ES2864590T3 - Dispositivos para controlar el tratamiento ablativo - Google Patents

Dispositivos para controlar el tratamiento ablativo Download PDF

Info

Publication number
ES2864590T3
ES2864590T3 ES12771876T ES12771876T ES2864590T3 ES 2864590 T3 ES2864590 T3 ES 2864590T3 ES 12771876 T ES12771876 T ES 12771876T ES 12771876 T ES12771876 T ES 12771876T ES 2864590 T3 ES2864590 T3 ES 2864590T3
Authority
ES
Spain
Prior art keywords
elongated body
lumen
tissue
inner lumen
ablation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES12771876T
Other languages
English (en)
Inventor
Michael Curley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermedical Inc
Original Assignee
Thermedical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermedical Inc filed Critical Thermedical Inc
Application granted granted Critical
Publication of ES2864590T3 publication Critical patent/ES2864590T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3203Fluid jet cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/16Indifferent or passive electrodes for grounding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00041Heating, e.g. defrosting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00744Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00797Temperature measured by multiple temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00809Temperature measured thermochromatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00821Temperature measured by a thermocouple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B2018/044Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid
    • A61B2018/046Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid in liquid form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1472Probes or electrodes therefor for use with liquid electrolyte, e.g. virtual electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/16Indifferent or passive electrodes for grounding
    • A61B2018/162Indifferent or passive electrodes for grounding located on the probe body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/22Other positive-displacement pumps of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/04Force
    • F04C2270/041Controlled or regulated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49085Thermally variable

Abstract

Un dispositivo de ablación (600), que comprende un cuerpo alargado (602) que tiene extremos proximal y distal, y un lumen interior (608) que se extiende a través del mismo, donde el lumen interior está configurado para recibir líquido en su interior y para administrar líquido al extremo distal del cuerpo alargado; un electrodo de ablación (606) que forma un extremo distal romo del cuerpo alargado, donde el electrodo de ablación está configurado para entrar en contacto con el tejido sin penetrar a través del tejido y calentar el tejido circundante; y un elemento calefactor (612) dispuesto dentro del lumen interior adyacente al extremo distal del cuerpo alargado, donde el elemento calefactor está configurado para calentar el líquido que fluye a través del lumen interior a una temperatura mayor que 37 °C y menor que 100 °C, donde el cuerpo alargado está configurado de manera que el líquido pueda circular a través del cuerpo alargado y se reciba de vuelta en el extremo proximal del mismo sin liberarse al tejido circundante.

Description

DESCRIPCIÓN
Dispositivos para controlar el tratamiento ablativo
CAMPO
La presente solicitud se refiere en general al control del tratamiento ablativo. Más en particular, esta solicitud se refiere a dispositivos y procedimientos mejorados para controlar el tratamiento ablativo.
ANTECEDENTES
El uso de energía térmica para destruir el tejido corporal se puede aplicar a una variedad de procedimientos terapéuticos, incluido el tratamiento de arritmias cardíacas, como la fibrilación auricular. En tal procedimiento, la energía térmica se puede impartir al miocardio arritmogénico usando varias formas de energía, como la energía eléctrica de radiofrecuencia, la energía electromagnética de microondas o de ondas de luz, o la energía vibratoria ultrasónica. La ablación por radiofrecuencia (RF), por ejemplo, se puede realizar mediante la colocación de un catéter dentro del corazón y la presión de un electrodo emisor dispuesto en el catéter contra la pared del corazón cerca de la región del miocardio que está provocando la arritmia. La corriente eléctrica de alta frecuencia puede pasar al tejido entre electrodos emisores muy separados o entre el electrodo emisor y un electrodo común más grande ubicado de manera remota desde el tejido a calentar. La energía puede calentar el miocardio a una temperatura que provocará necrosis (p. ej., una temperatura superior a unos 50 °C).
Una realización de un catéter de ablación de la técnica anterior se muestra en la figura 1. El catéter 100 incluye una pluralidad de electrodos sensores 102 dispuestos sobre el mismo que se utilizan para detectar actividad eléctrica en el corazón. La medición de la actividad eléctrica se puede utilizar para detectar el tejido arritmogénico y guiar la colocación del catéter. El catéter también incluye un electrodo grande u otro elemento de ablación 104 dispuesto en el extremo distal del mismo que es efectivo para transmitir energía eléctrica de RF al miocardio 106. En uso, el electrodo 104 en la punta distal del catéter 100 se sitúa contra la superficie del miocardio 106 en una ubicación deseada, y el electrodo se activa posteriormente para calentar el tejido.
Los catéteres de ablación de la técnica anterior tienen una serie de desventajas. Por ejemplo, mediante las técnicas anteriores, el calentamiento máximo se produce a menudo en o cerca de la interfaz entre el electrodo del catéter 104 y el tejido 106. En la ablación por RF, por ejemplo, el calentamiento máximo puede ocurrir en el tejido inmediatamente adyacente al electrodo emisor. Además, como estas técnicas se utilizan cada vez más en zonas que tienen paredes de tejido más gruesas, el nivel de energía de RF deberá aumentarse para efectuar el calentamiento a mayores profundidades dentro del tejido. Esto puede dar como resultado niveles aún más altos de calentamiento en la interfaz entre el electrodo y el tejido. Como se describe con más detalle a continuación, estos altos niveles de calentamiento pueden reducir la conductividad del tejido, lo que impide de forma efectiva la transmisión de energía adicional al tejido. Además, algunos niveles de calentamiento pueden producir complicaciones médicas peligrosas para un paciente, incluidos, por ejemplo, coágulos que pueden ser resultado del sobrecalentamiento de la sangre circundante.
Los documentos US6328735 B1, US2008086073 A1, WO9634569 A1, WO9829068 A1, US5653692 A, EP0895756 A1, WO03096871 A2 y US2006085054 A1 describen antecedentes de la técnica relevantes.
Por consiguiente, existe la necesidad de procedimientos y dispositivos mejorados para controlar el tratamiento ablativo. RESUMEN
La invención se define en la reivindicación independiente 1 adjunta. Las realizaciones preferidas de la invención se describen en las reivindicaciones dependientes. La presente descripción proporciona generalmente dispositivos y procedimientos para controlar el tratamiento ablativo. En particular, los dispositivos y procedimientos descritos en esta invención permiten la regulación de la temperatura de un elemento de ablación que se utiliza para emitir energía ablativa en el tejido. Al controlar la temperatura del elemento de ablación, se pueden impedir los efectos indeseables asociados con el sobrecalentamiento del tejido. Esto, a su vez, puede permitir que se trate una mayor cantidad de tejido utilizando una menor cantidad de energía ablativa, lo que reduce el riesgo de daño no intencionado al tejido. Según la invención, se proporciona un dispositivo de ablación que incluye un cuerpo alargado que tiene extremos proximal y distal, y un lumen interior que se extiende a través del mismo. El dispositivo incluye además un electrodo de ablación colocado en el extremo distal del cuerpo alargado, donde el electrodo de ablación está configurado para calentar el tejido circundante. El lumen interior del cuerpo alargado está configurado para recibir líquido en su interior de modo que el líquido fluya hacia el extremo distal del cuerpo alargado. El dispositivo incluye además un elemento calefactor dispuesto dentro del lumen interior adyacente a un extremo distal del mismo. El elemento calefactor está configurado para calentar el líquido que fluye a través del lumen interior.
Según la invención, el cuerpo alargado y el elemento de ablación no son porosos de modo que el líquido impide que fluya a través de ellos. El lumen interior incluye un lumen de administración, así como un lumen de retorno de manera que el líquido pueda fluir distalmente a través del lumen de administración hasta el extremo distal, y a continuación fluir proximalmente a través del lumen de retorno hasta el extremo proximal del cuerpo alargado. En ejemplos que no son según la invención, el cuerpo alargado puede incluir uno o más puertos de salida formados a través de una pared lateral del mismo adyacente al extremo distal del mismo, donde los puertos de salida están configurados para permitir que el líquido fluya desde el lumen interior hacia el tejido circundante.
En ciertas realizaciones, el dispositivo incluye además un sensor de temperatura dispuesto en un extremo distal del electrodo de ablación para tomar muestras de una temperatura en la interfaz entre el elemento de ablación y una pared de tejido. En ejemplos que no son según la invención, el sensor de temperatura puede empotrarse dentro del elemento de ablación de manera que no sobresalga de un extremo distal del mismo. También en otras realizaciones, el sensor de temperatura puede estar dispuesto dentro del lumen interior del cuerpo alargado y en contacto con el elemento de ablación.
En algunas realizaciones, el dispositivo incluye un sensor de temperatura distinto colocado adyacente al extremo distal del lumen interior en una ubicación distal al elemento calefactor para tomar una muestra de la temperatura del líquido calentado por el elemento calefactor. Además, en ejemplos que no son según la invención, el dispositivo puede incluir un sensor de temperatura colocado proximal al elemento calefactor dentro del lumen interior para tomar muestras de la temperatura del líquido que fluye a través del lumen interior.
El elemento calefactor puede tener una variedad de formas. En algunas realizaciones, el elemento calefactor puede incluir al menos un cable que se extiende a través del lumen interior y está configurado para pasar energía eléctrica de radiofrecuencia (RF) a través del líquido que fluye a través del lumen interior. En otras realizaciones, el elemento calefactor puede ser un elemento resistivo dispuesto dentro del lumen interior.
Según la invención, el electrodo de ablación forma una punta distal roma del cuerpo alargado que está configurada para entrar en contacto con el tejido sin penetrar a través del tejido. En ejemplos que no son según la invención, el elemento de ablación puede tener una variedad de otras formas.
En un aspecto de la descripción que no forma parte de la invención, se proporciona un procedimiento de ablación de tejido que incluye colocar una parte distal roma de un cuerpo alargado en contacto con el tejido y administrar energía ablativa al tejido a través de un elemento de ablación mientras que simultáneamente se administra líquido a través del cuerpo alargado, donde un elemento calefactor dispuesto en una porción distal del cuerpo alargado calienta el líquido. El líquido se puede calentar para controlar el tratamiento ablativo proporcionado al tejido por el elemento de ablación. La parte distal roma del cuerpo alargado no penetra en el tejido cuando se coloca en contacto con él, sino que se apoya contra una superficie del tejido. El elemento de ablación se coloca en ese extremo distal del cuerpo alargado, de manera que el extremo distal del cuerpo alargado se coloca en contacto con el tejido.
La administración de líquido a través del cuerpo alargado puede incluir forzar el líquido a través de un lumen interior dispuesto dentro del cuerpo alargado. El elemento calefactor está dispuesto dentro del lumen interior. El procedimiento puede incluir además recibir líquido administrado a través del cuerpo alargado en un extremo proximal del mismo, por ejemplo, de manera que el líquido circule a través del cuerpo alargado sin salir por el extremo distal del cuerpo alargado. En ejemplos que no son según la invención, el líquido administrado a través del cuerpo alargado puede fluir a través de uno o más puertos de salida formados en el elemento de ablación hacia el tejido o líquido circundante. El procedimiento puede incluir además la detección de la temperatura del tejido en contacto con la parte distal roma del cuerpo alargado mediante el uso de un sensor de temperatura dispuesto en un extremo distal del cuerpo alargado. El procedimiento puede incluir detectar la temperatura del líquido administrado a través del cuerpo alargado mediante el uso de un sensor de temperatura dispuesto distal al elemento calefactor.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Los aspectos y ventajas de la invención descrita con anterioridad resultarán evidentes a partir de la referencia a la siguiente descripción detallada tomada en conjunto con las figuras adjuntas, en las que:
la figura 1 es un diagrama de una realización de un dispositivo de ablación de la técnica anterior;
la figura 2 es un gráfico que muestra un perfil de temperatura creado en tejido por el dispositivo de ablación de la técnica anterior de la figura 1;
la figura 3 es un gráfico que muestra un perfil de temperatura creado en tejido por un dispositivo de ablación de la técnica anterior enfriado por líquido sin calentar;
la figura 4 es un gráfico que muestra un perfil de temperatura creado en tejido por el dispositivo de la figura 3 después de un aumento en el nivel de energía ablativa;
la figura 5 es un gráfico que muestra un perfil de temperatura creado en tejido usando una realización de un dispositivo de ablación de la presente invención;
la figura 6 es una vista lateral de un dispositivo de ablación según la invención que tiene un patrón de flujo de circuito cerrado; y
la figura 7 es una vista lateral de un dispositivo de ablación ejemplar que tiene un patrón de flujo de circuito abierto.
DESCRIPCIÓN DETALLADA
Ciertas realizaciones ejemplares se describirán ahora para proporcionar una comprensión general de los principios de los dispositivos y procedimientos descritos aquí. Uno o más ejemplos de estas realizaciones se ilustran en los dibujos adjuntos. Los expertos en la materia entenderán que los dispositivos y procedimientos específicamente descritos en esta invención e ilustrados en los dibujos adjuntos son realizaciones ejemplares no limitantes y que el alcance de la presente invención se define únicamente por las reivindicaciones.
Los términos «alrededor de» y «aproximadamente» usados para cualquier valor numérico o intervalo indican una tolerancia dimensional adecuada que permite que la composición, parte o colección de elementos funcione para su propósito previsto como se describe en esta invención. Estos términos generalmente indican una variación de ± 10% sobre un valor central. Los componentes descritos en esta invención como acoplados pueden estar acoplados directamente o pueden estar acoplados indirectamente a través de uno o más componentes intermedios. Se pretende que la mención de cualquier intervalo de valores en la presente invención sirva solamente como un procedimiento abreviado para referirse individualmente a cada valor independiente comprendido en el intervalo, a menos que se indique lo contrario en la presente invención, y cada valor separado se incorpora a la memoria descriptiva como si se mencionara individualmente. Todos los procedimientos sin reivindicar descritos en la presente invención se pueden efectuar en cualquier orden adecuado, a menos que se indique lo contrario en la presente invención o que el contexto lo contradiga claramente. No se debe interpretar ninguna expresión de la memoria descriptiva como indicación de que algún elemento no reivindicado sea esencial para la puesta en práctica de la invención. Además, en la medida en que el término «solución salina» se use junto con cualquier realización en esta invención, dicha realización no se limita al uso de «solución salina» en oposición a otro líquido a menos que se indique explícitamente. Otros líquidos pueden usarse normalmente de manera similar.
Como se describió anteriormente, las técnicas de ablación convencionales que utilizan un dispositivo similar al catéter de ablación 100 de la figura 1 puede producir un calentamiento máximo del tejido en la interfaz entre el elemento de ablación, como el electrodo 104, y el tejido, como el miocardio 106. El uso de tal dispositivo puede producir el perfil de temperatura 200 de la figura 2 que ilustra la temperatura (en grados Celsius) en función de la profundidad (en milímetros) desde la superficie del tejido. Como se muestra en la figura, el catéter de ablación 100 puede crear una lesión tratada terapéuticamente en el tejido que tiene 1 mm de profundidad. Es decir, la profundidad a la que se calienta el tejido por encima de 50 °C es de 1 mm. Una temperatura de 50 °C se usa aquí como un ejemplo de un umbral para determinar cuándo se ha tratado terapéuticamente un volumen particular de tejido, es decir, ha recibido una dosis térmica suficiente para provocar necrosis dentro del volumen (ver Nath, S. and Haines, D. E., Prog. Card. Dis.
37(4):185-205 (1995) (Nath et al.)). Sin embargo, este número se proporciona solo a modo de ejemplo, ya que la bibliografía contiene varias metodologías distintas para determinar la administración de la dosis térmica, cualquiera de las cuales puede utilizarse con los procedimientos y dispositivos de la presente descripción.
De vuelta a la figura 2, la poca profundidad de tratamiento producida por el catéter de ablación 100 de la técnica anterior a menudo solo es efectiva para su uso con tejido arritmogénico superficial o, por ejemplo, en regiones del corazón donde la pared sea muy delgada (por ejemplo, paredes auriculares delgadas). Dado que el uso de la ablación en el tratamiento de la fibrilación auricular y otras afecciones cardíacas ha aumentado con el tiempo, el tratamiento ablativo se ha usado en zonas que tienen paredes de tejido mucho más gruesas. Un procedimiento para aumentar la profundidad a la que se puede calentar un catéter de ablación es enfriar la superficie del elemento de ablación, por ejemplo, el electrodo 104. Para lograr esto, se puede bombear un líquido por el catéter de ablación para que entre en contacto con el elemento de ablación dispuesto adyacente al extremo distal del catéter. En algunos casos, el líquido puede entrar en contacto con una superficie trasera del elemento de ablación y regresar al cuerpo del catéter. En otros casos, sin embargo, el líquido puede fluir fuera del catéter de ablación a través de uno o más puertos o poros formados en el propio elemento de ablación.
En cualquier caso, se puede introducir líquido (p. ej., solución salina) en el catéter de ablación a temperatura ambiente y, a menudo, la sangre circundante lo calienta hasta casi la temperatura corporal a medida que el líquido se mueve a través del cuerpo hacia el extremo distal del catéter. El líquido que fluye a temperatura corporal puede enfriar y restringir el elemento de ablación a una temperatura que se aproxima a la temperatura corporal, o 37 °C.
Un perfil de temperatura ejemplar creado por tal dispositivo se muestra en la figura 3. Como ilustra el perfil 300, poner en contacto el elemento de ablación con el líquido a temperatura corporal puede ser efectivo para reducir el calentamiento que se produce en la interfaz entre el elemento de ablación y la pared del tejido. Sin embargo, el enfriamiento también puede ser efectivo para reducir todo el campo de calentamiento hasta tal punto que se reduzca la efectividad del tratamiento ablativo, es decir, solo una porción muy pequeña de tejido se calienta por encima de la temperatura terapéutica deseada de 50 °C. El mismo efecto también se puede observar en zonas del corazón (u otros órganos) donde los vasos sanguíneos o las arterias produzcan un enfriamiento localizado efectivo al hacer que la sangre pase por el lugar de tratamiento. Por ejemplo, en la fibrilación auricular puede ser necesario realizar una ablación cerca del seno coronario, y la gran cantidad de flujo sanguíneo en esta área puede enfriar de forma efectiva los campos de calentamiento creados por cualquier dispositivo de ablación.
Para compensar este efecto de enfriamiento, se puede aumentar el nivel de energía de RF utilizada para calentar el tejido. Un aumento de la energía de RF junto con la refrigeración por líquido del elemento de ablación puede producir, por ejemplo, el perfil de temperatura 400 mostrado en la figura 4. El aumento de energía puede tener el efecto positivo de aumentar la profundidad del tratamiento (p. ej., la profundidad del tratamiento aumenta a 2 mm), pero tiene el coste de producir una temperatura máxima más alta dentro del tejido. Además, la posición de la temperatura máxima se puede desplazar en el tejido como resultado del enfriamiento del elemento de ablación. Debido a que esta temperatura máxima ya no se puede observar directamente debido a su posición en la profundidad, puede ser difícil controlar el equilibrio entre la cantidad de calentamiento por RF y la cantidad de enfriamiento proporcionado por el líquido. En tal situación, las temperaturas dentro del tejido pueden exceder los 100 °C en algunos lugares, como se muestra en la figura 4. Exceder los 100 °C puede producir una serie de efectos indeseables. Por ejemplo, por encima de 100 °C, el tejido puede desecarse o secarse y sobrecalentarse. Esto puede producir carbonización y provocar un aumento de la impedancia del tejido. A medida que aumenta la impedancia, disminuye la cantidad de energía eléctrica que puede pasar a través del tejido. En consecuencia, los aumentos de impedancia pueden detener de forma efectiva cualquier terapia de ablación adicional, ya que la energía ya no se transfiere más profundamente al tejido. Además, estas altas temperaturas también pueden provocar el sobrecalentamiento de cualquier líquido en el tejido. En algunos casos, pueden producirse estallidos de impedancia o el cambio de fase explosivo del líquido sobrecalentado a vapor. Estas pequeñas explosiones pueden provocar daños en la pared del tejido y potencialmente dar lugar a complicaciones médicas graves (p. ej., perforaciones en la pared del corazón, etc.).
Para abordar estos problemas, en esta invención se proporcionan procedimientos y dispositivos para controlar la temperatura y el nivel de energía de un elemento de ablación para impedir picos de temperatura indeseables mientras se mantiene la profundidad de la lesión de tratamiento creada durante el tratamiento ablativo. La figura 5 ilustra un perfil 500 de temperatura ejemplar que se puede lograr usando los procedimientos y dispositivos descritos en esta invención. En una realización, se puede implementar un elemento calefactor en un dispositivo de ablación para suministrar líquido a una temperatura controlada y deseada para enfriar un elemento de ablación. La temperatura del líquido se puede seleccionar de modo que el elemento de ablación se enfríe a una temperatura por debajo de aproximadamente 100 °C. Más preferentemente, el líquido se puede enfriar a una temperatura entre aproximadamente 20 °C y 100 °C. El líquido se puede enfriar a una temperatura entre aproximadamente 37 °C y 100 °C.
Por ejemplo, y como se muestra en la figura, el elemento de ablación se puede enfriar a una temperatura de aproximadamente 60 °C. La regulación de la temperatura del elemento de ablación a este nivel puede impedir la desecación y el aumento de impedancia asociado con el calentamiento por encima de 100 °C, pero también puede permitir un calentamiento terapéutico más profundo utilizando un nivel de energía de RF más bajo. Por ejemplo, el perfil 500 muestra que el tejido a una profundidad de 5 mm se puede calentar por encima de 50 °C sin que el tejido se eleve por encima de aproximadamente 80 °C. Aunque se muestre 60 °C como ejemplo, se puede seleccionar cualquier temperatura entre aproximadamente 37 °C y 100 °C. Por ejemplo, se puede seleccionar una temperatura de 40, 50, 60, 70, 80 o 90 °C. La selección de la temperatura del líquido (que puede aproximarse a la temperatura del elemento de ablación porque el líquido que fluye puede enfriar el elemento de ablación a aproximadamente la misma temperatura) y el nivel de energía de RF se pueden coordinar de manera que se cree una lesión de tratamiento de una profundidad deseada sin calentar ninguna porción del tejido por encima de aproximadamente 100 °C.
Se pueden emplear varios dispositivos y procedimientos distintos para calentar el líquido refrigerante a la temperatura deseada. La figura 6 ilustra un dispositivo de ablación 600 según la invención. El dispositivo 600 incluye un cuerpo alargado, que puede ser rígido o flexible y puede estar formado por una variedad de materiales biocompatibles. Por ejemplo, el cuerpo alargado 602 puede ser un cuerpo de catéter flexible o puede ser un cuerpo rígido dispuesto en un extremo distal de un catéter usado para introducir el cuerpo alargado 602 en un lugar de tratamiento. El cuerpo alargado 602 incluye un lumen interior 604 que se extiende a través del mismo y que está configurado para proporcionar un paso para el flujo de líquido a través del cuerpo alargado. Además, el tamaño particular del cuerpo alargado puede depender de una variedad de factores que incluyen el tipo y la ubicación del tejido a tratar, etc. A modo de ejemplo solamente, en una realización, se puede utilizar un cuerpo alargado muy pequeño para acceder al corazón de un paciente. En tal realización, un cuerpo alargado del tamaño correcto puede ser, por ejemplo, un catéter con un diámetro de aproximadamente 8 French (un «French» es una unidad de medida usada en la industria del catéter para describir el tamaño de un catéter y es igual a tres veces el diámetro del catéter en milímetros). El cuerpo alargado puede formarse a partir de un material conductor de modo que el cuerpo alargado pueda conducir energía eléctrica a lo largo de su longitud a un elemento de ablación dispuesto en el mismo. Alternativamente, el cuerpo alargado puede estar formado o revestido con un material aislante y cualquier comunicación eléctrica entre cualquier componente acoplado al mismo puede lograrse mediante conexiones eléctricas que corren a lo largo o dentro del cuerpo alargado.
El cuerpo alargado 602 también incluye un electrodo de ablación 606 dispuesto a lo largo de una longitud del mismo adyacente a su extremo distal. Como se muestra en la figura, según la invención, el electrodo de ablación 606 se coloca en el extremo distal del cuerpo alargado 602. El electrodo de ablación 606 se puede formar a partir de una variedad de materiales adecuados para conducir corriente. Se puede usar cualquier metal o sal metálica. Además del acero inoxidable, los metales ejemplares incluyen platino, oro o plata, y las sales metálicas ejemplares incluyen plata/cloruro de plata. En una realización, el electrodo puede formarse a partir de plata/cloruro de plata. Se sabe que los electrodos metálicos asumen un potencial de voltaje diferente al del líquido y/o tejido circundante. Pasar una corriente a través de esta diferencia de voltaje puede provocar la disipación de energía en la interfaz de electrodo/tejido, lo que puede exacerbar el calentamiento excesivo del tejido cerca de los electrodos. Una ventaja de usar una sal metálica como plata/cloruro de plata es que tiene una alta densidad de corriente de intercambio. Como resultado, una gran cantidad de corriente puede pasar a través de dicho electrodo al tejido con solo una pequeña caída de voltaje, minimizando así la disipación de energía en esta interfaz. Por consiguiente, un electrodo formado a partir de una sal metálica plata/cloruro de plata puede reducir la generación de energía excesiva en la interfaz del tejido y, así, producir un perfil de temperatura terapéutico más deseable, incluso cuando no hay flujo de líquido alrededor del electrodo.
Según la invención, el electrodo de ablación 606 está dispuesto en un extremo distal del cuerpo alargado 602. El electrodo de ablación 606 forma una punta distal roma del dispositivo 600. Como tal, el electrodo de ablación 606 está configurado para presionar o colocarse adyacente a una pared de tejido sin penetrar en la pared de tejido. Además, el electrodo de ablación 606 está formado de un material no poroso o, en ejemplos que no son según la invención, un elemento de ablación 606 puede tener uno o más puertos de salida o poros formados en el mismo que proporcionan una comunicación fluida entre el lumen interior y el tejido y/o líquidos que rodean el elemento de ablación.
Según la invención, el lumen interior del cuerpo alargado 602 incluye un lumen de administración 608 configurado para proporcionar un paso para el flujo de líquido desde el extremo proximal al extremo distal, y un lumen de retorno formado por el espacio anular entre el lumen de administración 608 y la pared interior del lumen interior 604. El lumen de retorno está configurado para recibir líquido en un extremo distal del mismo y devolver el líquido al extremo proximal del cuerpo alargado 602. Esto permite que el líquido circule a través del cuerpo alargado sin necesidad de liberar el líquido al tejido circundante. De manera similar al cuerpo alargado 602, el lumen de administración 608 se puede formar a partir de una variedad de materiales que son rígidos, flexibles, poliméricos, metálicos, conductores o aislantes. Además, el lumen de administración 608 se coloca dentro del lumen interior 604 del cuerpo alargado 602 de manera que el lumen de administración no se mueva con respecto al cuerpo alargado, o se pueda permitir que flote libremente dentro del cuerpo alargado 602. En algunas realizaciones, el lumen de administración 608 es un tubo hueco dispuesto dentro del lumen interior del cuerpo alargado. Además, en determinadas formas de realización, el lumen de retorno es un tubo hueco separado dispuesto dentro del lumen interior 604 del cuerpo alargado.
Según la invención, el lumen de administración 608 aloja un conjunto de calentamiento o elemento calefactor 612 dispuesto adyacente a un extremo distal del lumen de administración y configurado para calentar el líquido que fluye a través del lumen de administración. El conjunto de calentamiento 612 puede conectarse a una fuente de alimentación y un controlador acoplado al extremo proximal del cuerpo alargado 602. Se pueden utilizar varios conjuntos de calentamiento para calentar el líquido que fluye a través del lumen de administración 608, incluidos los descritos en U.S. Patent No.6,328,735 to Curley et al., y U.S. Pat. Appl. No. 13/445,036, titulado «Methods and Devices for Heating Fluid in Fluid Enhanced Ablation Therapy», publicado como US 2012-0265190 A1, presentado al mismo tiempo que la presente. Por ejemplo, el elemento calefactor 612 puede ser una bobina resistiva dispuesta dentro del lumen de administración 608. Sin embargo, en otras realizaciones, un conjunto de calentamiento 612 formado a partir de uno o más cables suspendidos en el lumen de administración 608 que se puede usar para pasar energía eléctrica de RF a través del líquido que fluye a través del lumen de administración, lo que calienta el líquido debido a su resistividad eléctrica inherente.
En ciertas realizaciones, el lumen de administración 608 aloja un sensor de temperatura 614 configurado para detectar la temperatura del líquido que fluye a través del lumen de administración 608 después de que el conjunto de calentamiento 612 lo caliente. Por esta razón, el sensor de temperatura 614 está, en algunas realizaciones, colocado distal al conjunto de calentamiento 612, y está separado del conjunto de calentamiento por una distancia suficiente para permitir la mezcla del líquido después de pasar a través del conjunto de calentamiento (por ejemplo, aproximadamente 1 mm). El sensor de temperatura 614 puede tener una variedad de formas y, en algunas realizaciones, puede ser un termopar de alambre fino. El sensor de temperatura 614 se puede conectar a un controlador que puede utilizar la temperatura del líquido detectada para regular el conjunto de calentamiento 612. En uso, se puede bombear un líquido (p. ej., solución salina) a través del lumen de administración 608 desde un extremo proximal del mismo hasta un extremo distal que se coloca adyacente al elemento de ablación 606. El líquido puede pasar por el conjunto de calentamiento 612 y calentarse a una temperatura deseada, p. ej., cualquier temperatura por debajo de 100 °C, o cualquier temperatura entre aproximadamente 40 y aproximadamente 90 °C, o entre aproximadamente 50 y aproximadamente 80 °C, o entre aproximadamente 60 y aproximadamente 70 °C. En algunas realizaciones, se puede colocar un sensor de temperatura adicional (no mostrado) en el lumen de administración 608 en una posición proximal al conjunto de calentamiento 612 para determinar la temperatura inicial del líquido que fluye a través del lumen de administración 608 (y de ese modo determinar una salida de energía necesaria para el conjunto de calentamiento 612). Después de que el conjunto de calentamiento 612 lo caliente, el líquido puede mezclarse y salir del lumen de administración 608 cerca del extremo distal del cuerpo alargado 602 adyacente al elemento de ablación 606. Como se muestra por las flechas 616 de dirección del flujo, el líquido puede entrar en contacto con una superficie interior del elemento de ablación y posteriormente dirigirse hacia el extremo proximal del cuerpo alargado 602 a través del lumen de retorno. El movimiento del líquido puede alejar el calor del elemento de ablación 606, lo que regula su temperatura. Dado un caudal suficiente, el elemento de ablación 606 se puede regular a aproximadamente la misma temperatura del líquido que sale del lumen de administración 608. Para confirmar la eficacia de la regulación de temperatura, el dispositivo 600 también puede incluir un sensor de temperatura externo 618 dispuesto en un extremo distal del dispositivo 600. En algunas realizaciones, el sensor de temperatura 618 puede empotrarse dentro del elemento de ablación 606 de manera que no sobresalga de un extremo distal del mismo. En otras realizaciones más en las que el elemento de ablación 606 está formado por un metal u otro material térmicamente conductor, el sensor de temperatura 618 puede colocarse dentro del lumen interior 604 tocando una superficie proximal del elemento de ablación 606. Independientemente de su posición, el sensor de temperatura 618 puede configurarse para detectar la temperatura en la interfaz entre el elemento de ablación 606 y una superficie de tejido 620. La detección de la temperatura en esta ubicación puede confirmar que el elemento de ablación 606 se está enfriando a la temperatura del líquido que fluye desde el lumen de administración 608.
La figura 7 ilustra una realización de ejemplo de un dispositivo de ablación que no es según la invención que tiene un flujo de circuito abierto, en oposición al flujo de circuito cerrado mostrado en la figura 6. Como se muestra en la figura, el dispositivo 700 puede incluir varios componentes comunes al dispositivo de la figura 6. Por ejemplo, el dispositivo 700 puede incluir un cuerpo alargado 602 que tiene un lumen interior 604, un lumen de administración 608 dispuesto dentro del lumen interior 604 y que tiene su propio lumen interior 610, un conjunto de calentamiento 612 y un sensor de temperatura 614 alojado dentro del lumen 610 y, en algunas realizaciones, uno o más sensores de temperatura adicionales, tales como el sensor de temperatura 618.
El dispositivo 700 se diferencia del dispositivo 600 en que incluye un elemento de ablación 702 que tiene una pluralidad de puertos de salida o poros formados en el mismo que se comunican entre una superficie interior y una superficie exterior del elemento de ablación. Como resultado, cuando se introduce líquido en el lumen interior 604 adyacente al elemento de ablación 702, el líquido puede fluir a través del elemento de ablación 702 y dentro de la cavidad corporal que rodea el dispositivo 700. El patrón de flujo de circuito abierto resultante se ilustra mediante flechas 704 de dirección de flujo. Como resultado del patrón de flujo de circuito abierto, el dispositivo 700 puede, en algunas realizaciones, eliminar el lumen de administración separado 608 y simplemente bombear líquido en una sola dirección a través del lumen interior 604 del cuerpo alargado 602. En tal realización, el conjunto de calentamiento y cualquier sensor de temperatura pueden estar dispuestos dentro del lumen interior 604 del cuerpo alargado 602.
Los dispositivos mostrados en las figuras 6 y 7 pueden usarse para administrar un tratamiento ablativo que impide el sobrecalentamiento del tejido mientras produce un tratamiento a mayor profundidad de lo que era posible anteriormente. En algunas realizaciones, sin embargo, puede ser preferible utilizar el dispositivo de circuito cerrado 600 en lugar del dispositivo de circuito abierto 700. Por ejemplo, en realizaciones donde la temperatura del líquido introducido desde el lumen de administración 608 sea suficientemente alta (p. ej., 70 °C y más), puede ser indeseable permitir que el líquido fluya al torrente sanguíneo o al tejido que rodea al dispositivo de ablación. El líquido a esa temperatura puede, en algunos casos, dañar el tejido o hacer que se formen coágulos de sangre. Por consiguiente, puede ser deseable recoger el líquido calentado en el extremo proximal del dispositivo, en lugar de introducir el líquido en el cuerpo del paciente. Sin embargo, esto puede variar según la ubicación y la anatomía específica del lugar de tratamiento. Por ejemplo, las zonas que tienen un flujo sanguíneo alto pueden disipar el líquido a alta temperatura sin riesgo de desarrollar complicaciones.
Los dispositivos descritos anteriormente se pueden utilizar en una variedad de procedimientos que requieren la ablación de tejido dentro del cuerpo. Por ejemplo, los dispositivos y procedimientos descritos en esta invención pueden ser en particular útiles en la ablación cardíaca. Los procedimientos para el tratamiento de la fibrilación auricular y el aleteo auricular, como el procedimiento de laberinto, a menudo requieren la ablación de una gran parte de la anatomía cardíaca en lugares donde las paredes del tejido tienen un grosor variable. Los dispositivos de la presente invención permiten a los usuarios extirpar una variedad de geometrías de tejido mediante el uso de un nivel mínimo de energía de RF y sin sobrecalentar el tejido a ninguna profundidad.
Por ejemplo, en la ablación de una pared más gruesa del miocardio, se puede insertar un dispositivo similar al dispositivo 600 en el cuerpo de un paciente a través de un puerto de acceso u otra abertura formada a través de una o más capas de tejido, o mediante un orificio natural (es decir, endoscópicamente). Posteriormente, el dispositivo puede administrarse directamente a cualquier lugar de tratamiento dentro del cuerpo, o utilizando pasajes existentes dentro del cuerpo (p, ej., pasando el dispositivo al corazón a través de los vasos sanguíneos de un paciente). Una vez en las proximidades de un lugar de tratamiento deseado, el elemento de ablación del dispositivo se puede colocar usando la ayuda de electrodos sensores u otro instrumental de posicionamiento, y la punta distal del elemento de ablación se puede presionar contra una pared de tejido en una ubicación particular. Además, en muchas formas de realización, el cuerpo alargado y/o el elemento de ablación puede tener un extremo distal romo, de modo que el cuerpo alargado y/o el elemento de ablación se pueden presionar contra una pared de tejido sin penetrar a través del tejido. Después del posicionamiento, la energía de RF puede suministrarse a la pared del tejido mientras que el líquido se administra simultáneamente a través del cuerpo alargado, por ejemplo, a través de un lumen de administración. El líquido se puede calentar mediante un conjunto de calentamiento colocado en una parte distal del cuerpo alargado, por ejemplo, dentro de una parte distal del lumen de administración. El líquido puede entrar en contacto con el elemento de ablación y fluir a través de los puertos formados en el elemento de ablación o fluir de regreso al extremo proximal del miembro alargado para alejar el calor por convección del elemento de ablación. La administración del líquido calentado puede regular de forma efectiva la temperatura del elemento de ablación para que coincida con la del líquido calentado. La temperatura de funcionamiento controlada y elevada puede permitir que se lleve a cabo el tratamiento ablativo utilizando un nivel eficiente de energía de RF, y se puede impedir el calentamiento del tejido por encima de un nivel umbral, p. ej., 100 °C.
Las realizaciones ejemplares anteriores describen el tratamiento del tejido cardíaco. Si bien este es un uso contemplado, los dispositivos de la presente invención pueden adaptarse igualmente para su uso en otras zonas del cuerpo de un paciente. Como tales, los dispositivos descritos en esta invención pueden formarse en una variedad de tamaños y materiales apropiados para su uso en distintas zonas del cuerpo de un paciente.
Además, los expertos en la técnica reconocerán que el mecanismo de calentamiento para producir hipertermia dentro del tejido diana suficiente para destruirlo puede incluir otras formas de energía. Se sabe que los tejidos absorben la energía vibratoria ultrasónica y la convierten en calor, al igual que la energía electromagnética de ondas de luz y microondas. Ejemplos alternativos que no son según la invención pueden emplear transductores ultrasónicos, antenas de microondas o difusores de ondas de luz como emisores dispuestos en el extremo distal de un cuerpo alargado. La energía electromagnética de ondas de luz puede caer en un intervalo que abarque la radiación visible, infrarroja cercana, infrarroja e infrarroja lejana, y pueden generarse mediante filamentos, lámparas de arco, láseres de distintas formas (p. ej., diodos, semiconductores o bombas), o de otra manera. De manera similar, el elemento o conjunto de calentamiento descrito anteriormente puede tener una variedad de formas, incluido un alambre resistivo para calentar el líquido por conducción. Independientemente del tipo de elemento de ablación utilizado, la inyección de líquido calentado en el cuerpo alargado adyacente al elemento de ablación puede ayudar a regular su temperatura, y el uso de solución salina calentada por encima de la temperatura ambiente puede aumentar la eficiencia del tratamiento ablativo y permitir el uso de menor energía de RF. También se reconoce que los dispositivos descritos anteriormente se pueden administrar en un lugar de tratamiento mediante el uso de cualquier dispositivo de administración médica estándar, en función del tejido a tratar. Las realizaciones alternativas ejemplares pueden incluir cuerpos de aguja, vainas o introductores metálicos o no metálicos.
Los dispositivos descritos en esta invención pueden diseñarse para desecharse después de un solo uso, o pueden diseñarse para múltiples usos. En cualquier caso, sin embargo, el dispositivo puede reacondicionarse para su reutilización después de al menos un uso. El reacondicionamiento puede incluir cualquier combinación de las etapas de desmontaje del dispositivo, seguido de la limpieza o reemplazo de piezas particulares, y el remontaje posterior. En particular, el dispositivo se puede desmontar, y cualquier número de piezas o partes particulares del dispositivo se puede reemplazar o quitar selectivamente en cualquier combinación. Al limpiar y/o reemplazar las partes particulares, el dispositivo se puede reensamblar para su uso posterior, ya sea en una instalación de reacondicionamiento o por un equipo quirúrgico inmediatamente antes de un procedimiento quirúrgico. Los expertos en la materia apreciarán que el reacondicionamiento de un dispositivo puede utilizar una variedad de técnicas para el desmontaje, limpieza/reemplazo, y remontaje.
Por ejemplo, los dispositivos descritos en esta invención pueden desmontarse parcial o completamente. En particular, el cuerpo alargado 602 del dispositivo médico 600 mostrado en la figura 6 puede desacoplarse de cualquier mango de control u otro componente conectado, o el cuerpo alargado 602 puede separarse del elemento de ablación y/o cualquier lumen de administración que se extienda a través del mismo. De manera similar, el elemento o conjunto de calentamiento 612 y el sensor de temperatura 614 pueden separarse del lumen de administración 608 y/o cuerpo alargado 602 para la limpieza y/o el reemplazo. Estos son solo pasos de desmontaje ejemplares, ya que cualquier componente del dispositivo puede configurarse para separarse del dispositivo para su limpieza y/o reemplazo.
Preferentemente, los dispositivos descritos en esta invención se procesarán antes de la cirugía. Primero, se puede obtener un instrumento nuevo o usado y, si es necesario, limpiarlo. A continuación, el instrumento puede esterilizarse. En una técnica de esterilización, el instrumento se coloca en un recipiente cerrado y sellado, como una bolsa de plástico o TYVEK. El contenedor y su contenido se pueden colocar en un campo de radiación que puede penetrar en el contenedor, como la radiación gamma, los rayos X o los electrones de alta energía. La radiación puede matar las bacterias en el instrumento y en el contenedor. A continuación, el instrumento esterilizado puede almacenarse en el recipiente estéril. El contenedor sellado puede mantener el instrumento estéril hasta que se abra en el centro médico. En muchas realizaciones, se prefiere que el dispositivo esté esterilizado. Esto se puede hacer de varias maneras conocidas por los expertos en la materia, incluida radiación beta o gamma, óxido de etileno, vapor y un baño líquido (por ejemplo, inmersión en frío). En ciertas realizaciones, los materiales seleccionados para su uso en la formación de componentes como el cuerpo alargado pueden no ser capaces de resistir ciertas formas de esterilización, como la radiación gamma. En tal caso, se pueden usar formas alternativas adecuadas de esterilización, tales como el óxido de etileno.
Un experto en la materia apreciará otras características y ventajas de la invención basadas en las realizaciones descritas anteriormente. Según esto, la invención no está limitada por lo que se ha mostrado y descrito particularmente, excepto lo indicado por las reivindicaciones adjuntas.

Claims (12)

REIVINDICACIONES
1. Un dispositivo de ablación (600), que comprende
un cuerpo alargado (602) que tiene extremos proximal y distal, y un lumen interior (608) que se extiende a través del mismo, donde el lumen interior está configurado para recibir líquido en su interior y para administrar líquido al extremo distal del cuerpo alargado;
un electrodo de ablación (606) que forma un extremo distal romo del cuerpo alargado, donde el electrodo de ablación está configurado para entrar en contacto con el tejido sin penetrar a través del tejido y calentar el tejido circundante; y
un elemento calefactor (612) dispuesto dentro del lumen interior adyacente al extremo distal del cuerpo alargado, donde el elemento calefactor está configurado para calentar el líquido que fluye a través del lumen interior a una temperatura mayor que 37 °C y menor que 100 °C,
donde el cuerpo alargado está configurado de manera que el líquido pueda circular a través del cuerpo alargado y se reciba de vuelta en el extremo proximal del mismo sin liberarse al tejido circundante.
2. El dispositivo de la reivindicación 1, donde el lumen interior incluye un lumen de administración (608) configurado para administrar líquido desde el extremo proximal al extremo distal del cuerpo alargado, y un lumen de retorno (604) configurado para recibir líquido administrado al extremo distal del cuerpo alargado y devolver el líquido al extremo proximal del cuerpo alargado.
3. El dispositivo de la reivindicación 1, que comprende además un sensor de temperatura (618) dispuesto en un extremo distal del electrodo de ablación.
4. El dispositivo de la reivindicación 1, que comprende además un sensor de temperatura (618) dispuesto dentro del lumen interior del cuerpo alargado y en contacto con el electrodo de ablación.
5. El dispositivo según la reivindicación 1, donde el elemento calefactor comprende al menos un cable que se extiende a través del lumen interior y está configurado para pasar energía eléctrica de RF a través del líquido que fluye a través del lumen interior.
6. El dispositivo de la reivindicación 1, que comprende además un sensor de temperatura (614) colocado adyacente al extremo distal del lumen interior en una ubicación distal al elemento calefactor.
7. El dispositivo según la reivindicación 2, donde el líquido administrado al extremo distal del cuerpo alargado a través del lumen de administración se devuelve al extremo proximal del cuerpo alargado a través del lumen de retorno sin liberarse al tejido circundante.
8. El dispositivo según la reivindicación 2, donde el lumen de retorno está definido por el espacio anular entre el lumen de administración y una pared interior del lumen interior del cuerpo alargado.
9. El dispositivo de la reivindicación 2, donde el lumen de administración y el lumen de retorno son cada uno tubos huecos separados dispuestos dentro del lumen interior del cuerpo alargado.
10. El dispositivo de la reivindicación 2, donde el lumen de administración se coloca dentro del lumen interior del cuerpo alargado de manera que no se mueva con respecto al cuerpo alargado.
11. El dispositivo de la reivindicación 2, donde el lumen de administración flota libremente dentro del lumen interior del cuerpo alargado.
12. El dispositivo según la reivindicación 2, donde el electrodo de ablación está formado por un material no poroso.
ES12771876T 2011-04-12 2012-04-12 Dispositivos para controlar el tratamiento ablativo Active ES2864590T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161474574P 2011-04-12 2011-04-12
PCT/US2012/033332 WO2012142296A1 (en) 2011-04-12 2012-04-12 Methods and devices for controlling ablation therapy

Publications (1)

Publication Number Publication Date
ES2864590T3 true ES2864590T3 (es) 2021-10-14

Family

ID=47006969

Family Applications (4)

Application Number Title Priority Date Filing Date
ES12771876T Active ES2864590T3 (es) 2011-04-12 2012-04-12 Dispositivos para controlar el tratamiento ablativo
ES12770631T Active ES2817851T3 (es) 2011-04-12 2012-04-12 Dispositivos para la monitorización remota de temperatura en la terapia de ablación mejorada con fluidos
ES12770537T Active ES2864589T3 (es) 2011-04-12 2012-04-12 Dispositivos para la terapia de conformación en la ablación mejorada con fluido
ES12771601T Active ES2892774T3 (es) 2011-04-12 2012-04-12 Dispositivos para el uso de fluidos desgasificados con dispositivos de ablación mejorados con fluido

Family Applications After (3)

Application Number Title Priority Date Filing Date
ES12770631T Active ES2817851T3 (es) 2011-04-12 2012-04-12 Dispositivos para la monitorización remota de temperatura en la terapia de ablación mejorada con fluidos
ES12770537T Active ES2864589T3 (es) 2011-04-12 2012-04-12 Dispositivos para la terapia de conformación en la ablación mejorada con fluido
ES12771601T Active ES2892774T3 (es) 2011-04-12 2012-04-12 Dispositivos para el uso de fluidos desgasificados con dispositivos de ablación mejorados con fluido

Country Status (9)

Country Link
US (19) US20120277737A1 (es)
EP (8) EP2696788B1 (es)
JP (14) JP6189826B2 (es)
KR (9) KR102212427B1 (es)
CN (10) CN106420040B (es)
AU (7) AU2012242845A1 (es)
BR (5) BR112013026176A2 (es)
ES (4) ES2864590T3 (es)
WO (5) WO2012142291A1 (es)

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7918795B2 (en) 2005-02-02 2011-04-05 Gynesonics, Inc. Method and device for uterine fibroid treatment
US11259825B2 (en) 2006-01-12 2022-03-01 Gynesonics, Inc. Devices and methods for treatment of tissue
US9403029B2 (en) * 2007-07-18 2016-08-02 Visualase, Inc. Systems and methods for thermal therapy
JP5400784B2 (ja) * 2007-10-09 2014-01-29 ボストン サイエンティフィック リミテッド 電気生理学電極および電気生理学電極を含む装置
WO2009048943A1 (en) 2007-10-09 2009-04-16 Boston Scientific Scimed, Inc. Cooled ablation catheter devices and methods of use
US8088072B2 (en) 2007-10-12 2012-01-03 Gynesonics, Inc. Methods and systems for controlled deployment of needles in tissue
BRPI0921421A2 (pt) * 2008-11-06 2016-01-05 Nxthera Inc sistema de terapia de próstata
US8262574B2 (en) 2009-02-27 2012-09-11 Gynesonics, Inc. Needle and tine deployment mechanism
WO2015035249A2 (en) 2013-09-06 2015-03-12 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
US8903488B2 (en) 2009-05-28 2014-12-02 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US8926605B2 (en) 2012-02-07 2015-01-06 Advanced Cardiac Therapeutics, Inc. Systems and methods for radiometrically measuring temperature during tissue ablation
US8954161B2 (en) 2012-06-01 2015-02-10 Advanced Cardiac Therapeutics, Inc. Systems and methods for radiometrically measuring temperature and detecting tissue contact prior to and during tissue ablation
US9226791B2 (en) 2012-03-12 2016-01-05 Advanced Cardiac Therapeutics, Inc. Systems for temperature-controlled ablation using radiometric feedback
US9277961B2 (en) 2009-06-12 2016-03-08 Advanced Cardiac Therapeutics, Inc. Systems and methods of radiometrically determining a hot-spot temperature of tissue being treated
US10588609B2 (en) 2010-02-04 2020-03-17 Procept Biorobotics Corporation Gene analysis and generation of stem cell methods and apparatus
US11490957B2 (en) 2010-06-16 2022-11-08 Biosense Webster (Israel) Ltd. Spectral sensing of ablation
US10314650B2 (en) 2010-06-16 2019-06-11 Biosense Webster (Israel) Ltd. Spectral sensing of ablation
US20140171806A1 (en) * 2012-12-17 2014-06-19 Biosense Webster (Israel), Ltd. Optical lesion assessment
EP2627274B1 (en) 2010-10-13 2022-12-14 AngioDynamics, Inc. System for electrically ablating tissue of a patient
CN106420040B (zh) 2011-04-12 2020-08-28 热医学公司 用于在流体增强型消融治疗中对流体进行加热的方法和装置
EP3290010B1 (en) 2011-09-13 2021-05-19 Boston Scientific Scimed, Inc. Systems for prostate treatment
US9078665B2 (en) 2011-09-28 2015-07-14 Angiodynamics, Inc. Multiple treatment zone ablation probe
WO2013152119A1 (en) 2012-04-03 2013-10-10 Nxthera, Inc. Induction coil vapor generator
US10022176B2 (en) 2012-08-15 2018-07-17 Thermedical, Inc. Low profile fluid enhanced ablation therapy devices and methods
US9861336B2 (en) 2012-09-07 2018-01-09 Gynesonics, Inc. Methods and systems for controlled deployment of needle structures in tissue
US10195467B2 (en) * 2013-02-21 2019-02-05 Boston Scientific Scimed, Inc. Ablation catheter system with wireless radio frequency temperature sensor
WO2014153082A2 (en) 2013-03-14 2014-09-25 Nxthera, Inc. Systems and methods for treating prostate cancer
US9610396B2 (en) * 2013-03-15 2017-04-04 Thermedical, Inc. Systems and methods for visualizing fluid enhanced ablation therapy
US9033972B2 (en) 2013-03-15 2015-05-19 Thermedical, Inc. Methods and devices for fluid enhanced microwave ablation therapy
US9579118B2 (en) * 2013-05-01 2017-02-28 Ethicon Endo-Surgery, Llc Electrosurgical instrument with dual blade end effector
PL2859860T3 (pl) * 2013-10-08 2017-12-29 Erbe Elektromedizin Gmbh Instrument wielofunkcyjny
AU2014362361B2 (en) 2013-12-10 2019-06-20 Boston Scientific Scimed, Inc. Vapor ablation systems and methods
US9968395B2 (en) 2013-12-10 2018-05-15 Nxthera, Inc. Systems and methods for treating the prostate
US10617805B2 (en) 2014-03-20 2020-04-14 Exploramed Nc7, Inc. Fluid measuring reservoir for breast pumps
US10022183B2 (en) 2014-04-01 2018-07-17 Innovations In Medicine, Llc Temperature-responsive irrigated ablation electrode with reduced coolant flow and related methods for making and using
EP3160367B1 (en) 2014-06-30 2022-07-13 PROCEPT BioRobotics Corporation Fluid jet tissue resection and cold coagulation (aquablation) apparatus
RU2712192C2 (ru) 2014-07-31 2020-01-24 Басф Се Способ получения пиразолов
CN107072591B (zh) 2014-09-05 2021-10-26 普罗赛普特生物机器人公司 与靶器官图像的治疗映射结合的医师控制的组织切除
CN107148245B (zh) 2014-09-05 2021-03-09 普罗赛普特生物机器人公司 干细胞的基因分析和生成的方法及装置
WO2016081611A1 (en) 2014-11-19 2016-05-26 Advanced Cardiac Therapeutics, Inc. High-resolution mapping of tissue with pacing
KR20170107428A (ko) 2014-11-19 2017-09-25 어드밴스드 카디악 테라퓨틱스, 인크. 고분해능 전극 어셈블리를 이용한 절제 장치, 시스템 및 방법
CA2967829A1 (en) 2014-11-19 2016-05-26 Advanced Cardiac Therapeutics, Inc. Systems and methods for high-resolution mapping of tissue
JP6757732B2 (ja) 2015-01-29 2020-09-23 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 蒸気切除システムおよび方法
US9636164B2 (en) 2015-03-25 2017-05-02 Advanced Cardiac Therapeutics, Inc. Contact sensing systems and methods
GB2536690B (en) * 2015-03-26 2017-05-10 Cook Medical Technologies Llc Medical ablation system and method with reduced stray heating
ES2793350T3 (es) * 2015-04-08 2020-11-13 Exploramed Nc7 Inc Depósito de medición de fluidos para extractores de leche
CN108024803B (zh) * 2015-04-10 2021-10-19 安吉戴尼克公司 使用热控电极进行不可逆电穿孔的系统和方法
KR102585412B1 (ko) 2015-05-11 2023-10-05 바스프 에스이 4-아미노-피리다진의 제조 방법
US10702327B2 (en) 2015-05-13 2020-07-07 Boston Scientific Scimed, Inc. Systems and methods for treating the bladder with condensable vapor
RU2733958C2 (ru) 2016-02-02 2020-10-08 Басф Се Способ каталитического гидрирования для получения пиразолов
SG11201807618QA (en) 2016-03-15 2018-10-30 Epix Therapeutics Inc Improved devices, systems and methods for irrigated ablation
US11172821B2 (en) 2016-04-28 2021-11-16 Medtronic Navigation, Inc. Navigation and local thermometry
US20170325869A1 (en) * 2016-05-10 2017-11-16 Covidien Lp Methods of ablating tissue
EP3463141B1 (en) * 2016-05-25 2021-07-07 Ikomed Technologies Inc. System for treating unwanted tissue
US9743984B1 (en) 2016-08-11 2017-08-29 Thermedical, Inc. Devices and methods for delivering fluid to tissue during ablation therapy
CN106388933B (zh) * 2016-09-14 2017-10-10 上海睿刀医疗科技有限公司 用于不可逆电穿孔设备的电极
WO2018067248A1 (en) * 2016-10-04 2018-04-12 St. Jude Medical, Cardiology Division, Inc. Ablation catheter tip
EP3537982B1 (en) 2016-11-11 2022-09-07 Gynesonics, Inc. Controlled treatment of tissue and dynamic interaction with tissue and/or treatment data and comparison of tissue and/or treatment data
WO2018089923A1 (en) 2016-11-14 2018-05-17 Gynesonics, Inc. Methods and systems for real-time planning and monitoring of ablation needle deployment in tissue
US10905492B2 (en) 2016-11-17 2021-02-02 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
JP7129980B2 (ja) 2016-12-21 2022-09-02 ボストン サイエンティフィック サイムド,インコーポレイテッド 蒸気焼灼システム及び方法
WO2018129180A1 (en) 2017-01-06 2018-07-12 Dfine, Inc. Osteotome with a distal portion for simultaneous advancement and articulation
EP4356944A2 (en) 2017-01-06 2024-04-24 Nxthera, Inc. Transperineal vapor ablation systems
US11147610B2 (en) * 2017-02-10 2021-10-19 Biosense Webster (Israel) Ltd. Tissue thickness using pulsed power
CN106725827B (zh) * 2017-03-02 2023-11-17 上海伴诚医疗科技有限公司 一种颅内血肿清除止血器和颅内血肿清除止血装置
EP3614946B1 (en) 2017-04-27 2024-03-20 EPiX Therapeutics, Inc. Determining nature of contact between catheter tip and tissue
EP3638126A4 (en) 2017-05-04 2021-03-10 Gynesonics, Inc. METHODS FOR MONITORING THE PROGRESSION OF ABLATION BY ECHO-DOPPLER
EP4223243A1 (en) 2017-06-20 2023-08-09 Aegea Medical Inc. Induction coil assembly for uterine ablation and method
US10058372B1 (en) * 2017-08-17 2018-08-28 John H. Shadduck Medical ablation devices and methods
CN109549703B (zh) * 2017-09-25 2022-04-01 上海微创电生理医疗科技股份有限公司 冷冻消融系统及其电生理导管
US20190192220A1 (en) * 2017-12-27 2019-06-27 Medlumics S.L. Ablation Catheter with a Patterned Textured Active Area
EP3755254A1 (en) * 2018-02-21 2020-12-30 Medtronic, Inc. Focal pulsed field ablation devices and methods
US20190290300A1 (en) * 2018-03-23 2019-09-26 SPIRATION, INC., d/b/a OLYMPUS RESPIRATORY AMERICA Rf bipolar steam generation ablation device
US11478297B2 (en) * 2018-03-23 2022-10-25 Avent, Inc. System and method for controlling energy delivered to an area of tissue during a treatment procedure
US11083871B2 (en) 2018-05-03 2021-08-10 Thermedical, Inc. Selectively deployable catheter ablation devices
EP3801324A4 (en) * 2018-06-01 2022-03-30 Santa Anna Tech LLC MULTI-STAGE STEAM-BASED ABLATION TREATMENT METHODS AND STEAM GENERATION AND DISTRIBUTION SYSTEMS
US11918277B2 (en) 2018-07-16 2024-03-05 Thermedical, Inc. Inferred maximum temperature monitoring for irrigated ablation therapy
US11109999B2 (en) * 2018-07-27 2021-09-07 Cooltech, Llc Device for removing heat, energy, and/or fluid from a living mammal
JP7265014B2 (ja) * 2018-09-14 2023-04-25 杭州▲くん▼博生物科技有限公司 高周波アブレーションカテーテル、肺部高周波アブレーションシステム、それに対応する制御方法、制御装置およびコンピュータ読み取り可能な記憶媒体
US11937864B2 (en) * 2018-11-08 2024-03-26 Dfine, Inc. Ablation systems with parameter-based modulation and related devices and methods
AU2019384814B2 (en) * 2018-11-21 2021-11-04 Buffalo Filter Llc Method and apparatus for flow
CN109481013B (zh) * 2018-12-19 2021-05-28 南京康友医疗科技有限公司 一种具有热场监控功能的微波消融装置
WO2020198150A2 (en) * 2019-03-22 2020-10-01 Stryker Corporation Systems for ablating tissue
US11832873B2 (en) * 2019-06-14 2023-12-05 Eric Lee Cannulas for radio frequency ablation
WO2021062074A1 (en) * 2019-09-27 2021-04-01 St. Jude Medical, Cardiology Division, Inc. Irrigated catheter system including fluid degassing apparatus and methods of using same
EP4051150A1 (en) 2019-10-28 2022-09-07 Boston Scientific Neuromodulation Corporation Rf electrode cannula
JP7334675B2 (ja) * 2020-05-25 2023-08-29 株式会社デンソー 車載カメラ及び車両制御システム
CN112022326A (zh) * 2020-08-18 2020-12-04 上海市第十人民医院 一种作用范围可调节的喷雾冷冻导管
CN112263322A (zh) * 2020-09-29 2021-01-26 杭州睿笛生物科技有限公司 一种具有凝血功能的肿瘤消融针
US20230066333A1 (en) * 2021-08-24 2023-03-02 Medtronic Holding Company Sàrl Cooled bipolar radio-frequency ablation probe

Family Cites Families (261)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1582135A (en) * 1976-07-14 1980-12-31 Ferranti Ltd Heaters
US4424190A (en) 1982-02-22 1984-01-03 Cordis Dow Corp. Rigid shell expansible blood reservoir, heater and hollow fiber membrane oxygenator assembly
JPS6297971A (ja) 1985-10-21 1987-05-07 財団法人日本綿業技術・経済研究所 綿糸紡績用処理剤
JPS62211057A (ja) 1986-03-12 1987-09-17 オリンパス光学工業株式会社 超音波振動処置装置
JPH01146539A (ja) 1987-12-03 1989-06-08 Olympus Optical Co Ltd 超音波治療装置
US5549559A (en) 1990-03-22 1996-08-27 Argomed Ltd. Thermal treatment apparatus
CA2089739A1 (en) 1990-09-14 1992-03-15 John H. Burton Combined hyperthermia and dilation catheter
US5190538A (en) 1991-04-22 1993-03-02 Trimedyne, Inc. Method and apparatus for subjecting a body site to a movable beam of laterally directed laser radiation
WO1993008755A1 (en) * 1991-11-08 1993-05-13 Ep Technologies, Inc. Ablation electrode with insulated temperature sensing elements
IT1251997B (it) * 1991-11-11 1995-05-27 San Romanello Centro Fond Dispositivo radiante per ipertermia
US6277112B1 (en) 1996-07-16 2001-08-21 Arthrocare Corporation Methods for electrosurgical spine surgery
JP3774477B2 (ja) 1992-02-10 2006-05-17 アロカ株式会社 手術装置
US5333603A (en) 1992-02-25 1994-08-02 Daniel Schuman Endoscope with palm rest
US5271413A (en) 1992-07-22 1993-12-21 Dalamagas Photios P Method to sense the tissue for injection from a hypodermic needle
CA2127695A1 (en) * 1992-11-12 1994-05-26 Robert S. Neuwirth Heated balloon medical apparatus
US5437673A (en) 1993-02-04 1995-08-01 Cryomedical Sciences, Inc. Closed circulation tissue warming apparatus and method of using the same in prostate surgery
US6033383A (en) 1996-12-19 2000-03-07 Ginsburg; Robert Temperature regulating catheter and methods
US5336222A (en) 1993-03-29 1994-08-09 Boston Scientific Corporation Integrated catheter for diverse in situ tissue therapy
US5403311A (en) 1993-03-29 1995-04-04 Boston Scientific Corporation Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue
US5431649A (en) 1993-08-27 1995-07-11 Medtronic, Inc. Method and apparatus for R-F ablation
US5449380A (en) 1993-09-17 1995-09-12 Origin Medsystems, Inc. Apparatus and method for organ ablation
US6071280A (en) * 1993-11-08 2000-06-06 Rita Medical Systems, Inc. Multiple electrode ablation apparatus
US5458597A (en) 1993-11-08 1995-10-17 Zomed International Device for treating cancer and non-malignant tumors and methods
US5472441A (en) 1993-11-08 1995-12-05 Zomed International Device for treating cancer and non-malignant tumors and methods
US5728143A (en) * 1995-08-15 1998-03-17 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US6641580B1 (en) 1993-11-08 2003-11-04 Rita Medical Systems, Inc. Infusion array ablation apparatus
US5536267A (en) 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US5462521A (en) 1993-12-21 1995-10-31 Angeion Corporation Fluid cooled and perfused tip for a catheter
US5409487A (en) 1994-01-28 1995-04-25 Yab Revo-Tech Inc. Auxiliary tubing probe
US5573510A (en) 1994-02-28 1996-11-12 Isaacson; Dennis R. Safety intravenous catheter assembly with automatically retractable needle
US5437629A (en) 1994-04-14 1995-08-01 Bei Medical Systems Fluid delivery system for hysteroscopic endometrial ablation
US20050187599A1 (en) 1994-05-06 2005-08-25 Hugh Sharkey Method and apparatus for controlled contraction of soft tissue
US5843021A (en) 1994-05-09 1998-12-01 Somnus Medical Technologies, Inc. Cell necrosis apparatus
US6024743A (en) 1994-06-24 2000-02-15 Edwards; Stuart D. Method and apparatus for selective treatment of the uterus
US5735846A (en) * 1994-06-27 1998-04-07 Ep Technologies, Inc. Systems and methods for ablating body tissue using predicted maximum tissue temperature
US5545195A (en) 1994-08-01 1996-08-13 Boston Scientific Corporation Interstitial heating of tissue
US5609151A (en) 1994-09-08 1997-03-11 Medtronic, Inc. Method for R-F ablation
CN1052170C (zh) * 1994-09-24 2000-05-10 华夏海南开发建设经营公司 内燃机排气的净化催化剂
US6678552B2 (en) 1994-10-24 2004-01-13 Transscan Medical Ltd. Tissue characterization based on impedance images and on impedance measurements
US6409722B1 (en) 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6030379A (en) 1995-05-01 2000-02-29 Ep Technologies, Inc. Systems and methods for seeking sub-surface temperature conditions during tissue ablation
US5697949A (en) 1995-05-18 1997-12-16 Symbiosis Corporation Small diameter endoscopic instruments
SE505332C2 (sv) 1995-05-18 1997-08-11 Lund Instr Ab Anordning för värmebehandling av kroppsvävnad
US6772012B2 (en) 1995-06-07 2004-08-03 Arthrocare Corporation Methods for electrosurgical treatment of spinal tissue
WO2000071043A1 (en) * 1999-05-21 2000-11-30 Arthrocare Corporation Systems and methods for electrosurgical treatment of intervertebral discs
US20050004634A1 (en) 1995-06-07 2005-01-06 Arthrocare Corporation Methods for electrosurgical treatment of spinal tissue
US7179255B2 (en) * 1995-06-07 2007-02-20 Arthrocare Corporation Methods for targeted electrosurgery on contained herniated discs
ES2233239T3 (es) 1995-06-23 2005-06-16 Gyrus Medical Limited Instrumento electroquirurgico.
US6689127B1 (en) * 1995-08-15 2004-02-10 Rita Medical Systems Multiple antenna ablation apparatus and method with multiple sensor feedback
US6235023B1 (en) 1995-08-15 2001-05-22 Rita Medical Systems, Inc. Cell necrosis apparatus
US6669685B1 (en) * 1997-11-06 2003-12-30 Biolase Technology, Inc. Tissue remover and method
US5653692A (en) * 1995-09-07 1997-08-05 Innerdyne Medical, Inc. Method and system for direct heating of fluid solution in a hollow body organ
US5891094A (en) 1995-09-07 1999-04-06 Innerdyne, Inc. System for direct heating of fluid solution in a hollow body organ and methods
US6283951B1 (en) 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US6090106A (en) 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
US6475213B1 (en) 1996-01-19 2002-11-05 Ep Technologies, Inc. Method of ablating body tissue
US5800482A (en) 1996-03-06 1998-09-01 Cardiac Pathways Corporation Apparatus and method for linear lesion ablation
US6032077A (en) 1996-03-06 2000-02-29 Cardiac Pathways Corporation Ablation catheter with electrical coupling via foam drenched with a conductive fluid
US6419673B1 (en) 1996-05-06 2002-07-16 Stuart Edwards Ablation of rectal and other internal body structures
US6565561B1 (en) 1996-06-20 2003-05-20 Cyrus Medical Limited Electrosurgical instrument
US5891134A (en) 1996-09-24 1999-04-06 Goble; Colin System and method for applying thermal energy to tissue
US5954719A (en) 1996-12-11 1999-09-21 Irvine Biomedical, Inc. System for operating a RF ablation generator
US5827269A (en) 1996-12-31 1998-10-27 Gynecare, Inc. Heated balloon having a reciprocating fluid agitator
US5797848A (en) * 1997-01-31 1998-08-25 Acuson Corporation Ultrasonic transducer assembly with improved electrical interface
US6411852B1 (en) 1997-04-07 2002-06-25 Broncus Technologies, Inc. Modification of airways by application of energy
US6272370B1 (en) 1998-08-07 2001-08-07 The Regents Of University Of Minnesota MR-visible medical device for neurological interventions using nonlinear magnetic stereotaxis and a method imaging
US6139570A (en) 1997-05-19 2000-10-31 Gynelab Products, Inc. Disposable bladder for intrauterine use
US6997925B2 (en) 1997-07-08 2006-02-14 Atrionx, Inc. Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
US6139571A (en) 1997-07-09 2000-10-31 Fuller Research Corporation Heated fluid surgical instrument
US6080151A (en) 1997-07-21 2000-06-27 Daig Corporation Ablation catheter
US6056747A (en) * 1997-08-04 2000-05-02 Gynecare, Inc. Apparatus and method for treatment of body tissues
US6045549A (en) * 1997-09-30 2000-04-04 Somnus Medical Technologies, Inc. Tissue ablation apparatus and device for use therein and method
US6176857B1 (en) * 1997-10-22 2001-01-23 Oratec Interventions, Inc. Method and apparatus for applying thermal energy to tissue asymmetrically
WO1999022656A1 (en) 1997-10-30 1999-05-14 Sonique Surgical Systems, Inc. Laser-assisted liposuction method and apparatus
JPH11178787A (ja) 1997-12-18 1999-07-06 Olympus Optical Co Ltd 内視鏡システム
CA2311935A1 (en) * 1997-12-22 1999-07-01 Celgard, Llc Device for removal of gas bubbles and dissolved gasses in liquid
US7001378B2 (en) 1998-03-31 2006-02-21 Innercool Therapies, Inc. Method and device for performing cooling or cryo-therapies, for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6337994B1 (en) 1998-04-30 2002-01-08 Johns Hopkins University Surgical needle probe for electrical impedance measurements
US6540725B1 (en) 1998-06-04 2003-04-01 Biosense Webster, Inc. Injection catheter with controllably extendable injection needle
US6238393B1 (en) 1998-07-07 2001-05-29 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US6494902B2 (en) 1998-07-07 2002-12-17 Medtronic, Inc. Method for creating a virtual electrode for the ablation of tissue and for selected protection of tissue during an ablation
US6315777B1 (en) 1998-07-07 2001-11-13 Medtronic, Inc. Method and apparatus for creating a virtual electrode used for the ablation of tissue
US6112123A (en) 1998-07-28 2000-08-29 Endonetics, Inc. Device and method for ablation of tissue
US6450990B1 (en) * 1998-08-13 2002-09-17 Alsius Corporation Catheter with multiple heating/cooling fibers employing fiber spreading features
ES2228083T3 (es) 1998-08-14 2005-04-01 K.U. LEUVEN RESEARCH & DEVELOPMENT Electrodo humedo enfriado.
US6208881B1 (en) 1998-10-20 2001-03-27 Micropure Medical, Inc. Catheter with thin film electrodes and method for making same
US6328735B1 (en) * 1998-10-30 2001-12-11 E.P., Limited Thermal ablation system
US6210406B1 (en) 1998-12-03 2001-04-03 Cordis Webster, Inc. Split tip electrode catheter and signal processing RF ablation system
SE9804388D0 (sv) 1998-12-17 1998-12-17 Wallsten Medical Sa Device and method for medical treatment
US6233490B1 (en) 1999-02-09 2001-05-15 Kai Technologies, Inc. Microwave antennas for medical hyperthermia, thermotherapy and diagnosis
EP1159036B1 (en) * 1999-03-02 2007-06-20 Atrionix, Inc. Atrial ablator having balloon and sensor
US6203507B1 (en) 1999-03-03 2001-03-20 Cordis Webster, Inc. Deflectable catheter with ergonomic handle
US6358273B1 (en) 1999-04-09 2002-03-19 Oratec Inventions, Inc. Soft tissue heating apparatus with independent, cooperative heating sources
US6684723B1 (en) 1999-07-29 2004-02-03 Hatebur Umformmaschinen Ag Device for producing a lifting and lowering movement
US7815590B2 (en) 1999-08-05 2010-10-19 Broncus Technologies, Inc. Devices for maintaining patency of surgically created channels in tissue
US6463332B1 (en) 1999-09-17 2002-10-08 Core Medical, Inc. Method and system for pericardial enhancement
WO2001026570A1 (en) 1999-10-13 2001-04-19 Arthrocare Corporation Systems and methods for treating spinal pain
US6529756B1 (en) 1999-11-22 2003-03-04 Scimed Life Systems, Inc. Apparatus for mapping and coagulating soft tissue in or around body orifices
US20040220559A1 (en) 2000-03-01 2004-11-04 Kramer Hans W. Preparation of working fluid for use in cryotherapies
US6443947B1 (en) 2000-03-01 2002-09-03 Alexei Marko Device for thermal ablation of a cavity
US6702810B2 (en) 2000-03-06 2004-03-09 Tissuelink Medical Inc. Fluid delivery system and controller for electrosurgical devices
US6869430B2 (en) 2000-03-31 2005-03-22 Rita Medical Systems, Inc. Tissue biopsy and treatment apparatus and method
FR2807827B1 (fr) 2000-04-12 2002-07-05 Technomed Medical Systems Systeme de manipulation de fluide pour appareil de therapie
US20020107514A1 (en) 2000-04-27 2002-08-08 Hooven Michael D. Transmural ablation device with parallel jaws
US6511478B1 (en) * 2000-06-30 2003-01-28 Scimed Life Systems, Inc. Medical probe with reduced number of temperature sensor wires
US6405067B1 (en) 2000-07-07 2002-06-11 Biosense Webster, Inc. Catheter with tip electrode having a recessed ring electrode mounted thereon
US6477396B1 (en) 2000-07-07 2002-11-05 Biosense Webster, Inc. Mapping and ablation catheter
WO2002005720A1 (en) 2000-07-13 2002-01-24 Transurgical, Inc. Energy application with inflatable annular lens
JP2004520865A (ja) 2000-07-25 2004-07-15 リタ メディカル システムズ インコーポレイテッド 局在化インピーダンス測定を使用する腫瘍の検出および処置のための装置
US6855154B2 (en) 2000-08-11 2005-02-15 University Of Louisville Research Foundation, Inc. Endovascular aneurysm treatment device and method
CN1246052C (zh) 2000-09-06 2006-03-22 辅助呼吸产品公司 静脉输液的加热系统
US6564096B2 (en) 2001-02-28 2003-05-13 Robert A. Mest Method and system for treatment of tachycardia and fibrillation
US6666862B2 (en) 2001-03-01 2003-12-23 Cardiac Pacemakers, Inc. Radio frequency ablation system and method linking energy delivery with fluid flow
US6418968B1 (en) 2001-04-20 2002-07-16 Nanostream, Inc. Porous microfluidic valves
JP4252316B2 (ja) * 2001-05-10 2009-04-08 リタ メディカル システムズ インコーポレイテッド Rf組織切除装置および方法
US6752802B1 (en) 2001-07-09 2004-06-22 Ethicon, Inc. Method and apparatus for the prevention of endometrial hyperplasis and uterine cancer
AU2002326548A1 (en) * 2001-08-17 2003-04-14 Innercool Therapies, Inc. Preparation of working fluid for use in cryotherapies
AU2002362310A1 (en) 2001-09-14 2003-04-01 Arthrocare Corporation Methods and apparatus for treating intervertebral discs
EP1460945B1 (en) * 2001-09-14 2013-01-09 ArthroCare Corporation Electrosurgical apparatus for tissue treatment & removal
GB2379878B (en) * 2001-09-21 2004-11-10 Gyrus Medical Ltd Electrosurgical system and method
US6814730B2 (en) 2001-10-09 2004-11-09 Hong Li Balloon catheters for non-continuous lesions
US7070597B2 (en) 2001-10-18 2006-07-04 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US6603997B2 (en) 2001-11-02 2003-08-05 Michael C. Doody Probe penetration detector and method of operation
US20050267552A1 (en) 2004-05-26 2005-12-01 Baylis Medical Company Inc. Electrosurgical device
KR20050006180A (ko) 2002-04-22 2005-01-15 마시오 마크 애브리우 생물학적 파라미터 측정 장치 및 방법
JP4394864B2 (ja) 2002-05-07 2010-01-06 テルモ株式会社 金属製の管状体およびその製造方法
IL149706A0 (en) * 2002-05-16 2002-11-10 Dolopaz Technologies Ltd Multipurpose fluid jet surgical device
US7294143B2 (en) 2002-05-16 2007-11-13 Medtronic, Inc. Device and method for ablation of cardiac tissue
US20060194164A1 (en) * 2004-12-09 2006-08-31 Palomar Medical Technologies, Inc. Oral appliance with heat transfer mechanism
DE60325052D1 (de) 2002-06-20 2009-01-15 Becton Dickinson Co Vorrichtung zum abschirmen der spitze einer kathetereinführnadel
JP2004024331A (ja) 2002-06-21 2004-01-29 Vayu:Kk カテーテル
US20040006336A1 (en) 2002-07-02 2004-01-08 Scimed Life Systems, Inc. Apparatus and method for RF ablation into conductive fluid-infused tissue
AU2003268458A1 (en) * 2002-09-05 2004-03-29 Arthrocare Corporation Methods and apparatus for treating intervertebral discs
EP3097882A1 (en) * 2002-10-31 2016-11-30 Boston Scientific Scimed, Inc. Improved electrophysiology loop catheter
AU2002952663A0 (en) 2002-11-14 2002-11-28 Western Sydney Area Health Service An intramural needle-tipped surgical device
US8515560B2 (en) 2002-11-29 2013-08-20 Cochlear Limited Medical implant drug delivery device
US6972014B2 (en) 2003-01-04 2005-12-06 Endocare, Inc. Open system heat exchange catheters and methods of use
JP2004275594A (ja) 2003-03-18 2004-10-07 Terumo Corp 注射針突出量調整機構を有するカテーテル
US7025768B2 (en) 2003-05-06 2006-04-11 Boston Scientific Scimed, Inc. Systems and methods for ablation of tissue
US20060129091A1 (en) 2004-12-10 2006-06-15 Possis Medical, Inc. Enhanced cross stream mechanical thrombectomy catheter with backloading manifold
US7235070B2 (en) 2003-07-02 2007-06-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation fluid manifold for ablation catheter
US7311703B2 (en) 2003-07-18 2007-12-25 Vivant Medical, Inc. Devices and methods for cooling microwave antennas
US7104989B2 (en) 2003-09-05 2006-09-12 Medtronic, Inc. RF ablation catheter including a virtual electrode assembly
US20050059963A1 (en) 2003-09-12 2005-03-17 Scimed Life Systems, Inc. Systems and method for creating transmural lesions
US20050080410A1 (en) * 2003-10-14 2005-04-14 Scimed Life Systems, Inc. Liquid infusion apparatus for radiofrequency tissue ablation
US7155270B2 (en) 2003-10-24 2006-12-26 Biosense Webster, Inc. Catheter with multi-spine mapping assembly
US7179256B2 (en) 2003-10-24 2007-02-20 Biosense Webster, Inc. Catheter with ablation needle and mapping assembly
US7207989B2 (en) 2003-10-27 2007-04-24 Biosense Webster, Inc. Method for ablating with needle electrode
NL1024658C2 (nl) 2003-10-29 2005-05-02 Univ Medisch Centrum Utrecht Katheter en werkwijze, in het bijzonder voor ablatie en dergelijke techniek.
US7282051B2 (en) 2004-02-04 2007-10-16 Boston Scientific Scimed, Inc. Ablation probe for delivering fluid through porous structure
US20050192652A1 (en) 2004-02-26 2005-09-01 Iulian Cioanta Thermal treatment systems with enhanced tissue penetration depth using adjustable treatment pressures and related methods
WO2005089663A1 (en) * 2004-03-05 2005-09-29 Medelec-Minimeca S.A. Saline-enhanced catheter for radiofrequency tumor ablation
EP1737371B1 (en) * 2004-04-19 2011-06-08 ProRhythm, Inc. Ablation devices with sensor structures
US20050245923A1 (en) 2004-04-29 2005-11-03 Medtronic, Inc. Biopolar virtual electrode for transurethral needle ablation
US7101369B2 (en) 2004-04-29 2006-09-05 Wisconsin Alumni Research Foundation Triaxial antenna for microwave tissue ablation
US7244254B2 (en) 2004-04-29 2007-07-17 Micrablate Air-core microwave ablation antennas
US9061120B2 (en) 2004-08-05 2015-06-23 Oscor Inc. Catheter control mechanism and steerable catheter
US20060085054A1 (en) 2004-09-09 2006-04-20 Zikorus Arthur W Methods and apparatus for treatment of hollow anatomical structures
US7412273B2 (en) 2004-11-15 2008-08-12 Biosense Webster, Inc. Soft linear mapping catheter with stabilizing tip
WO2006055658A1 (en) 2004-11-15 2006-05-26 Biosense Webster Inc. Catheter with multiple microfabricated temperature sensors
US20060118127A1 (en) 2004-12-06 2006-06-08 Chinn Douglas O Tissue protective system and method for thermoablative therapies
US7666166B1 (en) 2004-12-27 2010-02-23 Blivic, Llc Bloodless intravenous integrated catheter
KR100640283B1 (ko) * 2004-12-28 2006-11-01 최정숙 고주파 전기 수술용 전극
GB0504988D0 (en) 2005-03-10 2005-04-20 Emcision Ltd Device and method for the treatment of diseased tissue such as tumors
US8765116B2 (en) 2005-03-24 2014-07-01 Medifocus, Inc. Apparatus and method for pre-conditioning/fixation and treatment of disease with heat activation/release with thermoactivated drugs and gene products
US7942873B2 (en) 2005-03-25 2011-05-17 Angiodynamics, Inc. Cavity ablation apparatus and method
JPWO2006103951A1 (ja) 2005-03-29 2008-09-04 テルモ株式会社 脱気モジュール付医療用送液管と、該医療用送液管を用いる医療用機器アッセンブリ及び脱気モジュール並びに送液方法
US7799019B2 (en) 2005-05-10 2010-09-21 Vivant Medical, Inc. Reinforced high strength microwave antenna
US8128621B2 (en) 2005-05-16 2012-03-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated ablation electrode assembly and method for control of temperature
US8333776B2 (en) 2005-05-20 2012-12-18 Neotract, Inc. Anchor delivery system
US7621890B2 (en) 2005-06-09 2009-11-24 Endocare, Inc. Heat exchange catheter with multi-lumen tube having a fluid return passageway
US8123693B2 (en) 2005-06-20 2012-02-28 Conceptus, Inc. Methods and devices for determining lumen occlusion
US7819868B2 (en) 2005-06-21 2010-10-26 St. Jude Medical, Atrial Fibrilation Division, Inc. Ablation catheter with fluid distribution structures
US7879030B2 (en) 2005-07-27 2011-02-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Multipolar, virtual-electrode catheter with at least one surface electrode and method for ablation
US8353906B2 (en) * 2005-08-01 2013-01-15 Ceramatec, Inc. Electrochemical probe and method for in situ treatment of a tissue
US7766906B2 (en) 2005-08-19 2010-08-03 Boston Scientific Scimed, Inc. Occlusion apparatus
US7416552B2 (en) * 2005-08-22 2008-08-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Multipolar, multi-lumen, virtual-electrode catheter with at least one surface electrode and method for ablation
US20070078453A1 (en) * 2005-10-04 2007-04-05 Johnson Kristin D System and method for performing cardiac ablation
US8182444B2 (en) 2005-11-04 2012-05-22 Medrad, Inc. Delivery of agents such as cells to tissue
AU2006321918B2 (en) 2005-12-06 2011-08-25 St. Jude Medical, Atrial Fibrillation Division Inc. Assessment of electrode coupling for tissue ablation
US8449535B2 (en) 2005-12-06 2013-05-28 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing coupling between an electrode and tissue
US20070167775A1 (en) 2005-12-15 2007-07-19 Galil Medical Ltd. Method and apparatus for protecting the rectal wall during cryoablation
EP1971277A2 (en) 2006-01-09 2008-09-24 Biospiral Ltd. System and method for thermally treating tissues
CN2885157Y (zh) * 2006-03-23 2007-04-04 迈德医疗科技(上海)有限公司 可灌注式探针电极
US9814519B2 (en) 2006-04-20 2017-11-14 Boston Scientific Scimed, Inc. Ablation probe with ribbed insulated sheath
WO2007140278A2 (en) 2006-05-24 2007-12-06 Rush University Medical Center High temperature thermal therapy of breast cancer
WO2007143445A2 (en) 2006-05-30 2007-12-13 Arthrocare Corporation Hard tissue ablation system
US7662152B2 (en) 2006-06-13 2010-02-16 Biosense Webster, Inc. Catheter with multi port tip for optical lesion evaluation
US7559905B2 (en) 2006-09-21 2009-07-14 Focus Surgery, Inc. HIFU probe for treating tissue with in-line degassing of fluid
WO2008045877A2 (en) 2006-10-10 2008-04-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrode tip and ablation system
US8728073B2 (en) 2006-10-10 2014-05-20 Biosense Webster, Inc. Multi-region staged inflation balloon
EP2066251B1 (en) 2006-10-10 2017-05-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation electrode assembly with insulated distal outlet
CN100574719C (zh) 2006-12-26 2009-12-30 上海导向医疗系统有限公司 气体节流冷却式射频消融电极
US7766907B2 (en) * 2006-12-28 2010-08-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter with sensor array and discrimination circuit to minimize variation in power density
US7951143B2 (en) 2006-12-28 2011-05-31 St. Jude Medical, Artial Fibrillation Divsion, Inc. Cooled ablation catheter with reciprocating flow
US8460285B2 (en) * 2006-12-29 2013-06-11 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter electrode having multiple thermal sensors and method of use
US8764742B2 (en) 2007-04-04 2014-07-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated catheter
US9314298B2 (en) 2007-04-17 2016-04-19 St. Jude Medical, Atrial Fibrillation Divisions, Inc. Vacuum-stabilized ablation system
US8579886B2 (en) 2007-05-01 2013-11-12 Covidien Lp Accordion style cable stand-off
US20080275440A1 (en) * 2007-05-03 2008-11-06 Medtronic, Inc. Post-ablation verification of lesion size
US20080281200A1 (en) * 2007-05-10 2008-11-13 Misonix, Incorporated Elevated coupling liquid temperature during HIFU treatment method and hardware
WO2009023798A2 (en) 2007-08-14 2009-02-19 Fred Hutchinson Cancer Research Center Needle array assembly and method for delivering therapeutic agents
WO2009039038A1 (en) 2007-09-20 2009-03-26 Boston Scientific Scimed, Inc. Hand-held thermal ablation device
US20090088785A1 (en) 2007-09-28 2009-04-02 Shinya Masuda Surgical operating apparatus
WO2009048943A1 (en) 2007-10-09 2009-04-16 Boston Scientific Scimed, Inc. Cooled ablation catheter devices and methods of use
CN101411645A (zh) * 2007-10-19 2009-04-22 上海导向医疗系统有限公司 表面温度均匀的射频消融电极
US8535306B2 (en) 2007-11-05 2013-09-17 Angiodynamics, Inc. Ablation devices and methods of using the same
US8439907B2 (en) 2007-11-07 2013-05-14 Mirabilis Medica Inc. Hemostatic tissue tunnel generator for inserting treatment apparatus into tissue of a patient
US8128620B2 (en) 2007-11-13 2012-03-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated ablation electrode having proximal direction flow
US20090125014A1 (en) * 2007-11-14 2009-05-14 Bouthillier Robert J Thermal Ablation System
US8273082B2 (en) 2007-12-21 2012-09-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated ablation catheter assembly having a flow member to create parallel external flow
US8444579B2 (en) * 2007-12-21 2013-05-21 St. Jude Medical, Atrial Fibrillation Division, Inc. System for delivering acoustic energy in connection with therapeutic ultrasound systems and catheters
US8333762B2 (en) 2007-12-28 2012-12-18 Biosense Webster, Inc. Irrigated catheter with improved irrigation flow
EP2231002A1 (en) 2008-01-09 2010-09-29 Mayo Foundation for Medical Education and Research Mapping and ablation catheter system
WO2009094604A1 (en) 2008-01-25 2009-07-30 Anacapa Arch Associates Method and device for less invasive surgical procedures on animals
US20090254083A1 (en) 2008-03-10 2009-10-08 Hansen Medical, Inc. Robotic ablation catheter
EP2268200B1 (en) * 2008-03-18 2018-09-26 Circa Scientific, LLC Large surface area temperature sensing device
US20100004595A1 (en) * 2008-07-01 2010-01-07 Ethicon, Inc. Balloon catheter systems for treating uterine disorders having fluid line de-gassing assemblies and methods therefor
JP2010046200A (ja) 2008-08-20 2010-03-04 Fujinon Corp 高周波処置具
US8439905B2 (en) * 2008-09-19 2013-05-14 Endocare, Inc. Nucleation enhanced surface modification to support physical vapor deposition to create a vacuum
WO2010039894A1 (en) 2008-09-30 2010-04-08 Dfine, Inc. System for use in treatment of vertebral fractures
US8758349B2 (en) 2008-10-13 2014-06-24 Dfine, Inc. Systems for treating a vertebral body
US8512328B2 (en) 2008-10-13 2013-08-20 Covidien Lp Antenna assemblies for medical applications
US9757189B2 (en) * 2008-12-03 2017-09-12 Biosense Webster, Inc. Prevention of kinks in catheter irrigation tubes
EP2389218A4 (en) 2009-01-20 2012-06-13 Guided Delivery Systems Inc DIAGNOSTIC CATHETERS, GUIDANCE CATHETERS, DISPLAY DEVICES AND CORDULAR PIPING DEVICES AND CORRESPONDING KITS AND METHODS
WO2010151619A2 (en) * 2009-06-24 2010-12-29 Optogen Medical Llc Devices, systems and methods for treatment of soft tissue
CN201642316U (zh) 2009-11-18 2010-11-24 南京康友微波能应用研究所 微波消融针及其微波消融治疗仪
US20110160726A1 (en) 2009-12-30 2011-06-30 Frank Ingle Apparatus and methods for fluid cooled electrophysiology procedures
US8764744B2 (en) 2010-01-25 2014-07-01 Covidien Lp System for monitoring ablation size
US10058336B2 (en) 2010-04-08 2018-08-28 Dfine, Inc. System for use in treatment of vertebral fractures
US9943363B2 (en) 2010-04-28 2018-04-17 Biosense Webster, Inc. Irrigated ablation catheter with improved fluid flow
US9510894B2 (en) 2010-04-28 2016-12-06 Biosense Webster (Israel) Ltd. Irrigated ablation catheter having irrigation ports with reduced hydraulic resistance
WO2011137377A1 (en) 2010-04-29 2011-11-03 Dfine, Inc. System for use in treatment of vertebral fractures
US8696659B2 (en) 2010-04-30 2014-04-15 Arthrocare Corporation Electrosurgical system and method having enhanced temperature measurement
US9179968B2 (en) 2010-05-10 2015-11-10 St. Jude Medical Luxembourg Holding S.À.R.L. Irrigated finned ablation head
US7938822B1 (en) 2010-05-12 2011-05-10 Icecure Medical Ltd. Heating and cooling of cryosurgical instrument using a single cryogen
EP2642931B1 (en) 2010-11-22 2017-03-15 Dfine, Inc. System for use in treatment of vertebral fractures
WO2012071058A1 (en) 2010-11-23 2012-05-31 William Joseph Drasler Venous heated ablation catheter
CN101999931B (zh) * 2010-12-10 2012-11-14 上海导向医疗系统有限公司 一种覆盖可膨胀水凝胶的冷热消融探针壳体及其制备方法
US9855094B2 (en) 2010-12-28 2018-01-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Multi-rate fluid flow and variable power delivery for ablation electrode assemblies used in catheter ablation procedures
KR102291972B1 (ko) 2011-01-19 2021-08-23 프랙틸 헬쓰, 인코포레이티드 조직의 치료를 위한 장치 및 방법
US20120253188A1 (en) 2011-03-29 2012-10-04 University Of Rochester Reducing risk of complications associated with tissue ablation
CN106420040B (zh) 2011-04-12 2020-08-28 热医学公司 用于在流体增强型消融治疗中对流体进行加热的方法和装置
US20120310230A1 (en) 2011-06-01 2012-12-06 Angiodynamics, Inc. Coaxial dual function probe and method of use
US9314588B2 (en) 2011-10-28 2016-04-19 Medtronic Cryocath Lp Systems and methods for variable injection flow
CN104470453A (zh) 2012-03-27 2015-03-25 Dfine有限公司 用于通过温度监视来控制组织切除体积的方法和系统
AU2013249043B2 (en) 2012-04-19 2017-04-27 Fractyl Health, Inc. Tissue expansion devices, system and methods
US8700133B2 (en) 2012-06-18 2014-04-15 Smart Iv Llc Apparatus and method for monitoring catheter insertion
US10022176B2 (en) 2012-08-15 2018-07-17 Thermedical, Inc. Low profile fluid enhanced ablation therapy devices and methods
WO2014089373A1 (en) 2012-12-05 2014-06-12 University Of Rochester Catheter with integrated transeptal puncture needle
JP6117422B2 (ja) 2013-03-15 2017-04-19 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 開放灌注式アブレーションカテーテル
US9033972B2 (en) 2013-03-15 2015-05-19 Thermedical, Inc. Methods and devices for fluid enhanced microwave ablation therapy
US9610396B2 (en) 2013-03-15 2017-04-04 Thermedical, Inc. Systems and methods for visualizing fluid enhanced ablation therapy
US10668278B2 (en) 2014-03-24 2020-06-02 Old Dominion University Research Foundation Expandable catheter devices electrode array
US9848943B2 (en) 2014-04-18 2017-12-26 Biosense Webster (Israel) Ltd. Ablation catheter with dedicated fluid paths and needle centering insert
KR20170107428A (ko) 2014-11-19 2017-09-25 어드밴스드 카디악 테라퓨틱스, 인크. 고분해능 전극 어셈블리를 이용한 절제 장치, 시스템 및 방법
US10463425B2 (en) 2015-05-04 2019-11-05 Biosense Webster (Israel) Ltd. RF ablation with acoustic feedback
US9844664B2 (en) 2015-10-12 2017-12-19 Medtronic, Inc. Interventional medical systems, catheters, and subassemblies
US9743984B1 (en) 2016-08-11 2017-08-29 Thermedical, Inc. Devices and methods for delivering fluid to tissue during ablation therapy
US11083871B2 (en) 2018-05-03 2021-08-10 Thermedical, Inc. Selectively deployable catheter ablation devices
US11918277B2 (en) 2018-07-16 2024-03-05 Thermedical, Inc. Inferred maximum temperature monitoring for irrigated ablation therapy

Also Published As

Publication number Publication date
US9138287B2 (en) 2015-09-22
JP2014516620A (ja) 2014-07-17
KR102123083B1 (ko) 2020-06-16
CN107334529B (zh) 2020-06-09
US20230414267A1 (en) 2023-12-28
KR102112356B1 (ko) 2020-05-19
AU2012242744B2 (en) 2016-10-20
EP3498208A1 (en) 2019-06-19
AU2012242853A1 (en) 2013-10-17
US9138288B2 (en) 2015-09-22
US11950829B2 (en) 2024-04-09
JP2024001360A (ja) 2024-01-09
AU2012242739A1 (en) 2013-10-17
CN107753098A (zh) 2018-03-06
US20150359582A1 (en) 2015-12-17
US8945121B2 (en) 2015-02-03
EP2696786A4 (en) 2014-10-29
AU2012242853B2 (en) 2016-10-27
EP2696788B1 (en) 2021-08-18
JP6559186B2 (ja) 2019-08-14
US20180140345A1 (en) 2018-05-24
WO2012142291A1 (en) 2012-10-18
CN106901830A (zh) 2017-06-30
WO2012142211A9 (en) 2013-11-21
EP2696787A1 (en) 2014-02-19
US20150351823A1 (en) 2015-12-10
KR20140022885A (ko) 2014-02-25
JP6730341B2 (ja) 2020-07-29
CN103619276A (zh) 2014-03-05
JP6235458B2 (ja) 2017-11-22
EP2696786B1 (en) 2020-07-08
US20120265190A1 (en) 2012-10-18
CN106420040A (zh) 2017-02-22
US20200113614A1 (en) 2020-04-16
US20120265199A1 (en) 2012-10-18
JP6170037B2 (ja) 2017-07-26
US10548654B2 (en) 2020-02-04
JP2018110877A (ja) 2018-07-19
KR20140022887A (ko) 2014-02-25
US10881443B2 (en) 2021-01-05
EP2696790B1 (en) 2021-03-24
US20120265200A1 (en) 2012-10-18
US20150066025A1 (en) 2015-03-05
JP2017164595A (ja) 2017-09-21
WO2012142296A1 (en) 2012-10-18
KR20200056471A (ko) 2020-05-22
AU2012242851A1 (en) 2013-10-17
CN103596513A (zh) 2014-02-19
US9445861B2 (en) 2016-09-20
BR112013026260A2 (pt) 2019-09-24
AU2016250432B2 (en) 2018-07-26
JP2020014855A (ja) 2020-01-30
KR102212427B1 (ko) 2021-02-05
JP6849747B2 (ja) 2021-03-31
JP6297970B2 (ja) 2018-03-20
JP2022009186A (ja) 2022-01-14
EP2696787B1 (en) 2019-01-16
JP2018030000A (ja) 2018-03-01
JP2019171179A (ja) 2019-10-10
US9730748B2 (en) 2017-08-15
ES2892774T3 (es) 2022-02-04
KR20140022884A (ko) 2014-02-25
EP2696789B1 (en) 2021-03-24
US8702697B2 (en) 2014-04-22
CN103764055A (zh) 2014-04-30
US11583330B2 (en) 2023-02-21
KR20200003428A (ko) 2020-01-09
US20190290349A1 (en) 2019-09-26
EP3932347A1 (en) 2022-01-05
CN103619275A (zh) 2014-03-05
JP2014516621A (ja) 2014-07-17
WO2012142211A1 (en) 2012-10-18
EP2696790A4 (en) 2014-11-12
US10307201B2 (en) 2019-06-04
CN103619275B (zh) 2017-08-08
KR102283571B1 (ko) 2021-07-30
US20120265276A1 (en) 2012-10-18
US10448987B2 (en) 2019-10-22
US20180185083A1 (en) 2018-07-05
US20120277737A1 (en) 2012-11-01
US9937000B2 (en) 2018-04-10
AU2012242845A1 (en) 2013-10-24
CN103596513B (zh) 2017-11-28
CN107753098B (zh) 2020-06-30
CN107334529A (zh) 2017-11-10
WO2012142219A1 (en) 2012-10-18
KR102061901B1 (ko) 2020-01-02
US11135000B2 (en) 2021-10-05
JP2014516622A (ja) 2014-07-17
KR20140022886A (ko) 2014-02-25
US9877768B2 (en) 2018-01-30
ES2864589T3 (es) 2021-10-14
JP6189826B2 (ja) 2017-08-30
CN106420040B (zh) 2020-08-28
US20160354138A1 (en) 2016-12-08
EP2696789A4 (en) 2014-11-12
ES2817851T3 (es) 2021-04-08
AU2017200549A1 (en) 2017-02-23
CN112057159A (zh) 2020-12-11
CN103764056B (zh) 2017-02-08
BR112013026126A2 (pt) 2016-12-27
JP2014516625A (ja) 2014-07-17
US20170238993A1 (en) 2017-08-24
EP2696787A4 (en) 2014-10-29
JP2014518520A (ja) 2014-07-31
EP2696788A1 (en) 2014-02-19
US20140188106A1 (en) 2014-07-03
US11871979B2 (en) 2024-01-16
KR20200003427A (ko) 2020-01-09
US20170333107A1 (en) 2017-11-23
EP2696786A1 (en) 2014-02-19
EP2696788A4 (en) 2014-11-26
KR20140022883A (ko) 2014-02-25
CN103619276B (zh) 2017-07-25
AU2017200549B2 (en) 2019-08-15
CN103764055B (zh) 2016-09-14
WO2012142217A1 (en) 2012-10-18
CN106901830B (zh) 2021-06-04
JP6297971B2 (ja) 2018-03-20
EP3785653A1 (en) 2021-03-03
US20220047318A1 (en) 2022-02-17
JP6753561B2 (ja) 2020-09-09
KR20210095738A (ko) 2021-08-02
AU2016250432A1 (en) 2016-11-17
BR112013026176A2 (pt) 2019-09-24
JP2017221699A (ja) 2017-12-21
JP2020054873A (ja) 2020-04-09
AU2012242744A1 (en) 2013-10-17
KR102168241B1 (ko) 2020-10-22
KR102061899B1 (ko) 2020-01-02
BR112013026029A2 (pt) 2016-12-20
EP2696789A1 (en) 2014-02-19
EP2696790A1 (en) 2014-02-19
CN103764056A (zh) 2014-04-30
US20200138502A1 (en) 2020-05-07
BR112013026016A2 (pt) 2016-12-20

Similar Documents

Publication Publication Date Title
ES2864590T3 (es) Dispositivos para controlar el tratamiento ablativo
ES2230703T3 (es) Dispositivo para la cauterizacion terapeutica de volumenes predeterminados de tejidos biologicos.
US8007497B2 (en) Ablation probe with heat sink
ES2380627T3 (es) Sistema electroquirúrgico bipolar
ES2589563T3 (es) Aplicador de coagulación por microondas y sistema asociado
EP2563256B1 (en) Electrosurgical device
CN110267615A (zh) 肺静脉隔离球囊导管