HUE035235T2 - Eljárás és rendszer fiolák elõállítására - Google Patents
Eljárás és rendszer fiolák elõállítására Download PDFInfo
- Publication number
- HUE035235T2 HUE035235T2 HUE11813965A HUE11813965A HUE035235T2 HU E035235 T2 HUE035235 T2 HU E035235T2 HU E11813965 A HUE11813965 A HU E11813965A HU E11813965 A HUE11813965 A HU E11813965A HU E035235 T2 HUE035235 T2 HU E035235T2
- Authority
- HU
- Hungary
- Prior art keywords
- mbar
- vial
- volume
- vials
- environment
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D47/00—Closures with filling and discharging, or with discharging, devices
- B65D47/04—Closures with discharging devices other than pumps
- B65D47/32—Closures with discharging devices other than pumps with means for venting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B7/00—Closing containers or receptacles after filling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5082—Test tubes per se
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B3/00—Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
- B65B3/003—Filling medical containers such as ampoules, vials, syringes or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B31/00—Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
- B65B31/02—Filling, closing, or filling and closing, containers or wrappers in chambers maintained under vacuum or superatmospheric pressure or containing a special atmosphere, e.g. of inert gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B31/00—Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
- B65B31/02—Filling, closing, or filling and closing, containers or wrappers in chambers maintained under vacuum or superatmospheric pressure or containing a special atmosphere, e.g. of inert gas
- B65B31/025—Filling, closing, or filling and closing, containers or wrappers in chambers maintained under vacuum or superatmospheric pressure or containing a special atmosphere, e.g. of inert gas specially adapted for rigid or semi-rigid containers
- B65B31/027—Filling, closing, or filling and closing, containers or wrappers in chambers maintained under vacuum or superatmospheric pressure or containing a special atmosphere, e.g. of inert gas specially adapted for rigid or semi-rigid containers closed by a stopper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B7/00—Closing containers or receptacles after filling
- B65B7/16—Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons
- B65B7/28—Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons by applying separate preformed closures, e.g. lids, covers
- B65B7/2821—Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons by applying separate preformed closures, e.g. lids, covers applying plugs or threadless stoppers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D39/00—Closures arranged within necks or pouring openings or in discharge apertures, e.g. stoppers
- B65D39/0005—Closures arranged within necks or pouring openings or in discharge apertures, e.g. stoppers made in one piece
- B65D39/0023—Plastic cap-shaped hollow plugs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/18—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
- B65D81/20—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas
- B65D81/2069—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas in a special atmosphere
- B65D81/2076—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas in a special atmosphere in an at least partially rigid container
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B5/00—Drying solid materials or objects by processes not involving the application of heat
- F26B5/04—Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
- F26B5/06—Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Drying Of Solid Materials (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Description
(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) IntCI.: of the grant of the patent: B65B 31102 <2006 01> B65D 47132 <2006 01> 11.10.2017 Bulletin 2017/41 B65B 7l28<2006 01> B01L 3l00<200601> B65B 3100 <2006 011 B65B 7100 <2006 011
(21) Application number: 11813965.8 «6Β SI06<2™<”> B65D 39,oo<2™°V B65D 81l20<200601> (22) Date of filing: 05.08.2011 (86) International application number: PCT/AU2011/001013 (87) International publication number: WO 2012/016301 (09.02.2012 Gazette 2012/06)
(54) VIAL PREPARATION METHOD AND SYSTEM
VERFAHREN UND SYSTEM ZUR HERSTELLUNG VON PHIOLEN PROCEDE ET SYSTEME DE PREPARATION DE FLACONS (84) Designated Contracting States: · KNILL, Andrew Malcolm AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Bittern GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Victoria 3918 (AU) PL PT RO RS SE SI SK SM TR · SUENDERMANN, John Fredric
Designated Extension States: Malvern East BA ME Victoria 3145 (AU) (30) Priority: 21.01.2011 US 201161434928 P (74) Representative: Johnson, Yvonne Catherine
06.08.2010 US 371318 P Barker Brettell LLP 100 Hagley Road (43) Date of publication of application: Edgbaston 12.06.2013 Bulletin 2013/24 Birmingham B16 8QQ (GB) (60) Divisional application: 17166230.7/3 208 202 (56) References cited: WO-A2-2006/002122 WO-A2-2006/002122 (73) Proprietor: Hospira Australia Pty Ltd AU-A1- 2006 319 012 US-A- 3 025 991
Melbourne, Victoria 3000 (AU) US-A1-2007 062 162 US-A1-2007 062 162 (72) Inventors: • WENSLEY, Emma J Waukegan, Illinois 60085 (US)
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description
TECHNICAL FIELD
[0001] Described embodiments relate to methods for vial preparation. Some embodiments relate to preparation of vials containing oxygen sensitive substances in solution.
BACKGROUND
[0002] Some pharmaceutical formulations are provided in a lyophilized powder form within a sealed vial for mixing with a liquid prior to administering the formulation to a patient. Mixing of the lyophilized formulation with its carrier liquid involves injection of the liquid into the vial using a syringe with a needle that punctures through a stopper that seals the opening of the vial. The mixed formulation is then aspirated and transferred into another carrier volume, such as a sealed bag of liquid to be suspended for delivery to a patient.
[0003] Lyophilization of the formulation is generally carried out in specialised lyophilization apparatus that freezes a liquid form of the formulation at low temperature and pressure, for example at about 0.05 mbar and about -10°C, and converts the formulation to lyophilized form by sublimation. The lyophilization apparatus generally comprises a condenser to condense water vapour sublimated from the formulation.
[0004] In some cases, a solution formulation is preferred. However, some solutions are oxygen sensitive and can suffer from stability problems with the formulation due to the inability to remove enough oxygen gas from the headspace of the vial and dissolved oxygen in solution prior to sealing it.
[0005] WO 2006/002122 A2 describes a method of preparing a stable rapidly lyophilized radiopharmaceutical composition for diagnostic or therapeutic purposes that needs no refrigeration upon completion of the method and that increases the predictability of the integrity of the radiopharmaceutical composition by reducing radiolysis damage. The method comprises the following steps: evacuating a sealable chamber containing a flash frozen amount of said radiopharmaceutical composition having at least one radionuclide in at least one lyophilization-stoppered but as yet unsealed vial, said flash frozen amount being frozen preferably in an ultracold freezing shelf or in liquefied gas, preferably nitrogen, said evacuating of said sealable chamber occurring by a vacuum pump connected by an evacuation tube passing through a primary condenser and a secondary condenser down to a pressure sufficient to eliminate the explosive potential of liquid oxygen while maintaining the temperature of said primary condenser above the boiling point of oxygen; accelerating the removal of water from said sealable chamber by activating said secondary condenser to reduce said evacuation tube temperature, preferably down to a temperature above the boiling point of nitrogen of approximately -196 Celsius, thereby reducing more rapidly the presence of water molecules, including radiolysis degenerated water molecules, and reducing attendantfree radical damage to said radiopharmaceutical composition, and increasing the predictability of the integrity of the radiopharmaceutical composition; and upon completion of the desired removal of water, restoring the ambient pressure in the sealable chamber to close to atmospheric pressure with a pharmaceutically inert gas, and upon such restoration of ambient pressure, sealing the said at least one vial in order to preclude entry of external fluid. [0006] US 2007/062162 A1, also discloses a method for vial preparation. It is desired to address or ameliorate one or more shortcomings ordisadvantages associated with existing preparation methods and systems, or to at least provide a useful alternative thereto.
SUMMARY
[0007] The invention provides a preparation method, comprising: housing a plurality of vials in a temperature-controlled environment, which is a lyophilisation apparatus in which the condenser is disabled, wherein the plurality of vials each have a volume of a liquid or frozen substance therein and each defines an unfilled volume therein, each vial having a stopper partially inserted into an opening of the vial so that gas can transfer between the unfilled volume and an external volume; applying a vacuum to the environment to reduce pressure in the environment and in the unfilled volume of each vial to a first pressure level; venting an inert gas into the environment to raise the pressure in the environment and in the unfilled volume of each vial to a second pressure level; allowing the vials to rest in the environment at the second pressure level for a predetermined period; repeating the applying, venting and allowing at least once; and fully inserting the stopper into each opening to seal each vial after the repeating.
[0008] The method may further comprise, after the repeating and prior to the fully inserting, once repeating only the applying and venting. The method may further comprise, after the fully inserting, capping each vial with a cap to retain the stopper in each vial. The housing comprises housing the vials in lyophilization apparatus in which the condenser is disabled.
[0009] The method may further comprise, before the applying, controlling the temperature in the environment to be at or around a temperature set-point. The temperature set-point may be a first temperature set-point and the method may further comprise, after the venting, controlling the temperature in the environment to be at or around a second temperature set-point that is different from the first temperature set-point. This controlling of the temperature may be repeated along with the applying, venting and allowing.
[0010] For example, where there is a single temperature set-point used, the method may involve repeatedly controlling the temperature in the environment to be at or around the temperature set-point while repeating the applying, venting and allowing. Where first and second different temperature set-points are used, the repeating may involve repeatedly controlling the temperature to be at or around the first temperature set-point before applying the vacuum and repeatedly controlling the temperature to be at or around the second temperature set-point after the venting and before or during the allowing.
[0011] The method may involve at least one of: the first temperature set-point is less than about 10°C, optionally less than about 8°C, optionally about 5°C; and the second temperature set-point is between about 17°C and about 26°C.
[0012] The first temperature set-point may be at or below a freezing temperature of the substance, in which case the first pressure level may be between about 0.0001 mbar and about 10 mbar.
[0013] The method may further comprise allowing the vials to rest in the environment for another predetermined period at or around the second temperature set-point. The another period may be between about 15 minutes and about 45 or 60 minutes, optionally between about 25 and about 35 minutes, optionally about 30 minutes.
[0014] Where the first temperature set-point is greater than freezing, the first pressure level may be greater than about 10 mbar and less than about 500 mbar, optionally between about 10 mbar and about 300 mbar. The second pressure level may be between about 800 mbar and about 1000 mbar. The second pressure level may be between about 900 mbar and 950 mbar.
