JP2000113666A - 磁性薄膜メモリ素子および磁性薄膜メモリ - Google Patents

磁性薄膜メモリ素子および磁性薄膜メモリ

Info

Publication number
JP2000113666A
JP2000113666A JP10301614A JP30161498A JP2000113666A JP 2000113666 A JP2000113666 A JP 2000113666A JP 10301614 A JP10301614 A JP 10301614A JP 30161498 A JP30161498 A JP 30161498A JP 2000113666 A JP2000113666 A JP 2000113666A
Authority
JP
Japan
Prior art keywords
magnetic
film
magnetic film
memory
memory element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10301614A
Other languages
English (en)
Other versions
JP4129090B2 (ja
Inventor
Yotaro Yamazaki
陽太郎 山崎
Yoshikazu Narumiya
義和 成宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP30161498A priority Critical patent/JP4129090B2/ja
Publication of JP2000113666A publication Critical patent/JP2000113666A/ja
Application granted granted Critical
Publication of JP4129090B2 publication Critical patent/JP4129090B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】 速い速度で書き込み・消去を行い、さらに高
速アクセス可能とし、読み出し時のSN比が高い不揮発
性の磁性薄膜メモリ素子および磁性薄膜メモリを提供す
る。 【解決手段】 所定の間隔を開けて平面配置または積層
配置された第1磁性膜および第2磁性膜と、これらの第
1磁性膜もしくは第2磁性膜に隣接して配置されるか、
または、これらの第1磁性膜と第2磁性膜の間に介在さ
れた検出部分と、前記第2磁性膜の磁化方向を反転させ
るための磁化手段と、前記第2磁性膜の保磁力を減少さ
せるように作用する加熱手段とを備える磁性薄膜メモリ
素子であって、前記第1磁性膜の保磁力は、第2磁性膜
の保磁力と比較してそれより大きく、かつ予め所定の一
方向に磁化されており、前記磁化手段および加熱手段に
より第2磁性膜の磁化方向を反転制御して書き込みおよ
び消去の状態を作りだし、前記第2磁性膜の磁化方向を
前記検出部分で検出することで読み出しが行えるように
してなるように構成する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は熱と磁界により磁化
方向を変えることで情報を記録する固体メモリ、すなわ
ち磁性薄膜メモリに関する。
【0002】
【従来の技術】磁性材料による固体メモリは、古くはフ
ェライトによるコアメモリ、その後、ワイヤメモリ、バ
ブルドメインメモリ、ブロッホラインメモリなどの提案
がなされてきたが、金属磁性薄膜による固体メモリとし
ては磁気抵抗効果メモリMRAM(magnetoresistive r
andom access memory )がある。
【0003】1972年に磁気抵抗効果膜を固体メモリ
に利用することがL.J.SchweeによりProc.INTERMAG Con
f. IEEE Trans.Magn.,Kyoto,p.405(1972)に報告された
が、出力が低く実用に至らなかった。その後、より大き
な出力が得られる巨大磁気抵抗効果が見いだされて、そ
れを利用したMRAMの研究が盛んになり、種々のタイ
プのMRAMに関する報告がなされている。例えば、榊
間らにより日本応用磁気学会誌,20,22(1996)にその一例
が報告されており、これによると、そのメモリ素子は、
図16(a)に示されるように、書き込み線W、絶縁膜
113、ハード磁性膜111、導電膜114、ソフト磁
性膜112の積層体から構成されている。このメモリ素
子において、図16(a)に示されるように紙面に対し
上向きの電流を書き込み線Wに与え、右向きにハード磁
性膜111を磁化した状態を『1』、図16(b)に示
されるようにその逆を『0』とする。
【0004】読み出し方法は、図16(c)に示される
ように,ハード磁性膜111には影響を及ばさないが、
ソフト磁性膜112は反転できる程度の大きさの正負の
電流パルスを書き込み線Wに与え、素子に検出電流を通
電して確認して、その抵抗変化ΔRが正か負かで『1』
『0』を判別する。図16(c)の左側の状態では、正
負の電流パルスをかけた後にハード磁性膜111とソフ
ト磁性膜112の磁化の方向が互いに逆になっているの
で抵抗変化ΔRが正の値となる。図16(c)の右側の
状態では、正負の電流パルスをかけた後にハード磁性膜
111とソフト磁性膜112の磁化の方向が同一方向と
なっているので抵抗変化ΔRが負の値となる。
【0005】このようにGMRによるメモリは、電流の
発生する磁界により磁化反転を行うが、読み出しの際に
も書き込み線に正負の電流パルスを通電してソフト磁性
膜112を反転する必要があり、また抵抗の変化を検出
するという複雑な動作が必要であり、読み出し時間が長
く、信号処理も複雑である。
【0006】一方、熱による磁化方向の制御に関して
は、例えば、光磁気ディスクに代表されるように熱磁気
書き込みが行なわれる。しかしこの場合は記録媒体が回
転し、熱源にはレーザを使用し、レーザ自身も光ヘッド
に固定されて動くことから、固体メモリではなく、機械
的に動作するためアクセスが遅く、振動などに弱いとい
う問題がある。また、熱を利用した固体メモリとして
は、特開平4−23293に単層の積層磁化膜を使用し
た発明が提案されている。それによると、当該固体メモ
リは、当該公報の第1図に示されるように、加熱素子、
磁性薄膜、磁気抵抗素子、書き込み用のスイッチングト
ランジスタ、読み出し用のトランスファーゲートおよび
6本のリード線を備えて構成される。この場合、磁性薄
膜は素子分離しておらず、連続状態にある。そして、書
き込み時にスイッチングトランジスタにより所定のメモ
リ素子だけに電流を通電して磁性膜を加熱して磁化方向
を反転させる。読み出しは、磁気抵抗素子により磁化の
方向を検出するようにする。これには各メモリ素子に半
導体材料で形成されるトランスファーゲートが必要であ
り、加熱手段を考えると磁性膜が連続していることから
隣接メモリ素子への影響が無視できず、高密度化が難し
いという問題がある。
【0007】
【発明が解決しようとする課題】本発明は上記従来技術
の諸問題を解決するためになされたものであり、その目
的は、速い速度で書き込み・消去を行い、さらに高速ア
クセスを可能とし、読み出し時のSN比が高い不揮発性
の磁性薄膜メモリ素子および磁性薄膜メモリを提供する
ことにある。
【0008】
【課題を解決するための手段】このような課題を解決す
るために、本発明の磁性薄膜メモリ素子は、所定の間隔
を開けて平面配置または積層配置された第1磁性膜およ
び第2磁性膜と、これらの第1磁性膜もしくは第2磁性
膜に隣接して配置されるか、または、これらの第1磁性
膜と第2磁性膜の間に介在された検出部分と、前記第2
磁性膜の磁化方向を反転させるための磁化手段と、前記
第2磁性膜の保磁力を減少させるように作用する加熱手
段とを備える磁性薄膜メモリ素子であって、前記第1磁
性膜の保磁力は、第2磁性膜の保磁力と比較してそれよ
り大きく、かつ予め所定の一方向に磁化されており、前
記磁化手段および加熱手段により第2磁性膜の磁化方向
を反転制御して書き込みおよび消去の状態を作りだし、
前記第2磁性膜の磁化方向を前記検出部分で検出するこ
とで読み出しが行えるようにしてなるように構成され
る。
【0009】また、本発明において、前記第1磁性膜お
よび第2磁性膜は、それらの容易磁化軸が膜面内成分を
有し、2つの磁性膜が静磁的に結合するように配置され
てなるように構成される。
【0010】また、本発明のより好ましい態様として、
前記第1磁性膜、前記検出部分、および前記第2磁性膜
が順次、同一平面上にライン状に配置されてなるように
構成される。
【0011】また、本発明のより好ましい態様として、
さらにもう一つの第1磁性膜を設け、新たな第1磁性膜
と前記第1磁性膜とで前記検出部分、および前記第2磁
性膜を挟むように配置してなるように構成される。
【0012】また、本発明のより好ましい態様として、
前記検出部分に磁束を集束するために、第1磁性膜と第
2磁性膜の検出部分側の幅を狭くするか、または、検出
部分と第1磁性膜の間及び検出部分と第2磁性膜の間に
磁束集束のための軟磁性薄膜を配置してなるように構成
される。
【0013】また、本発明のより好ましい態様として、
少なくとも前記第1磁性膜および前記第2磁性膜が基板
面に積層方向に層状に配置されてなるように構成され
る。
【0014】また、本発明のより好ましい態様として、
前記検出部分が、磁気抵抗効果素子またはホール素子を
用いて構成される。
【0015】また、本発明のより好ましい態様として、
前記加熱手段として、第2磁性膜に隣接して設けた非磁
性金属膜からなる加熱部を用い、それに電流を流すこと
により非磁性金属膜および第2磁性膜を加熱するように
構成される。
【0016】また、本発明のより好ましい態様として、
前記磁化手段としては、第2磁性膜に隣接して設けた非
磁性金属膜を用い、それに電流を流すことにより発生す
る磁界により第2磁性膜の磁化を反転させてなるように
構成される。
【0017】また、本発明のより好ましい態様として、
前記加熱部として第2磁性膜そのものを兼用させ、それ
に電流を流すことにより第2磁性膜を加熱してなるよう
に構成される。
【0018】また、本発明の磁性薄膜メモリは、上記の
磁性薄膜メモリ素子をマトリクス状に配列した記憶素子
部分と、直交する2本の書き込み線および直交する2本
の読み出し線を備え、縦又は横方向に並べられた前記磁
性薄膜メモリ素子のそれぞれが、直交する2本の書き込
み線および直交する2本の読み出し線に接続されるよう
に構成される。
【0019】また、本発明の磁性薄膜メモリは、上記の
磁性薄膜メモリ素子をマトリクス状に配列した記憶素子
部分と、直交する2本の書き込み線および1本の読み出
し線を備え、縦又は横方向に並べられた前記磁性薄膜メ
モリ素子のそれぞれが、直交する2本の書き込み線およ
び1本の読み出し線に接続され、書き込み線の1本が読
み出し線を兼ねるように構成される。
【0020】また、磁性薄膜メモリの好ましい態様とし
て、隣り合うメモリ素子の第1磁性膜が連続膜で形成さ
れるよう構成される。
【0021】本発明の磁性薄膜メモリ素子は、第2磁性
膜のみを加熱するとその保磁力、磁気異方性が低下し
て、隣接する第1磁性膜による磁界により第1磁性膜と
同じ方向に磁化が向く。ここにおいて、2つの磁性膜の
磁化方向が互いに平行か反平行かにより両者間に発生す
る磁界分布が異なり、これらの両磁性膜間に配置した磁
気検出素子で検知するもので、2つの磁性膜を有するこ
とは磁界の大きさだけで両者の違いを検知できるのがメ
リットである。また、熱の発生、磁界の発生はすべて電
気信号だけで行うことも可能であるため高速な書き込み
・消去が可能である。特に加熱による書き込みは磁界に
よるそれと比較して、周辺の磁性体への磁界による影響
が無く、高密度な集積が可能となる。
【0022】このような本発明により、情報の高速な書
き込み・消去が可能で機械的な動作を必要としない不揮
発性の磁気薄膜固体メモリを実現することができる。
【0023】
【発明の実施の形態】以下、本発明の磁性薄膜メモリ素
子の実施の形態について詳細に説明する。
【0024】本発明の磁性薄膜メモリ素子は、(1)平
面配置タイプの磁性薄膜メモリ素子と、(2)積層配置
タイプの磁性薄膜メモリ素子に大別でき、まず最初に
(1)平面配置タイプの素子について説明する。
【0025】(1)平面配置タイプの磁性薄膜メモリ素
図1は、平面配置タイプの磁性薄膜メモリ素子1の概略
平面図を示しており、図2は、図1のA−A断面矢視図
を示している。このタイプの素子は、メモリ形成の微細
加工において、各構成部分を個別に制御でき、設計・製
造上の利点がある。
【0026】これらの図に示されるように、絶縁基板5
の上には、第1磁性膜11、検出部分40、第2磁性膜
20、および第1磁性膜15が順次、ライン状に配置さ
れている。さらに、本実施の形態の場合、第2磁性膜の
上には、絶縁層50を介して加熱手段である加熱部30
が積層され(図2)、この加熱部30および前記検出部
分40には、それぞれ、加熱リード線39,39および
検出リード線49,49が接続されている。
【0027】この実施例の形態においては、検出部分4
0を挟むように配置される第1磁性膜11の他に、検出
部分40側に位置せず、第2磁性膜20を挟むようにし
て配置される第1磁性膜15が配置されている。第1磁
性膜15は必ず必要というわけではないが、第2磁性膜
20の磁化反転を容易ならしめる(第1磁性膜により高
い安定した磁界を第2磁性膜に与えることができる)た
めには、できるだけ第1磁性膜15を形成しておくこと
が望ましい。
【0028】本発明において、第1磁性膜11,15の
保磁力は、第2磁性膜20の保磁力と比較してそれより
大きくなるように材料設定されており、かつ第1磁性膜
11,15の磁化方向は、図1の矢印(α)で示される
ように予め所定の一方向に面内磁化されている。
【0029】第1磁性膜11,15および第2磁性膜2
0の形成方法は特に限定されることなく、例えば、磁性
粉末とバインダを含有する磁性塗料を塗布して形成して
もよいし、真空成膜法により磁性金属薄膜として形成し
てもよいし、また、湿式メッキ法により形成したもので
あってもよい。
【0030】本発明において、検出部分40を挟むよう
に配置される第1磁性膜11および第2磁性膜20は、
それらの容易磁化軸が膜面内成分を有し、2つの磁性膜
が静磁的に結合するように配置される。これにより、対
向する第1磁性膜11および第2磁性膜20の端部にお
ける磁界の変化を検出部分40で検出することが容易に
可能となる。ちなみに先行技術との比較になるが、光磁
気ディスクのように磁化容易軸成分が膜面に積層方向に
有る場合は、反磁界の面から制御が難しく、使用できる
材料も制限される。これに対して本発明で用いる磁性膜
では、形状異方性と同じ方向に磁化容易軸成分があり材
料選択の幅が広くなるというメリットがある。
【0031】加熱手段としての加熱部(好ましくは非磁
性金属膜から形成される)30の材料としては、加熱リ
ード線39,39に通電することにより、加熱部30を
発熱させて、第2磁性膜20の温度を上げ、第2磁性膜
20の保磁力を減少させるように作用させることができ
るものであれば特に限定されるものではない。
【0032】なお、図7に示されるように、加熱手段と
しての加熱部30を設けず、直接、第2磁性膜20にリ
ード線29,29を配し、これに通電して第2磁性膜2
0そのものを加熱するようにしてもよい。このように第
2磁性膜20を瞬間的に加熱する方法は、電流によるジ
ュール熱を利用しており、発熱体として第2磁性膜20
に密接して形成される加熱部(非磁性金属膜)30に電
流を流すか、第2磁性膜20自身に電流を流すことによ
り熱を発生させる。
【0033】検出部分40は、後述する動作原理から磁
界を検出できる素子であればどのようなものでも使用で
きる。例えば、サーチコイルなどでも良いが、検知感度
の面および製造面から磁気抵抗効果素子あるいはホール
素子を用いることが特に好ましい。
【0034】ここで磁気抵抗効果素子としては、異方性
磁気抵抗効果、スピンバルブタイプの巨大磁気抵抗効
果、誘導フェリ磁性タイプの巨大磁気抵抗効果、反強磁
性結合タイプの巨大磁気抵抗効果、磁気トンネリングに
よる巨大磁気抵抗効果(TMR)、ペロブスカイト型酸
化物によるコロッサル磁気抵抗効果(CMR)、ホット
エレクトロンによるスピンバルブトランジスタの巨大磁
気抵抗効果などによる磁気抵抗効果素子が好適例として
挙げられる。
【0035】なお、磁化手段としては、第2磁性膜20
の磁化方向を反転制御して書き込みや、消去の状態を作
りだせるものであれば、特に限定されないが、図5
(a),(b)に示されるように、加熱リード線39,
39に流す電流によって発生する磁界を利用して第2磁
性膜20の磁化を反転制御させる方法が好適である。図
5(a)は、図1の第2磁性膜20の箇所をピックアッ
プした平面図、図5(b)は、図5(a)のB−B断面
断面矢視図であり、図5(b)において、電流方向は紙
面の手前から奥行きに流れている。この場合、加熱リー
ド線39,39に流れる電流は小さくしかも短時間であ
るので加熱部30の発熱による磁化への影響は起きな
い。磁化手段は上述したように原理上、磁界を発生でき
るものなら何でも良く、たとえば永久磁石や磁気ヘッド
でも使用可能である。しかしながら、これらは可動部分
が必要で固体メモリの構成には好ましくなく、電気的に
処理できる図5に示される構成が特に優れている。
【0036】図1および図2に示される本発明の磁性薄
膜メモリ素子1は、磁化手段および加熱手段により第2
磁性膜20の磁化方向を反転制御して書き込みおよび消
去の状態を作りだし、前記第1磁性膜11と第2磁性膜
20の間に生じる磁界変化を前記検出部分40で検出す
ることで読み出しが行えるように構成されている。これ
については、図3および図4を用いて磁性薄膜メモリ素
子の動作原理としてさらに詳細に説明する。
【0037】磁性薄膜メモリ素子の動作原理 本発明の磁性薄膜メモリ素子の動作原理を、すでに上述
した平面配置タイプの磁性薄膜メモリ素子1を例にとっ
て、図3および図4を用いて説明する。
【0038】書き込みの方法は、「熱書き込み」と「磁
界書き込み」の2つの方法がある。図3(a)〜(d)
は、「熱書き込み」の場合における、(a)消去の状
態、(b)加熱による書き込み操作、(c)書き込みの
状態、および(d)磁界印加による消去操作を、順次経
時的に示した図である。これらの各状態および操作は、
連続的に繰り返し行なうことができる。
【0039】本発明で言う「熱書き込み」の場合、図3
(d)で示されるようにメモリ素子1に、第1磁性膜1
1,15の磁化(磁化方向は矢印(α))は反転しない
が、第2磁性膜20の磁化は反転できるような磁界を磁
化手段により印加し、第2磁性膜の磁化方向を第1磁性
膜の磁化の方向とは逆方向(矢印(β))に磁化させ
る。
【0040】この操作を、磁界印加による消去操作と言
い、その結果として生じる図3(a)の状態を「消去」
状態という。
【0041】ここで、個々のメモリを独立に消去する場
合は、上記図5(a)(b)に示されるように加熱リー
ド線39,39(作用的には、書き込み線として作用す
るように電流の大きさおよび通電時間を選定する)に流
す電流によって発生する磁界により、第2磁性膜20の
磁化をβ方向に反転させ消去する。その際、電流はごく
短時間だけ流れるので熱発生等の悪影響は生じない。
【0042】また、全ての書き込まれた記憶を一度に消
去する場合は、電磁石や永久磁石の磁界を使用すること
もできる。この場合、第2磁性膜20のみの磁化方向を
反転させる((β)方向にする)必要があり、この場
合、第1磁性膜の保磁力は、第2磁性膜の保磁力より大
きく設定しておく必要がある。
【0043】次に、図3(b)に示されるように第2磁
性膜20を、加熱部30を発熱させることにより、ある
一定の温度以上に瞬間的に加熱して一時的に保磁力を減
少させるとともに、第1磁性膜11,15による磁界を
利用して第2磁性膜20の磁化方向を第1磁性膜11,
15と同一方向((α)方向)に向かせる。この操作を
加熱による書き込み操作と言い、その結果生じる図3
(c)の状態を「書き込み」の状態と言う。
【0044】本発明の場合、「消去」状態では第1磁性
膜11(15)と第2磁性膜20の磁化の方向が異なる
状態にあり(図3(a))、また、「書き込み」状態で
は第1磁性膜11(15)と第2磁性膜20の磁化方向
が同じ状態にある(図3(c))。そして、これらの状
態変化を、第1磁性膜11と第2磁性膜20の間に置か
れた検出部分40によって磁界変化として検出すること
で、書き込み・消去を判別することができる。従って、
従来技術ですでに説明したMRAMのように、書き込み
の時に2本の書き込み線の電流による合成磁界で磁化反
転を制御したり、読み出しの時にワード線に電流を流し
てMR素子の磁化方向を制御したり、正負のパルス電流
を印可して磁化の方向を判別したりする必要がなく、非
常に信号処理を単純化できることが本発明の特徴となっ
ている。
【0045】次ぎに、「磁界書き込み」の方法について
説明する。図4(a)〜(d)は、「磁界書き込み」の
場合における、(a)消去の状態、(b)磁界印加によ
る書き込み操作、(c)書き込みの状態、および(d)
加熱による消去操作を、順次経時的に示した図である。
これらの各状態および操作は、連続的に繰り返し行なう
ことができる。
【0046】このような「磁界書き込み」は、すでに述
べた「熱書き込み」における消去と書き込みの状態を逆
に設定したものと考えればよい。つまり、図4(d)に
示されるように、瞬間的な加熱により第1磁性膜11,
15と第2磁性膜20の磁化方向を同じ((α)方向の
磁化)にする操作が加熱による消去操作であり、その結
果生じた「消去」の状態が図4(a)に示される。
【0047】この「消去」状態から、磁界を第2磁性膜
20に印加して、第2磁性膜2の磁化方向を第1磁性膜
11,15の磁化方向(矢印α)と逆方向(矢印β)に
反転させる操作(図4(b))が、磁界印加による書き
込み操作となる。ここで書き込み操作は、例えば、図5
(a),(b)に示されるように加熱リード線39,3
9(作用的には、書き込み線として作用するように電流
の大きさおよび通電時間を選定する)に流す電流によっ
て発生する磁界で第2磁性膜20の磁化をβ方向に反転
させて書き込むようにすればよい。その際、電流は短時
間であるので温度上昇による磁化の反転は起きない。そ
れより長い時間、電流を加熱リード線39,39に流し
て加熱部30を加熱すると消去される(図4(d),
(a))。なお、検出部分40による読み出しは、上記
の熱書き込みの場合と同様に行われる。
【0048】上述してきたようにメモリ素子を基板面に
平面的に配置する場合(平面配置タイプの場合)、図6
(a)に示されるように、検出部分40に磁束を集束す
るために、第1磁性膜11および第2磁性膜20の検出
部分側11aおよび20aの幅をそれぞれ狭くするか、
あるいは、図6(b)に示されるように検出部分40と
第1磁性膜11の間、及び検出部分40と第2磁性膜2
0の間に磁束集束のための軟磁性薄膜18および28
(ヨークを形成)をそれぞれ第1磁性膜11および第2
磁性膜20の端部と接して配置するように構成すること
が好ましい。このように検出部分40近傍で磁束を集束
させることにより大きな磁界の変化が得られる。
【0049】次いで、(2)積層配置タイプの素子につ
いて説明する。
【0050】(2)積層配置タイプの磁性薄膜メモリ素
この場合、交換結合が生じることを防ぐために、あるい
は電気的な絶縁を確保するために、必要に応じて絶縁膜
を各層間に成膜する必要がある。
【0051】図8には、積層配置タイプの磁性薄膜メモ
リ素子2の好適な一例が断面図として示されている。
【0052】図8(a)に示されるように、基板5に第
1磁性膜11、検出部分40、絶縁膜60、第2磁性層
20、絶縁膜50、加熱部30の順に配置されるか、あ
るいは、図8(b)に示されるように、基板5に検出部
分40、絶縁膜70、第1磁性膜11、絶縁膜60、第
2磁性膜20、絶縁膜50、加熱部30の順に配置され
る。この場合においても、第1磁性膜11および第2磁
性膜20は、それらの容易磁化軸が面内成分を有し、2
つの磁性膜11,12が静磁的に結合するように積層配
置されている。図8に示されるように検出部分40は、
第1磁性膜11の長さ方向の一端に偏った端部に配置す
ることが好ましい。良好な検出感度を得るためである。
【0053】図8(c)には、図8(b)の変形例が示
されている。図8(c)に示される実施の形態の場合、
発熱体として加熱部を設けず、直接、第2磁性膜20に
リード線29,29を配し、これに通電して第2磁性膜
20そのものを加熱するようにしている。
【0054】このような積層配置タイプの磁性薄膜メモ
リ素子においても、磁性薄膜メモリ素子の動作原理は前
記の平面配置タイプの磁性薄膜メモリ素子の場合と全く
同様である、つまり、第2磁性膜20の磁化の反転は、
上記の平面配置タイプの磁性薄膜メモリ素子と全く同様
の方法でなされる。ただし、前述したように読み出しの
場合は、より大きな磁界変化を得るために、検出部分4
0の位置は磁性膜の中央よりは、むしろ端部に近いとこ
ろに設置することが望ましい。
【0055】上述してきたように、メモリ素子の各部分
は基板上に平面的に配置しても、また基板に積層方向に
層状に配置しても良い。前者は、各素子を独立に形成で
きることから製造上のプロセス制御が容易となるという
メリットがあり、後者は、高密度化の点で有利であると
いうメリットがある。
【0056】次に、上述してきたようなメモリ素子を、
マトリクス状に配列させた磁性薄膜メモリについて、図
9〜図15を参照しつつ説明する。
【0057】図9は、本発明の磁性薄膜メモリの基本構
成を示す概略図であり、図10は、基板面に平面的に配
置したメモリ素子の具体的接続方法を示した図である。
【0058】図9に示されるように、複数のメモリ素子
M11〜M22が基板上にマトリクス状に配置され、記
憶素子部分を構成する。そして、図9に示されるように
一個のメモリ素子に対して直交する2本の書き込み線と
直交する2本の読み出し線がそれぞれ配置される。
【0059】具体的には、メモリ素子M11に対しては
直交する2本の書き込み線W01,W10と、直交する
2本の読み出し線R01,R10が配置され;メモリ素
子M12に対しては直交する2本の書き込み線W02,
W10と、直交する2本の読み出し線R02,R10が
配置され;メモリ素子M21に対しては直交する2本の
書き込み線W01,W20と、直交する2本の読み出し
線R01,R20が配置され;メモリ素子M22に対し
ては直交する2本の書き込み線W02,W20と、直交
する2本の読み出し線R02,R20が配置される。こ
れらの配置からもわかるように、格子状に配置される各
書き込み線と各読み出し線は、メモリ素子に対して効率
良く共用されている。
【0060】より具体的には、図10に示されるよう
に、2本の書き込み線は、第2磁性膜20の加熱のため
の電流供給、および第2磁性膜20の磁化反転に必要な
磁界を発生するための電流供給に使用され、また、2本
の読み出し線は検出部分40に接続され、第2磁性膜2
0の磁化方向により異なる発生磁界を電気的に検出する
ように使用される。具体的に、例えば図10のM11に
相当するメモリ素子(左上に位置する)の書き込み・消
去には、加熱部30に接続されている書き込み線W1
0,W01の両端に電圧を印加し電流を流して加熱部3
0を加熱し、第2磁性膜20の磁化を反転させる。読み
出しは、検出部分40に接続されている読み出し線のR
10,R01に検出電流を流し、両端電圧の差で、
『1』、『0』を判別する。
【0061】また、同様の効果を図11から図15で示
される構成でも得ることが可能である。すなわち、図1
1に示されるように、一個のメモリ素子(例えば、図1
1の左上の素子)対して、直交する2本の書き込み線W
01,W10と、1本の読み出し線R01から構成し、
2本の書き込み線のうち片側1本W10を読み出し線
(R10)として兼用することが可能である。
【0062】図12に示される構成は、前記図10に示
される構成と基本的な構成は変わらないが、メモリ素子
を格子状の配線に対し斜めに配置した点でのみ異なる。
【0063】図13は、基板面に積層方向に各部分を配
置した積層配置タイプの磁性薄膜メモリ素子を用いた例
である。なお、第1磁性膜11は、最下層に位置してい
るために、図面上、第2磁性膜20に覆われ見えていな
い。
【0064】図14に示される構成は、発熱体として加
熱部を設けず、直接、第2磁性膜20に2本の書き込み
線(例えば、W01,W10)を配し、これに通電して
第2磁性膜20そのものを加熱するようにしている例を
示している。
【0065】図15に示される構成は、前記図10に示
される第1磁性膜11を連続膜として形成した例であ
る。この場合、第1磁性膜11の形成が容易であり、ま
た平行に近い磁界を発生することが可能である。
【0066】以上このようにして形成される磁性薄膜メ
モリ(図9〜図15)は、書き込み・消去および読み出
しの動作が単純であり、その前後の信号処理も容易であ
る。換言すれば、本発明の磁性薄膜メモリは、その構成
が非常に単純であり、個々のメモリ素子に半導体素子で
あるトランスファゲートやスイッチング素子は必要とし
ない(もちろんそれらを使用してもメモリの構成は可能
である)。
【0067】なお、当然のことながらホール素子を検出
部分に使用する場合は、書き込み線と読み出し線以外に
ホール素子に電流供給線が必要になるが、記録の読み書
きには直接関係ないので、ここでの説明は省略する。
【0068】
【実施例】以下に本発明の実施例を示し、本発明をさら
に詳細に説明する。
【0069】[実施例1]実施例1では、基板面上に平
面的に配置したメモリ素子による熱書き込みの実験を行
った。
【0070】図1に示されるように、まず最初に、コー
ニング製7059ガラス基板の上に、膜厚25nm、大
きさ50μm×10μmのNiFeの磁気抵抗素子によ
る検出部分をスッパッタ法で設けた。この場合、NiF
e膜の容易磁化軸方向が、その長さ方向(後に形成され
る第1および第2磁性膜の長さ方向に対して垂直な方
向)になるように磁気異方性を付与した。
【0071】次いで、この検出部分と、後に形成する第
2磁性膜のスペース分を考慮し、これらを挟むようにし
て両側に、Baフェライトと樹脂との混合物からなる第
1磁性膜を2箇所、塗布法により成膜した。第1磁性膜
の膜厚は10μmで、大きさは50μm×150μmと
した。
【0072】次いで、膜厚10μm、大きさ50μm×
150μmのCrO2 粒子と樹脂の混合物からなる第2
磁性膜を塗布法により形成した。ここでは第2磁性膜と
して第1磁性膜より保磁力の低い材料を使用した。第1
磁性膜、第2磁性膜ともに長さ方向が磁化容易軸になる
ようにした。
【0073】次いで、第2磁性膜の上に、厚さ0.1μ
mのSiO2 からなる絶縁層をスパッタ法で形成させた
後、さらにこの上に厚さ1μm、大きさ50μm×15
0μmのNiCrからなる加熱部(加熱手段)をスパッ
タ法により成膜した。その後、上記の検出部分の両端
と、加熱部(加熱手段)の両端に、それぞれ、リード線
を接続した。
【0074】このようにして形成されたメモリ素子の3
つの磁性膜(2つの第1磁性膜、1つの第2磁性膜)の
長さ方向に2kOeの磁界を印加し、磁性膜の配列方向
に全ての磁性膜を磁化させた。
【0075】このようにして作製した磁性薄膜メモリ素
子のサンプルを用い、下記の手順に従い、メモり素子と
しての機能の確認を行った。すなわち、まず、最初に図
3(d)に示されるように永久磁石により第1磁性膜の
磁化方向と逆方向に200Oeの磁界を与え、第2磁性膜
の磁化方向を第1磁性膜と逆方向とした。この状態が
「消去」の状態であり、その状態が図3(a)に示され
る。
【0076】この状態で検出部分に1mAの電流を通電
すると、検出部分の両端電圧は50mVであった。
【0077】次に、図3(b)に示されるように第2磁
性膜の上の加熱部(加熱手段)に10mAの電流を1.
5秒間通電して加熱した。図3(c)に示されるように
通電のあとに冷却すると第2磁性膜の磁化方向が、第1
磁性膜の磁界方向と同一方向となった。この状態で検出
部分の両端電圧は49mVに低下した。この状態が「書
き込み」の状態である。このように検出部分の電圧の違
いで、『0』,『1』を判別できることが確認できた。
【0078】次に、「書き込み」の状態から「消去」状
態にするために、図3(d)に示されるように永久磁石
により第1磁性膜の磁化方向と逆方向に200Oeの磁界
を印加したところ、第2磁性膜の磁化方向のみを第1磁
性膜と逆方向とすることが実現でき、メモリ素子として
の十分な機能を備えていることが確認できた。
【0079】[実施例2]実施例2では、実施例1の酸
化物系の磁性膜に代えて金属膜を使用した。すなわち、
第1磁性膜はスパッタ法による膜厚2μmのCoPt、
第2磁性膜はめっき法により膜厚1μmのCoPを使用
した。それ以外は上記実施例1と同様にして実施例2の
磁性薄膜メモリ素子のサンプルを作製した。そして、上
記実施例1と同様の機能確認実験を行なったところ、実
施例1の場合と同様の結果が得られることが確認でき
た。
【0080】[実施例3]実施例3では、基板面上に平
面的に配置したメモリ素子による熱書き込み方式におい
て、「書き込み」状態から「消去」状態に変える場合
に、磁界の印加を電流通電で行えることを確認した。メ
モリ素子の構造は基本的には上記実施例2と同様である
が、第2磁性膜を磁化するために十分な磁界を得るため
には第2磁性膜の長さ方向の寸法を小さくする必要があ
る。従って、第1磁性膜と加熱部の大きさを5μm×1
5μm、厚み2μm;第2磁性膜の大きさを5μm×1
5μm、厚み1μm;そして検出部分の大きさを5μm
×2μmとした。書き込みは10mAの電流を15ミリ
秒間の通電による加熱により行った。「書き込み」状態
にするところまでは上記実施例1と同様であるが、第2
磁性膜を第1磁性膜の磁化方向と逆方向にする方法が異
なる。すなわち、磁界は図5(a),(b)に示される
ように加熱部(加熱手段)に電流を流すことで発生させ
ることができ、局部的な磁化反転を可能にさせる。本実
施例では加熱部(加熱手段)に250mAの電流を1マ
イクロ秒通電させた。短時間であることから温度上昇は
小さく、電流によって発生する磁界のみにより、第2磁
性膜の磁化方向が第1磁性膜と逆方向となり、「消去」
の状態が得られることが確認できた。
【0081】また、永久磁石により第2磁性膜の磁化方
向を第1磁性膜と逆方向とし「消去」の状態とした後
に、加熱部に250mAの電流を1マイクロ秒間通電さ
せた。ただし、電流の方向は、上記電流によって発生す
る磁界のみにより消去を行ったときの方向と逆方向とし
た。通電は短時間であることから温度上昇は小さく電流
によって発生する磁界のみにより第2磁性膜の磁化方向
が、第1磁性膜の磁化方向と同方向となり、「書き込
み」の状態が得られることが確認できた。
【0082】[実施例4]実施例4では、基板面上に平
面的に配置したメモリ素子による磁界書き込み方式の実
験を行った。メモリ素子の構造は実施例1と同じであ
る。
【0083】最初に、形成されたメモリ素子の磁性膜の
長さ方向に2kOeの磁界を印加し、磁性膜の配列方向
に全ての磁性膜を磁化させた。
【0084】このようにして作製した磁性薄膜メモリ素
子のサンプルを用い、下記の手順に従い、メモり素子と
しての機能の確認を行った。すなわち、まず、最初に図
4(d)に示されるように第2磁性膜の上の形成された
加熱部(加熱手段)に10mA、1.5秒間電流を通電
して加熱した。その後、冷却した状態が「消去」の状態
であり、その状態が図4(a)に示される。この状態で
検出部分に1mAの電流を通電したところ検出部分の両
端電圧は49mVであった。
【0085】次に、図4(b)に示されるように永久磁
石により第2磁性膜の磁化方向を第1磁性膜の磁化方向
の逆方向に反転させた。検出部分の両端電圧は50mV
に上昇した。これは第2磁性膜の磁化が反転したことを
示しており、この状態が「書き込み」の状態であり、そ
の状態が図4(c)に示されれる。このように検出部分
の両端電圧の違いで、『0』,『1』を判別できること
が確認できた。
【0086】次に、「書き込み」の状態から「消去」の
状態にするために、再び、加熱部に10mAの電流を
1.5秒間通電させたところ、第2磁性膜の磁界方向が
第1磁性膜の磁界方向と同方向となり、「消去」状態が
得られた。これにより、本発明サンプルは、メモリ素子
としての十分な機能を備えていることが確認できた。
【0087】[実施例5]実施例5は第2磁性膜に磁化
反転のために直接電流を通電して加熱を行う実験、すな
わち、第2磁性膜に加熱部(加熱手段)としての機能を
兼用させた実験を行った。
【0088】メモリ素子構造としては、実施例1におい
て加熱部の成膜を行わず、図7に示されるように、直
接、第2磁性膜にリード線を接続した。この場合、第2
磁性膜のCrO2 粒子と樹脂にカーボン粉末を混合し、
電気抵抗を調整した。それ以外は、上記実施例1と同様
にして実施例5の磁性薄膜メモリ素子のサンプルを作製
した。そして、上記実施例1と同様の機能確認実験を行
なったところ、実施例1の場合と同様の結果が得られる
ことが確認できた。ちなみに、第2磁性膜を加熱させる
場合には、10mAの電流を10ミリ秒間、直接第2磁
性膜に通電することにより、第2磁性膜の磁化を反転さ
せることができた。
【0089】[実施例6]実施例6では、上記実施例1
において検出部分として用いたNiFeの磁気抵抗効果
素子を、GMR(巨大磁気抵抗効果)を示す素子に代え
た実験を行った。
【0090】実施例1のNiFe膜の代わりに、GMR
特性を持つFeCoNi/Cu多層膜を成膜させた。す
なわち、RFスパッタ装置によりFeNiCoを1.5
nm,Cuを2.0nm交互に20層積層した。これ以
外は、上記実施例1と同様にして実施例6の磁性薄膜メ
モリ素子のサンプルを作製した。この実施例6における
検出部分を用いた場合、検出電流1mAに対し、検出部
分の両端電圧は「消去」の状態で20mV、「書き込
み」の状態で19mVとなり、検出部分をNiFeとし
た場合よりも大きな変化率が得られることが確認でき
た。
【0091】[実施例7]実施例7では、検出部分に磁
束を集束させ、より感度を向上させるための実験を行っ
た。すなわち、実施例1の素子構造において、図6
(a)に示されるように第1および第2磁性膜の検出部
分側の幅を狭くした。それ以外は、上記実施例1と同様
にして実施例7の磁性薄膜メモリ素子のサンプルを作製
した。狭くしなかった実施例1の場合と比較し、出力電
圧が約10%の上昇することが確認できた。なお、この
場合、検出部分の寸法は変えず、磁性膜の基本幅を50
μmから100μmに広げ、長さも300μmとし、磁
性膜の検出部分側の幅を50μmに絞った。
【0092】また、図6(b)に示されるように、上辺
/下辺の比が1/2とした軟磁性を持つ膜厚1μmの
(NiFe)膜を第1および第2磁性膜と検出部分との
間に成膜して、磁束集束のためのヨークとした。この場
合、ヨークの無い場合と比較して約12%検出電圧が上
昇した。この実施の際、検出部分の寸法は変えず、各磁
性膜の寸法は幅を50μmから100μmに広げ、長さ
も150μmから300μmとした。またヨークは上辺
50μm、下辺100μm、高さ50μmの台形とし
た。
【0093】[実施例8]実施例8では、磁性薄膜メモ
リ素子の各部分が基板面に対し垂直方向に層状に配置さ
れたいわゆる積層配置タイプの素子での実験を行った。
【0094】ここでは、実施例1の、基板面に対し平面
的に各部分を配置した構造で実現した性能と同様の性能
を得ることを目標にメモリ素子を作製した。その構造図
が図8(b)に示される。ただし、本実施例では、In
Sb膜によるホール効果素子を検出部分として用いた。
【0095】図8(b)に示されるように、まず最初
に、マイカ基板の上に、蒸着法による膜厚1μmのIn
Sb膜により検出部分を形成した。この場合、検出部分
の位置は両磁性膜の長さ方向の一端に偏って配置させ
た。その上にフォトレジスト材料による絶縁膜を介して
CoPtからなる第1磁性膜をスパッタ法で成膜した。
第1磁性膜の膜厚は2μmで大きさは50μm×150
μmとした。
【0096】次に、この第1磁性膜の上にフォトレジス
ト材料により膜厚5μmの絶縁膜を形成した。次いで、
この絶縁膜の上に、CoPからなる膜厚1μmの第2磁
性膜をめっき法で形成した。大きさは50μm×150
μmmの長方形とした。
【0097】次いで、第2磁性膜の上に、フォトレジス
ト材料により絶縁膜を形成させた。第1磁性膜、第2磁
性膜ともに長さ方向が磁化容易軸になるようにした。第
2磁性膜の上に、上記絶縁層を介して、厚さ1μm、大
きさ50μm×150μmのNiCrからなる加熱部
(加熱手段)をスパッタ法により成膜した。その後、検
出部分の両端と加熱部の両端に、それぞれ、リード線を
接続した。
【0098】このようにして形成されたメモリ素子の磁
性膜の長さ方向に2kOeの磁界を印加し、磁性膜の長
さ方向に全ての磁性膜を磁化させた(「消去」の状
態)。
【0099】このようにして作製した磁性薄膜メモリ素
子のサンプルを用い、下記の手順に従い、メモり素子と
しての機能の確認を行った。すなわち、まず、最初に
「消去」の状態でホール素子に1Vの入力を与え、0.
1mVの出力を得た。
【0100】次に、第2磁性膜の上の加熱部に10m
A、1秒間の電流を通電して加熱し、冷却後の磁界を測
定した結果、3mVに上昇した。この状態が「書き込
み」の状態である。
【0101】次に、第1磁性膜の磁化方向に400Oe
の磁界を印加したところ、第2磁性膜の磁化方向を第1
磁性膜のそれと同じ方向に向けることができ、「消去」
の状態に戻せることが確認できた。
【0102】このように検出部分の両端電圧の違いで、
『0』,『1』を判別でき、メモリ素子としての十分な
機能を備えていることが確認できた。
【0103】[実施例9]これまで個々のメモリ素子の
構造、作製方法、機能の方法の実施例を示してきたが、
実施例9では、それらをマトリクス状に配置した磁性薄
膜メモリでの実験を行った。
【0104】基本動作確認のために、図9に示されるご
とくマトリクス構成としては最も簡単な縦2列、横2列
合計4個のメモリ素子のそれぞれに対して、2本の直交
する書き込み線と、それに平行する2本の読み出し線を
設けた。すなわち、厚さ20μmのCuを蒸着法により
それぞれ成膜した。書き込み線の幅は100μm、読み
込み線は30μmとした。各メモリ素子の加熱部の各一
端を2本の書き込み線にそれぞれ接続させた。またメモ
リ素子の検出部分の各一端を2本の書き込み線にそれぞ
れ接続させた。
【0105】メモリ素子と各線との接続状態は図10に
示されるとおりとした。次に、図9のM21のメモリ素
子を代表させてメモリの機能を確認した。書き込み方式
は熱書き込みで実施例1のメモリ素子を使用した。書き
込みは、書き込み線W20,W01の各一端に電圧を印
加し電流10mAを1.5秒間通電した。これによりM
21のメモリ素子のみ磁化反転が起こり、読み出し線の
R20,R01の各一端の間の電圧のみ検出電流1mA
に対し49mVで、他の全ての組み合わせは50mVで
あった。
【0106】また、その後、この磁気薄膜メモリに永久
磁石で200Oeの磁界を第1磁性膜の磁化方向とは逆
方向に印加し、R20,R01間に1mAの検出電流を
通電すると両端電圧は50mVとなり、消去されている
ことが確認できた。
【0107】この動作は他の位置のメモリ素子でも同様
であった。
【0108】[実施例10]図11に示される磁気薄膜
メモリの構成、すなわち、読み出し線を各メモリ素子に
対し1本だけを設け、それに直交する書き込み線をもう
一方向の読み出し線として兼用に使ったメモリを作製
し、上記実施例9と同様にして動作確認を行った。その
結果、上記実施例9の場合と全く同様の動作ができるこ
とが確認できた。
【0109】[実施例11]図12に示される磁気薄膜
メモリの構成、すなわち、実施例1の素子を配線に対し
て、斜めに配置したメモリを作製し、上記実施例9と同
様にして動作確認を行った。設計の都合上、第1磁性膜
の長さは300μmとしたが、上記実施例9の場合と全
く同様の結果が得られた。
【0110】[実施例12]図13に示される磁気薄膜
メモリの構成、すなわち上記実施例8の積層配置タイプ
のメモリ素子を使用してこのものをマトリクス状に配置
して磁気薄膜メモリを作製した。この場合も、実施例8
から期待される結果をそのまま確認することができ、メ
モリとしても上記実施例9の場合と同様の結果が得られ
ることが確認できた。
【0111】[実施例13]図14に示される磁気薄膜
メモリの構成、すなわち、第2磁性膜に加熱手段として
の機能をも兼用させた磁気薄膜メモリを作製した。この
場合も、実施例5から期待される結果をそのまま確認す
ることができ、メモリとしても上記実施例9の場合と同
様の結果が得られることが確認できた。
【0112】[実施例14]図15に示される磁気薄膜
メモリの構成、すなわち図10の隣り合う第1磁性膜を
連続膜として磁気薄膜メモリを作製し、上記実施例9と
同様にして動作確認を行った。その結果、上記実施例9
の場合と全く同様の動作が行なえることが確認できた。
【0113】
【発明の効果】上記の結果より本発明の効果は明らかで
ある。すなわち、本発明の磁性薄膜メモリ素子は、所定
の間隔を開けて平面配置または積層配置された第1磁性
膜および第2磁性膜と、これらの第1磁性膜もしくは第
2磁性膜に隣接して配置されるか、または、これらの第
1磁性膜と第2磁性膜の間に介在された検出部分と、前
記第2磁性膜の磁化方向を反転させるための磁化手段
と、前記第2磁性膜の保磁力を減少させるように作用す
る加熱手段とを備え、前記第1磁性膜の保磁力は、第2
磁性膜の保磁力と比較してそれより大きく、かつ予め所
定の一方向に磁化されており、前記磁化手段および加熱
手段により第2磁性膜の磁化方向を反転制御して書き込
みおよび消去の状態を作りだし、前記第2磁性膜の磁化
方向を前記検出部分で検出することで読み出しが行える
ように構成しており、これを用いた本発明にかかる薄膜
磁気メモリは、上記に説明したように不揮発性の磁気薄
膜固体メモリであり、情報の高速な書き込み・消去が可
能で機械的な動作を必要としないという極めて優れた効
果を発揮する。
【図面の簡単な説明】
【図1】平面配置タイプの磁性薄膜メモリ素子の概略平
面図である。
【図2】図1のA−A断面矢視図である。
【図3】(a)〜(d)は、それぞれ、磁性薄膜メモリ
素子の動作原理(熱書き込み)を経時的に説明するため
の平面図である。
【図4】(a)〜(d)は、それぞれ、磁性薄膜メモリ
素子の動作原理(磁界書き込み)を経時的に説明するた
めの平面図である。
【図5】(a)は、電流により第2磁性膜を磁化反転さ
せる実施形態を示す平面図であり、(b)は、その断面
図である。
【図6】(a),(b)は、それぞれ検出部分における
磁束集束の好適な一態様を示すメモリ素子の平面図であ
る。
【図7】第2磁性膜の加熱を、第2磁性膜に直接通電し
て行う場合の実施形態を示すメモリ素子の平面図であ
る。
【図8】(a),(b),(c)は、それぞれ本発明の
基板面に垂直方向に各部分を層状に配置した積層配置タ
イプのメモリ素子の断面状態を示す図面である。
【図9】本発明の磁性薄膜メモリの概略基本構成図であ
る。
【図10】本発明の基板面に平面的に配置したメモリ素
子を用いた磁性薄膜メモリの概略構成図である。
【図11】読み出し線を1本とし、2本の書き込み線の
1本を読み出し線として兼用する場合の磁性薄膜メモリ
の概略構成図である。
【図12】本発明の基板面に平面的に配置したメモリ素
子を斜めに配置した場合の磁性薄膜メモリの概略構成図
である。
【図13】本発明の基板面に対し垂直方向に各部分を積
層した積層配置タイプのメモリ素子を用いた磁性薄膜メ
モリの概略構成図である。
【図14】本発明の第2磁性膜に直接通電するタイプの
メモリ素子を用いた磁性薄膜メモリの概略構成図であ
る。
【図15】本発明メモリ素子の第1磁性膜が連続に形成
された磁性薄膜メモリの概略構成図である。
【図16】従来技術であるMRAMの動作原理を説明す
るために図面である。
【符号の説明】
1…平面配置タイプの磁性薄膜メモリ素子 2…積層配置タイプの磁性薄膜メモリ素子 5…絶縁基板 11,15…第1磁性膜 20…第2磁性膜 30…加熱手段(加熱部) 39…加熱リード線 40…検出部分 49…検出リード線 50,60,70…絶縁膜 W10 、W20 、W01 、W02 …書き込み線 R10 、R20 、R01 、R02 …読み出し線 M11 、M12 、M21 、M22 …メモリ素子
───────────────────────────────────────────────────── フロントページの続き (72)発明者 成宮 義和 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 Fターム(参考) 5E049 AA01 AA04 AA07 AA09 AC00 AC05 BA12 CB02 DB04 DB14 EB01 GC01 HC01 LC01

Claims (13)

    【特許請求の範囲】
  1. 【請求項1】 所定の間隔を開けて平面配置または積層
    配置された第1磁性膜および第2磁性膜と、 これらの第1磁性膜もしくは第2磁性膜に隣接して配置
    されるか、または、これらの第1磁性膜と第2磁性膜の
    間に介在された検出部分と、 前記第2磁性膜の磁化方向を反転させるための磁化手段
    と、 前記第2磁性膜の保磁力を減少させるように作用する加
    熱手段とを備える磁性薄膜メモリ素子であって、 前記第1磁性膜の保磁力は、第2磁性膜の保磁力と比較
    してそれより大きく、かつ予め所定の一方向に磁化され
    ており、 前記磁化手段および加熱手段により第2磁性膜の磁化方
    向を反転制御して書き込みおよび消去の状態を作りだ
    し、前記第2磁性膜の磁化方向を前記検出部分で検出す
    ることで読み出しが行えるようにしてなることを特徴と
    する磁性薄膜メモリ素子。
  2. 【請求項2】 前記第1磁性膜および第2磁性膜は、そ
    れらの容易磁化軸が膜面内成分を有し、2つの磁性膜が
    静磁的に結合するように配置されてなる請求項1に記載
    の磁性薄膜メモリ素子。
  3. 【請求項3】 前記第1磁性膜、前記検出部分、および
    前記第2磁性膜が順次、同一平面上にライン状に配置さ
    れてなる請求項1または請求項2に記載の磁性薄膜メモ
    リ素子。
  4. 【請求項4】 さらにもう一つの第1磁性膜を設け、新
    たな第1磁性膜と前記第1磁性膜とで前記検出部分、お
    よび前記第2磁性膜を挟むように配置してなる請求項3
    に記載の磁性薄膜メモリ素子。
  5. 【請求項5】 前記検出部分に磁束を集束するために、
    第1磁性膜と第2磁性膜の検出部分側の幅を狭くする
    か、または、検出部分と第1磁性膜の間及び検出部分と
    第2磁性膜の間に磁束集束のための軟磁性薄膜を配置し
    てなる請求項1ないし請求項4のいずれかに記載の磁性
    薄膜メモリ素子。
  6. 【請求項6】 少なくとも前記第1磁性膜および前記第
    2磁性膜が基板面に積層方向に層状に配置されてなる請
    求項1または請求項2に記載の磁性薄膜メモリ素子。
  7. 【請求項7】 前記検出部分が、磁気抵抗効果素子また
    はホール素子を用いて構成される請求項1ないし請求項
    6のいずれかに記載の磁性薄膜メモリ素子。
  8. 【請求項8】 前記加熱手段として、第2磁性膜に隣接
    して設けた非磁性金属膜からなる加熱部を用い、それに
    電流を流すことにより非磁性金属膜および第2磁性膜を
    加熱してなる請求項1ないし請求項7のいずれかに記載
    の磁性薄膜メモリ素子。
  9. 【請求項9】 前記磁化手段として、第2磁性膜に隣接
    して設けた非磁性金属膜を用い、それに電流を流すこと
    により発生する磁界により第2磁性膜を磁化させてなる
    請求項1ないし請求項8のいずれかに記載の磁性薄膜メ
    モリ素子。
  10. 【請求項10】 前記加熱部として第2磁性膜そのもの
    を兼用させ、それに電流を流すことにより第2磁性膜を
    加熱してなる請求項1ないし請求項7のいずれかに記載
    の磁性薄膜メモリ素子。
  11. 【請求項11】 請求項1ないし請求項10のいずれか
    に記載の磁性薄膜メモリ素子をマトリクス状に配列した
    記憶素子部分と、直交する2本の書き込み線および直交
    する2本の読み出し線を備え、 縦又は横方向に並べられた前記磁性薄膜メモリ素子のそ
    れぞれが、直交する2本の書き込み線および直交する2
    本の読み出し線に接続されることを特徴とする磁性薄膜
    メモリ。
  12. 【請求項12】 請求項1ないし請求項10のいずれか
    に記載の磁性薄膜メモリ素子をマトリクス状に配列した
    記憶素子部分と、直交する2本の書き込み線および1本
    の読み出し線を備え、 縦又は横方向に並べられた前記磁性薄膜メモリ素子のそ
    れぞれが、直交する2本の書き込み線および1本の読み
    出し線に接続され、書き込み線の1本が読み出し線を兼
    ねることを特徴とする磁性薄膜メモリ。
  13. 【請求項13】 隣り合うメモリ素子の第1磁性膜が連
    続膜で形成される請求項11または請求項12に記載の
    磁性薄膜メモリ。
JP30161498A 1998-10-08 1998-10-08 磁性薄膜メモリ素子および磁性薄膜メモリ Expired - Fee Related JP4129090B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30161498A JP4129090B2 (ja) 1998-10-08 1998-10-08 磁性薄膜メモリ素子および磁性薄膜メモリ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30161498A JP4129090B2 (ja) 1998-10-08 1998-10-08 磁性薄膜メモリ素子および磁性薄膜メモリ

