HK1178218A1 - Method for growing a group (iii) metal nitride film iii - Google Patents
Method for growing a group (iii) metal nitride film iiiInfo
- Publication number
- HK1178218A1 HK1178218A1 HK13105021.7A HK13105021A HK1178218A1 HK 1178218 A1 HK1178218 A1 HK 1178218A1 HK 13105021 A HK13105021 A HK 13105021A HK 1178218 A1 HK1178218 A1 HK 1178218A1
- Authority
- HK
- Hong Kong
- Prior art keywords
- iii
- growing
- group
- nitride film
- metal nitride
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/10—Heating of the reaction chamber or the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4404—Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/452—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45587—Mechanical means for changing the gas flow
- C23C16/45589—Movable means, e.g. fans
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45587—Mechanical means for changing the gas flow
- C23C16/45591—Fixed means, e.g. wings, baffles
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/10—Heating of the reaction chamber or the substrate
- C30B25/105—Heating of the reaction chamber or the substrate by irradiation or electric discharge
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02389—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02469—Group 12/16 materials
- H01L21/02472—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61391004P | 2004-09-27 | 2004-09-27 | |
AU2005903494A AU2005903494A0 (en) | 2005-07-01 | Heater apparatus | |
AU2005904919A AU2005904919A0 (en) | 2005-09-07 | Method and apparatus for growing a metal nitride film of improved quality using a remote plasma enhanced deposition (RPECVD) process |
Publications (1)
Publication Number | Publication Date |
---|---|
HK1178218A1 true HK1178218A1 (en) | 2013-09-06 |
Family
ID=36118504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HK13105021.7A HK1178218A1 (en) | 2004-09-27 | 2013-04-25 | Method for growing a group (iii) metal nitride film iii |
Country Status (8)
Country | Link |
---|---|
US (1) | US8298624B2 (xx) |
EP (2) | EP1809788A4 (xx) |
JP (1) | JP4468990B2 (xx) |
KR (1) | KR101352150B1 (xx) |
BR (1) | BRPI0516136A (xx) |
CA (1) | CA2581626C (xx) |
HK (1) | HK1178218A1 (xx) |
WO (1) | WO2006034540A1 (xx) |
Families Citing this family (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4631681B2 (ja) * | 2005-12-05 | 2011-02-16 | 日立電線株式会社 | 窒化物系半導体基板及び半導体装置 |
US20070215195A1 (en) * | 2006-03-18 | 2007-09-20 | Benyamin Buller | Elongated photovoltaic cells in tubular casings |
US20070240631A1 (en) * | 2006-04-14 | 2007-10-18 | Applied Materials, Inc. | Epitaxial growth of compound nitride semiconductor structures |
KR100809243B1 (ko) * | 2006-04-27 | 2008-02-29 | 삼성전기주식회사 | 질화물막 제조방법 및 질화물 구조 |
US20080092819A1 (en) * | 2006-10-24 | 2008-04-24 | Applied Materials, Inc. | Substrate support structure with rapid temperature change |
US20080314311A1 (en) * | 2007-06-24 | 2008-12-25 | Burrows Brian H | Hvpe showerhead design |
CA2638191A1 (en) | 2007-07-20 | 2009-01-20 | Gallium Enterprises Pty Ltd | Buried contact devices for nitride-based films and manufacture thereof |
US20090149008A1 (en) * | 2007-10-05 | 2009-06-11 | Applied Materials, Inc. | Method for depositing group iii/v compounds |
US8217498B2 (en) | 2007-10-18 | 2012-07-10 | Corning Incorporated | Gallium nitride semiconductor device on SOI and process for making same |
US20090194026A1 (en) * | 2008-01-31 | 2009-08-06 | Burrows Brian H | Processing system for fabricating compound nitride semiconductor devices |
US20100006023A1 (en) * | 2008-07-11 | 2010-01-14 | Palo Alto Research Center Incorporated | Method For Preparing Films And Devices Under High Nitrogen Chemical Potential |
US20100086703A1 (en) | 2008-10-03 | 2010-04-08 | Veeco Compound Semiconductor, Inc. | Vapor Phase Epitaxy System |
US20100139554A1 (en) * | 2008-12-08 | 2010-06-10 | Applied Materials, Inc. | Methods and apparatus for making gallium nitride and gallium aluminum nitride thin films |
CA2653581A1 (en) | 2009-02-11 | 2010-08-11 | Kenneth Scott Alexander Butcher | Migration and plasma enhanced chemical vapour deposition |
JP5643232B2 (ja) * | 2009-02-13 | 2014-12-17 | ガリウム エンタープライジズ プロプライエタリー リミテッド | 金属窒化膜を蒸着させるための装置及び方法 |
JPWO2010100942A1 (ja) * | 2009-03-05 | 2012-09-06 | 株式会社小糸製作所 | 発光モジュール、発光モジュールの製造方法、および灯具ユニット |
US8247886B1 (en) | 2009-03-09 | 2012-08-21 | Soraa, Inc. | Polarization direction of optical devices using selected spatial configurations |
US8299473B1 (en) | 2009-04-07 | 2012-10-30 | Soraa, Inc. | Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors |
US20110079251A1 (en) * | 2009-04-28 | 2011-04-07 | Olga Kryliouk | Method for in-situ cleaning of deposition systems |
US8110889B2 (en) * | 2009-04-28 | 2012-02-07 | Applied Materials, Inc. | MOCVD single chamber split process for LED manufacturing |
TW201039381A (en) * | 2009-04-29 | 2010-11-01 | Applied Materials Inc | Method of forming in-situ pre-GaN deposition layer in HVPE |
US8791499B1 (en) | 2009-05-27 | 2014-07-29 | Soraa, Inc. | GaN containing optical devices and method with ESD stability |
TWI471913B (zh) * | 2009-07-02 | 2015-02-01 | Global Wafers Co Ltd | Production method of gallium nitride based compound semiconductor |
US20110027973A1 (en) * | 2009-07-31 | 2011-02-03 | Applied Materials, Inc. | Method of forming led structures |
US20110104843A1 (en) * | 2009-07-31 | 2011-05-05 | Applied Materials, Inc. | Method of reducing degradation of multi quantum well (mqw) light emitting diodes |
US9000466B1 (en) | 2010-08-23 | 2015-04-07 | Soraa, Inc. | Methods and devices for light extraction from a group III-nitride volumetric LED using surface and sidewall roughening |
DE102009043848A1 (de) * | 2009-08-25 | 2011-03-03 | Aixtron Ag | CVD-Verfahren und CVD-Reaktor |
CN102414801A (zh) | 2009-08-27 | 2012-04-11 | 应用材料公司 | 在原位腔室清洁后的处理腔室去污方法 |
US20110064545A1 (en) * | 2009-09-16 | 2011-03-17 | Applied Materials, Inc. | Substrate transfer mechanism with preheating features |
US9583678B2 (en) | 2009-09-18 | 2017-02-28 | Soraa, Inc. | High-performance LED fabrication |
DE112010003700T5 (de) * | 2009-09-18 | 2013-02-28 | Soraa, Inc. | Power-leuchtdiode und verfahren mit stromdichtebetrieb |
US8933644B2 (en) | 2009-09-18 | 2015-01-13 | Soraa, Inc. | LED lamps with improved quality of light |
US9293644B2 (en) | 2009-09-18 | 2016-03-22 | Soraa, Inc. | Power light emitting diode and method with uniform current density operation |
US20110076400A1 (en) * | 2009-09-30 | 2011-03-31 | Applied Materials, Inc. | Nanocrystalline diamond-structured carbon coating of silicon carbide |
WO2011044046A2 (en) * | 2009-10-07 | 2011-04-14 | Applied Materials, Inc. | Improved multichamber split processes for led manufacturing |
US20110108854A1 (en) * | 2009-11-10 | 2011-05-12 | Chien-Min Sung | Substantially lattice matched semiconductor materials and associated methods |
US8740413B1 (en) | 2010-02-03 | 2014-06-03 | Soraa, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US8905588B2 (en) | 2010-02-03 | 2014-12-09 | Sorra, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US10147850B1 (en) | 2010-02-03 | 2018-12-04 | Soraa, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
DE102010000388A1 (de) * | 2010-02-11 | 2011-08-11 | Aixtron Ag, 52134 | Gaseinlassorgan mit Prallplattenanordnung |
US20110204376A1 (en) * | 2010-02-23 | 2011-08-25 | Applied Materials, Inc. | Growth of multi-junction led film stacks with multi-chambered epitaxy system |
US20110207256A1 (en) * | 2010-02-24 | 2011-08-25 | Applied Materials, Inc. | In-situ acceptor activation with nitrogen and/or oxygen plasma treatment |
US9450143B2 (en) | 2010-06-18 | 2016-09-20 | Soraa, Inc. | Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices |
US9076827B2 (en) | 2010-09-14 | 2015-07-07 | Applied Materials, Inc. | Transfer chamber metrology for improved device yield |
US8786053B2 (en) | 2011-01-24 | 2014-07-22 | Soraa, Inc. | Gallium-nitride-on-handle substrate materials and devices and method of manufacture |
US8143147B1 (en) | 2011-02-10 | 2012-03-27 | Intermolecular, Inc. | Methods and systems for forming thin films |
US10707082B2 (en) | 2011-07-06 | 2020-07-07 | Asm International N.V. | Methods for depositing thin films comprising indium nitride by atomic layer deposition |
US8686431B2 (en) | 2011-08-22 | 2014-04-01 | Soraa, Inc. | Gallium and nitrogen containing trilateral configuration for optical devices |
WO2013045596A2 (en) * | 2011-09-29 | 2013-04-04 | The Morgan Crucible Company Plc | Inorganic materials, methods and apparatus for making same, and uses thereof |
DE102011114671A1 (de) | 2011-09-30 | 2013-04-04 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip |
US8912025B2 (en) | 2011-11-23 | 2014-12-16 | Soraa, Inc. | Method for manufacture of bright GaN LEDs using a selective removal process |
JP2013124201A (ja) * | 2011-12-14 | 2013-06-24 | Tokyo Electron Ltd | 窒化ガリウム膜の成膜装置および成膜方法ならびに水素化ガリウム発生器 |
CN104247052B (zh) | 2012-03-06 | 2017-05-03 | 天空公司 | 具有减少导光效果的低折射率材料层的发光二极管 |
US8971368B1 (en) | 2012-08-16 | 2015-03-03 | Soraa Laser Diode, Inc. | Laser devices having a gallium and nitrogen containing semipolar surface orientation |
US9978904B2 (en) | 2012-10-16 | 2018-05-22 | Soraa, Inc. | Indium gallium nitride light emitting devices |
US9761763B2 (en) | 2012-12-21 | 2017-09-12 | Soraa, Inc. | Dense-luminescent-materials-coated violet LEDs |
US8802471B1 (en) | 2012-12-21 | 2014-08-12 | Soraa, Inc. | Contacts for an n-type gallium and nitrogen substrate for optical devices |
US8994033B2 (en) | 2013-07-09 | 2015-03-31 | Soraa, Inc. | Contacts for an n-type gallium and nitrogen substrate for optical devices |
US9410664B2 (en) | 2013-08-29 | 2016-08-09 | Soraa, Inc. | Circadian friendly LED light source |
CN104631091A (zh) * | 2013-11-08 | 2015-05-20 | 中国石油天然气股份有限公司 | 一种碳纤维表面处理方法 |
EP3095305B1 (en) | 2014-01-15 | 2018-08-29 | Gallium Enterprises Pty Ltd | Apparatus and method for the reduction of impurities in films |
US20170183776A1 (en) * | 2014-02-11 | 2017-06-29 | Kenneth Scott Alexander Butcher | Electrostatic control of metal wetting layers during deposition |
US20170229647A1 (en) | 2014-05-05 | 2017-08-10 | Okinawa Institute Of Science And Technology School Corporation | System and method for fabricating perovskite film for solar cell applications |
US10192717B2 (en) | 2014-07-21 | 2019-01-29 | Applied Materials, Inc. | Conditioning remote plasma source for enhanced performance having repeatable etch and deposition rates |
CN105895551A (zh) * | 2014-12-25 | 2016-08-24 | 百力达太阳能股份有限公司 | 一种板式pecvd镀膜异常的补救装置 |
KR102679764B1 (ko) * | 2015-03-30 | 2024-06-28 | 도소 가부시키가이샤 | 질화갈륨계 소결체 및 그 제조 방법 |
KR102657362B1 (ko) * | 2015-06-16 | 2024-04-16 | 조지아 테크 리서치 코포레이션 | Iii족 질화물 반도체 성장 속도를 증가 및 이온 플럭스 훼손의 감소를 위한 시스템 및 방법 |
US20190153617A1 (en) * | 2015-11-04 | 2019-05-23 | National Institute Of Advanced Industrial Science And Technology | Production Method and Production Device for Nitrogen Compound |
JP6527482B2 (ja) * | 2016-03-14 | 2019-06-05 | 東芝デバイス&ストレージ株式会社 | 半導体製造装置 |
JP7165529B2 (ja) * | 2018-07-27 | 2022-11-04 | 大陽日酸株式会社 | フランジ締結構造及びこれを用いた気相成長装置 |
KR102137886B1 (ko) * | 2018-10-26 | 2020-07-24 | 인제대학교 산학협력단 | h-BN 성장용 LPCVD 시스템 |
WO2020197892A1 (en) * | 2019-03-22 | 2020-10-01 | Applied Materials, Inc. | Method and apparatus for deposition of metal nitrides |
WO2020197894A1 (en) | 2019-03-22 | 2020-10-01 | Applied Materials, Inc. | Method and apparatus for deposition of multilayer device with superconductive film |
WO2020242863A1 (en) * | 2019-05-24 | 2020-12-03 | Entegris, Inc. | Methods and systems for adsorbing organometallic vapor |
CN112531173A (zh) * | 2019-09-17 | 2021-03-19 | 宁德新能源科技有限公司 | 金属箔处理工艺、电极极片及电化学装置 |
TWI753759B (zh) | 2020-02-03 | 2022-01-21 | 美商應用材料股份有限公司 | 具有整合化氮化鋁種晶或波導層的超導奈米線單光子偵測器 |
TWI780579B (zh) | 2020-02-03 | 2022-10-11 | 美商應用材料股份有限公司 | 具有整合化氮化鋁晶種或波導層的超導奈米線單光子偵測器 |
US20210395883A1 (en) * | 2020-06-22 | 2021-12-23 | Tokyo Electron Limited | System and Method for Thermally Cracking Ammonia |
JP2022139024A (ja) * | 2021-03-11 | 2022-09-26 | 株式会社Screenホールディングス | Iii族窒化物半導体の製造方法および製造装置 |
CN115010134B (zh) * | 2022-06-21 | 2023-08-04 | 浙江六方碳素科技有限公司 | 一种化学气相沉积制备碳化硅海绵的装置 |
CN115110025B (zh) * | 2022-07-20 | 2023-10-20 | 苏州大学 | 一种螺旋波等离子体溅射沉积氮化钨薄膜的方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4777022A (en) | 1984-08-28 | 1988-10-11 | Stephen I. Boldish | Epitaxial heater apparatus and process |
US5343022A (en) | 1992-09-29 | 1994-08-30 | Advanced Ceramics Corporation | Pyrolytic boron nitride heating unit |
AU2764095A (en) | 1994-06-03 | 1996-01-04 | Commissariat A L'energie Atomique | Method and apparatus for producing thin films by low temperature plasma-enhanced chemical vapor deposition using a rotating susceptor reactor |
JP3353514B2 (ja) | 1994-12-09 | 2002-12-03 | ソニー株式会社 | プラズマ処理装置、プラズマ処理方法及び半導体装置の作製方法 |
JP4111145B2 (ja) | 1996-05-28 | 2008-07-02 | 富士ゼロックス株式会社 | 光半導体素子 |
US5986285A (en) | 1996-11-07 | 1999-11-16 | Fuji Xerox, Co., Ltd. | Group III-V amorphous and microcrystalline optical semiconductor including hydrogen, and method of forming thereof |
JPH1187253A (ja) | 1997-09-02 | 1999-03-30 | Sumitomo Electric Ind Ltd | 化合物半導体薄膜の成膜方法 |
US6140624A (en) | 1999-07-02 | 2000-10-31 | Advanced Ceramics Corporation | Pyrolytic boron nitride radiation heater |
JP2003188104A (ja) * | 2001-12-14 | 2003-07-04 | Fuji Xerox Co Ltd | 窒化物半導体の製造装置、窒化物半導体の製造方法、及びリモートプラズマ装置 |
JP2003193237A (ja) | 2001-12-26 | 2003-07-09 | Ulvac Japan Ltd | 金属窒化物膜の形成方法 |
AUPS240402A0 (en) * | 2002-05-17 | 2002-06-13 | Macquarie Research Limited | Gallium nitride |
JP2003342716A (ja) | 2002-05-27 | 2003-12-03 | Sumitomo Electric Ind Ltd | GaN結晶の成長方法 |
JP2003342715A (ja) | 2002-05-27 | 2003-12-03 | Sumitomo Electric Ind Ltd | GaN結晶の成長方法 |
JP2003342719A (ja) | 2002-05-27 | 2003-12-03 | Sumitomo Electric Ind Ltd | GaN結晶の成長方法 |
-
2005
- 2005-09-27 CA CA2581626A patent/CA2581626C/en not_active Expired - Fee Related
- 2005-09-27 US US11/575,897 patent/US8298624B2/en active Active
- 2005-09-27 EP EP05787079A patent/EP1809788A4/en not_active Withdrawn
- 2005-09-27 JP JP2007532731A patent/JP4468990B2/ja not_active Expired - Fee Related
- 2005-09-27 BR BRPI0516136-3A patent/BRPI0516136A/pt not_active IP Right Cessation
- 2005-09-27 EP EP12199268.9A patent/EP2573206B1/en not_active Not-in-force
- 2005-09-27 WO PCT/AU2005/001483 patent/WO2006034540A1/en active Application Filing
- 2005-09-27 KR KR1020077009768A patent/KR101352150B1/ko active IP Right Grant
-
2013
- 2013-04-25 HK HK13105021.7A patent/HK1178218A1/xx not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP4468990B2 (ja) | 2010-05-26 |
CA2581626C (en) | 2013-08-13 |
KR101352150B1 (ko) | 2014-02-17 |
WO2006034540A1 (en) | 2006-04-06 |
EP2573206B1 (en) | 2014-06-11 |
EP1809788A4 (en) | 2008-05-21 |
JP2008515175A (ja) | 2008-05-08 |
KR20070103363A (ko) | 2007-10-23 |
EP1809788A1 (en) | 2007-07-25 |
CA2581626A1 (en) | 2006-04-06 |
BRPI0516136A (pt) | 2008-08-26 |
US20080272463A1 (en) | 2008-11-06 |
EP2573206A1 (en) | 2013-03-27 |
US8298624B2 (en) | 2012-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HK1178218A1 (en) | Method for growing a group (iii) metal nitride film iii | |
ZA200703117B (en) | Method and apparatus for growing a group (III) metal nitride film and a group (III) metal nitride film | |
GB0423685D0 (en) | Improved method for coating a substrate | |
IL169776A0 (en) | Method for renoving carbon-containig residues from a substrate | |
IL180191A0 (en) | Method for a server-less office architecture | |
IL210906A0 (en) | Method for providing a slurry | |
HK1086416A1 (en) | A method for selecting a reference picture | |
EP1860213B8 (en) | Method for producing group iii nitride crystal | |
IL183091A0 (en) | Method for preparing n-phenylpyrazole-1-carboxyamides | |
GB2420118B (en) | A trimethylgallium, a method for producing the same and a gallium nitride thin film grown from the trimethylgallium | |
HK1188993A1 (en) | Method for preparing a 2-halo-4-nitroimidazole compound 2--4- | |
ZA200601506B (en) | Method for preparing a coated substrate | |
ZA200701363B (en) | A method for preparing irbesartan and intermediates thereof | |
PL1886526T3 (pl) | Sposób zwiększania szerokości pasma wywołania grupowego | |
GB0523004D0 (en) | A method for reducing unwanted light | |
HK1085428A1 (en) | System and method for bending a substantially rigid substrate | |
EP1661169A4 (en) | METHOD FOR DEPOSITING A THIN FILM ON A WAFER | |
EP1826295A4 (en) | METHOD FOR FORMING A THIN FILM OF SN-AG-CU-DREAMED ALLOY ALLOY ALLOY | |
EP1854774A4 (en) | PROCESS FOR MANUFACTURING SODIUM AND NITROGEN FERTILIZER | |
EP1482540A4 (en) | METHOD FOR FORMING A THIN FILM | |
GB0406953D0 (en) | Method for preparing a sample | |
GB0422978D0 (en) | Methods for increasing plant growth | |
TWI347242B (en) | Method for forming a soldering layer | |
TWI315261B (en) | Method for transferring-printing | |
GB0416474D0 (en) | A method for accessing services |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC | Patent ceased (i.e. patent has lapsed due to the failure to pay the renewal fee) |
Effective date: 20220925 |