[0015] The housing may be performed at ambient pressure. The repeating of the applying, venting and allowing may be performed at least twice. The repeating of the applying, venting and allowing may be performed at least eight times. The repeating may be performed a number of times effective to reduce a dissolved oxygen content of the substance to about 0.4% or less. The repeating may be performed a number of times effective to reduce an oxygen gas content in the unfilled volume to less than or equal to about one percent. The repeating may be performed a number of times effective to reduce the oxygen gas content in the unfilled volume to between about 0.01% and about 0.6%.
[0016] Prior to the applying, the unfilled volume may contain a substantially atmospheric level of oxygen gas and/or the substance may contain a substantially atmospheric level of dissolved oxygen.
[0017] The predetermined time period may be between about 15 minutes and about 45 or 60 minutes, optionally between about 25 minutes and about 35 minutes.
[0018] The substance in a liquid form may comprise an oxygen-sensitive solution. The substance in a liquid form may be an aqueous solution free of volatile constituents. The substance in a liquid form may be stable at temperatures between about 1°C and about 26°C and pressures between about 10 mbar and 1000 mbar.
[0019] Some embodiments which are described but not claimed relate to modified lyophilization apparatus described herein and to vial preparation systems comprising such apparatus. Some embodiments which are described but not claimed relate to a system and/or apparatus (whether usable for lyophilization or not) specifically configured to perform the described methods. Some embodiments which are described but not claimed relate to a vial produced by the described processes and/or produced according to the described use of lyophilisation apparatus.
[0020] Some embodiments which are described but not claimed relate to a vial comprising: a body having a neck and a single opening defined by the neck; a stopper partly received in and sealing the opening; a liquid contained by the body and the stopper, the liquid comprising an oxygen-sensitive formulation; and a headspace defined between the body, the liquid and the stopper; wherein the stopper has at least one projection received in the opening, wherein the projection defines at least one gap or aperture which, when the projection is partially inserted into the opening, allows gas transfer between the headspace and a volume external of the vial.
[0021] The liquid may be an aqueous solution free of volatile constituents. The liquid may be stable at temperatures between about 1°C and about 26°C and pressures between about 10 mbar and 1000 mbar. An oxygen gas content in the headspace may be less than or equal to about one percent. The oxygen gas content in the headspace may be between about 0.01% and about 0.6%. A dissolved oxygen content in the liquid may be about 0.4% or less.
[0022] The vial may further comprise a cap seal to hold the stopper onto the neck. The stopper and vial body may be arranged so that, when the stopper is fully inserted into the opening, the disc-shaped top overlies a rim around the opening and the at least one gap is fully occluded by the rim, thereby sealing the vial from gas transfer between the unfilled volume and the external volume.
[0023] Some embodiments which are described but not claimed relate to a vial comprising: a body having a neck and a single opening defined by the neck; a stopper partly received in and sealing the opening; a substance contained by the body and the stopper, the substance comprising an oxygen-sensitive formulation; and a headspace defined between the body, the substance and the stopper; wherein the stopper has at least one projection received in the opening, wherein the projection defines at least one gap or aperture which, when the projection is partially inserted into the opening, allows gas transfer between the headspace and a volume external of the vial.
[0024] The substance may be in a liquid state or a frozen state. The substance in the liquid state may be an aqueous solution free of volatile constituents. The substance in the liquid state may be stable at temperatures between about 1°C and about 26°C and pressures between about 10 mbar and 1000 mbar.
BRIEF DESCRIPTION OF THE DRAWINGS
[0025]
Figure 1 is a schematic diagram of a system for preparation of vials;
Figure 2A is a sectional view of a vial and stopper prior to partial insertion of the stopper into the vial into an opening defined by the neck of the vial;
Figure 2B is a sectional view of the vial and stopper with the stopper partially inserted into the vial opening;
Figure 3 is a flow chart of a method of vial preparation;
Figure 4 is a graph of measured percentage oxygen gas content in the vial headspace for a series of experiments using 5mL vials;
Figure 5 is a graph of measured percentage oxygen gas content in the vial headspace for a series of experiments using 20mL vials; and
Figure 6 is a flow chart of an alternative method of vial preparation.
DETAILED DESCRIPTION
[0026] Described embodiments relate to methods for vial preparation. Some embodiments relate to preparation of vials containing oxygen sensitive substances in solution.
[0027] Illustrated embodiments are described herein, by way of example and not limitation, with reference to the drawings, and Figures 1,2A, 2B, 3 and 6 in particular. The scope of the invention is defined by the claims.
[0028] Referring now to Figure 1, lyophilization apparatus 100 is described in further detail. Lyophilization apparatus 100 may normally perform a freeze-drying function in order to lyophilize solutions contained in vials positioned within a chamber of the apparatus. For present embodiments, however, lyophilization apparatus 100 is not used for such a lyophilization process and does not freeze-dry the solution within the vials. Rather, lyophilization apparatus 100 houses a plurality of vials 120 on shelves 122 within a chamber 112 defined by a housing 110 of the apparatus 100, with the vials 120 being maintained at a temperature above freezing and in some instances around room temperature or in a range thereabouts, such as between about 17°C and about 26°C, and optionally between about 20°C and about 25°C. In some embodiments, the chamber 112 is controlled during part of the process to be in a lower temperature range above freezing and less than about 10, 12 or 15 degrees C, optionally around 3°C to 8°C, optionally around 5°C. [0029] The lyophilization apparatus 100 may comprise part of a larger system for vial preparation, such as an automated vial preparation system that includes vial filling equipment, stopper (partial) insertion equipment and vial capping equipment, together with suitable vial transport mechanisms to transport the vials between such equipment as part of the overall preparation process.
[0030] In some embodiments, which are described but not claimed, apparatus 100 may not be configured as lyophilization apparatus, but may instead comprise purpose-built equipment specifically configured to perform the functions described herein. Thus, some embodiments described herein include apparatus that is not specifically configured for lyophilization and the functions and components described herein in relation to lyophilization apparatus 100 should be understood to be comprised in some embodiments of apparatus 100 that do not perform lyophilization. Lyophilization apparatus 100 also comprises a pressure sensor 114 to sense the pressure level within the chamber 112 and a temperature sensor 116 to sense the temperature within the chamber 112. The pressure sensor 114 may comprise a thermal conductivity Pirani gauge, for example. Other forms of pressure sensor can be used to determine pressure levels in the chamber 112 but units and/or base reference values of such sensors may need to be modified to correspond with the numerical pressure values described herein.
[0031] Lyophilization apparatus 100 further comprises an automated control system 130 to receive data signals corresponding to the output of pressure and temperature sensors 114, 116. Such data signals are used by control system 130 to ensure that the appropriate pressure and temperature set-points are achieved during the vial preparation process. [0032] Control system 130 may comprise a computer executing suitable software and having suitable interface components to receive user input, receive and process instrumentation signals and exert control over the various described apparatus components. Control system 130 may comprise one or more additional control components in communication with and/or responsive to the computer to more directly interact with various system components associated with apparatus 100.
[0033] Lyophilization apparatus 100 further comprises a sterile, filtered inert gas source 132, such as nitrogen gas, a vacuum pump 134 and a temperature regulated fluid supply 136. Supply of the inert gas from inert gas source 132 to the chamber 112 is performed under the control of control system 130 operating existing control software such as is commonly available from suppliers of lyophilization apparatus. A pressure regulator (not shown) controlled by control system 130 may be coupled intermediate the inert gas source 132 and the chamber 112 to control the pressure and flow rate at which the inert gas is vented into the chamber 112. For example, the pressure regulator may be set by the control system 130 to supply the inert gas into chamber 112 at pressures of around 1 to 1.5 bar. Similarly, vacuum pump 134 is operated under control of control system 130 to evacuate gas from chamber 112 and cause the pressure level within the chamber 112 to decrease to a pressure level set by user configuration input to control system 130.
[0034] Temperature regulated fluid supply 136 is operated under the control of control system 130 to provide fluid, such as oil, at a set temperature to the shelves 122 that support the vials 120. Fluid of the set temperature is supplied to shelves 122 from temperature regulated fluid supply 136 via a plurality of supply conduits 138 coupled to respective shelves 122. Thus, the shelves 122 provide a means for controlling the temperature of the vials 120, and to some extent the temperature of the chamber environment, within the chamber 112. Additional temperature control means, such as additional heating/cooling elements, may be provided to more directly control the temperature of the environment within the chamber 112.
[0035] As noted above, in the claimed invention a temperature-controlled environment is used which is a lyophilisation apparatus in which the condenser is disabled. Therefore pre-existing lyophilization apparatus is used as the lyophilization apparatus 100 of the described embodiments, including a condenser 118 coupled to the housing 110. For present purposes, use of such a condenser 118 in the described process is undesirable and the condenser 118 is disabled. The condenser is designed to draw vapour out of the chamber as a result of the temperature differential (-75°C), but because the formulation is in the solution form, it is not desirable to have the vapour drawn from the chamber because evaporation of the formulation would increase. It has been found that evaporation of the solution can be in the vicinity of 0.3-0.4% using the described methods and systems. Increasing this evaporation rate may result in an undesirable effect on the formulation.
[0036] Lyophilization apparatus 100 further comprises means for moving shelves 122 vertically to separate or compact them. In described embodiments, movement of the shelves 122 can be effected by one or more hydraulic movement mechanisms 124 acting directly or indirectly on the shelves 122. As described in further detail below, vertical compaction of shelves 122 is used to force stoppers that are partially inserted into the vials 120 to become fully inserted into the vials 120.
[0037] Referring now to Figures 2A and 2B, the arrangement of the stoppers and the vials 120 is illustrated and described in further detail. Each vial 120 is of generally conventional form, having a generally cylindrical body, including a base, side walls 220 and a neck having an opening 225 defined by a slightly thickened (relative to walls 220) annular rim or head portion 222. When a liquid formulation 230 is contained within the side walls 220, a headspace 232 is defined between the surface of the liquid 230 and the opening 225. This headspace will, under atmospheric conditions, generally include an atmospheric level of oxygen gas, which is desirably removed from the headspace 232 when the liquid 230 is an oxygen-sensitive formulation.
[0038] The liquid may comprise an aqueous solution free of volatile constituents and stable (at least during the described preparation process) at temperatures between about 1°C and about 26°C and pressures between about 10 mbar and 1000 mbar. By way of example and without limitation, the liquid formulation may be suitable for use as a pharmaceutical composition and may comprise an oxygen-sensitive cancer treatment formulation, an oxygen-sensitive cardiovascular treatment formulation, an oxygen-sensitive anaesthetic formulation, an oxygen-sensitive pain management formulation or an oxygen-sensitive antibiotic formulation.
[0039] Each stopper 210 is of a commonly available type comprised of rubber or other suitable materials, with the top of the stopper 210 being generally disc shaped and having a pair of downward projections 212 that define a straight diametrical slot or gap 215 therebetween. Thus, diametrical gap 215 extends along a diameter line through what would otherwise be a cylindrical boss extending downwardly from the disc-shaped top. Downward projections 212 resemble circular segments disposed oppositely across the diametrical gap 215, as is illustrated in Figures 2A and 2B.
[0040] Embodiments of stopper 210 may include one or more apertures 215 formed in one or more downward projections 212 from the disc-shaped top. The arrangement of the apertures 215 is less important than that at least one aperture 215 allows adequate gas transfer between the headspace 232 and an external volume (i.e. chamber 112) when the stopper 210 is partially inserted and under the described temperature and pressure conditions. Some embodiments of the stopper 210 may employ a single widened aperture 215 rather than two opposed apertures 215 arranged to define two ends of a gap or slot.
[0041] The vials 120 used to contain the liquid 230 may be glass or glass-like vials or other suitably sterile transparent vials that are commercially available from various suppliers, including Nuova Ompi or Daikyo Seiko, Ltd, for example. Further, the stoppers 210 may be suitable commercially available elastomeric stoppers, such as those made ordistributed by Daikyo Seiko, Ltd or West Pharmaceutical Services, Inc. As noted above, the stoppers 210 may define a single aperture 215 in some embodiments or more than one aperture 215 in other embodiments.
[0042] Figure 2A illustrates the vial 120 just prior to partial insertion of the stopper 210 into opening 225, while Figure 2B illustrates the vial 120 with the stopper 210 partially inserted into the opening 225. The partial insertion of the stopper 210 is performed so that the diametrical gap 215 between the two projections 212 is only partially occluded by the rim and thus allows gas flow between the headspace 232 and volumes external of the vial 120. In the partially inserted state, friction between the projections 212 and the inside surface of the rim 222. This arrangement allows gas, such as oxygen gas, within the headspace 232 to be evacuated and subsequently replaced with an inert gas, such as nitrogen gas, according to the process described below in relation to Figure 3.
[0043] Once the gas transfer process is complete, the partially inserted stoppers 210 are pushed toward the vials 120 by shelves 122 so that projections 212 of the stopper 210 become fully inserted within opening 225 and the diametrical gap 215 becomes fully occluded by the annular rim 222, thereby closing offgas transfer between headspace 232 and volumes external of the vial 120. Thus, when the stopper 210 is fully inserted into the opening of the vial 120, outer circumferential portions of the stopper210 overlie the thickened annular rim 222 and substantially seal therewith. A cap (not shown) can then be placed around the stopper 210 and annular rim 222 to ensure that the seal between the stopper 210 and the neck of the vial 120 remains intact.
[0044] Referring now to Figure 3, a method 300 of preparing the vials 120 is described in further detail. The method 300 begins at step 305, in which vials 120 are filled with solution 230 using known filling equipment and then partially stoppered using stoppers 210 (as shown in Figure 2B) orothersuitable closures using known stopper insertion equipment. [0045] At step 310, the filled vials 210 are transferred into chamber 112 of lyophilization apparatus 100. The shelf temperature of shelves 122 may then be set at step 315 by control system 130 transmitting suitable control signals to temperature regulated fluid supply 136. Step 315 may be performed prior to step 310 or simultaneously therewith in alternative embodiments. Step 315 may also involve manipulating other temperature control means, such as a heater and/or cooler, to achieve the desired set temperature of the environment within chamber 112.
[0046] At step 320, vacuum pump 134 is operated under the control of the control system 130 to evacuate the chamber 112, reducing the pressure in the chamber to a first pressure level (set-point) between about 200 mbar and about 500 mbar, preferably between about 300 mbar and 350 mbar. This has the effect of removing most or all of the oxygen gas from the chamber 112, including oxygen gas in the headspace 232 of the vials 120, extracted through the partially occluded diametrical gap 215.
[0047] Next, at step 325, control system 130 controls the supply of inert gas from inert gas source 132 to vent the inert gas into the chamber 112, thereby increasing the pressure in the chamber 112 to a second level (set-point) between about 800 mbar and 1000 mbar. Preferably, the second pressure level is slightly less than atmospheric pressure (i.e. around 900 mbar to around 950 mbar), so that the chamber 112 remains at a slightly negative pressure relative to the external atmosphere.
[0048] Once the nitrogen (or other inert gas, such as argon, helium or carbon dioxide, for example) has been vented into the chamber 112 at step 325, the vials 120 are allowed to equilibrate for a pre-configured period of time at step 330. This period of time may be in the order of 15 to 45 or 60 minutes or 20 to 40 minutes, preferably between about 25 and 35 minutes and optionally around 30 minutes. This equilibration allows dissolved oxygen in the solution 230 to equilibrate with the lower oxygen level in the headspace 232, thereby decreasing the dissolved oxygen in the solution 230 and increasing the oxygen gas content in the headspace 232. This increased oxygen gas content in the headspace 232 can then be extracted in the next evacuation of chamber 112, thereby incrementally reducing the oxygen content in a nonlinear, asymptotic fashion as the evacuation and venting are repeated.
[0049] At step 335, control system 130 determines whether a further cycle of pressure reduction, inert gas venting and equilibration (i.e. steps 320 to 330) is required according to pre-configured process parameters. If a further cycle is required, the steps 320 to 335 are repeated. Otherwise, control system 130 proceeds to step 340, at which the pressure in the chamber 112 is again reduced to about 200 to 500 mbar (optionally 300 to 350 mbar) as in step 320. Control system 130 then vents the chamber with an inert gas at step 345, as in step 325.
[0050] Steps 340 and 345 are therefore a once-only repetition of steps 320 and 325 as a final stage (without allowing equilibration) of oxygen extraction before the vials 120 have their stoppers fully inserted by compaction of the shelves 122 at step 350. As part of step 350, control system 130 causes hydraulic movement mechanisms 124 to vertically compact the shelves 122, thereby pushing the partially stoppered vials 120 (i.e. as in Figure 2B) fully into the vial openings 225, thereby sealing the headspace 232 against further gas transfer.
[0051] Once the shelves 122 have compacted to seal the vials 120, the control system 130 causes hydraulic movement mechanism 124 to expand the shelves 122 and allow the vials to be unloaded from the chamber 112 for transfer to a capping machine (not shown) at step 355. The application of the caps ensures that the seal between the stopper 210 and the neck of the vial 120 is maintained.
[0052] Generally, method 300 will involve repetition of at least 8 cycles of steps 320 to 330, for example for small vials up to about 5mL or 10 mL, and at least 12 times for larger vials, for example up to around 20mL. For even larger vial sizes, the number of cycles can be increased further. Such numbers of cycle repetitions are determined to be suitable for reducing the oxygen gas content in the headspace 232 from atmospheric oxygen gas levels to around 0.5 to 0.6%, which is a desirable level, although levels of 1 % or less oxygen gas content are considered to be suitable. Such numbers of cycles are also effective to reduce the dissolved oxygen content in the solution from atmospheric levels around 7 to 8ppm to about 0.3 or 0.4%, which is considered to be an acceptable level for oxygen-sensitive solutions.
[0053] Referring now to Figure 6, an alternative method 600 of preparing the vials 120 is described in further detail. The method 600 begins at step 605, in which vials 120 are filled with solution 230 using known filling equipment and then partially stoppered using stoppers 210 (as shown in Figure 2B) or other suitable closures using known stopper insertion equipment.
[0054] At step 610, the filled vials 210 are transferred into chamber 112 of lyophilization apparatus 100. Steps 610 to 665 need not be performed at the same location as step 605. The shelf temperature of shelves 122 may then be set to a desiredfirst temperature set-point at step 615 by control system 130 transmitting suitable control signals to temperature regulated fluid supply 136. The first set-point may be a temperature lower than room temperature, for example above or below freezing but less than about 15°C or less than about 10°C or 12°C, for example.
[0055] Step 615 may be performed prior to step 610 or simultaneously therewith in alternative embodiments. Step 615 may also involve manipulating other temperature control means, such as a heater and/or cooler, to achieve the desired set temperature of the environment within chamber 112.
[0056] As part of step 615 or as a separate step, the vials 210 are allowed to rest at the first temperature set-point for a predetermined period, such as between about 15 minutes and about 45 or 60 minutes, optionally about 25 minutes to about 35 minutes, optionally about 30 minutes.
[0057] At step 620, vacuum pump 134 is operated under the control of the control system 130 to evacuate the chamber 112, reducing the pressure in the chamber to a first level (set-point) between about 10 mbar and about 500 mbar, optionally between about 40 or 50 mbar and 300 mbar, optionally 50 mbar to 100 mbar. This has the effect of removing most or all of the oxygen gas from the chamber 112, including oxygen gas in the headspace 232 of the vials 120, extracted through the partially occluded diametrical gap 215. Step 620 need only be performed for a short time (for example at least one order of magnitude less) compared to the rest time required in step 640 below.
[0058] Where the temperature in the chamber 112 or the vials 120 prior to step 620 is freezing or less (ie. where the substance is frozen), the first pressure set-point during the evacuation step 620 can be selected to be lower than where the substance is in a liquid state. Thus the first pressure level in such circumstances may be as low as 0.0001 mbar to 10 mbar. Such low pressures may assist in more efficiently removing oxygen from the headspace 232. However, such low pressure levels would not be conducive to retaining a liquid in the vials and so would be eschewed for non-frozen substances in the vials 120. If the first temperature set-point is freezing or less, then the solution 230 would repeatedly transition between a liquid state and a frozen state during the process according to such embodiments. Depending on the sensitivity of the solution 230 to such repeated changes, this may or may not be desirable. Additionally, the additional time taken to transition between liquid and frozen states may be significant, particularly when multiplied by the number of cycles to be performed in process 600.
[0059] Next, at step 625, control system 130 controls the supply of inert gas from inert gas source 132 to vent the inert gas into the chamber 112, thereby increasing the pressure in the chamber 112 to a second level (set-point) between about 800 mbar and 1000 mbar. Preferably, the second pressure level is slightly less than atmospheric pressure (i.e. around 900 mbar to around 950 mbar), so that the chamber 112 remains at a slightly negative pressure relative to the external atmosphere.
[0060] Simultaneously with, or subsequent to, the pressure increase at step 625, the shelf temperature and/or chamber temperature may be set at step 630 to a second temperature set-point that is around room temperature, such as 17°C to 26°C, optionally 22°C to 24°C.
[0061] Once the nitrogen (or other inert gas, such as argon, helium or carbon dioxide, for example) has been vented into the chamber 112 at step 625, the vials 120 are allowed to equilibrate for a pre-configured period of time at step 640. This period of time may be in the order of 15 to 45 or 60 minutes or 20 to 40 minutes, preferably between about 25 and 35 minutes and optionally around 30 minutes. The equilibration period may start once the shelf temperature reaches the second set-point or it may start once the pressure reaches its newly raised set-point, for example. The equilibration period of step 640 may instead start once the second temperature set-point is set at step 630 but before the shelves 122 and/or chamber 112 reach that second temperature set-point. This equilibration allows dissolved oxygen in the solution 230 to equilibrate with the lower oxygen level in the headspace 232, thereby decreasing the dissolved oxygen in the solution 230 and increasing the oxygen gas content in the headspace 232. This increased oxygen gas content in the headspace 232 can then be extracted in the next evacuation of chamber 112, thereby incrementally reducing the oxygen content in a non-linear, asymptotic fashion as the evacuation and venting are repeated.
[0062] At step 645, control system 130 determines whether a further cycle of temperature and pressure reduction, inert gas venting, temperature increasing and equilibration (i.e. steps 615 to 640) is required according to pre-configured (in control system 130) process parameters. If a further cycle is required, the steps 615 to 640 are repeated. Otherwise, control system 130 proceeds to step 650, at which the pressure in the chamber 112 is again reduced to about 10 to 500 mbar (optionally 40 or 50 to 300 mbar) as in step 620. Control system 130 then vents the chamber with an inert gas at step 655, as in step 625.
[0063] Steps 650 and 655 are therefore a once-only repetition of steps 620 and 625 as a final stage (without allowing equilibration) of oxygen extraction before the vials 120 have their stoppers fully inserted by compaction of the shelves 122 at step 660. As part of step 660, control system 130 causes hydraulic movement mechanisms 124 to vertically compact the shelves 122, thereby pushing the partially stoppered vials 120 (i.e. as in Figure 2B) fully into the vial openings 225, thereby sealing the headspace 232 against further gas transfer.
[0064] Once the shelves 122 have compacted to seal the vials 120, the control system 130 causes hydraulic movement mechanism 124 to expand the shelves 122 and allow the vials to be unloaded from the chamber 112 for transfer to a capping machine (not shown) at step 665. The application of the caps ensures that the seal between the stopper 210 and the neck of the vial 120 is maintained.
[0065] Generally, method 600 may involve repetition of at least 8 cycles of steps 615 to 640, for example for small vials up to about 5mL and 10 mL, and at least 12 times for larger vials, for example up to around 20mL. For even larger vial sizes, the number of cycles can be increased further. Such numbers of cycle repetitions are determined to be suitable for reducing the oxygen gas content in the headspace 232 from atmospheric oxygen gas levels to less than 0.6%, for example around 0.01 to 0.3%, which is a desirable level, although levels of 1 % or less oxygen gas content are considered to be acceptable. Such numbers of cycles are also effective to reduce the dissolved oxygen content in the solution from atmospheric levels around 7 to 13ppm to about 0.01 to 0.6%, which is considered to be an acceptable level for oxygen-sensitive solutions.
[0066] The low level of oxygen gas in the headspace 232 achievable using the described techniques is believed to be substantially below the levels obtainable using other techniques where there is a liquid formulation in the vial. Additionally, the described methods allow the liquid volume of the formulation to remain substantially the same throughout the vial preparation process, apart from some slight evaporation, for example in the order of 0.3-0.4% by weight or less. [0067] Depending on the vial size and the starting oxygen gas content in the headspace 232, fewer or greater numbers of cycles of steps 320 to 330 or steps 615 to 640 may be desirable. It is believed that in some circumstances, 2, 3, 4, 5, 6, 7, 9, 10 or 11 cycles would yield beneficial results in terms of reducing the possible deleterious effect of oxygen gas contained in the headspace 232 to the oxygen sensitive solution 230.
[0068] While embodiments are described in the context of using lyophilization apparatus 100 to perform the described methods, other suitable apparatus not configured specifically for lyophilization can be used, providing that such apparatus has: a sealable chamber, a vacuum pump that can be controlled to achieve pressures between about 0.0001 mbar (if freezing temperatures are used) or about 10 mbar (for above-freezing temperatures) and atmospheric pressure (about 1000 mbar) in the chamber, inert gas venting capability, environmental temperature control between 17 and 26°C (preferably 20°C to 25°C) and has mechanical means (such as hydraulic shelves) for fully inserting the partially inserted stoppers into the vials for sealing. This sealing of the vials is to be performed prior to the vials 120 being exposed to atmospheric levels of oxygen gas.
[0069] It should be noted that the indicated vial sizes do not necessarily contain the amount of liquid 230 that corresponds to the vial size, but may contain more or less than the stated nominal capacity of the vial 120. For example, the 5 mL and 10 mL vials may contain about 4 mL and 9 mL respectively of liquid 230, while the 20 mL vial size may contain about 15 mL of liquid 230. The vial sizes are thus referenced as being indicative of approximate capacity (to a level below the shoulder of the vial) rather than necessarily indicating the actual contained volume of liquid 230 within such vials 120.
EXAMPLES
[0070] Some experiments have been conducted in order to verify that desirable oxygen gas levels in the headspace within a practical number of cycles of steps 320 to 330, and the results of these experiments are shown in the graphs of Figure 4 (for 5mL vials) and Figure 5 (for 20mL vials), the data of which is respectively tabulated in Table 1 and Table 2 below. Using the same lyophilizer apparatus, some of the experiments were conducted on small lab scale (i.e. about 10 vials) equipment, and some further larger lab scale experiments were conducted at a scale roughly ten times that of the small lab scale (i.e. 100-150 vials). Experiments were also conducted on a laboratory scale with 10 mL vials, the results of which are tabulated in Table 3 below. These 10 mL vials had a 20 mm (outside) diameter neck size.
[0071] Different temperature set points (applied both during reduced pressure and at 900 mbar) were used in the experiments conducted according to method 300, and it has been found that, within a range of 18 to 24°C, temperatures around 22°C and 24°C have been found to facilitate generally lower percentages of oxygen content in the headspace 232 and this is thought to be due to the decrease in oxygen solubility in solution at higher temperatures. It has also been found that greater numbers of cycles generally results in lower oxygen gas content in the headspace 232.
Table 1
Table 2
Table 3
[0072] The cycle conditions (according to the process of Figure 6) used for the 10 mL vial were:
1. Shelf Temp: 5°C 2. Equilibration: 30 mins 3. Pressure: 100 mbar 4. Vent Pressure (Nitrogen): 900 mbar
5. Shelf Temp: 22°C 6. Equilibration: 30 mins 7. Repeat Steps: 1 to 6 (6 times) [0073] It was observed that the process worked more efficiently with a 20 mm (OD) vial neck size, as opposed to a 13 mm (OD) vial neck size, in relation to the evaporation rate. Use of an igloo shaped stopper (i.e. having a single aperture wider than the two opposed apertures of other stoppers) was also found to reduce evaporation rate.
[0074] While theoretically a near-zero oxygen gas content in the headspace 232 could be achieved by performance of a large number of cycles (i.e. more than, say, 30) of steps 320 to 330 or 615 to 640, there are practical limitations on doing so, given that each cycle requires a time period for allowing equilibration of oxygen levels between the solution 230 and the headspace 232.
[0075] Some further larger scale trials (using 336 20ml vials and 1666 5 ml vials) were conducted for the method 600 described in relation to Figure 6. The modified methodology was employed in order to increase the likelihood of achieving a sufficiently low headspace oxygen level at commercial production scales.
[0076] A comparison of the headspace oxygen levels measured following the trials of methods 300 and 600 (Figures 3 and 6, respectively) is provided in Table 4 below. The results for "Fig. 3 Cycle" in Table 4 are drawn from the data in the columns labelled "1 Ox scale-up" of Tables 1 and 2 above.
Table 4
[0077] The headspace oxygen levels of 0.20% and 0.30% are averages, with the underlying data ranging above and below such levels. The lowest headspace oxygen level achieved in the trials of method 600 were close to 0.01%. [0078] All of the experiments were conducted using a lyophiliser apparatus made by Leybold-Heraeus GmbH having the following characteristics: « Inner chamber dimensions: 950 x 800 x 4 mm (diameter x length x thickness) « Product shelves: 7 shelves, 1 radiation plate 600 x 450 mm « Heat transfer medium: Silicone Oil Baysilon M3 « Vacuum pump nominal flow rate: 38 m2/hour (at atmospheric pressure) « Air inlet connected to nitrogen gas supply [0079] Measurement of the oxygen gas content was performed using a laser-based nondestructive testing technique. The level of dissolved oxygen in the solution was calculated from the measured oxygen gas content.
[0080] Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
[0081] Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.
[0082] The scope of the invention is defined by the claims. Some variation and/or modification may be made to the described embodiments without departing from the scope of the invention as broadly described. The described embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Claims 1. A preparation method, comprising: housing a plurality of vials (120) in a temperature-controlled environment, which is a lyophilisation apparatus (100) in which the condenser (118) is disabled, wherein the plurality of vials (120) each have a volume of a liquid or frozen substance therein and each defines an unfilled volume (232) therein, each vial (120) having a stopper (210) partially inserted into an opening (225) of the vial (120) so that gas can transfer between the unfilled volume (232) and an external volume; applying a vacuum to the environment to reduce pressure in the environment and in the unfilled volume of each vial (120) to a first pressure level; venting an inert gas into the environment to raise the pressure in the environment and in the unfilled volume (232) of each vial (120) to a second pressure level; allowing the vials (120) to rest in the environment at the second pressure level for a predetermined period; repeating the applying, venting and allowing at least once; and fully inserting the stopper(210) into each opening to seal each vial (120) after the repeating. 2. The method of claim 1, further comprising, prior to the fully inserting, once repeating only the applying and venting; or further comprising, after the fully inserting, capping each vial (120) with a cap to retain the stopper in each vial (120). 3. The method of claim 1 or claim 2, wherein the vials (120) are housed in a closed chamber (112) of the lyophilisation apparatus (100). 4. The method of any one of claims 1 to 3, further comprising, before the applying, controlling the temperature in the environment to be at or around a temperature set-point, optionally wherein the repeating comprises repeating the controlling. 5. The method of claim 4, wherein the temperature set-point is a first temperature set-point and the method further comprises, after the venting, controlling the temperature in the environment to be at or around a second temperature set-point that is different from the first temperature set-point, optionally wherein at least one of: the first temperature set-point is less than about 10°C, optionally less than about 8°C, optionally about 5°C; and the second temperature set-point is between about 17°C and about 26°C. 6. The method of claim 5, wherein the first temperature set-point is at or below a freezing temperature of the substance, optionally wherein the first pressure level is between about 0.0001 mbar and about 10 mbar; or wherein the temperature set-point is above a freezing temperature of the substance and wherein the first pressure level is greater than about 10 mbar and less about 500 mbar, optionally between about 10 mbar and about 300 mbar. 7. The method of claim 5 or claim 6, further comprising allowing the vials (120) to rest in the environment for another predetermined period at or around the second temperature set-point, optionally wherein the another period is between about 15 minutes and about 45 or 60 minutes, optionally between about 25 and about 35 minutes, optionally about 30 minutes. 8. The method of any one of claims 1 to 7, wherein at least one of: the second pressure level is between about 800 mbar and about 1000 mbar, optionally between about 900 mbar and 950 mbar; the housing is performed at ambient pressure; the repeating of the applying, venting and allowing is performed at least twice, optionally wherein the repeating of the applying, venting and allowing is performed at least eight times; the repeating is performed a number of times effective to reduce a dissolved oxygen content of the substance to about 0.4% or less; and the repeating is performed a number of times effective to reduce an oxygen gas content in the unfilled volume to less than or equal to about one percent, optionally wherein the repeating is performed a number of times effective to reduce the oxygen gas content in the unfilled volume to between about 0.01% and about 0.6%. 9. The method of any one of claims 1 to 8, wherein prior to the applying, the unfilled volume contains a substantially atmospheric level of oxygen gas and/or the substance contains a substantially atmospheric level of dissolved oxygen; or wherein a volume of the substance in liquid form remains substantially the same between the housing and the fully inserting, apart from a slight amount of evaporation. 10. The method of any one of claims 1 to 9, wherein the predetermined time period is between about 15 minutes and about 45 or 60 minutes, optionally between about 25 minutes and about 35 minutes; 11. The method of any one of claims 1 to 10, wherein at least one of: the substance in a liquid form comprises an oxygen-sensitive solution; the substance in a liquid form is an aqueous solution free of volatile constituents; and the substance in a liquid form is stable at temperatures between about 1°C and about 26°C and pressures between about 10 mbar and 1000 mbar.
Patentansprüche 1. Herstellungsverfahren, welches Folgendes umfasst:
Aufnehmen mehrerer Phiolen (120) in eine temperaturgesteuerte Umgebung, welche eine Lyophilisierungsvorrichtung (100) ist, worin die Kondensiervorrichtung (118) deaktiviert ist, wobei sich in den mehreren Phiolen (120)jeweils ein Volumen einer flüssigen oder gefrorenen Substanz befindet und in ihnen jeweils ein ungefülltes Volumen (232) definiert ist, wobei jede Phiole (120) einen Stopfen (210) aufweist, der teilweise in eine Öffnung (225) der Phiole (120) eingeführt ist, so dass ein Gas zwischen dem ungefüllten Volumen (232) und einem Außenvolumen übertragen werden kann,
Anwenden eines Vakuums auf die Umgebung, um den Druck in der Umgebung und im ungefüllten Volumen jeder Phiole (120) auf einen ersten Druckpegel zu verringern,
Einbringen eines Inertgases in die Umgebung, um den Druck in der Umgebung und im ungefüllten Volumen (232) jeder Phiole (120) auf einen zweiten Druckpegel zu erhöhen,
Ermöglichen, dass die Phiolen (120) während eines vorgegebenen Zeitraums beim zweiten Druckpegel in der Umgebung verbleiben,
Wiederholen des Anwendens, Einbringens und Ermöglichens wenigstens einmal und vollständiges Einführen des Stopfens (210) in jede Öffnung, um jede Phiole (120) nach der Wiederholung zu verschließen. 2. Verfahren nach Anspruch 1, wobei ferner vor dem vollständigen Einführen nur das Anwenden und Einbringen einmal wiederholt werden, oder wobei ferner nach dem vollständigen Einführen jede Phiole (120) mit einer Kappe verschlossen wird, um den Stopfen in jeder Phiole (120) zu halten. 3. Verfahren nach Anspruch 1 oder Anspruch 2, wobei die Phiolen (120) in eine geschlossene Kammer (112) der Lyophilisierungsvorrichtung (100) aufgenommen werden. 4. Verfahren nach einem der Ansprüche 1 bis 3, wobei ferner vor dem Anwenden die Temperatur in der Umgebung auf einen Temperatureinstellwert oder um diesen herum gesteuert wird, wobei das Wiederholen optional das Wiederholen der Steuerung umfasst. 5. Verfahren nach Anspruch 4, wobei der Temperatureinstellwert ein erster Temperatureinstellwert ist und beim Verfahren ferner nach dem Einbringen die Temperatur in der Umgebung auf einen zweiten Temperatureinstellwert, der vom ersten Temperatureinstellwert verschieden ist, oder um diesen herum gesteuert wird, wobei optional wenigstens eines der Folgenden der Fall ist: der erste Temperatureinstellwert ist kleiner als etwa 10 °C, optional kleiner als etwa 8 °C und beträgt optional etwa 5 °C und der zweite Temperatureinstellwert liegt zwischen etwa 17 °C und etwa 26 °C. 6. Verfahren nach Anspruch 5, wobei der erste Temperatureinstellwert bei oder unterhalb einer Gefriertemperatur der Substanz liegt, wobei der erste Druckpegel optional zwischen etwa 0,0001 mbar und etwa 10 mbar liegt oder wobei der Temperatureinstellwert oberhalb einer Gefriertemperatur der Substanz liegt und wobei der erste Druckpegel größer als etwa 10 mbar und kleiner als etwa 500 mbar ist und optional zwischen etwa 10 mbar und etwa 300 mbar liegt. 7. Verfahren nach Anspruch 5 oder Anspruch 6, wobei ferner ermöglicht wird, dass die Phiolen (120) während eines anderen vorgegebenen Zeitraums beim zweiten Temperatureinstellwert oder um diesen herum verbleiben, wobei der andere Zeitraum optional zwischen etwa 15 Minuten und etwa 45 oder 60 Minuten, optional zwischen etwa 25 und etwa 35 Minuten und optional bei etwa 30 Minuten liegt. 8. Verfahren nach einem der Ansprüche 1 bis 7, wobei wenigstens eines der Folgenden der Fall ist: der zweite Druckpegel liegt zwischen etwa 800 mbar und etwa 1000 mbar, optional zwischen etwa 900 mbar und 950 mbar, das Aufnehmen geschieht beim Umgebungsdruck, das Wiederholen des Anwendens, Einbringens und Ermöglichens wird wenigstens zwei Mal ausgeführt, wobei das Wiederholen des Anwendens, Einbringens und Ermöglichens optional wenigstens acht Mal ausgeführt wird, das Wiederholen wird mit einer Anzahl ausgeführt, die wirksam ist, um den Gehalt gelösten Sauerstoffs in der Substanz auf höchstens etwa 0,4 % zu verringern, und das Wiederholen wird mit einer Anzahl ausgeführt, die wirksam ist, um den Sauerstoffgasgehalt im ungefüllten Volumen auf höchstens etwa 1 % zu verringern, wobei das Wiederholen optional mit einer Anzahl ausgeführt wird, die wirksam ist, um den Sauerstoffgasgehalt im ungefüllten Volumen auf einen Wert zwischen etwa 0,01 % und etwa 0,6 % zu verringern. 9. Verfahren nach einem der Ansprüche 1 bis 8, wobei vor dem Anwenden das ungefüllte Volumen im Wesentlichen ein atmosphärisches Niveau von Sauerstoffgas enthält und/oderdie Substanz ein im Wesentlichen atmosphärisches Niveau gelösten Sauerstoffs enthält oder wobei das Volumen der Substanz in flüssiger Form zwischen dem Aufnehmen und dem vollständigen Einführen, abgesehen von einer geringen Verdampfungsmenge, im Wesentlichen gleich bleibt. 10. Verfahren nach einem der Ansprüche 1 bis 9, wobei der vorgegebene Zeitraum zwischen etwa 15 Minuten und etwa 45 oder 60 Minuten, optional zwischen etwa 25 Minuten und etwa 35 Minuten liegt. 11. Verfahren nach einem der Ansprüche 1 bis 10, wobei wenigstens eines der Folgenden der Fall ist: die Substanz in flüssiger Form umfasst eine für Sauerstoff empfindliche Lösung, die Substanz in flüssiger Form ist eine von flüchtigen Bestandteilen freie wässrige Lösung, und die Substanz in flüssiger Form ist bei Temperaturen zwischen etwa 1 °C und etwa 26 °C und bei Drücken zwischen etwa 10 mbar und 1000 mbar stabil.
Revendications 1. Procédé de préparation, comprenant : le logement d’une pluralité de flacons (120) dans un environnement régulé en température, qui est un appareil de lyophilisation (100) dans lequel le condenseur (118) est mis hors service, la pluralité de flacons (120) contenant chacun un volume d’un liquide ou d’une substance congelée et délimitant chacun un volume intérieur non rempli (232) délimité, chaque flacon (120) ayant un bouchon (210) partiellement engagé dans une ouverture (225) du flacon (120) de sorte qu’un gaz peut passer entre le volume non rempli (232) et un volume externe ; l’application d’un vide à l’environnement pour abaisser la pression dans l’environnement et dans le volume non rempli de chaque flacon (120) à un premier niveau de pression ; le passage d’un gaz inerte dans l’environnement pour faire monter la pression dans l’environnement et dans le volume non rempli (232) de chaque flacon (120) à un second niveau de pression ; le fait de laisser les flacons (120) reposer dans l’environnement au second niveau de pression pendant une durée prédéfinie ; la répétition de l’application, du passage de gaz et du fait de laisser au moins une fois ; et l’engagement total du bouchon (210) dans chaque ouverture pourfermer hermétiquement chaque flacon (120) après la répétition. 2. Procédé selon la revendication 1, comprenant en outre, avant l’engagement total, la répétition une fois uniquement de l’application et du passage de gaz ; ou comprenant en outre, avant l’engagement total, le capsulage de chaque flacon (120) avec une capsule pour retenir le bouchon dans chaque flacon (120). 3. Procédé selon la revendication 1 ou la revendication 2, dans lequel les flacons (120) sont logés dans une chambre fermée (112) de l’appareil de lyophilisation (100). 4. Procédé selon l’une quelconque des revendications 1 à 3, comprenant en outre, avant l’application, la régulation de la température dans l’environnement pour qu’elle soit à un point de consigne de température ou autour de celui-ci, éventuellement dans lequel la répétition comprend la répétition de la régulation. 5. Procédé selon la revendication 4, dans lequel le point de consigne de température est un premier point de consigne de température et le procédé comprend en outre, après le passage de gaz, la régulation de la température dans l’environnement pour qu’elle soit à un second point de consigne de température ou autourde celui-ci qui est différent du premier point de consigne de température, éventuellement dans lequel : le premier point de consigne de température est inférieur à environ 10 °C, éventuellement inférieur à environ 8 °C, éventuellement il est d’environ 5 °C ; et/ou le second point de consigne de température est compris entre environ 17 °C et environ 26 °C. 6. Procédé selon la revendication 5, dans lequel le premier point de consigne de température est à une température de congélation de la substance ou au-dessous de celle-ci, éventuellement dans lequel le premier niveau de pression est compris entre environ 0,0001 mbar et environ 10 mbar ; ou dans lequel le point de consigne de température est au-dessus d’une température de congélation de la substance et dans lequel le premier niveau de pression est supérieur à environ 10 mbar et inférieur à environ 500 mbar, éventuellement il est compris entre environ 10 mbar et environ 300 mbar. 7. Procédé selon la revendication 5 ou la revendication 6, comprenant en outre le fait de laisser les flacons (120) reposer dans l’environnement pendant une autre durée prédéfinie au second point de consigne de température ou autour de celui-ci, éventuellement dans lequel l’autre durée est comprise entre environ 15 minutes et environ 45 ou 60 minutes, éventuellement entre environ 25 et environ 35 minutes, éventuellement elle est d’environ 30 minutes. 8. Procédé selon l’une quelconque des revendications 1 à 7, dans lequel : le second niveau de pression est compris entre environ 800 mbar et environ 1000 mbar, éventuellement entre environ 900 mbar et 950 mbar ; le logement est effectué à pression ambiante ; la répétition de l’application, du passage de gaz et du fait de laisser est effectuée au moins deux fois, éventuellement dans lequel la répétition de l’application, du passage de gaz et du fait de laisser est effectuée au moins huit fois ; la répétition est effectuée un nombre de fois efficace pour réduire une teneur en oxygène dissous de la substance à environ 0,4 % ou moins ; et/ou la répétition est effectuée un nombre de fois efficace pour réduire une teneur en oxygène gazeux dans le volume non rempli à environ un pour cent ou moins, éventuellement dans lequel la répétition est effectuée un nombre de fois efficace pour réduire la teneur en oxygène gazeux dans le volume non rempli à entre environ 0,01 % et environ 0,6 %. 9. Procédé selon l’une quelconque des revendications 1 à 8, dans lequel avant l’application, le volume non rempli contient un niveau pratiquement atmosphérique d’oxygène gazeux et/ou la substance contient un niveau pratiquement atmosphérique d’oxygène dissous ; ou dans lequel un volume de la substance sous forme liquide reste pratiquement le même entre le logement et l’engagement total, à part une légère quantité d’évaporation. 10. Procédé selon l’une quelconque des revendications 1 à 9, dans lequel la durée prédéfinie est comprise entre environ 15 minutes et environ 45 ou 60 minutes, éventuellement entre environ 25 minutes et environ 35 minutes. 11. Procédé selon l’une quelconque des revendications 1 à 10, dans lequel : la substance sous une forme liquide comprend une solution sensible à l’oxygène ; la substance sous une forme liquide est une solution aqueuse exempte de constituants volatils ; et/ou la substance sous une forme liquide est stable à des températures comprises entre environ 1 °C et environ 26 °C et des pressions comprises entre environ 10 mbar et 1000 mbar.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • WO 2006002122 A2 [0005] · US 2007062162 A1 [0006]
Claims (7)
- EF2S0140S Eljárás és rendszer fiolák előállítóéra1, Előállítási eljárás, amely a következőket tartalmazza; számos fiola (120) behelyezéséi egy szabályozott hőmérsékletű környezetbe, amely egy liottlizáló berendezés (1Ö0), amelyben a kondönzáíő szerkezet (118) üzemen kívül van helyezve, és a számos fiola (120) mindegyikében egy folyékony vagy fagyott anyag-volumen van, és mindegyikben egy töltetlen volumen (232) van definiálva, és mindegyik fiolának (120) van egy dugója (21 ö), amely részlegesen be van vezetve a fiola (120) egy nyílásába (22S), úgy hogy gázátadás mehet végbe a töltetlen volumen (232) és egy külső volumen között; a környezet vákuum alá helyezését annak érdekében, hogy a nyomást a környezetben és minden egyes fiola (120) töltetlen volumenében egy első nyomásszintre csökkenjen; egy inért gáz betáplálását a környezetbe annak érdekében, hogy a nyomás egy második nyomásszintre növekedjék a környezettjén és mindegyik fiola (120) töttefien volumenében (232); lehetővé tételét annak, hogy a fiolák (120) egy előre meghatározott Időtartam alatt a második nyomásszinten maradjanak a környezetben; a vákuum alá helyezést, a betáplálást és a lehetővé tételt legalább egyszer megismételjük; és teljesen bevezetjük a dugót (210) minden egyes nyilasba annak érdekében, hogy az ismétlés után minden egyes fiola (120) zárva legyen,
- 2. Az 1. Igénypont szerinti eljárás, ahol továbbá a teljes bevezetés előtt csak a vákuum alá helyezést és a betáplálást egyszer megismételjük; vagy továbbá a érdekében, hogy a dugót minden fiolában (120) megtartsuk,
- 3, Az 1, vagy 2. igénypont szerinti eljárás, ahol a fiolák (120) a iiofilizálö berendezés (100) egy zárt kamrájában (112) vannak elhelyezve.
- 4. Az 1-3. igénypontok bármelyike szerinti eljárás, ahol továbbá a vákuum alá helyezést megelőzően a hőmérsékletet a környezetben úgy vezéreljük, hogy egy beállított hőmérséklet-értéken, vagy akörül legyen, ahol tetszés szerint ez Ismétlés a vezérlés ismétlését foglalja magába. ö, A 4. Igénypont szerinti eljárás, ahol a beállított hemérséklet érték egy első beállított hőmérséklet érték, és az eljárás során továbbá a betáplálást kővetően a hőmérsékletet a környezetben égy vezéreljük, hegy egy második beállított héméfsékíeMrriéken, vagy akörül legyen, amely eltér az első beállított hőmérséklet-éttékből, ahol választhatóan legalább egy egyike a helyzet a következőknek'; az. első beállított hőmérséklet-érték kisebb, mint körülbelül 10 °0, optimálisan kisebb mint körülbelül 8 °C, optimálisén mintegy 6 °C> és a második beállított hőmérséklet-érték mintegy 17 és mintegy 26 között van.
- 8. Az 5. Igénypont szerinti eljárás, ahol az első beállífett hőmérséklet-érték az anyag egy fagyasztásí hőmérsékletén vagy az alatt van; ahol az első nyomásszlnt szabadon válásztbatőan körülbelül 0,0001 mbar és körülbelül 10 mbar között van; vagy ahol ez előre beállított hőmérséklet-értek az anyag egy fagyasztás! hőmérséklete felett van, és ahol az első nyomásszint nagyobb, mint körülbelül 10 mbar és kisebb, mint körülbelül 500 mbar, és szabadon választhatóan körülbelül 10 mbar kés körülbelül 300 mbar között van. hőmérséklet értéken, vagy körülbelül ezen maradjanak; ahol e második időtartam szabadon megválasxthafoan körülbelül 16 perc és körülbelül 4b vagy 60 perc között, szabadon megválaszthatóan körülbelül 26 és körülbelül 36 pere között van, szabadon megválaazíhatőan körülbelül 30 perc,8. Az 1-7 Igénypontok bármelyike szerinti eljárás, ahol a következők legalább egyike megvalósul: a második nyomásszlnt körülbelül 800 mbar és körülbelül 1000 mbar között, szabadon választhatóan körülbelül $106 mbar és körülbelül 980 mbar között van; a behelyezést környezeti hőmérsékleten bajtjok végre; a vákuum alá helyezést, a betáplálást kétszer Ismételjük; ahol a vákuum alá helyezést, a betáplálást és a lehetővé tételt legalább nyolcszor ismételjük; az hegy az oldott oxigén-tartalom a töltetlen volumenben körülbelül 0,4 %-ra. vagy kisebb értékre csökkenjen; és az ismétlést annyiszor hajtfük végre, hogy .hatékony legyen annak érdekében, hegy az oxigén gáz-tartatom a töltetlen volumenben körülbelül egy százalék vagy kevesebb legyen, mlmetietf az Ismétlést szabadén választhatóan annyiszor hajtjuk végre, hogy hatásos legyen annak elérése érdekében, hogy az oxigén gáz-tartatom a töltetlen volumenben körülbelül 0,01 % és körülbelül 1X8 % közötti értékre csökkenjen.0, Az 1-8., igénypontok bármelyike szerinti eljárás, ahol a vákuum alá helyezést megelőzően a töltetlen volumen egy lényegében atmoszférikus oxigén gáz-szintet tartalmaz, és/vagy az anyag egy lényegében atmoszférikus oldott oxigénszintet tartalmaz, vagy ahol az anyag volumene folyékony formában a behelyezés és a. teljes bevezetés között, eltekintve egy csekély mennyiségű elpárolgástól, lényegében ugyanaz marad,
- 10, Az 1-9, igénypontok bármelyike szerinti eljárás, ahol ez előre meghatározón Időtartam körülbelül 15 perc és körülbelül 46 vagy 50 perc között, szabjon választhatóan körülbelül 25 perc és körülbelül 35 perc közölt van.
- 11 . Az l-1ü igényontok bármelyike szerinti eljárás, ahol a kővetkezők legalább egyike megválóéul: az anyag folyékony formában illékony összetevőktől mentes vizes oldal; az anyag folyékony fontában körülbelül i és körülbelül 26 Í!C hőmérsékleten, és körülbelül 10 mbar és körülbelül 1ÖÖÖ mbar közötti nyomáson stabil.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37131810P | 2010-08-06 | 2010-08-06 | |
US201161434928P | 2011-01-21 | 2011-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
HUE035235T2 true HUE035235T2 (hu) | 2018-05-02 |
Family
ID=45558864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HUE11813965A HUE035235T2 (hu) | 2010-08-06 | 2011-08-05 | Eljárás és rendszer fiolák elõállítására |
Country Status (20)
Country | Link |
---|---|
US (1) | US10364053B2 (hu) |
EP (2) | EP2601105B1 (hu) |
JP (1) | JP5993853B2 (hu) |
KR (2) | KR20130103489A (hu) |
CN (3) | CN103770967B (hu) |
AU (2) | AU2011286179B2 (hu) |
BR (1) | BR112013002936B1 (hu) |
CA (1) | CA2807601C (hu) |
CY (1) | CY1119634T1 (hu) |
DK (1) | DK2601105T3 (hu) |
ES (2) | ES2773781T3 (hu) |
HU (1) | HUE035235T2 (hu) |
MX (1) | MX345215B (hu) |
MY (1) | MY166078A (hu) |
NZ (1) | NZ606713A (hu) |
PL (1) | PL2601105T3 (hu) |
PT (1) | PT2601105T (hu) |
SG (2) | SG187766A1 (hu) |
SI (1) | SI2601105T1 (hu) |
WO (1) | WO2012016301A1 (hu) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8544665B2 (en) * | 2011-04-04 | 2013-10-01 | Genesis Packaging Technologies | Cap systems and methods for sealing pharmaceutical vials |
CN103173680A (zh) * | 2013-03-07 | 2013-06-26 | 上海大学 | 一种高铬含铝铁素体不锈钢 |
US20150211950A1 (en) * | 2014-01-29 | 2015-07-30 | Tokitae Llc, | Methods, systems, and devices for positive pressure pharmaceutical vials |
CN104229188B (zh) * | 2014-08-28 | 2016-08-17 | 上海上药新亚药业有限公司 | 一种全压塞抗生素瓶梯度法抽真空工艺及装置 |
LU92648B1 (en) * | 2015-02-04 | 2016-08-05 | Project Pharmaceutics Gmbh | Method and device for optimized freeze-drying of a pharmaceutical product |
WO2018002956A1 (en) * | 2016-06-27 | 2018-01-04 | Sun Pharmaceutical Industries Ltd. | Stable injectable solution of pemetrexed |
US10219983B2 (en) | 2016-08-03 | 2019-03-05 | Genesis Packaging Technologies | Cap systems with piercing member for pharmaceutical vials |
CN107539633B (zh) * | 2016-09-05 | 2019-12-13 | 北京卫星环境工程研究所 | 便携式户外无水氧环境获得转运装置 |
CN106742757A (zh) * | 2016-12-31 | 2017-05-31 | 广东雨嘉水产食品有限公司 | 一种冰冻罗非鱼保鲜箱的箱内结构 |
US20180306763A1 (en) * | 2017-04-21 | 2018-10-25 | Mks Instruments, Inc. | End point detection for lyophilization |
TW201919582A (zh) * | 2017-07-24 | 2019-06-01 | 美商再生元醫藥公司 | 穩定化之抗體組合物及其製法 |
WO2019063772A1 (en) | 2017-09-28 | 2019-04-04 | F. Hoffmann-La Roche Ag | BOTTLE CAP FOR LYOPHILIZATION BOTTLE AND METHOD FOR CLOSING A LYOPHILIZATION BOTTLE |
CN107814495B (zh) * | 2017-12-06 | 2024-03-22 | 国家海洋技术中心 | 深海耐压玻璃浮子真空封装装置 |
CN108216936A (zh) * | 2017-12-29 | 2018-06-29 | 重庆维得鲜农业发展有限公司 | 杏鲍菇储存箱 |
FR3083721B1 (fr) * | 2018-07-12 | 2020-12-18 | Aptar France Sas | Dispositif de distribution de produit fluide et son procede de remplissage et de bouchage. |
FR3093328B1 (fr) * | 2019-02-28 | 2021-02-19 | Bonduelle Sa Ets | Procédé de conditionnement de produits |
US11732964B2 (en) | 2020-04-15 | 2023-08-22 | Navinta Iii Inc | Lyophilization promoting element |
EP4105585B1 (en) * | 2021-06-18 | 2023-10-11 | Cryogenic And Vacuum Systems, Sia | Freeze-drying method and apparatus |
US11536512B1 (en) * | 2021-09-16 | 2022-12-27 | Thomas John Harkins, JR. | Apparatus and method for lyophilization |
US11723870B1 (en) | 2022-01-31 | 2023-08-15 | Thomas John Harkins, JR. | Assembly, apparatus and method for lyophilization |
US11957790B1 (en) | 2022-01-31 | 2024-04-16 | Thomas John Harkins, JR. | Combination lyophilization and dispensing syringe assembly and methods of using same |
US11851221B2 (en) * | 2022-04-21 | 2023-12-26 | Curium Us Llc | Systems and methods for producing a radioactive drug product using a dispensing unit |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3025991A (en) * | 1960-05-23 | 1962-03-20 | Carron Products Co | Bottle stopper |
US3146077A (en) * | 1961-07-20 | 1964-08-25 | Pennsalt Chemicals Corp | Freeze drying apparatus |
US3292342A (en) * | 1964-01-16 | 1966-12-20 | Copiague Res And Dev Company | Device for vacuum sealing |
US3537233A (en) * | 1967-08-15 | 1970-11-03 | Hull Corp | Container stoppering apparatus |
US3668819A (en) * | 1971-02-08 | 1972-06-13 | Pennwalt Corp | Vacuum drying and stoppering apparatus |
USRE28085E (en) * | 1972-08-07 | 1974-07-30 | Container stoppering apparatus | |
US3996725A (en) * | 1973-05-21 | 1976-12-14 | The Dow Chemical Company | Apparatus for filling and hermetically sealing thermoplastic containers under vacuum |
SE407778B (sv) * | 1977-09-06 | 1979-04-23 | Astra Laekemedel Ab | Forpackning och forfarande for skyddande av lekemedelsaktiva losningar innehallande oxidativt nedbrytbara substanser |
US4142303A (en) * | 1977-09-12 | 1979-03-06 | Fts, Systems, Inc. | Freeze drying stoppering apparatus |
US4161857A (en) * | 1978-05-12 | 1979-07-24 | Fts Systems, Inc. | Freeze drying container with manual stoppering |
US4286389A (en) * | 1980-03-03 | 1981-09-01 | Ims Limited | Apparatus and method for lyophilizing aseptic substances |
US5398426A (en) * | 1993-12-29 | 1995-03-21 | Societe' De Gestion Et De Diffusion North America, Inc. | Process and apparatus for desiccation |
US5597530A (en) * | 1994-08-18 | 1997-01-28 | Abbott Laboratories | Process for prefilling and terminally sterilizing syringes |
DE4445969C1 (de) * | 1994-12-22 | 1996-03-14 | Schott Glaswerke | Spritzenzylinder für eine Zweikammer-Fertigspritze, Zweikammer-Fertigspritze und Verfahren zum Herstellen und Füllen derselben |
AU3561297A (en) * | 1996-07-11 | 1998-02-09 | Pharmacia & Upjohn Ab | Method and device for sealing and connecting a container |
JPH10155875A (ja) * | 1996-11-27 | 1998-06-16 | Material Eng Tech Lab Inc | プラスチック容器を用いた凍結乾燥品及びその製造方法 |
GB9701413D0 (en) * | 1997-01-24 | 1997-03-12 | Smithkline Beecham Biolog | Novel device |
US6274169B1 (en) * | 1999-08-02 | 2001-08-14 | Abbott Laboratories | Low oxygen content compostions of 1α, 25-dihydroxycholecalciferol |
US6211169B1 (en) * | 1999-09-29 | 2001-04-03 | Aesgen, Inc. | Stable calcitriol solution for packaging into vials |
US7707807B2 (en) * | 2004-03-08 | 2010-05-04 | Medical Instill Technologies, Inc. | Apparatus for molding and assembling containers with stoppers and filling same |
JP4601127B2 (ja) * | 2000-06-06 | 2010-12-22 | 住友ゴム工業株式会社 | 医療用ゴム栓 |
US6564471B1 (en) * | 2001-03-12 | 2003-05-20 | S. P. Industries, Inc., The Virtis Division | Method and apparatus for freeze-drying |
US6802828B2 (en) * | 2001-11-23 | 2004-10-12 | Duoject Medical Systems, Inc. | System for filling and assembling pharmaceutical delivery devices |
WO2004037300A2 (en) * | 2002-10-23 | 2004-05-06 | William Merrill | Systems, devices, and methods for aseptic processing |
US7753085B2 (en) * | 2002-12-03 | 2010-07-13 | Forhealth Technologies, Inc. | Automated drug preparation apparatus including automated drug reconstitution |
WO2004096113A2 (en) * | 2003-04-28 | 2004-11-11 | Medical Instill Technologies, Inc. | Container with valve assembly for filling and dispensing substances, and apparatus and method for filling |
JP2007511590A (ja) * | 2003-11-17 | 2007-05-10 | ビーティージー・インターナショナル・リミテッド | 治療用フォーム |
CN103357199B (zh) | 2003-12-30 | 2019-02-01 | 帝斯曼知识产权资产管理有限公司 | 脱气方法 |
JP2005231674A (ja) * | 2004-02-19 | 2005-09-02 | Asahi Breweries Ltd | 充填装置 |
US7096896B2 (en) * | 2004-03-05 | 2006-08-29 | Medical Instill Technologies, Inc. | Apparatus and method for needle filling and laser resealing |
US7229603B2 (en) * | 2004-06-17 | 2007-06-12 | Anazaohealth Corporation | Stablilized and lyophilized radiopharmaceutical agents |
AU2005312310A1 (en) * | 2004-12-03 | 2006-06-08 | Duoject Medical Systems Inc. | Cartridge, device and method for pharmaceutical storage, mixing and delivery |
ES2371557T3 (es) * | 2005-08-11 | 2012-01-05 | Medimop Medical Projects Ltd. | Dispositivos de transferencia de fármacos líquidos para un correcto ajuste a presión a prueba de fallos en viales medicinales. |
US8148356B2 (en) * | 2005-08-24 | 2012-04-03 | Cumberland Pharmaceuticals, Inc. | Acetylcysteine composition and uses therefor |
US20070062162A1 (en) * | 2005-09-19 | 2007-03-22 | Martin Lehmann | Method and apparatus for cleaning containers to be sealed and containing a filler from oxygen gas |
EP1971531B1 (fr) | 2005-11-30 | 2009-08-19 | Biocorp Recherche et Developpement | Dispositif de bouchage pour un recipient et recipient equipe d'un tel dispositif |
ES2403645T5 (es) * | 2006-06-22 | 2020-11-16 | Biocompatibles Uk Ltd | Producto farmacéutico rehidratable |
FR2912384B1 (fr) * | 2007-02-09 | 2009-04-10 | Biocorp Rech Et Dev Sa | Dispositif de bouchage pour un recipient, recipient equipe d'un tel dispositif et procede de fermeture d'un lot de tel recipient |
US20090001042A1 (en) * | 2007-06-26 | 2009-01-01 | Robert Sever | Container-closure system for use in lyophilization applications |
DE102007042218A1 (de) * | 2007-09-05 | 2009-03-12 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur sterilen oder aseptischen Handhabung von Behältnissen |
RU2485033C9 (ru) * | 2007-12-10 | 2013-09-10 | Астразенека Аб | Колпачок пробирки 187 |
EP2090324A1 (de) * | 2008-02-14 | 2009-08-19 | Roche Diagnostics GmbH | Transfercontainer für pharmazeutische Behältnisse |
CN201245424Y (zh) | 2008-03-11 | 2009-05-27 | 北京天利联合科技有限公司 | 机械板层压塞升降控制装置 |
DE102008030267B3 (de) * | 2008-06-19 | 2010-01-28 | Arzneimittel Gmbh Apotheker Vetter & Co. Ravensburg | Verfahren zum Befüllen von Doppelkammersystemen in vorsterilisierbaren Trägersystemen und vorsterilisierbares Trägersystem |
DE102008030268B3 (de) * | 2008-06-19 | 2010-02-04 | Arzneimittel Gmbh Apotheker Vetter & Co. Ravensburg | Verfahren zum Befüllen von Doppelkammersystemen in vorsterilisierbaren Trägersystemen und vorsterilisierbares Trägersystem |
US8413410B2 (en) * | 2010-04-30 | 2013-04-09 | Parata Systems, Llc | Devices for capping vials useful in system and method for dispensing prescriptions |
IT1399863B1 (it) * | 2010-05-05 | 2013-05-09 | Marchesini Group Spa | Dispositivo di tappatura |
DK2577205T3 (en) * | 2010-05-27 | 2023-04-11 | Johnson Controls Tyco IP Holdings LLP | Cooling system comprising thermosyphon cooler and cooling tower and method for operating such cooling system |
IT1400953B1 (it) * | 2010-06-14 | 2013-07-05 | Marchesini Group Spa | Macchina per il confezionamento di flaconi |
IT1401254B1 (it) * | 2010-06-14 | 2013-07-18 | Marchesini Group Spa | Macchina per il riempimento e la tappatura di flaconi |
JP4638553B1 (ja) * | 2010-08-09 | 2011-02-23 | 株式会社アルテ | 二室式容器兼用注射器の製造方法及びフロントストッパー |
US9533780B2 (en) * | 2010-09-06 | 2017-01-03 | Tetra Laval Holdings & Finance S.A. | Apparatus for sealing an open end of a container |
FR2967655B1 (fr) * | 2010-11-24 | 2014-03-14 | Biocorp Rech Et Dev | Dispositif de bouchage d'un recipient, recipient equipe d'un tel dispositif et procede de fermeture d'un lot de tels recipients |
FR2967656B1 (fr) * | 2010-11-24 | 2012-12-07 | Biocorp Rech Et Dev | Dispositif de bouchage d'un recipient et recipient equipe d'un tel dispositif |
US20120152791A1 (en) * | 2010-12-20 | 2012-06-21 | Air Liquide Industrial U.S. Lp | Method for effective de-oxygenation of product containers for use as containers for oxygen sensitive products |
US8544665B2 (en) * | 2011-04-04 | 2013-10-01 | Genesis Packaging Technologies | Cap systems and methods for sealing pharmaceutical vials |
-
2011
- 2011-08-05 KR KR1020137004592A patent/KR20130103489A/ko not_active Application Discontinuation
- 2011-08-05 HU HUE11813965A patent/HUE035235T2/hu unknown
- 2011-08-05 WO PCT/AU2011/001013 patent/WO2012016301A1/en active Application Filing
- 2011-08-05 MY MYPI2013000378A patent/MY166078A/en unknown
- 2011-08-05 CN CN201410045904.6A patent/CN103770967B/zh active Active
- 2011-08-05 CN CN201610887256.8A patent/CN106966036B/zh active Active
- 2011-08-05 EP EP11813965.8A patent/EP2601105B1/en active Active
- 2011-08-05 BR BR112013002936-6A patent/BR112013002936B1/pt active IP Right Grant
- 2011-08-05 US US13/814,719 patent/US10364053B2/en active Active
- 2011-08-05 SG SG2013009485A patent/SG187766A1/en unknown
- 2011-08-05 PL PL11813965T patent/PL2601105T3/pl unknown
- 2011-08-05 EP EP17166230.7A patent/EP3208202B1/en active Active
- 2011-08-05 ES ES17166230T patent/ES2773781T3/es active Active
- 2011-08-05 MX MX2013001454A patent/MX345215B/es active IP Right Grant
- 2011-08-05 CA CA2807601A patent/CA2807601C/en active Active
- 2011-08-05 ES ES11813965.8T patent/ES2651489T3/es active Active
- 2011-08-05 AU AU2011286179A patent/AU2011286179B2/en active Active
- 2011-08-05 KR KR1020187030312A patent/KR102027722B1/ko active IP Right Grant
- 2011-08-05 PT PT118139658T patent/PT2601105T/pt unknown
- 2011-08-05 CN CN201180038386.XA patent/CN103209898B/zh active Active
- 2011-08-05 JP JP2013522059A patent/JP5993853B2/ja active Active
- 2011-08-05 SG SG10201506066XA patent/SG10201506066XA/en unknown
- 2011-08-05 SI SI201131344T patent/SI2601105T1/sl unknown
- 2011-08-05 DK DK11813965.8T patent/DK2601105T3/en active
- 2011-08-05 NZ NZ60671311A patent/NZ606713A/en unknown
-
2016
- 2016-07-28 AU AU2016208368A patent/AU2016208368B2/en active Active
-
2017
- 2017-11-30 CY CY20171101253T patent/CY1119634T1/el unknown
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HUE035235T2 (hu) | Eljárás és rendszer fiolák elõállítására | |
EP2812053B1 (en) | Device for accommodating a freeze-dried pharmaceutical product and method of manufacturing a sealed vessel accommodating a freeze-dried pharmaceutical product | |
US10809002B2 (en) | Method and device for optimized freeze-drying of a pharmaceutical product | |
JP2013532566A5 (hu) | ||
US10794632B2 (en) | Vented cover plate for an array of syringes | |
WO2012136313A2 (de) | Sterilisation von medizinischen instrumenten für die injektion und/oder instillation | |
JP4536825B1 (ja) | 二室式容器兼用注射器の製造方法及び製剤入りスリーブ | |
US11674751B2 (en) | Lyophilisation container | |
US20040127557A1 (en) | Pharmaceutical oxaliplatinum preparation for parenteral administration and method for obtaining same | |
JP2018042997A (ja) | 凍結乾燥機械用のチャンバ | |
US2727665A (en) | Liquid filling of therapeutic substances | |
US20210062130A1 (en) | Biological culture unit | |
DE20214474U1 (de) | Anlage zum Lyophilisieren von Lösungen, Suspensionen und Dispersionen | |
WO2016082714A1 (zh) | 具有长期稳定性的不含抗氧化剂的药物注射溶液的制备方法 | |
AT509703A4 (de) | Verfahren zur lagerung und zum transport eines gefriergetrockneten physiologisch wirksamen wirkstoffes sowie einer flüssigkeit |