Publications (2)

Publication Number Publication Date
JP2000113666A true JP2000113666A (ja) 2000-04-21
JP4129090B2 JP4129090B2 (ja) 2008-07-30

Family

ID=17899073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30161498A Expired - Fee Related JP4129090B2 (ja) 1998-10-08 1998-10-08 磁性薄膜メモリ素子および磁性薄膜メモリ

Country Status (1)

Country Link
JP (1) JP4129090B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208680A (ja) * 2001-01-11 2002-07-26 Canon Inc 磁気薄膜メモリ素子、磁気薄膜メモリおよび情報記録再生方法
JP2002208681A (ja) * 2001-01-11 2002-07-26 Canon Inc 磁気薄膜メモリ素子、磁気薄膜メモリおよび情報記録方法
JP2003060173A (ja) * 2001-08-21 2003-02-28 Canon Inc 強磁性体メモリの熱補助駆動方法
JP2005503669A (ja) * 2001-09-20 2005-02-03 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク 非晶質フェリ磁性合金を使用してスピン偏極電流で書き込みを行なう磁気メモリ及びその書き込み方法
JP2005086016A (ja) * 2003-09-09 2005-03-31 Sony Corp 磁気メモリ
JP2005524225A (ja) * 2002-04-23 2005-08-11 インターナショナル・ビジネス・マシーンズ・コーポレーション 発熱体付きメモリ記憶デバイス
JP2006511892A (ja) * 2002-12-18 2006-04-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 改竄からmram素子を保護するための方法及び装置
US7339817B2 (en) 2001-01-11 2008-03-04 Samsung Electronics Co., Ltd. Thermally-assisted switching of magnetic memory elements
US7397074B2 (en) 2005-01-12 2008-07-08 Samsung Electronics Co., Ltd. RF field heated diodes for providing thermally assisted switching to magnetic memory elements
JP2011091429A (ja) * 2002-06-28 2011-05-06 Internatl Business Mach Corp <Ibm> 磁性トンネル接合

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339817B2 (en) 2001-01-11 2008-03-04 Samsung Electronics Co., Ltd. Thermally-assisted switching of magnetic memory elements
JP2002208681A (ja) * 2001-01-11 2002-07-26 Canon Inc 磁気薄膜メモリ素子、磁気薄膜メモリおよび情報記録方法
JP2002208680A (ja) * 2001-01-11 2002-07-26 Canon Inc 磁気薄膜メモリ素子、磁気薄膜メモリおよび情報記録再生方法
JP4666775B2 (ja) * 2001-01-11 2011-04-06 キヤノン株式会社 磁気薄膜メモリ素子、磁気薄膜メモリおよび情報記録方法
JP4666774B2 (ja) * 2001-01-11 2011-04-06 キヤノン株式会社 磁気薄膜メモリ素子、磁気薄膜メモリおよび情報記録再生方法
JP2003060173A (ja) * 2001-08-21 2003-02-28 Canon Inc 強磁性体メモリの熱補助駆動方法
JP2005503669A (ja) * 2001-09-20 2005-02-03 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク 非晶質フェリ磁性合金を使用してスピン偏極電流で書き込みを行なう磁気メモリ及びその書き込み方法
JP2005524225A (ja) * 2002-04-23 2005-08-11 インターナショナル・ビジネス・マシーンズ・コーポレーション 発熱体付きメモリ記憶デバイス
JP2011091429A (ja) * 2002-06-28 2011-05-06 Internatl Business Mach Corp <Ibm> 磁性トンネル接合
JP2006511892A (ja) * 2002-12-18 2006-04-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 改竄からmram素子を保護するための方法及び装置
KR101063119B1 (ko) * 2002-12-18 2011-09-07 엔엑스피 비 브이 Mram 셀의 어레이 및 무허가 판독 방지 방법
JP2005086016A (ja) * 2003-09-09 2005-03-31 Sony Corp 磁気メモリ
US7397074B2 (en) 2005-01-12 2008-07-08 Samsung Electronics Co., Ltd. RF field heated diodes for providing thermally assisted switching to magnetic memory elements

Also Published As

Publication number Publication date
JP4129090B2 (ja) 2008-07-30

Similar Documents

Publication Publication Date Title
JP3891540B2 (ja) 磁気抵抗効果メモリ、磁気抵抗効果メモリに記録される情報の記録再生方法、およびmram
Grünberg Layered magnetic structures: History, highlights, applications
US6069820A (en) Spin dependent conduction device
US7561385B2 (en) Magneto-resistive element in which a free layer includes ferromagnetic layers and a non-magnetic layer interposed therebetween
US7532504B2 (en) Spin injection magnetic domain wall displacement device and element thereof
US6809900B2 (en) Write head with magnetization controlled by spin-polarized electron current
US7532502B2 (en) Spin injection magnetic domain wall displacement device and element thereof
JP4076197B2 (ja) 磁性素子、記憶装置、磁気再生ヘッド、3端子素子、及び磁気ディスク装置
JP2000090658A (ja) 磁気メモリ素子
JP2000195250A (ja) 磁気メモリ装置
JP2007080952A (ja) 多値記録スピン注入磁化反転素子およびこれを用いた装置
JP3691898B2 (ja) 磁気抵抗効果素子、磁気情報読み出し方法、及び記録素子
JP3977576B2 (ja) 磁気メモリ装置
JP4129090B2 (ja) 磁性薄膜メモリ素子および磁性薄膜メモリ
CN109755383B (zh) 基于磁子阀和磁子结的磁子磁电阻和自旋霍尔磁电阻器件
JP2000156531A (ja) 磁気素子、磁気メモリ装置、磁気抵抗効果ヘッド、磁気ヘッドジンバルアッセンブリ、及び磁気記録システム
JP3868699B2 (ja) 磁気メモリ装置
JP6758617B2 (ja) 積層磁性薄膜、積層磁性薄膜の製造方法、および磁気メモリ装置
JP2002289942A (ja) 巨大磁気抵抗効果素子、磁気抵抗効果型ヘッド、薄膜磁気メモリ、並びに薄膜磁気センサ
JP3634761B2 (ja) 磁気抵抗素子、該磁気抵抗素子を用いたメモリ素子及び磁気ランダムアクセスメモリ、並びに記録再生方法
JP2003229614A (ja) 磁性材料、この磁性材料を用いた磁気抵抗効果素子、およびこの磁気抵抗効果素子を用いた磁気デバイス
JP5526707B2 (ja) 情報記憶素子の駆動方法
JP4875037B2 (ja) 磁気メモリ、その再生方法、および書き込み方法
JP2007095765A (ja) 多値記録スピン注入磁化反転素子およびこれを用いた装置
JP2001076479A (ja) 磁気メモリ素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees