
EP1061597A3 (en) * 1999-06-14 2005-07-13 JFE Steel Corporation A fuel cell separator, a fuel cell using the fuel cell separator, and a method for making the fuel cell separator
CA2347432C (en) * 2000-01-27 2007-08-21 Mitsubishi Rayon Co., Ltd. Porous carbon electrode substrate and its production method and carbon fiber paper
JP3504910B2 (ja) * 2000-06-19 2004-03-08 日本ピラー工業株式会社 燃料電池用セパレータの製造方法
JP2002025571A (ja) * 2000-07-06 2002-01-25 Nisshinbo Ind Inc 燃料電池セパレータ、その製造方法及び固体高分子型燃料電池
FR2812119B1 (fr) 2000-07-24 2002-12-13 Commissariat Energie Atomique Materiau composite conducteur et electrode pour pile a combustible utilisant ce materiau mis en forme par thermo- compression
US20050202296A1 (en) * 2001-02-15 2005-09-15 Integral Technologies, Inc. Low cost fuel cell bipolar plates manufactured from conductive loaded resin-based materials
JP4036754B2 (ja) * 2001-02-15 2008-01-23 松下電器産業株式会社 高分子電解質型燃料電池
EP1324411A3 (en) * 2001-12-26 2004-12-22 Mitsubishi Chemical Corporation Composite material for fuel cell separator molding and production method thereof, and fuel cell separator which uses the composite material and production method thereof
WO2003069707A1 (en) * 2002-02-13 2003-08-21 Dupont Canada Inc. Method for manufacturing fuel cell separator plates under low shear strain
EP2065956B1 (en) * 2002-03-18 2011-04-27 NTN Corporation Conductive resin molding for a fuel cell separator
DE10243592A1 (de) * 2002-09-19 2004-04-01 Basf Future Business Gmbh Bipolarplatte für PEM-Brennstoffzellen
US20040094750A1 (en) * 2002-11-19 2004-05-20 Soemantri Widagdo Highly filled composite containing resin and filler
EP1521320B8 (en) * 2003-09-30 2016-10-12 Nichias Corporation Separator for fuel cell
JP4962691B2 (ja) * 2005-11-11 2012-06-27 日清紡ホールディングス株式会社 燃料電池セパレータ
US8597453B2 (en) * 2005-12-05 2013-12-03 Manotek Instriments, Inc. Method for producing highly conductive sheet molding compound, fuel cell flow field plate, and bipolar plate
US8518603B2 (en) * 2005-12-05 2013-08-27 Nanotek Instruments, Inc. Sheet molding compound flow field plate, bipolar plate and fuel cell
US20070154771A1 (en) * 2006-01-04 2007-07-05 Jang Bor Z Highly conductive composites for fuel cell flow field plates and bipolar plates
TWI336538B (en) * 2006-03-22 2011-01-21 Ind Tech Res Inst Electrically conductive composite
US20080149900A1 (en) * 2006-12-26 2008-06-26 Jang Bor Z Process for producing carbon-cladded composite bipolar plates for fuel cells
US9379393B2 (en) * 2006-12-26 2016-06-28 Nanotek Instruments, Inc. Carbon cladded composite flow field plate, bipolar plate and fuel cell
US7887927B2 (en) * 2007-03-09 2011-02-15 Nanotek Instruments, Inc. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate
US20080277628A1 (en) * 2007-05-08 2008-11-13 Aruna Zhamu Exfoliated graphite composite compositions for fuel cell flow field plates
US8691129B2 (en) * 2007-05-08 2014-04-08 Nanotek Instruments, Inc. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates
US8728679B2 (en) * 2007-05-29 2014-05-20 Nanotek Instruments, Inc. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications
US20090057940A1 (en) * 2007-09-04 2009-03-05 Aruna Zhamu Method of producing less anisotropic flexible graphite
US8501307B2 (en) * 2007-09-04 2013-08-06 Nanotek Instruments, Inc. Recompressed exfoliated graphite articles
US20110045377A1 (en) * 2007-09-12 2011-02-24 Nissinbo Holdings, Inc. Bipolar plate for fuel cell
US7758783B2 (en) * 2007-09-17 2010-07-20 Nanotek Instruments, Inc. Continious production of exfoliated graphite composite compositions and flow field plates
KR100948903B1 (ko) * 2007-12-03 2010-03-24 한국타이어 주식회사 연료전지용 유로성형 분리판 소재 및 이를 적용하여서 된분리판과 연료전지
US20090151847A1 (en) * 2007-12-17 2009-06-18 Aruna Zhamu Process for producing laminated exfoliated graphite composite-metal compositions for fuel cell bipolar plate applications
US8177884B2 (en) * 2009-05-20 2012-05-15 United Technologies Corporation Fuel deoxygenator with porous support plate
JP2011006122A (ja) * 2009-06-29 2011-01-13 Daiwa Gravure Co Ltd 液体収納袋
CN103746122A (zh) * 2013-12-20 2014-04-23 苏州市万泰真空炉研究所有限公司 一种新型燃料电池复合材料双极板的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942781A (ja) * 1982-08-09 1984-03-09 Tokai Carbon Co Ltd 燃料電池用炭素質材の製造法
US4580337A (en) * 1982-10-05 1986-04-08 Kureha Kagaku Kogyo Kabushiki Kaisha Process for producing electrode substrate for fuel cells
US4737421A (en) * 1983-12-27 1988-04-12 Showa Denko Kabushiki Kaisha Method for producing a carbon sheet and a fuel cell separator
CA1259101A (en) * 1984-04-09 1989-09-05 Hiroyuki Fukuda Carbonaceous fuel cell electrode substrate incorporating three-layer separator, and process for preparation thereof
JPS60246568A (ja) * 1984-05-22 1985-12-06 Fuji Electric Corp Res & Dev Ltd 燃料電池用リブ付セパレ−タの製造方法
US5726105A (en) * 1995-04-20 1998-03-10 International Fuel Cells Composite article
US5942347A (en) * 1997-05-20 1999-08-24 Institute Of Gas Technology Proton exchange membrane fuel cell separator plate
JP4000651B2 (ja) * 1998-01-19 2007-10-31 トヨタ自動車株式会社 燃料電池用セパレータの製造方法
JP4743356B2 (ja) * 2000-05-15 2011-08-10 日清紡ホールディングス株式会社 燃料電池セパレータの製造方法、燃料電池セパレータ及び固体高分子型燃料電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325967A (ja) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc 燃料電池セパレータの製造方法、燃料電池セパレータ及び固体高分子型燃料電池
JP2004505418A (ja) * 2000-07-24 2004-02-19 コミツサリア タ レネルジー アトミーク 導電性複合材料ならびにこの導電性複合材料を使用した燃料電池用電極
JP2002056854A (ja) * 2000-08-09 2002-02-22 Hitachi Chem Co Ltd 燃料電池用セパレータ及び燃料電池用セパレータを用いた燃料電池
JP2003017085A (ja) * 2001-06-27 2003-01-17 Ibiden Co Ltd 固体高分子型燃料電池のセパレータ
WO2003056648A1 (en) * 2001-12-27 2003-07-10 Hitachi Chemical Company, Ltd. Fuel cell-use separator
CN100337357C (zh) * 2003-05-08 2007-09-12 大日本油墨化学工业株式会社 燃料电池双极板的生产方法、燃料电池双极板和燃料电池
JP2007157725A (ja) * 2006-12-18 2007-06-21 Ntn Corp 導電性樹脂成形体およびその製造方法
KR100978534B1 (ko) * 2007-12-28 2010-08-27 한국과학기술연구원 연료전지용 고분자 복합재료 분리판 제조방법
US10622643B2 (en) 2015-09-25 2020-04-14 Nippon Steel Corporation Carbon separator for solid polymer fuel cell, solid polymer fuel cell, and solid polymer fuel cell stack

Also Published As

Publication number Publication date
US6881512B2 (en) 2005-04-19
CA2292445A1 (en) 2000-06-17
EP1011164A2 (en) 2000-06-21
EP1011164A3 (en) 2006-07-05
US20020068210A1 (en) 2002-06-06
JP4028940B2 (ja) 2008-01-09

Similar Documents

Publication Publication Date Title
JP4028940B2 (ja) 燃料電池セパレータ、その製造方法及び当該燃料電池セパレータを使用した固体高分子型燃料電池
AU2001269691B2 (en) Nanocomposite for fuel cell bipolar plate
JP4743356B2 (ja) 燃料電池セパレータの製造方法、燃料電池セパレータ及び固体高分子型燃料電池
US6436567B1 (en) Separator for fuel cells
CA2413146C (en) Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
AU2001269691A1 (en) Nanocomposite for fuel cell bipolar plate
US20040062974A1 (en) Separator plate for PEM fuel cell
JP2001126744A (ja) 燃料電池用セパレータおよびその製造方法
WO2002093670A1 (fr) Separateur pour pile a combustible de type polymere a l'etat solide et procede de fabrication associe
JP2001122677A (ja) 燃料電池用セパレータの製造方法
KR100834057B1 (ko) 연료전지 분리판 사출성형용 소재, 그로부터 제조된연료전지 분리판 및 연료전지
JP3900947B2 (ja) 燃料電池用セパレータの製造方法、燃料電池セパレータおよび燃料電池
KR20180036389A (ko) 바나듐 레독스 흐름 전지용 바이폴라 플레이트의 제조 방법
WO2002091506A1 (en) Flow field plates and a method for forming a seal between them
KR101764383B1 (ko) 유리섬유 부직포를 포함하는 연료전지용 박판형 분리판 및 그 제조방법
JP4385670B2 (ja) 燃料電池用セパレータの製造方法
JP4725872B2 (ja) 固体高分子型燃料電池用セパレータ
JP3980229B2 (ja) 固体高分子型燃料電池用セパレータ部材
JP2004192878A (ja) 固体高分子型燃料電池用セパレータ材の製造方法
JP2005005094A (ja) 燃料電池用セパレータ、その製造方法及び燃料電池
JP2002270195A (ja) 燃料電池用セパレータ、その製造方法及びそれを用いた燃料電池
GB2375224A (en) Flow field plates and a method for forming a seal between them

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050720

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees