ES2728309T3 - Printed circuit boards - Google Patents

Printed circuit boards Download PDF

Info

Publication number
ES2728309T3
ES2728309T3 ES08709439T ES08709439T ES2728309T3 ES 2728309 T3 ES2728309 T3 ES 2728309T3 ES 08709439 T ES08709439 T ES 08709439T ES 08709439 T ES08709439 T ES 08709439T ES 2728309 T3 ES2728309 T3 ES 2728309T3
Authority
ES
Spain
Prior art keywords
coating
pci
printed circuit
welding
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES08709439T
Other languages
Spanish (es)
Inventor
Frank Ferdinandi
Rodney Smith
Mark Humphries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semblant Ltd
Original Assignee
Semblant Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semblant Ltd filed Critical Semblant Ltd
Application granted granted Critical
Publication of ES2728309T3 publication Critical patent/ES2728309T3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/282Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/288Removal of non-metallic coatings, e.g. for repairing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/45686Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/4569Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48647Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48747Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48847Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81009Pre-treatment of the bump connector or the bonding area
    • H01L2224/81024Applying flux to the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81395Bonding interfaces outside the semiconductor or solid-state body having an external coating, e.g. protective bond-through coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83024Applying flux to the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83395Bonding interfaces outside the semiconductor or solid-state body having an external coating, e.g. protective bond-through coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • H01L2224/85207Thermosonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85395Bonding interfaces outside the semiconductor or solid-state body having an external coating, e.g. protective bond-through coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85447Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0179Thin film deposited insulating layer, e.g. inorganic layer for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/09Treatments involving charged particles
    • H05K2203/092Particle beam, e.g. using an electron beam or an ion beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/1338Chemical vapour deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/1366Spraying coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/1372Coating by using a liquid wave
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1377Protective layers
    • H05K2203/1383Temporary protective insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Physical Vapour Deposition (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

Un método de realización de una conexión de soldadura a una placa de circuito impreso, en el que: una superficie de la placa de circuito impreso tiene un recubrimiento que comprende uno o más polímeros de halo-hidrocarburo con un espesor de 1 nm a 10 μm; y el circuito impreso tiene pistas conductoras y no hay ninguna soldadura, o esencialmente ninguna soldadura, entre el recubrimiento y las pistas conductoras, donde dicho método comprende aplicar soldadura y fundente al recubrimiento sin su retirada previa, a una temperatura y durante un tiempo de manera que la soldadura se adhiera a las pistas conductoras y el recubrimiento se disperse y/o se absorba y/o se vaporice localmente.A method of making a solder connection to a printed circuit board, in which: a surface of the printed circuit board has a coating comprising one or more halo-hydrocarbon polymers with a thickness of 1 nm to 10 μm ; and the printed circuit has conductive tracks and there is no welding, or essentially no welding, between the coating and the conductive tracks, where said method comprises applying welding and flux to the coating without its prior removal, at a temperature and for a time so that the solder adheres to the conductive tracks and the coating is dispersed and / or absorbed and / or vaporized locally.

Description

DESCRIPCIÓNDESCRIPTION

Placas de circuito impresoPrinted circuit boards

La presente invención se refiere a artículos tales como los que comprenden placas de circuito impreso recubiertas con un polímero de halo-hidrocarburo.The present invention relates to articles such as those comprising printed circuit boards coated with a halo-hydrocarbon polymer.

Las placas de circuito impreso (PCI) se usan en la industria electrónica para soportar mecánicamente y conectar eléctricamente componentes eléctricos y electrónicos. Una PCI comprende una placa u otro sustrato hecho de un material aislante sobre la que descansan pistas conductoras, normalmente hechas de cobre. Estas pistas conductoras funcionan como cables entre los componentes eléctricos que después se fijan a la placa, por ejemplo, mediante soldadura. Una gran proporción de PCI se fabrican depositando o adhiriendo de otro modo una capa de cobre a la placa de sustrato y después retirando el cobre no deseado mediante grabado químico para dejar las pistas de cobre en la configuración requerida. En esta etapa, las PCI en blanco con frecuencia pueden almacenarse durante períodos de tiempo variables, potencialmente hasta varios meses, antes de la fijación de los componentes electrónicos a la PCI mediante un método de soldadura.Printed circuit boards (PCI) are used in the electronics industry to mechanically support and electrically connect electrical and electronic components. A PCI comprises a plate or other substrate made of an insulating material on which conductive tracks, normally made of copper, rest. These conductive tracks function as wires between the electrical components that are then fixed to the board, for example, by welding. A large proportion of PCI are manufactured by depositing or otherwise adhering a layer of copper to the substrate plate and then removing unwanted copper by chemical etching to leave the copper tracks in the required configuration. At this stage, blank PCI can often be stored for varying periods of time, potentially up to several months, before fixing the electronic components to the PCI using a welding method.

Las pistas conductoras sobre la placa de circuito impreso pueden estar hechas de cualquier material conductor. El material preferido para las pistas es el cobre. El cobre es el material preferido para las pistas conductoras, principalmente debido a su alta conductividad eléctrica, pero desafortunadamente el cobre se oxida fácilmente en el aire y conduce a una capa de óxido de cobre, o deslustre, sobre la superficie del metal. Esta oxidación es particularmente evidente si ha transcurrido un largo período de tiempo entre la fabricación de la PCI en blanco y la fijación de los componentes eléctricos. Los componentes se fijan mediante soldadura, pero la presencia de una capa de óxido sobre las pistas de cobre puede reducir la eficacia de la soldadura. En particular, pueden formarse juntas secas, que tienen tendencia a fallar durante el funcionamiento del dispositivo, y juntas débiles con baja resistencia mecánica. Ocasionalmente, la junta no podrá hacer contacto eléctrico por completo. Surgen problemas similares cuando las pistas conductoras comprenden materiales conductores distintos del cobre.The conductive tracks on the printed circuit board can be made of any conductive material. The preferred material for the tracks is copper. Copper is the preferred material for conductive tracks, mainly due to its high electrical conductivity, but unfortunately copper easily oxidizes in the air and leads to a layer of copper oxide, or tarnish, on the metal surface. This oxidation is particularly evident if a long period of time has elapsed between manufacturing the blank PCI and fixing the electrical components. The components are fixed by welding, but the presence of an oxide layer on the copper tracks can reduce the welding efficiency. In particular, dry joints can be formed, which tend to fail during device operation, and weak joints with low mechanical strength. Occasionally, the board may not make full electrical contact. Similar problems arise when the conductive tracks comprise conductive materials other than copper.

Para minimizar estos problemas, los fabricantes de PCI aplican una gama de recubrimientos o acabados de superficie a las áreas donde se requerirá soldadura. Con frecuencia se usan metales tales como el estaño, la plata o una combinación de níquel/oro. Los procesos para la aplicación de estos acabados consumen mucho tiempo y requieren el uso de metales adicionales, con los consiguientes problemas medioambientales. Existen problemas de salud potenciales asociados a algunos de los procesos y materiales. Adicionalmente, algunos de los metales utilizados, tales como el oro, son caros. Un enfoque similar implica recubrir las pistas con un recubrimiento que comprende compuestos orgánicos tales como bencimidazoles y partículas de metales humectables por soldadura o soldaduras (véase, por ejemplo, el documento WO 97/39610), evitando de este modo la exposición de las pistas a condiciones oxidativas. Durante la soldadura, la capa orgánica simplemente se retira. Estos recubrimientos orgánicos normalmente no sobreviven a múltiples ciclos térmicos y tienen una vida de almacenamiento relativamente corta antes del procesamiento.To minimize these problems, PCI manufacturers apply a range of coatings or surface finishes to areas where welding will be required. Metals such as tin, silver or a nickel / gold combination are often used. The processes for the application of these finishes are time consuming and require the use of additional metals, with the consequent environmental problems. There are potential health problems associated with some of the processes and materials. Additionally, some of the metals used, such as gold, are expensive. A similar approach involves coating the tracks with a coating comprising organic compounds such as benzimidazoles and metal particles wettable by welding or welding (see, for example, WO 97/39610), thereby avoiding exposure of the tracks to oxidative conditions During welding, the organic layer is simply removed. These organic coatings usually do not survive multiple thermal cycles and have a relatively short storage life before processing.

Es evidente que las técnicas adoptadas por los fabricantes hasta ahora son caras o consumen mucho tiempo (implican etapas adicionales en el proceso de fabricación), o ambos, y agotan los recursos no renovables, incluyendo los metales preciosos. Existe la necesidad de un método más económico y/o de mayor rendimiento de prevención de la oxidación de las pistas conductoras antes de la unión de los componentes eléctricos mediante soldadura.It is clear that the techniques adopted by manufacturers so far are expensive or time-consuming (imply additional stages in the manufacturing process), or both, and deplete non-renewable resources, including precious metals. There is a need for a more economical and / or higher performance method of preventing oxidation of the conductive tracks before joining the electrical components by welding.

Un problema aparte es que las PCI con frecuencia se requieren en dispositivos que se usan en entornos muy duros y corrosivos. En dichas condiciones, las pistas conductoras sobre la pCi pueden corroerse y conducir a una vida útil mucho más corta de la placa de circuito de lo que normalmente se esperaría. Dichas condiciones pueden surgir, por ejemplo, cuando un dispositivo se usa en ambientes muy húmedos, especialmente cuando gotitas microscópicas de agua que contiene gases disueltos tales como dióxido de azufre, sulfuro de hidrógeno, dióxido de nitrógeno, cloruro de hidrógeno, cloro y vapor de agua, forman una solución corrosiva. Adicionalmente, las gotitas de humedad pueden formar una película delgada o depósitos de corrosión entre las pistas conductoras de la PCI que pueden provocar potencialmente cortocircuitos. En circunstancias en las que los fabricantes de PCI prevén que los dispositivos se utilizarán en condiciones hostiles, han tendido a recubrir la PCI ensamblada con un recubrimiento de conformación de un polímero que forma una barrera con el entorno. Sin embargo, dichos recubrimientos son caros de aplicar y requieren una etapa adicional en el proceso de fabricación para aplicar el recubrimiento después de que se haya ensamblado la pCi y, generalmente, una etapa adicional más tarde para retirarlo. Esto también puede provocar problemas al reelaborar una PCI dañada o fallida, o durante el ensayo para determinar su rendimiento y solucionar un problema. Un método más barato y/o de alto rendimiento para proteger ambientalmente la PCI completada sería de gran interés para los fabricantes.A separate problem is that PCI is often required in devices that are used in very harsh and corrosive environments. Under such conditions, the conductive tracks on the pCi can corrode and lead to a much shorter life of the circuit board than would normally be expected. Such conditions may arise, for example, when a device is used in very humid environments, especially when microscopic droplets of water containing dissolved gases such as sulfur dioxide, hydrogen sulfide, nitrogen dioxide, hydrogen chloride, chlorine and steam water, form a corrosive solution. Additionally, moisture droplets can form a thin film or corrosion deposits between the conductive tracks of the PCI that can potentially cause short circuits. In circumstances where PCI manufacturers anticipate that the devices will be used in hostile conditions, they have tended to coat the assembled PCI with a polymer conformation coating that forms a barrier to the environment. However, such coatings are expensive to apply and require an additional stage in the manufacturing process to apply the coating after the pCi has been assembled and, generally, an additional stage later to remove it. This can also cause problems when reworking a damaged or failed PCI, or during the test to determine its performance and solve a problem. A cheaper and / or high-performance method to environmentally protect the completed PCI would be of great interest to manufacturers.

Otro problema que puede surgir después de soldar componentes electrónicos a una PCI es la formación de dendritas de compuestos metálicos en la junta de soldadura. Estas dendritas pueden provocar el fallo de la PCI ensamblada debido a cortocircuitos entre los contactos. Las dendritas son crecimientos metálicos muy delgados a lo largo de una superficie, resultantes de la electromigración, que forman patrones similares a helechos. El mecanismo de crecimiento para las dendritas es bien conocido, a diferencia de los "bigotes de estaño", y requiere la presencia de humedad que genera iones metálicos que después se redistribuyen por electromigración en presencia de un campo electromagnético. El recubrimiento de la invención protege contra la formación de dendritas evitando que la humedad alcance la superficie de la PCI, que es donde normalmente crecen las dendritas. El recubrimiento proporciona protección adicional, ya que los materiales de las dendritas tienen una baja adherencia al recubrimiento de la superficie, reduciendo la formación de dendritas entre los contactos y los componentes.Another problem that may arise after welding electronic components to a PCI is the formation of metal compound dendrites in the solder joint. These dendrites can cause the failure of the assembled PCI due to short circuits between the contacts. Dendrites are very thin metallic growths along a surface, resulting from electromigration, that form fern-like patterns. The mechanism Growth for dendrites is well known, unlike "tin whiskers," and requires the presence of moisture that generates metal ions that are then redistributed by electromigration in the presence of an electromagnetic field. The coating of the invention protects against dendrite formation by preventing moisture from reaching the surface of the PCI, which is where dendrites normally grow. The coating provides additional protection, since the dendrite materials have a low adhesion to the surface coating, reducing the formation of dendrites between the contacts and the components.

El documento US 2006/0001700 describe un circuito flexible que tiene resistencia a la corrosión y un método para ello. El documento WO 97/39610 describe un recubrimiento compuesto orgánico-metálico para la protección de la superficie de cobre. El documento US 2006/0292354 describe un sustrato de cableado que tiene un patrón de cableado metálico y una película orgánica que contiene silano. Deltschew: "Plasma treatment for fluxless soldering" Surface & Coatings Technology Elsevier Switzerland, vol. 142-144, julio de 2001, página 803-807 describe el uso de procesos de tratamiento con plasma en soldadura por reflujo sin fundente.US 2006/0001700 describes a flexible circuit that has corrosion resistance and a method for doing so. WO 97/39610 describes an organic-metallic composite coating for the protection of the copper surface. US 2006/0292354 describes a wiring substrate that has a metal wiring pattern and an organic film containing silane. Deltschew: "Plasma treatment for fluxless soldering " Surface & Coatings Technology Elsevier Switzerland, vol. 142-144, July 2001, page 803-807 describes the use of plasma treatment processes in reflux welding without flux.

El documento US2002/0134580 describe una placa de circuito impreso con una capa de polímero polimerizado por plasma. La presente memoria descriptiva proporciona una placa de circuito impreso a la que se le ha de hacer una conexión de soldadura, donde la superficie de dicha placa de circuito impreso tiene un recubrimiento de una composición que comprende uno o más polímeros de halo-hidrocarburo, con un espesor de 1 nm a 10 pm, en la que no hay soldadura o esencialmente no hay soldadura, entre dicha composición de recubrimiento y las pistas conductoras de dicha placa de circuito impreso.US2002 / 0134580 describes a printed circuit board with a layer of plasma polymerized polymer. The present specification provides a printed circuit board to which a welding connection is to be made, where the surface of said printed circuit board has a coating of a composition comprising one or more halo-hydrocarbon polymers, with a thickness of 1 nm to 10 pm, in which there is no welding or essentially no welding, between said coating composition and the conductive tracks of said printed circuit board.

Dicha conexión de soldadura normalmente se ubica de forma general. Dicho recubrimiento es normalmente en capas simples o múltiples.Said welding connection is usually located in a general way. Said coating is normally in single or multiple layers.

Por polímero los inventores incluyen polímeros formados in situ a partir de monómeros simples o múltiples, copolímeros lineales, ramificados, injertados y reticulados, oligómeros, multipolímeros, polímeros multimonoméricos, mezclas de polímeros, copolímeros injertados, mezclas y aleaciones de polímeros, así como redes interpenetrantes de polímeros. (RIP).By polymer the inventors include polymers formed in situ from single or multiple monomers, linear, branched, grafted and crosslinked copolymers, oligomers, multipolymers, multimonomer polymers, polymer blends, grafted copolymers, polymer blends and alloys, as well as interpenetrating networks. of polymers. (RIP)

El espesor del recubrimiento suele ser de 1 nm a 2 pm, más normalmente de 1 nm a 500 nm, aún más normalmente de 3 nm a 500 nm, aún más normalmente de 10 nm a 500 nm y mucho más normalmente de 10 nm a 250 nm. El recubrimiento tiene preferentemente un espesor de 10 nm a 100 nm, en diversos gradientes, siendo 100 nm un espesor preferido. En otra realización, el espesor del recubrimiento es de 10 nm a 30 nm. Sin embargo, el espesor óptimo del recubrimiento dependerá de las propiedades que se requieren de la PCI. Por ejemplo, si se requiere una dureza ambiental muy alta (alta resistencia a la corrosión y la abrasión), puede usarse un recubrimiento más grueso. Adicionalmente, el espesor del recubrimiento puede optimizarse con diferentes espesores en diferentes ubicaciones a través de la PCI, dependiendo de qué característica se esté optimizando (por ejemplo, protección del entorno frente a la conductividad del eje Z). El espesor del recubrimiento y la composición del fundente pueden variar para optimizar las características de protección frente al entorno y proporcionar uniones de soldadura particularmente fuertes.The thickness of the coating is usually from 1 nm to 2 pm, more usually from 1 nm to 500 nm, even more usually from 3 nm to 500 nm, even more usually from 10 nm to 500 nm and much more normally from 10 nm to 250 nm. The coating preferably has a thickness of 10 nm to 100 nm, in various gradients, 100 nm being a preferred thickness. In another embodiment, the thickness of the coating is 10 nm to 30 nm. However, the optimum thickness of the coating will depend on the properties required of the PCI. For example, if a very high environmental hardness is required (high resistance to corrosion and abrasion), a thicker coating can be used. Additionally, the thickness of the coating can be optimized with different thicknesses in different locations through the PCI, depending on which characteristic is being optimized (for example, protection of the environment against the conductivity of the Z axis). The thickness of the coating and the composition of the flux may vary to optimize the protection characteristics against the environment and provide particularly strong welding joints.

El recubrimiento de halo-hidrocarburo puede ser continuo, sustancialmente continuo (en particular sobre superficies que se han de soldar y superficies no soldadas entre ellas o adyacentes a ellas y, más en particular, sobre sustancialmente todas las superficies expuestas y vulnerables de la PCI) o no continuo. Para un nivel muy alto de protección frente al entorno, puede requerirse un recubrimiento sustancialmente continuo. Sin embargo, un recubrimiento no continuo puede ser suficiente para otros propósitos.The halo-hydrocarbon coating may be continuous, substantially continuous (in particular on surfaces to be welded and surfaces not welded between them or adjacent to them and, more particularly, on substantially all exposed and vulnerable surfaces of the PCI) or not continued. For a very high level of protection against the environment, a substantially continuous coating may be required. However, a non-continuous coating may be sufficient for other purposes.

Por polímero de halo-hidrocarburo se entiende un polímero con una estructura de carbono de cadena lineal o ramificada o de anillo con 0, 1, 2 o 3 átomos de halógeno unidos a cada átomo de carbono en la estructura. Los átomos de halógeno podrían ser los mismos halógenos (por ejemplo, flúor) o una mezcla de halógenos (por ejemplo, flúor y cloro). La expresión "polímero de halo-hidrocarburo" como se usa en el presente documento incluye polímeros que contienen uno o más grupos insaturados, tales como enlaces carbono-carbono dobles y triples, y el polímero que contiene uno o más heteroátomos (átomos que no son de C, H o halógeno), por ejemplo, N, S u O. Actualmente los inventores prefieren, sin embargo, que el polímero no contenga sustancialmente ninguna insaturación (porque la insaturación con frecuencia da como resultado una estabilidad reducida) y sustancialmente ningún heteroátomo de este tipo. Preferentemente, el polímero contiene menos del 5 % de heteroátomos como proporción del número total de átomos en el polímero. Preferentemente, el polímero contiene menos del 5 % de enlaces carbono-carbono dobles o triples como proporción del número total de enlaces carbono-carbono. El peso molecular del polímero es preferentemente superior a 1000 uma.By "halo-hydrocarbon polymer" is meant a polymer with a straight or branched chain or ring carbon structure with 0, 1, 2 or 3 halogen atoms attached to each carbon atom in the structure. The halogen atoms could be the same halogens (for example, fluorine) or a mixture of halogens (for example, fluorine and chlorine). The term "halo-hydrocarbon polymer" as used herein includes polymers containing one or more unsaturated groups, such as double and triple carbon-carbon bonds, and the polymer containing one or more heteroatoms (atoms that are not of C, H or halogen), for example, N, S or O. Currently, the inventors prefer, however, that the polymer does not contain substantially any unsaturation (because unsaturation often results in reduced stability) and substantially no heteroatom of this type. Preferably, the polymer contains less than 5% heteroatoms as a proportion of the total number of atoms in the polymer. Preferably, the polymer contains less than 5% double or triple carbon-carbon bonds as a proportion of the total number of carbon-carbon bonds. The molecular weight of the polymer is preferably greater than 1000 amu.

Las cadenas poliméricas pueden ser rectas o ramificadas y puede haber reticulación entre las cadenas poliméricas. El halógeno puede ser flúor, cloro, bromo o yodo. Preferentemente, el polímero es un polímero de fluorohidrocarburo, un polímero de cloro-hidrocarburo o un polímero de fluoro-cloro-hidrocarburo en el que 0, 1, 2 o 3 átomos de flúor o cloro están unidos a cada átomo de carbono en la cadena. The polymer chains may be straight or branched and there may be crosslinking between the polymer chains. The halogen can be fluorine, chlorine, bromine or iodine. Preferably, the polymer is a fluorohydrocarbon polymer, a chlorohydrocarbon polymer or a fluorochlorohydrocarbon polymer in which 0, 1, 2 or 3 fluorine or chlorine atoms are attached to each carbon atom in the chain .

Los ejemplos de polímeros preferidos incluyen:Examples of preferred polymers include:

- PTFE, material de tipo PTFE, hidrocarburos fluorados, hidrocarburos fluorados clorados, hidrocarburos halogenados, halo-hidrocarburos o copolímeros, oligómeros, multipolímeros, polímeros multimonoméricos, mezclas de polímeros, combinaciones, aleaciones, cadena ramificada, copolímeros injertados, variantes reticuladas de estos materiales y también redes interpenetrantes de polímeros (RIP).- PTFE, PTFE type material, fluorinated hydrocarbons, chlorinated fluorinated hydrocarbons, halogenated hydrocarbons, halo-hydrocarbons or copolymers, oligomers, multipolymers, multimonomer polymers, polymer blends, combinations, alloys, branched chain, grafted copolymers, crosslinked variants of these materials and also interpenetrating polymer networks (RIP).

- PCTFE (policlorotrifluoroetileno) y copolímeros, oligómeros, multipolímeros, polímeros multimonoméricos, mezclas de polímeros, combinaciones, aleaciones, cadenas ramificadas, copolímeros injertados, variantes reticuladas de este material y también redes interpenetrantes de polímeros (RIP).- PCTFE (polychlorotrifluoroethylene) and copolymers, oligomers, multipolymers, multimonomer polymers, polymer blends, combinations, alloys, branched chains, grafted copolymers, crosslinked variants of this material and also interpenetrating polymer networks (RIP).

- EPCTFE (copolímero de etileno de policlorotrifluoroetileno) y copolímeros, oligómeros, multipolímeros, polímeros multimonoméricos, mezclas de polímeros, combinaciones, aleaciones, cadenas ramificadas, copolímeros injertados, variantes reticuladas de este material y también redes interpenetrantes de polímeros (RIP).- EPCTFE (polychlorotrifluoroethylene ethylene copolymer) and copolymers, oligomers, multipolymers, multimonomic polymers, polymer blends, combinations, alloys, branched chains, grafted copolymers, crosslinked variants of this material and also interpenetrating polymer networks (RIP).

- Otros fluoroplásticos, incluyendo los materiales a continuación y copolímeros, oligómeros, multipolímeros, polímeros multimonoméricos, mezclas de polímeros, combinaciones, aleaciones, cadenas ramificadas, copolímeros injertados, variantes reticuladas de estos materiales así como redes interpenetrantes de polímeros (RIP): ETFE (copolímero de etileno y tetrafluoroetileno), FEP (copolímero de tetrafluoroetileno y hexafluoropropileno), PFA (copolímero de tetrafluoroetileno y perfluorovinil éter), PVDF (polímero de fluoruro de vinilideno), THV (copolímero de tetrafluoroetileno, hexafluoropropileno y fluoruro de vinilideno), PVDFHFP (copolímero de fluoruro de vinilideno y hexafluoropropileno), MFA (copolímero de tetrafluoroetileno y perfluorometilviniléter), EFEP (copolímero de etileno, tetrafluoroetileno y hexafluoropropileno), HTE (copolímero de hexafluoropropileno, tetrafluoroetileno y etileno) o copolímero de fluoruro de vinilideno y clorotrifluoroetileno y otros fluoroplásticos.- Other fluoroplastics, including the following materials and copolymers, oligomers, multipolymers, multimonomic polymers, polymer blends, combinations, alloys, branched chains, grafted copolymers, crosslinked variants of these materials as well as interpenetrating polymer networks (RIP): ETFE ( copolymer of ethylene and tetrafluoroethylene), FEP (copolymer of tetrafluoroethylene and hexafluoropropylene), PFA (copolymer of tetrafluoroethylene and perfluorovinyl ether), PVDF (polymer of vinylidene fluoride), THV (copolymer of tetrafluoroethylene dichlorophenyl) PV-hephenophene (PV) copolymer of vinylidene fluoride and hexafluoropropylene), MFA (copolymer of tetrafluoroethylene and perfluoromethylvinyl ether), EFEP (copolymer of ethylene, tetrafluoroethylene and hexafluoropropylene), HTE (copolymer of hexafluoropropylene and ethylene fluoride and tetrafluoroethylene and tetrafluoroethylene chloride fluoroplastics

Mucho más preferentemente, el polímero es un material de tipo politetrafluoroetileno (PTFE) y en particular politetrafluoroetileno (PTFE).Most preferably, the polymer is a polytetrafluoroethylene (PTFE) type material and in particular polytetrafluoroethylene (PTFE).

Se puede conseguir una humectabilidad menor usando un recubrimiento en el que el halo-hidrocarburo sea un polímero altamente ramificado, un copolímero, una combinación de polímeros o una mezcla de polímeros.Lower wettability can be achieved using a coating in which the halo-hydrocarbon is a highly branched polymer, a copolymer, a combination of polymers or a mixture of polymers.

Es deseable que la composición de recubrimiento tenga una o más de las siguientes propiedades, y preferentemente sustancialmente todas: la capacidad de depositarse en forma de películas continuas, sin grietas, agujeros o defectos; permeabilidad gaseosa relativamente baja que proporcione una barrera significativa a la permeación gaseosa y evite la corrosión y oxidación gaseosas a través del recubrimiento; la capacidad de soldar a través de forma selectiva sin la necesidad de retirada previa y de conseguir buenas juntas de soldadura comparables a otros acabados de superficie disponibles actualmente; la capacidad de soportar múltiples ciclos térmicos; resistencia química a gases corrosivos, líquidos y soluciones salinas, en particular contaminantes ambientales; que presente baja energía superficial y 'humectabilidad'; que sea material inerte estable a temperaturas de PCI normales; que tenga buenas propiedades mecánicas, incluyendo una buena adherencia a los materiales de PCI y una buena resistencia a la abrasión mecánica; protección electrostática mejorada; permeabilidad relativamente baja al líquido y la solución salina, para evitar la corrosión del líquido “a través” del recubrimiento; y, en general, que sea beneficiosa para el medio ambiente en comparación con los procesos existentes cuando se usa en la presente solicitud.It is desirable that the coating composition have one or more of the following properties, and preferably substantially all: the ability to deposit in the form of continuous films, without cracks, holes or defects; relatively low gas permeability that provides a significant barrier to gas permeation and prevents gaseous corrosion and oxidation through the coating; the ability to weld selectively without the need for prior removal and to achieve good welding joints comparable to other surface finishes currently available; the ability to withstand multiple thermal cycles; chemical resistance to corrosive gases, liquids and saline solutions, in particular environmental pollutants; that has low surface energy and 'wettability'; that is stable inert material at normal PCI temperatures; having good mechanical properties, including good adhesion to PCI materials and good resistance to mechanical abrasion; improved electrostatic protection; relatively low permeability to the liquid and saline solution, to prevent corrosion of the liquid "through" the coating; and, in general, that it is beneficial to the environment compared to existing processes when used in the present application.

La invención también puede proporcionar otros dispositivos eléctricos y/o electrónicos, u otros artículos (tales como tuberías u otros aparatos de fontanería) a los que se les ha de hacer conexiones de soldadura, que tengan un recubrimiento de este tipo. Por ejemplo, la invención podría usarse para recubrir los cables pelados (especialmente cables de cobre) utilizados en técnicas de unión de cables. La unión de cables es un método de realización de interconexiones entre un circuito integrado en forma de troquel desnudo y el bastidor de conductores dentro del circuito integrado o entre el troquel desnudo y una PCI. El cable utilizado tradicionalmente ha sido el oro o el aluminio, pero más recientemente ha habido un interés considerable en el uso del cable de cobre por varias razones, incluyendo el importante coste diferencial con el oro. En la unión de cables, habitualmente se usan dos métodos de unión, la unión en cuña y la unión en bola, ambas usan diferentes combinaciones de calor, presión y energía ultrasónica para hacer una soldadura en uno o ambos extremos del cable. Para conseguir una buena unión, tanto el cable como la zona a la que se une deben estar libres de contaminantes, incluyendo la oxidación. Es una práctica convencional aplicar un acabado de oro a la zona de unión para evitar la oxidación. El recubrimiento de la presente invención en una zona de unión de cobre también proporcionará una superficie sin oxidación, permitiendo que las juntas de unión de alambre se realicen usando alambre de oro, aluminio o cobre, ya sea mediante unión de cuña o de bola, pero a un coste significativamente más bajo que el acabado de oro convencional en la zona de unión. Cuando se usa alambre de cobre, también es beneficioso aplicar el recubrimiento de halo-hidrocarburo al alambre para evitar la oxidación después de que se haya fabricado el alambre y antes del almacenamiento. Además, el recubrimiento de halo-hidrocarburo proporciona protección adicional contra la oxidación durante el proceso de unión. Como alternativa, en otra realización de la invención, los electrodos de componentes electrónicos podrían recubrirse. El recubrimiento de polímero proporciona preferentemente una buena barrera contra la permeación de líquidos y gases atmosféricos, de forma más importante el oxígeno, que normalmente reaccionaría con las pistas conductoras, normalmente pistas de cobre, para formar una capa de deslustre, normalmente óxido de cobre, sobre la superficie de la pista. Como resultado, la placa de circuito recubierta puede almacenarse durante largos períodos de tiempo, hasta varios meses o años, sin que se produzcan oxidación dañina de las pistas conductoras. Se han usado microscopía óptica, microscopía electrónica de barrido y formación de imágenes de electrones por retrodispersión para investigar la naturaleza, la continuidad y el espesor del recubrimiento. Se ha usado análisis dispersivo de energía por rayos X para cartografiar los niveles y la distribución de halógenos en el recubrimiento. Las mediciones de la activación de la superficie y la humectabilidad de la superficie usando soluciones de disolventes químicos proporcionan una indicación del potencial para actuar como un recubrimiento protector.The invention can also provide other electrical and / or electronic devices, or other items (such as pipes or other plumbing apparatus) to which welding connections are to be made, having such a coating. For example, the invention could be used to coat bare wires (especially copper wires) used in wire bonding techniques. Cable junction is a method of interconnection between an integrated circuit in the form of a bare die and the conductor frame within the integrated circuit or between the bare die and a PCI. The cable traditionally used has been gold or aluminum, but more recently there has been considerable interest in the use of copper cable for several reasons, including the significant differential cost with gold. In the union of cables, usually two methods of union are used, the wedge joint and the ball joint, both use different combinations of heat, pressure and ultrasonic energy to make a weld at one or both ends of the cable. To achieve a good bond, both the cable and the area to which it joins must be free of contaminants, including oxidation. It is a conventional practice to apply a gold finish to the bonding area to avoid oxidation. The coating of the present invention in a copper junction zone will also provide a surface without oxidation, allowing wire junction joints to be made using gold, aluminum or copper wire, either by wedge or ball joint, but at a cost significantly lower than the conventional gold finish in the bonding zone. When using copper wire, it is also beneficial to apply the halo-hydrocarbon coating to the wire to prevent oxidation after the wire has been manufactured and before storage. In addition, the halo-hydrocarbon coating provides additional protection against oxidation during the bonding process. Alternatively, in another embodiment of the invention, electrode electrodes could be coated. The polymer coating preferably provides a good barrier against permeation of liquids and Atmospheric gases, most importantly oxygen, which would normally react with the conductive tracks, usually copper tracks, to form a tarnish layer, usually copper oxide, on the surface of the track. As a result, the coated circuit board can be stored for long periods of time, up to several months or years, without damaging oxidation of the conductive tracks. Optical microscopy, scanning electron microscopy and back-scatter electron imaging have been used to investigate the nature, continuity and thickness of the coating. X-ray dispersive energy analysis has been used to map the levels and distribution of halogens in the coating. Measurements of surface activation and surface wettability using chemical solvent solutions provide an indication of the potential to act as a protective coating.

Una vez que el fabricante está listo para instalar componentes sobre la PCI en blanco, no es necesario limpiar la PCI o retirar la capa de recubrimiento antes del proceso de soldadura. Esto se debe a que, sorprendentemente, el polímero de halo-hidrocarburo utilizado proporciona un recubrimiento que tiene la propiedad inusual de que puede soldarse a través para formar una junta de soldadura entre la pista conductora sobre la placa y el componente eléctrico. Generalmente se requiere fundente en esta técnica de soldadura. En el extremo, podría usarse un proceso de soldadura que usa calor solo para "retirar" selectivamente el recubrimiento, por ejemplo, soldadura con láser. Son alternativas adicionales la soldadura, la soldadura potenciada con láser, la soldadura ultrasónica o el uso de adhesivos conductores. Otra técnica posible es la soldadura por onda; esta técnica puede requerir fundente selectivo. La soldadura utilizada puede ser soldadura con plomo o soldadura sin plomo. En general, no hay ninguna reducción en la resistencia de la junta de soldadura como podría esperarse y, de hecho, en determinadas circunstancias, la junta de soldadura puede ser más fuerte que una junta de soldadura convencional. Además, en determinadas circunstancias, la presente invención puede evitar la formación de dendritas sobre las uniones de soldadura, en particular cuando se usa soldadura sin plomo.Once the manufacturer is ready to install components on the blank PCI, it is not necessary to clean the PCI or remove the coating layer before the welding process. This is because, surprisingly, the halo-hydrocarbon polymer used provides a coating that has the unusual property that it can be welded through to form a weld joint between the conductive track on the plate and the electrical component. Flux is generally required in this welding technique. At the end, a welding process that uses heat could only be used to selectively "remove" the coating, for example, laser welding. Additional alternatives are welding, laser-powered welding, ultrasonic welding or the use of conductive adhesives. Another possible technique is wave welding; This technique may require selective flux. The welding used can be lead welding or lead free welding. In general, there is no reduction in the strength of the weld joint as might be expected and, in fact, in certain circumstances, the weld joint may be stronger than a conventional weld joint. Furthermore, in certain circumstances, the present invention can prevent the formation of dendrites on the solder joints, in particular when lead-free soldering is used.

Por tanto, la presente invención proporciona una técnica alternativa para aplicar recubrimientos superficiales de metales (tales como estaño, plata, níquel y oro) a las pistas conductoras de PCI para evitar la oxidación de las pistas conductoras antes de la soldadura. La presente invención tiene la ventaja de que se basa en un proceso de bajo coste, no usa metales tóxicos tales como el níquel, es respetuoso con el medio ambiente y es más seguro que los procesos actuales de chapado de metales industriales. También simplifica el proceso de fabricación de PCI y es compatible con los procesos actuales de soldadura industrial. Además, tiene el beneficio adicional de propiedades de "soldadura a través", por lo que se evita la necesidad de retirar el recubrimiento antes de soldar.Therefore, the present invention provides an alternative technique for applying surface coatings of metals (such as tin, silver, nickel and gold) to the PCI conductive tracks to prevent oxidation of the conductive tracks before welding. The present invention has the advantage that it is based on a low-cost process, does not use toxic metals such as nickel, is environmentally friendly and is safer than current industrial metal plating processes. It also simplifies the PCI manufacturing process and is compatible with current industrial welding processes. In addition, it has the additional benefit of "weld through" properties, thus avoiding the need to remove the coating before welding.

Una característica adicional del recubrimiento de polímero de halo-hidrocarburo es que solo se retira en las áreas donde se aplica soldadura y/o fundente. Por tanto, en las áreas de la PCI donde los componentes no se fijan mediante soldadura selectiva, el recubrimiento permanece intacto, manteniendo una capa protectora sobre la placa y pistas conductoras, lo que proporciona una barrera frente a la corrosión por gases atmosféricos tales como el dióxido de azufre, el sulfuro de hidrógeno, el dióxido de nitrógeno, el cloruro de hidrógeno, el cloro y el vapor de agua y otros materiales corrosivos, evitando de este modo la corrosión por contaminantes ambientales. El recubrimiento de polímero de halo-hidro-carbono también es sustancialmente impermeable a líquidos y líquidos corrosivos. En consecuencia, es posible fijar componentes a la placa de circuito en una serie de etapas con períodos significativos de tiempo que transcurren entre cada etapa; esto podría proporcionar una serie de ventajas al fabricante. Este recubrimiento no se destruye por el proceso de soldadura en zonas distintas de las áreas de soldadura seleccionadas, por tanto, en las áreas no soldadas, la PCI puede reprocesarse y/o reelaborarse mediante soldadura en una etapa posterior. Además, una vez que se completa el ensamblaje de la PCI, las áreas sin soldar de la PCI permanecen recubiertas con el polímero de halo-hidrocarburo que forma una barrera permanente contra la corrosión ambiental. No hay necesidad de caras etapas de sobre recubrimiento adicionales, tales como el recubrimiento de conformación.An additional feature of the halo-hydrocarbon polymer coating is that it is only removed in the areas where welding and / or flux is applied. Therefore, in the areas of the PCI where the components are not fixed by selective welding, the coating remains intact, maintaining a protective layer on the plate and conductive tracks, which provides a barrier against corrosion by atmospheric gases such as Sulfur dioxide, hydrogen sulfide, nitrogen dioxide, hydrogen chloride, chlorine and water vapor and other corrosive materials, thus preventing corrosion by environmental pollutants. The halo-hydro-carbon polymer coating is also substantially impermeable to corrosive liquids and liquids. Consequently, it is possible to fix components to the circuit board in a series of stages with significant periods of time elapsing between each stage; This could provide a number of advantages to the manufacturer. This coating is not destroyed by the welding process in areas other than the selected welding areas, therefore, in the non-welded areas, the PCI can be reprocessed and / or reworked by welding at a later stage. In addition, once the PCI assembly is completed, the un soldered areas of the PCI remain coated with the halo-hydrocarbon polymer that forms a permanent barrier against environmental corrosion. There is no need for additional expensive overlay stages, such as conformal coating.

Las pistas conductoras sobre la placa de circuito impreso pueden comprender cualquier material conductor. Los materiales posibles a partir de los cuales pueden hacerse las pistas conductoras son metales tales como cobre, plata, aluminio o estaño o polímeros conductores o tintas conductoras. El material preferido para las pistas es el cobre. Los polímeros conductores tienden a absorber agua e hincharse y, por tanto, recubrir los polímeros conductores con una capa de polímero de halo-hidrocarburo puede evitar la absorción de agua.The conductive tracks on the printed circuit board may comprise any conductive material. The possible materials from which conductive tracks can be made are metals such as copper, silver, aluminum or tin or conductive polymers or conductive inks. The preferred material for the tracks is copper. Conductive polymers tend to absorb water and swell and, therefore, coating conductive polymers with a halo-hydrocarbon polymer layer can prevent water absorption.

Otra característica de la PCI recubierta de la invención es que la impedancia del eje z es muy baja en comparación con la impedancia en los ejes x e y. Por eje z se entiende el eje que apunta al plano de la PCI. El recubrimiento presenta una alta impedancia en los ejes x e y, lo que demuestra buenas propiedades de aislamiento. Sin embargo, la impedancia es relativamente baja en el eje z. Esto permite el contacto eléctrico a través del recubrimiento sin tener que retirarlo. Esto es particularmente ventajoso para aplicaciones tales como teclados, contactos de conmutador, puntos de ensayo y similares. Esta característica puede optimizarse adicionalmente controlando las propiedades del recubrimiento, por ejemplo, controlando el espesor de la capa, su composición y las condiciones del proceso en el proceso de recubrimiento y la naturaleza del proceso de recubrimiento.Another feature of the coated PCI of the invention is that the impedance of the z axis is very low compared to the impedance on the x and y axes. By z axis is understood the axis that points to the plane of the PCI. The coating has a high impedance on the x and y axes, which demonstrates good insulation properties. However, the impedance is relatively low on the z axis. This allows electrical contact through the coating without having to remove it. This is particularly advantageous for applications such as keyboards, switch contacts, test points and the like. This characteristic can be further optimized by controlling the properties of the coating, for example, by controlling the thickness of the layer, its composition and the conditions of the process in the coating process and the nature of the coating process.

En resumen, la invención evita la oxidación y/u otros daños ambientales, por ejemplo, la modulación de la estabilidad térmica, el rayado, la corrosión y la resistencia química y el alto efecto de barrera para las pistas conductoras de la PCI en blanco y proporciona protección ambiental de la PCI ensamblada, por lo general con una etapa inicial de recubrimiento de la PCI en blanco con un polímero de halo-hidrocarburo.In summary, the invention prevents oxidation and / or other environmental damage, for example, modulation of thermal stability, scratching, corrosion and chemical resistance and the high barrier effect for the conductive tracks of the blank PCI and provides environmental protection of the assembled PCI, usually with a Initial stage of coating the blank PCI with a halo-hydrocarbon polymer.

La presente memoria descriptiva también proporciona un método de protección de una placa de circuito impreso a la que se ha de realizar una conexión de soldadura, método que comprende proporcionar una placa de circuito impreso, que preferentemente está en blanco, que tiene una superficie expuesta al entorno y que no tiene ninguna soldadura, o esencialmente ninguna soldadura, en dicha superficie expuesta al entorno, y aplicar a esa superficie en un espesor de 1 nm a 10 pm de una composición que comprende un polímero de halo-hidrocarburo mediante una técnica de deposición de película delgada, preferentemente por deposición por plasma, deposición química de vapor (DQV), epitaxia de haz molecular (EHM), creación de redes interpenetrantes de polímeros (RIP), absorción superficial de monocapas (ASM) de polímeros de monómeros para formar polímeros in situ, aleaciones de polímeros o pulverización catódica. Son técnicas de deposición alternativas la deposición química de vapor potenciada por plasma (DQV-PP), la deposición por plasma a presión alta/atmosférica, la deposición metalo-orgánico-química de vapor (DMOQV) y la deposición química de vapor potenciada por láser (DQV-PL). Son alternativas adicionales las técnicas de recubrimiento líquido, tales como la inmersión en líquido, el recubrimiento por pulverización, el recubrimiento por rotación y técnicas de sol/gel.The present specification also provides a method of protecting a printed circuit board to which a welding connection is to be made, a method comprising providing a printed circuit board, which is preferably blank, having a surface exposed to the environment and that it has no welding, or essentially no welding, on said surface exposed to the environment, and applying to that surface in a thickness of 1 nm to 10 pm of a composition comprising a halo-hydrocarbon polymer by a deposition technique Thin film, preferably by plasma deposition, chemical vapor deposition (DQV), molecular beam epitaxy (EHM), creation of interpenetrating polymer networks (RIP), monolayer surface absorption (ASM) of monomer polymers to form polymers in situ, polymer alloys or sputtering. Alternative deposition techniques are chemical vaporization of plasma-enhanced steam (DQV-PP), plasma deposition at high / atmospheric pressure, metallo-organic-chemical vapor deposition (DMOQV) and chemical vapor deposition of laser-enhanced steam (DQV-PL). Additional alternatives are liquid coating techniques, such as liquid immersion, spray coating, rotation coating and sol / gel techniques.

El método puede depender del espesor de recubrimiento requerido. Las técnicas de recubrimiento líquido pueden preferirse para recubrimientos más gruesos, mientras que las técnicas de deposición por plasma pueden preferirse para recubrimientos más delgados. El espesor del recubrimiento es normalmente de 1 nm a 2 pm, más normalmente de 1 nm a 500 nm, aún más normalmente de 3 nm a 500 nm, aún más normalmente de 10 nm a 500 nm y mucho más normalmente de 10 nm a 250 nm. El recubrimiento tiene preferentemente un espesor de 10 nm a 100 nm, siendo 100 nm un espesor preferido. El polímero de halo-hidrocarburo es preferentemente un polímero de fluorohidrocarburo, un polímero de cloro-hidrocarburo o un polímero de fluoro-cloro-hidrocarburo, que también puede contener micropigmentos y pequeñas cantidades de otros aditivos de rendimiento (siendo una práctica común en la industria de polímeros) y pueden ser, por ejemplo, materiales de tipo politetrafluoroetileno (PTFE). El método de aplicación del polímero de halo-hidrocarburo al PCI en blanco es la deposición por plasma, aunque todas las otras técnicas mencionadas anteriormente también serían aplicables.The method may depend on the coating thickness required. Liquid coating techniques may be preferred for thicker coatings, while plasma deposition techniques may be preferred for thinner coatings. The thickness of the coating is normally from 1 nm to 2 pm, more usually from 1 nm to 500 nm, even more usually from 3 nm to 500 nm, even more usually from 10 nm to 500 nm and much more normally from 10 nm to 250 nm. The coating preferably has a thickness of 10 nm to 100 nm, with 100 nm being a preferred thickness. The halo-hydrocarbon polymer is preferably a fluorohydrocarbon polymer, a chlorohydrocarbon polymer or a fluoro-chlorohydrocarbon polymer, which may also contain micropigments and small amounts of other performance additives (being a common practice in the industry of polymers) and can be, for example, polytetrafluoroethylene (PTFE) type materials. The method of applying the halo-hydrocarbon polymer to the blank PCI is plasma deposition, although all the other techniques mentioned above would also be applicable.

Las técnicas de deposición por plasma se usan ampliamente para la deposición de recubrimientos en una amplia gama de aplicaciones industriales. El método es una forma eficaz de depositar recubrimientos de película delgada continuos usando una técnica seca y ecológica. Las PCI se recubren en una cámara de vacío que genera un plasma gaseoso que comprende iones gaseosos ionizados, electrones, átomos y especies neutras. En este método, la PCI se introduce en la cámara de vacío que se bombea en primer lugar a presiones normalmente en el intervalo de 10'3 a 10 mbar (10‘3 a 10 hPa). Después se introduce un gas en la cámara de vacío para generar un plasma de gas estable y después se introducen uno o más compuestos precursores en el plasma ya sea como gas o líquido para permitir el proceso de deposición.Plasma deposition techniques are widely used for the deposition of coatings in a wide range of industrial applications. The method is an effective way to deposit continuous thin film coatings using a dry and ecological technique. The PCI are coated in a vacuum chamber that generates a gaseous plasma comprising ionized gaseous ions, electrons, atoms and neutral species. In this method, the PCI is introduced into the vacuum chamber that is first pumped at pressures normally in the range of 10'3 to 10 mbar (10‘3 to 10 hPa). A gas is then introduced into the vacuum chamber to generate a stable gas plasma and then one or more precursor compounds are introduced into the plasma either as gas or liquid to allow the deposition process.

Los compuestos precursores son normalmente materiales hidrocarbonados que contienen halógeno, que se seleccionan para proporcionar las propiedades de recubrimiento deseadas. Cuando se introducen en el plasma gaseoso, los compuestos precursores también se ionizan/descomponen para generar una gama de especies activas que reaccionarán en la superficie de la PCI, normalmente mediante un proceso de polimerización, para generar un recubrimiento delgado de halo-hidrocarburo. Son compuestos precursores preferidos perfluoroalcanos, perfluoroalquenos, perfluoroalquinos, fluoroalcanos, fluoroalquenos, fluoroalquinos, fluorocloroalcanos, fluorocloroalquenos, fluorocloroalquinos o cualquier otro material orgánico fluorado y/o clorado (tal como fluorohidrocarburos, fluorocarbonos, clorofluorohidrocarburos y clorofluorocarbonos).The precursor compounds are normally halogen-containing hydrocarbon materials, which are selected to provide the desired coating properties. When introduced into the gaseous plasma, the precursor compounds are also ionized / decomposed to generate a range of active species that will react on the surface of the PCI, usually through a polymerization process, to generate a thin halo-hydrocarbon coating. Preferred precursor compounds are perfluoroalkanes, perfluoroalkenes, perfluoroalkynes, fluoroalkanes, fluoroalkenes, fluoroalkynes, fluorochloroalkanes, fluorochloroalkenes, fluorochloroalkynes or any other fluorinated and / or chlorinated organic material (such as fluorohydrocarbons, chlorofluorocarbons) chlorofluorocarbons.

En otro aspecto de la invención, la superficie de dicha placa de circuito impreso tiene un recubrimiento de un fluoruro metálico con un espesor de 5 nm o menos y un recubrimiento de una composición que comprende uno o más polímeros de halo-hidrocarburo con un espesor de 1 a 10 pm sobre el recubrimiento de fluoruro metálico.In another aspect of the invention, the surface of said printed circuit board has a coating of a metal fluoride with a thickness of 5 nm or less and a coating of a composition comprising one or more halo-hydrocarbon polymers with a thickness of 1 to 10 pm on the metal fluoride coating.

En una realización, la capa de haluro metálico puede ser una monocapa, o sustancialmente una monocapa, o unas pocas monocapas, o comprender una zona de haluro metálico de capas en la superficie. Una capa de haluro metálico de este tipo puede ser muy robusta e inerte y evita la formación de capas de óxido u otros deslustres que impiden una soldadura eficaz. La capa de haluro metálico puede formarse cuando especies activas en el plasma gaseoso reaccionan con la superficie metálica o pueden potenciarse usando una mayor concentración de especies de flúor. Después, la capa de halo-hidrocarburo puede depositarse en combinación con la capa de haluro metálico. Las dos capas pueden ser diferenciadas, axial o espacialmente o, como alternativa, puede haber una transición gradual del haluro metálico al halo-hidrocarburo. Es posible que la capa de haluro metálico proteja el metal de la oxidación, mientras que la capa de halo-hidrocarburo proporcione protección ambiental contra gases y/o líquidos corrosivos, así como protección contra la oxidación. Además, si el recubrimiento se desgasta con el tiempo debido a la abrasión mecánica, la capa de fluoruro metálico subyacente evitará la acumulación de oxidación, lo que permitirá que todavía se haga contacto. La naturaleza y la composición del recubrimiento depositado por plasma depende de una serie de condiciones: el gas de plasma seleccionado; el compuesto precursor utilizado; la presión del plasma; el tiempo de recubrimiento; la potencia del plasma; la disposición de los electrodos de la cámara; la preparación de la PCI entrante; y el tamaño y geometría de la cámara. Normalmente, la técnica de deposición por plasma puede usarse para depositar películas delgadas de una monocapa (por lo general de unos pocos angstroms (Á)) a 10 micrómetros (preferentemente a 5 micrómetros), dependiendo de las configuraciones y condiciones anteriores. La técnica de plasma en sí solo afecta la superficie superior de la PCI y, por lo general, es totalmente compatible con la PCI en sí misma, sin provocar daños ni otros efectos no deseados. Una ventaja de las técnicas de recubrimiento por plasma es que el recubrimiento depositado accede a todas las superficies de la PCI y, por tanto, también se cubrirán las superficies verticales, tales como las que solo son accesibles a través de los orificios de la PCI y cualquier saliente. Si un área particular de la PCI no debe recubrirse con polímero, por ejemplo, los contactos de oro en el borde de la PCI, entonces estas áreas pueden enmascararse durante el proceso de deposición por plasma.In one embodiment, the metal halide layer may be a monolayer, or substantially a monolayer, or a few monolayers, or comprise a metal halide zone of layers on the surface. A metal halide layer of this type can be very robust and inert and prevents the formation of oxide layers or other tariffs that prevent an effective welding. The metal halide layer can be formed when active species in the gas plasma react with the metal surface or can be enhanced using a higher concentration of fluorine species. Then, the halo-hydrocarbon layer can be deposited in combination with the metal halide layer. The two layers can be differentiated, axially or spatially or, alternatively, there may be a gradual transition from the metal halide to the halo-hydrocarbon. It is possible that the metal halide layer protects the metal from oxidation, while the halo-hydrocarbon layer provides environmental protection against corrosive gases and / or liquids, as well as protection against oxidation. In addition, if the coating wears out over time due to mechanical abrasion, the underlying metal fluoride layer will prevent the accumulation of oxidation, which will allow contact to still be made. The nature and composition of the plasma deposited coating depends on a number of conditions: the selected plasma gas; the precursor compound used; plasma pressure; the coating time; plasma power; the arrangement of the camera electrodes; the preparation of the incoming PCI; and the size and geometry of the camera. Normally, the plasma deposition technique can be used to deposit thin films of a monolayer (usually a few angstroms (Á)) at 10 micrometers (preferably 5 micrometers), depending on the previous settings and conditions. The plasma technique itself only affects the upper surface of the PCI and is generally fully compatible with the PCI itself, without causing damage or other unwanted effects. An advantage of plasma coating techniques is that the deposited coating accesses all surfaces of the PCI and, therefore, vertical surfaces will also be covered, such as those that are only accessible through the holes in the PCI and any outgoing If a particular area of the PCI should not be coated with polymer, for example, gold contacts at the edge of the PCI, then these areas can be masked during the plasma deposition process.

En una variante del proceso de plasma, es posible usar el método de plasma para la limpieza in situ de la superficie de la PCI antes de la deposición por plasma usando un plasma de gas activo. En esta variante, un plasma de gas activo se usa normalmente en la misma cámara para la limpieza de las PCI antes de la introducción del compuesto precursor para la etapa de deposición por plasma. El plasma de gas activo se basa en un gas estable, tal como hidrógeno, oxígeno, nitrógeno, argón, metano, etano, otros hidrocarburos, tetrafluorometano (CF4), hexafluoroetano (C2F6), tetraclorometano (CCU), otros hidrocarburos fluorados o clorados, otros gases raros o una mezcla de los mismos. En una realización particular, la PCI podría limpiarse con el mismo material que se ha de depositar. Por ejemplo, podría usarse un hidrocarburo fluorado o clorado tal como tetrafluorometano (CF4) o hexafluoroetano (C2F6) o hexafluoropropileno (C3F6) o octafluoropropano (C3F8) en el método de plasma para limpiar la superficie de la PCI y colocar una capa de un polímero de halo-hidrocarburo y/o una capa de fluoruro (o cloruro) metálico.In a variant of the plasma process, it is possible to use the plasma method for in situ cleaning of the PCI surface before plasma deposition using an active gas plasma. In this variant, an active gas plasma is normally used in the same chamber for cleaning the PCI before the introduction of the precursor compound for the plasma deposition step. The active gas plasma is based on a stable gas, such as hydrogen, oxygen, nitrogen, argon, methane, ethane, other hydrocarbons, tetrafluoromethane (CF 4 ), hexafluoroethane (C 2 F 6 ), tetrachloromethane (CCU), other hydrocarbons fluorinated or chlorinated, other rare gases or a mixture thereof. In a particular embodiment, the PCI could be cleaned with the same material to be deposited. For example, a fluorinated or chlorinated hydrocarbon such as tetrafluoromethane (CF 4 ) or hexafluoroethane (C 2 F 6 ) or hexafluoropropylene (C 3 F 6 ) or octafluoropropane (C 3 F 8 ) could be used in the plasma method to clean the surface of the PCI and place a layer of a halo-hydrocarbon polymer and / or a layer of metal fluoride (or chloride).

La presente invención se refiere a un método de realización de una conexión de soldadura a una placa de circuito impreso que se cita en la reivindicación 1. Se desvela una placa de circuito impreso a la que se le ha hecho una conexión de soldadura de acuerdo con dicho método en la reivindicación 9.The present invention relates to a method of making a solder connection to a printed circuit board cited in claim 1. A printed circuit board is disclosed to which a solder connection has been made in accordance with said method in claim 9.

La invención proporciona un método de realización de una conexión a una placa de circuito impreso recubierta con una composición que comprende un polímero de halo-hidrocarburo, método que comprende aplicar soldadura y fundente a la placa de circuito impreso a una temperatura y durante un tiempo de manera que la soldadura se una al metal y la composición se disperse y/o se absorba y/o se vaporice y/o se disuelva y/o reaccione localmente. La acción del fundente y el aumento de la temperatura por sí solos generalmente interactuarán con el polímero de halohidrocarburo para retirar el recubrimiento localmente del área de la PCI a la que se aplica el fundente. La temperatura es normalmente de 200 °C a 300 °C, preferentemente de 240 °C a 280 °C y mucho más preferentemente de 260 °C. En una realización, el polímero de halo-hidrocarburo puede disolverse y/o absorberse por el fundente. Los inventores han descubierto que con frecuencia hay un equilibrio entre la temperatura requerida y la acidez u otra agresividad del fundente. Por tanto, fundentes más leves pueden ser suficientes si se usan temperaturas más altas y viceversa. En otra realización, se puede aprovechar la acción auto fundente del fluoruro de cobre en la superficie de cobre y cualquier descomposición del recubrimiento de polímero para liberar flúor y/o HF para iniciar la aplicación del fundente (auto aplicación de fundente). En el extremo, los inventores han descubierto que, en determinados casos, un método de realización de la conexión de soldadura puede prescindir de un fundente si se usa una temperatura suficientemente alta y, por tanto, se podría aplicar calentamiento localizado. Sorprendentemente, la composición generalmente solo se retira específicamente del área donde se aplica la soldadura y/o el fundente y, por tanto, la composición permanece fijada a la superficie de la PCI hasta la junta de soldadura. Esto proporciona una protección frente al entorno ventajosa de las pistas conductoras de la PCI hasta la junta de soldadura.The invention provides a method of making a connection to a printed circuit board coated with a composition comprising a halo-hydrocarbon polymer, a method comprising applying solder and flux to the printed circuit board at a temperature and during a time of so that the solder is bonded to the metal and the composition is dispersed and / or absorbed and / or vaporized and / or dissolved and / or reacted locally. The action of the flux and the increase in temperature alone will generally interact with the halohydrocarbon polymer to remove the coating locally from the area of the PCI to which the flux is applied. The temperature is normally from 200 ° C to 300 ° C, preferably from 240 ° C to 280 ° C and much more preferably from 260 ° C. In one embodiment, the halo-hydrocarbon polymer can be dissolved and / or absorbed by the flux. The inventors have discovered that there is often a balance between the required temperature and the acidity or other aggressiveness of the flux. Therefore, milder fluxes may be sufficient if higher temperatures are used and vice versa. In another embodiment, the self-melting action of copper fluoride on the copper surface and any decomposition of the polymer coating to release fluoride and / or HF to initiate the application of the flux (auto flux application) can be exploited. In the end, the inventors have discovered that, in certain cases, a method of realizing the welding connection can dispense with a flux if a sufficiently high temperature is used and, therefore, localized heating could be applied. Surprisingly, the composition is generally only specifically removed from the area where the solder and / or the flux is applied and, therefore, the composition remains fixed to the surface of the PCI to the solder joint. This provides protection against the advantageous environment of the conductive tracks of the PCI to the solder joint.

El fundente utilizado en la invención podría ser un fundente de resina/colofonia, un fundente orgánico, un fundente inorgánico, un fundente sin haluros, un fundente no limpio, un fundente sin residuos o un fundente de bajo contenido de sólidos. Un fundente de resina/colofonia podría ser, por ejemplo, una resina sintética o una colofonia natural. Un fundente orgánico podría ser, por ejemplo, un ácido orgánico tal como ácido láctico o un ácido acrílico; una sal orgánica tal como cloruro de dimetilamonio (DMA HCl); o una amina orgánica tal como urea. Un fundente inorgánico podría ser, por ejemplo: una sal inorgánica tal como cloruro de cinc, cloruro de sodio, cloruro de potasio o fluoruro de sodio; o un ácido inorgánico tal como ácido clorhídrico o ácido nítrico. Un ejemplo de un fundente no limpio es un fundente de colofonia. También podrían usarse en la presente invención otros fundentes utilizados más ampliamente para aplicaciones industriales tales como soldadura general, soldadura fuerte y soldadura autógena, o para limpiar o grabar una superficie metálica (por ejemplo, bórax). El fundente utilizado en este método es normalmente un fundente suave, tal como un fundente "no limpio" que no requiere una etapa posterior de limpieza de la PCI. El fundente puede ser opcionalmente parte de una pasta de soldadura. La elección del fundente puede depender de la naturaleza del recubrimiento, en particular del espesor y la composición del recubrimiento. Un recubrimiento más grueso y resistente puede requerir el uso de un fundente más agresivo. También podría usarse en la presente invención, en lugar de fundente, una composición que comprende el ingrediente activo o ingredientes de fundente que retiran la composición de halo-hidrocarburo de la placa.The flux used in the invention could be a resin / rosin flux, an organic flux, an inorganic flux, a halide-free flux, an unclean flux, a residue-free flux or a low-solids flux. A resin / rosin flux could be, for example, a synthetic resin or a natural rosin. An organic flux could be, for example, an organic acid such as lactic acid or an acrylic acid; an organic salt such as dimethylammonium chloride (DMA HCl); or an organic amine such as urea. An inorganic flux could be, for example: an inorganic salt such as zinc chloride, sodium chloride, potassium chloride or sodium fluoride; or an inorganic acid such as hydrochloric acid or nitric acid. An example of an unclean flux is a rosin flux. Other fluxes used more widely for industrial applications such as general welding, brazing and autogenous welding, or for cleaning or etching a metal surface (eg, borax) could also be used in the present invention. The flux used in this method is normally a soft flux, such as a "non-clean" flux that does not require a later stage of PCI cleaning. The flux may optionally be part of a solder paste. The choice of flux may depend on the nature of the coating, in particular the thickness and composition of the coating. A thicker and stronger coating may require the use of a more aggressive flux. A composition comprising the active ingredient or flux ingredients that remove the halo-hydrocarbon composition from the plate could also be used in the present invention.

También es posible usar una composición que comprenda un polímero de halo-hidrocarburo para proteger del entorno una placa de circuito impreso a la que se le ha de realizar una conexión de soldadura a través de la composición, sin su retirada previa, por dispersión y/o absorción y/o vaporización de la composición opcionalmente en presencia de un fundente. It is also possible to use a composition comprising a halo-hydrocarbon polymer to protect from the surroundings a printed circuit board to which a solder connection is to be made through the composition, without its prior removal, by dispersion and / or absorption and / or vaporization of the composition optionally in the presence of a flux.

El entorno puede contener agentes gaseosos tales como dióxido de azufre, sulfuro de hidrógeno, dióxido de nitrógeno, cloruro de hidrógeno, cloro, ozono o vapor de agua, o líquidos tales como agua, agua en la que se disuelven los gases corrosivos anteriores, soluciones salinas u otros vertidos. Estos gases suelen estar presentes en entornos altamente contaminados, tales como las ciudades con problemas de contaminación atmosférica. Un peligro ambiental particular frente al cual la presente invención protege las PCI es la humedad atmosférica en la que se disuelven uno o más de los gases corrosivos enumerados anteriormente. Los inventores han descubierto que la invención es capaz de proteger las PCI frente a dichos entornos hostiles.The environment may contain gaseous agents such as sulfur dioxide, hydrogen sulfide, nitrogen dioxide, hydrogen chloride, chlorine, ozone or water vapor, or liquids such as water, water in which the above corrosive gases dissolve, solutions salt or other spills. These gases are usually present in highly polluted environments, such as cities with air pollution problems. A particular environmental hazard against which the present invention protects PCI is the atmospheric humidity in which one or more of the corrosive gases listed above dissolve. The inventors have discovered that the invention is capable of protecting PCI against such hostile environments.

También es posible usar una composición que comprenda un polímero de halo-hidrocarburo para proporcionar estabilidad de almacenamiento, preferentemente estabilidad de almacenamiento a largo plazo, para una placa de circuito impreso, que está preferentemente en blanco, a la que está preferentemente en blanco, a la que se le ha de realizar una conexión de soldadura. Como se ha mencionado anteriormente, las pistas conductoras en las PCI tienden a oxidarse si se dejan expuestas a la atmósfera. Las reacciones de oxidación son normalmente la formación de óxidos metálicos por reacción con la oxidación atmosférica, pero también incluyen otras reacciones de oxidación, por ejemplo, cuando el cobre metálico se oxida a, por ejemplo, Cu+ o Cu2+. La composición evita estas reacciones de oxidación, de manera que una PCI en blanco puede almacenarse durante largos períodos de tiempo, sin que se produzca la oxidación de las pistas conductoras. Por tanto, después de un largo período de almacenamiento, pueden realizarse buenas conexiones de soldadura a la PCI mediante técnicas de soldadura convencionales, en presencia de fundente, sin etapas previas a la limpieza.It is also possible to use a composition comprising a halo-hydrocarbon polymer to provide storage stability, preferably long-term storage stability, for a printed circuit board, which is preferably blank, to which it is preferably blank, to which has to be made a welding connection. As mentioned earlier, the conductive tracks in the PCI tend to oxidize if left exposed to the atmosphere. Oxidation reactions are normally the formation of metal oxides by reaction with atmospheric oxidation, but also include other oxidation reactions, for example, when metallic copper oxidizes to, for example, Cu + or Cu2 +. The composition avoids these oxidation reactions, so that a blank PCI can be stored for long periods of time, without oxidation of the conductive tracks. Therefore, after a long period of storage, good welding connections can be made to the PCI by conventional welding techniques, in the presence of flux, without pre-cleaning steps.

También es posible usar una composición que comprenda un polímero de halo-hidrocarburo para evitar la oxidación y/o corrosión de las pistas conductoras de una placa de circuito impreso en blanco antes de la aplicación de soldadura a dichas pistas conductoras y/o la formación de una conexión de soldadura.It is also possible to use a composition comprising a halo-hydrocarbon polymer to prevent oxidation and / or corrosion of the conductive tracks of a blank printed circuit board prior to welding application to said conductive tracks and / or the formation of a solder connection.

Descripción de los dibujosDescription of the drawings

La Figura 1 muestra un perfil de soldadura de un horno de reflujo utilizado con una pasta de soldadura comercial que contiene plomo.Figure 1 shows a welding profile of a reflux oven used with a commercial solder paste containing lead.

La Figura 2 muestra un perfil de soldadura de un horno de reflujo utilizado con una pasta de soldadura comercial sin plomo.Figure 2 shows a welding profile of a reflux oven used with a commercial lead-free solder paste.

La Figura 3 es una imagen de una PCI recubierta de la invención con una gotita de agua sobre la superficie, lo que demuestra la baja energía de la superficie, la baja humectabilidad, la naturaleza impermeable al líquido del recubrimiento de la superficie.Figure 3 is an image of a PCI coated of the invention with a water droplet on the surface, demonstrating the low surface energy, low wettability, the liquid impervious nature of the surface coating.

La Figura 4 es una imagen en sección transversal de una junta de soldadura fuerte realizada mediante soldadura a través del recubrimiento en una PCI de la invención.Figure 4 is a cross-sectional image of a brazing joint made by welding through the coating on a PCI of the invention.

La Figura 5 es una imagen en sección transversal de una junta de soldadura fuerte formada sobre una PCI de la invención, lo que demuestra la formación de productos intermetálicos de cobre-estaño de buena calidad en el lado superior de la superficie de cobre inferior.Figure 5 is a cross-sectional image of a strong solder joint formed on a PCI of the invention, demonstrating the formation of good quality copper-tin intermetallic products on the upper side of the lower copper surface.

La Figura 6 es una imagen de MEB (Microscopía Electrónica de Barrido) del borde de un polímero de recubrimiento de 1 |jm de espesor sobre una PCI de la invención, que se muestra con un aumento de x30.000. La Figura 7 es una Imagen de IER (imagen de electrones por retrodispersión) que muestra un área de ejemplo de una PCI recubierta de la invención, lo que demuestra la continuidad del recubrimiento en exceso de la cobertura del 99,8 %.Figure 6 is a MEB (Scanning Electron Microscopy) image of the edge of a 1 µm thick coating polymer on a PCI of the invention, shown at a magnification of x30,000. Figure 7 is an IER Image (backscatter electron image) showing an example area of a coated PCI of the invention, demonstrating the continuity of the coating in excess of 99.8% coverage.

La Figura 8 es una imagen de MEB/XDE que muestra una región de recubrimiento retirada selectivamente de una PCI de la invención por la acción del fundente a una temperatura, para un recubrimiento de 1 micrómetro de espesor nominal. La imagen de la izquierda muestra dónde se ha aplicado el fundente de forma selectiva. La imagen de la derecha muestra que el recubrimiento se ha retirado selectivamente en el área a la que se aplicó el fundente.Figure 8 is a MEB / XDE image showing a selectively removed coating region of a PCI of the invention by the action of the flux at a temperature, for a coating of 1 micrometer of nominal thickness. The image on the left shows where the flux has been applied selectively. The image on the right shows that the coating has been selectively removed in the area to which the flux was applied.

La Figura 9 es un espectro de XDE que muestra la composición de carbono/flúor del recubrimiento sobre el cobre de una PCI de la invención.Figure 9 is an XDE spectrum showing the carbon / fluorine composition of the copper coating of a PCI of the invention.

La Figura 10 es una imagen de patas de componentes de CI arrancadas de una PCI soldada de la invención, que muestra fuertes juntas de soldadura. En ensayos estrictos, las juntas finalmente fallan por fractura del adaptador de contacto de cobre para unirse al sustrato de placa, en lugar de en la junta de soldadura.Figure 10 is an image of legs of IC components plucked from a soldered PCI of the invention, showing strong solder joints. In strict tests, the joints eventually fail by fracturing the copper contact adapter to join the plate substrate, rather than at the solder joint.

La Figura 11 es una imagen de adaptadores de contacto soldadas arrancados de la PCI soldada de la invención, que muestra juntas de soldadura fuertes. En ensayos estrictos, las juntas finalmente fallan por fractura del adaptador de contacto de cobre para unirse al sustrato de placa, en lugar de en la junta de soldadura. Figure 11 is an image of welded contact adapters torn from the welded PCI of the invention, showing strong solder joints. In strict tests, the joints eventually fail by fracturing the copper contact adapter to join the plate substrate, rather than at the solder joint.

La Figura 12 es una imagen de MEB y una imagen de XDE que muestra la presencia de recubrimiento de polímero hasta un borde de junta de soldadura formada sobre una PCI de la invención.Figure 12 is a MEB image and an XDE image showing the presence of polymer coating to a weld joint edge formed on a PCI of the invention.

La Figura 13 es una imagen de microscopía óptica que muestra una serie de juntas de soldadura de buena calidad formadas sobre una PCI de la invención.Figure 13 is an optical microscopy image showing a series of good quality solder joints formed on a PCI of the invention.

La Figura 14a es un espectro de EFX de un conjunto de recubrimientos delgados de la invención que muestra diversas contribuciones de los materiales de C-F y Cu-F.Figure 14a is an EFX spectrum of a set of thin coatings of the invention showing various contributions of C-F and Cu-F materials.

La Figura 14b es un espectro de EFX que muestra material que contiene C-F para un recubrimiento grueso. Ejemplos Figure 14b is an EFX spectrum showing CF-containing material for a thick coating. Examples

Preparación de placas de circuito impreso recubiertasPreparation of coated printed circuit boards

Se obtuvieron de un fabricante placas de circuito impreso que se habían grabado y limpiado, pero a las que no se había aplicado el acabado de superficie. Estas placas se trataron después por deposición por plasma para generar el recubrimiento que contiene halógeno. La PCI se introdujo en la cámara de vacío que se bombeó en primer lugar a presiones en el intervalo de 10'3 a 10 mbar (de 10'3 a 10 hPa). Después se introdujo un gas en la cámara de vacío para generar un plasma de gas estable y después se introdujo un compuesto de hidrocarburo precursor que contenía halógeno en el plasma para permitir el proceso de deposición. Cuando se introdujo en el plasma de gas, el compuesto precursor también se descompuso/ionizó para generar una gama de especies activas que reaccionaron en la superficie de la PCI para generar un recubrimiento delgado que contenía halógeno. Se realizó una serie de experimentos en estas placas tratadas.Printed circuit boards were obtained from a manufacturer that had been engraved and cleaned, but to which the surface finish had not been applied. These plates were then treated by plasma deposition to generate the halogen-containing coating. The PCI was introduced into the vacuum chamber that was first pumped at pressures in the range of 10.3 to 10 mbar (10.3 to 10 hPa). A gas was then introduced into the vacuum chamber to generate a stable gas plasma and then a precursor hydrocarbon compound containing halogen was introduced into the plasma to allow the deposition process. When introduced into the gas plasma, the precursor compound also decomposed / ionized to generate a range of active species that reacted on the surface of the PCI to generate a thin halogen-containing coating. A series of experiments were performed on these treated plates.

Ejemplo 1Example 1

Se aplicó una pasta de soldadura comercial que contenía plomo mediante dosificación manual de una jeringa en varios adaptadores de componentes en un lado de la PCI. Se colocaron varios circuitos integrados sobre los adaptadores que tenían pasta de soldadura sobre ellos. Después se colocó la PCI en un horno de reflujo donde se había configurado el perfil de soldadura como se muestra en la Figura 1. Posteriormente, las juntas se examinaron visualmente con un microscopio, donde se descubrió que tenían buenas características de humectación. Algunas de las juntas se separaron después tirando del componente con una herramienta. En cada caso, la pata del circuito integrado se retiró de la soldadura, dejando la unión al adaptador de contacto de PCI intacta.A commercial solder paste containing lead was applied by manual dosing of a syringe into several component adapters on one side of the PCI. Several integrated circuits were placed on the adapters that had solder paste on them. The PCI was then placed in a reflux oven where the welding profile had been configured as shown in Figure 1. Subsequently, the joints were visually examined with a microscope, where it was discovered that they had good wetting characteristics. Some of the joints were then separated by pulling the component with a tool. In each case, the integrated circuit leg was removed from the solder, leaving the connection to the PCI contact adapter intact.

Ejemplo 2Example 2

Los ensayos anteriores se repitieron usando una pasta de soldadura sin plomo con un perfil de reflujo modificado como se muestra en la Figura 2, con resultados similares.The above tests were repeated using a lead-free solder paste with a modified reflux profile as shown in Figure 2, with similar results.

Ejemplo 3Example 3

El fundente solo se aplicó a regiones de dos PCI y se calentaron hasta 260 °C durante diez segundos y cinco minutos. El examen mostró que el recubrimiento ya no estaba presente en las áreas donde se había aplicado fundente en cualquiera de las PCI. Sin embargo, el recubrimiento permaneció intacto en las áreas donde no se había aplicado fundente.The flux was only applied to two PCI regions and heated to 260 ° C for ten seconds and five minutes. The test showed that the coating was no longer present in the areas where flux had been applied to any of the PCI. However, the coating remained intact in the areas where flux had not been applied.

Ejemplo 4Example 4

Ensayo de resistencia a la cizallaShear strength test

Se prepararon ocho conjuntos con cuatro acabados de PCI para el ensayo de cizalla. Hubo dos ensamblajes para cada acabado de PCI. Cada ensamblaje tenía siete resistencias de chip 1206 y cuatro condensadores de chip 0805 ensamblados. Se sometieron catorce resistencias 1206 y ocho condensadores 0805 de cada acabado de ensamblaje a ensayo de cizalla para determinar la resistencia máxima a la cizalla (RMC) de las juntas de soldadura para cada ensamblaje de acabado.Eight sets with four PCI finishes were prepared for the shear test. There were two assemblies for each PCI finish. Each assembly had seven 1206 chip resistors and four 0805 chip capacitors assembled. Fourteen resistors 1206 and eight 0805 capacitors of each assembly finish were subjected to shear test to determine the maximum shear strength (RMC) of the welding joints for each finishing assembly.

Condiciones de ensayoTest conditions

La placa se montó en un dispositivo de ensayo de cizalla. La altura de separación de la herramienta de cincel sobre la superficie de la PCI era de 80 |jm y el ancho de la herramienta de cincel era de 2 |jm. Durante cada ensayo, la herramienta de cizallamiento se movió hacia adelante a una velocidad definida de 100 jm/s contra el componente de ensayo y se controló la fuerza hasta que se rompió la fijación de junta de soldadura. El dispositivo de ensayo de cizalla utilizado es el Dage Serie 4000, con un cabezal de ensayo DS100. The plate was mounted in a shear test device. The separation height of the chisel tool on the surface of the PCI was 80 | jm and the width of the chisel tool was 2 | jm. During each test, the shear tool moved forward at a defined speed of 100 jm / s against the test component and the force was controlled until the welding joint fixation was broken. The shear test device used is the Dage 4000 Series, with a DS100 test head.

Resultados de ensayos de resistencia a la cizalla inicialesResults of initial shear strength tests

Figure imgf000010_0002
Figure imgf000010_0002

Ejemplo 5Example 5

La tabla de energías superficiales de PCI a continuación muestra una mayor hidrofobia con el tiempo de proceso de recubrimiento:The PCI surface energy table below shows greater hydrophobia with the coating process time:

Figure imgf000010_0001
Figure imgf000010_0001

Claims (9)

REIVINDICACIONES 1. Un método de realización de una conexión de soldadura a una placa de circuito impreso, en el que:1. A method of making a solder connection to a printed circuit board, in which: una superficie de la placa de circuito impreso tiene un recubrimiento que comprende uno o más polímeros de halo-hidrocarburo con un espesor de 1 nm a 10 pm; yA surface of the printed circuit board has a coating comprising one or more halo-hydrocarbon polymers with a thickness of 1 nm to 10 pm; Y el circuito impreso tiene pistas conductoras y no hay ninguna soldadura, o esencialmente ninguna soldadura, entre el recubrimiento y las pistas conductoras,the printed circuit has conductive tracks and there is no welding, or essentially no welding, between the coating and the conductive tracks, donde dicho método comprende aplicar soldadura y fundente al recubrimiento sin su retirada previa, a una temperatura y durante un tiempo de manera que la soldadura se adhiera a las pistas conductoras y el recubrimiento se disperse y/o se absorba y/o se vaporice localmente.wherein said method comprises applying solder and flux to the coating without prior removal, at a temperature and for a time so that the solder adheres to the conductive tracks and the coating is dispersed and / or absorbed and / or vaporized locally. 2. El método de acuerdo con la reivindicación 1, en el que el recubrimiento tiene un espesor de 10 nm a 100 nm. 2. The method according to claim 1, wherein the coating has a thickness of 10 nm to 100 nm. 3. El método de acuerdo con la reivindicación 1 o 2, en el que el polímero de halo-hidrocarburo es un fluorohidrocarburo.3. The method according to claim 1 or 2, wherein the halo-hydrocarbon polymer is a fluorohydrocarbon. 4. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en el que el polímero de halohidrocarburo contiene menos del 5 % de heteroátomos como proporción del número total de átomos en el polímero, y preferentemente el polímero tiene una estructura de cadena lineal o ramificada y contiene uno o más heteroátomos seleccionados entre nitrógeno, azufre y oxígeno.4. The method according to any one of the preceding claims, wherein the halohydrocarbon polymer contains less than 5% heteroatoms as a proportion of the total number of atoms in the polymer, and preferably the polymer has a linear chain structure or branched and contains one or more heteroatoms selected from nitrogen, sulfur and oxygen. 5. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en el que la superficie de dicha placa de circuito impreso tiene un recubrimiento de un fluoruro metálico con un espesor de 5 nm o menos y un recubrimiento de una composición que comprende uno o más polímeros de halo-hidrocarburo en un espesor de 1 nm a 10 pm sobre el recubrimiento de fluoruro metálico.5. The method according to any one of the preceding claims, wherein the surface of said printed circuit board has a coating of a metal fluoride with a thickness of 5 nm or less and a coating of a composition comprising one or more more halocarbon polymers in a thickness from 1 nm to 10 pm on the metal fluoride coating. 6. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en el que el recubrimiento tiene espesores diferentes en ubicaciones diferentes.6. The method according to any one of the preceding claims, wherein the coating has different thicknesses in different locations. 7. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en el que las pistas conductoras comprenden cobre y el polímero de halo-hidrocarburo es un material de tipo PTFE.7. The method according to any one of the preceding claims, wherein the conductive tracks comprise copper and the halo-hydrocarbon polymer is a PTFE type material. 8. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, que comprende adicionalmente la etapa inicial de depositar el recubrimiento por deposición por plasma de uno o más compuestos precursores seleccionados entre: un perfluoroalcano; un perfluoroalqueno; un perfluoroalquino; un fluoroalcano; un fluoroalqueno; un fluoroalquino; un fluorocloroalcano; un fluorocloroalqueno; y un fluorocloroalquino.8. The method according to any one of the preceding claims, further comprising the initial step of depositing the plasma deposition coating of one or more precursor compounds selected from: a perfluoroalkane; a perfluoroalkene; a perfluoroalkine; a fluoroalkane; a fluoroalkene; a fluoroalkine; a fluorochloroalkane; a fluorochloroalkene; and a fluorochloroalkine. 9. Una placa de circuito impreso a la que se le ha realizado una conexión de soldadura, pudiéndose obtener dicha placa de circuito impreso mediante un método como se define en una cualquiera de las reivindicaciones 1 a 8. 9. A printed circuit board to which a welding connection has been made, said printed circuit board being obtainable by a method as defined in any one of claims 1 to 8.
ES08709439T 2007-02-19 2008-02-18 Printed circuit boards Active ES2728309T3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0703172A GB0703172D0 (en) 2007-02-19 2007-02-19 Printed circuit boards
PCT/GB2008/000552 WO2008102113A2 (en) 2007-02-19 2008-02-18 Printed circuit boards

Publications (1)

Publication Number Publication Date
ES2728309T3 true ES2728309T3 (en) 2019-10-23

Family

ID=37908866

Family Applications (1)

Application Number Title Priority Date Filing Date
ES08709439T Active ES2728309T3 (en) 2007-02-19 2008-02-18 Printed circuit boards

Country Status (15)

Country Link
US (2) US8492898B2 (en)
EP (1) EP2130417B1 (en)
JP (3) JP5558112B2 (en)
KR (3) KR102096147B1 (en)
CN (1) CN101682998B (en)
AU (1) AU2008217648B2 (en)
CA (1) CA2678309C (en)
DK (1) DK2130417T3 (en)
ES (1) ES2728309T3 (en)
GB (2) GB0703172D0 (en)
PL (1) PL2130417T3 (en)
RU (1) RU2563978C2 (en)
TR (1) TR201905093T4 (en)
TW (1) TWI462671B (en)
WO (1) WO2008102113A2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0703172D0 (en) 2007-02-19 2007-03-28 Pa Knowledge Ltd Printed circuit boards
DE102007062202B4 (en) * 2007-12-21 2021-06-10 Vitesco Technologies GmbH Description Process for contacting a rigid circuit board with a contact partner and an arrangement of rigid circuit board and contact partner
GB2462824A (en) * 2008-08-18 2010-02-24 Crombie 123 Ltd Printed circuit board encapsulation
WO2010020753A2 (en) * 2008-08-18 2010-02-25 Semblant Limited Halo-hydrocarbon polymer coating
US8618420B2 (en) 2008-08-18 2013-12-31 Semblant Global Limited Apparatus with a wire bond and method of forming the same
US8701657B2 (en) * 2008-08-21 2014-04-22 Geno Llc Systems for generating nitric oxide
BE1019159A5 (en) * 2010-01-22 2012-04-03 Europlasma Nv METHOD FOR DEPOSITING A EQUIVALENT NANOCOATING BY A LOW-PRESSURE PLASMA PROCESS
GB201003067D0 (en) * 2010-02-23 2010-04-07 Semblant Ltd Plasma-polymerized polymer coating
US8995146B2 (en) 2010-02-23 2015-03-31 Semblant Limited Electrical assembly and method
GB2485419B (en) * 2010-11-15 2015-02-25 Semblant Ltd Method for reducing creep corrosion
GB2489761B (en) 2011-09-07 2015-03-04 Europlasma Nv Surface coatings
CN103379738A (en) * 2012-04-24 2013-10-30 镇江华扬信息科技有限公司 Method for processing surface of printed circuit board
US9053405B1 (en) 2013-08-27 2015-06-09 Flextronics Ap, Llc Printed RFID circuit
US9565748B2 (en) * 2013-10-28 2017-02-07 Flextronics Ap, Llc Nano-copper solder for filling thermal vias
CN104741490B (en) * 2013-12-27 2017-06-20 博世汽车部件(苏州)有限公司 A kind of soldering appliance
US9758889B2 (en) * 2014-05-08 2017-09-12 Ymt Co., Ltd. Method for producing substrate formed with copper thin layer, method for manufacturing printed circuit board and printed circuit board manufactured thereby
CN104470202B (en) * 2014-12-31 2017-10-24 上海创功通讯技术有限公司 Printed circuit board (PCB) and its bond pad surface processing method for mobile terminal
US9516760B2 (en) * 2015-01-22 2016-12-06 Eastman Kodak Company Methods for providing electrically-conductive articles
GB2539231B (en) * 2015-06-10 2017-08-23 Semblant Ltd Coated electrical assembly
CN105386004B (en) * 2015-10-23 2018-11-13 衢州顺络电路板有限公司 Replace the wiring board and its manufacturing method of golden finger
US10351729B2 (en) 2016-03-03 2019-07-16 Motorola Mobility Llc Polysiloxane films and methods of making polysiloxane films
US10212825B2 (en) 2016-03-03 2019-02-19 Motorola Mobility Llc Polysiloxane films and methods of making polysiloxane films
WO2018013889A1 (en) 2016-07-15 2018-01-18 Aculon, Inc Coated articles that demonstrate push-through electrical connectivity
KR102045186B1 (en) 2016-11-22 2019-11-14 센주긴조쿠고교 가부시키가이샤 Soldering method
GB201621177D0 (en) 2016-12-13 2017-01-25 Semblant Ltd Protective coating
CN108697001A (en) * 2017-04-05 2018-10-23 中国科学院宁波材料技术与工程研究所 A kind of preparation method of flexible electrode and/or circuit
US10770238B2 (en) 2017-07-03 2020-09-08 Avx Corporation Solid electrolytic capacitor assembly with hydrophobic coatings
US11257628B2 (en) 2017-07-03 2022-02-22 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a nanocoating
CN113275217B (en) * 2021-05-18 2022-06-24 佛山市思博睿科技有限公司 Preparation method of plasma graft copolymerization film layer
GB2609034A (en) * 2021-07-19 2023-01-25 Mordechai Ronen Aviv Systems and methods for additive manufacturing of electronics

Family Cites Families (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770571A (en) * 1969-04-02 1973-11-06 Richardson Co Fabrication of printed circuit boards
FR2048044B1 (en) 1969-06-30 1973-01-12 Fmc Corp
US3649475A (en) * 1969-07-22 1972-03-14 Gen Dynamics Corp Multi-layer printed circuit boards and methods of making same
US3745536A (en) 1971-03-01 1973-07-10 Burroughs Corp High speed serial scan and read-out of keyboards
GB1399252A (en) 1971-05-19 1975-07-02 Post Office Electrical signal initiating keyboards
US3931454A (en) * 1972-10-17 1976-01-06 Westinghouse Electric Corporation Printed circuit board and method of preparing it
JPS5219875B2 (en) 1974-02-07 1977-05-31
US4136225A (en) * 1977-07-08 1979-01-23 Bell Telephone Laboratories, Incorporated Cover coatings for printed circuits
JPS5439873A (en) * 1977-09-06 1979-03-27 Nippon Denso Co Incombustible ypet flexible printed wiring board
US4268568A (en) 1979-05-14 1981-05-19 Bell Telephone Laboratories, Incorporated Lubricated electrical contacts
JPS5946310B2 (en) * 1979-08-29 1984-11-12 株式会社村田製作所 Method for preventing oxidation of heat-treated copper coatings
US4508756A (en) * 1980-10-08 1985-04-02 Murata Manufacturing Co., Ltd. Method for inhibiting oxidation of a copper film on ceramic body
JPS5766613A (en) * 1980-10-11 1982-04-22 Murata Manufacturing Co Method of preventing oxidation of copper coating film on ceramic unit
US4369287A (en) * 1981-03-16 1983-01-18 Motorola Inc. Permanent fluxing agent and solder-through conformal coating
US4531659A (en) * 1982-02-26 1985-07-30 Wright Hershel E Foam dispensing device air return system
JPS5997029A (en) 1982-11-26 1984-06-04 Hitachi Ltd Absolute pressure type semiconductor pressure sensor
US4591659A (en) 1983-12-22 1986-05-27 Trw Inc. Multilayer printed circuit board structure
US4689110A (en) * 1983-12-22 1987-08-25 Trw Inc. Method of fabricating multilayer printed circuit board structure
JPS60214941A (en) * 1984-04-10 1985-10-28 株式会社 潤工社 Printed substrate
JPS60214942A (en) * 1984-04-10 1985-10-28 株式会社 潤工社 Oriented porous ethylene tetrafluoride resin body difficult to be deformed by compression
JPS60258232A (en) 1984-06-04 1985-12-20 Matsushita Electric Works Ltd Laminated board of fluorine-containing resin
JPS60257592A (en) 1984-06-04 1985-12-19 松下電工株式会社 Multilayer printed circuit board
US4710429A (en) * 1985-04-15 1987-12-01 The Dow Chemical Company Laminates from epoxidized phenol-hydrocarbon adducts
JPS61243844A (en) * 1985-04-23 1986-10-30 Hitachi Ltd Thermosetting resin composition, laminated sheet and production thereof
JPS62252016A (en) * 1986-04-24 1987-11-02 富士ポリマテック株式会社 Formation of continuity part of rubber contact
CA1312040C (en) * 1985-12-19 1992-12-29 Joseph Victor Koleske Conformal coatings cured with actinic radiation
US4732649A (en) * 1986-06-18 1988-03-22 Macdermid, Incorporated Method for manufacture of printed circuit boards
US4772509A (en) * 1987-04-13 1988-09-20 Japan Gore-Tex, Inc. Printed circuit board base material
US4784901A (en) 1987-04-13 1988-11-15 Japan Gore-Tex, Inc. Flexible printed circuit board base material
US4755911A (en) * 1987-04-28 1988-07-05 Junkosha Co., Ltd. Multilayer printed circuit board
US4797178A (en) 1987-05-13 1989-01-10 International Business Machines Corporation Plasma etch enhancement with large mass inert gas
JPH01131270A (en) 1987-11-17 1989-05-24 Asahi Glass Co Ltd Thermosetting resin composition and laminated board using said composition
JPH0180974U (en) 1987-11-20 1989-05-30
ES2048205T3 (en) * 1987-12-17 1994-03-16 Ici Plc METHOD AND APPARATUS FOR EMULSIFICATION.
US6238774B1 (en) * 1988-02-04 2001-05-29 Fujitsu Limited Protection of oxide superconductor
JPH01225539A (en) 1988-03-04 1989-09-08 Junkosha Co Ltd Laminated sheet
US4895759A (en) * 1988-03-18 1990-01-23 Ppg Industries, Inc. Saturating grade paper
US4975319A (en) * 1988-07-14 1990-12-04 General Electric Company Printed circuit board from fibers impregnated with epoxy resin mixture, halogenated bisphenol and polyphenylene ether
EP0355955A3 (en) 1988-07-25 1991-12-27 Hitachi, Ltd. Connection for semiconductor devices or integrated circuits by coated wires and method of manufacturing the same
JPH0286675A (en) 1988-09-22 1990-03-27 Nitto Denko Corp Fixing material for printed circuit board
JPH0826116B2 (en) 1988-09-30 1996-03-13 株式会社日立製作所 Thermosetting resin composition and printed circuit board using the same
JPH02120351A (en) 1988-10-29 1990-05-08 Japan Synthetic Rubber Co Ltd Flame-retarding resin composition
JPH03129796A (en) 1989-03-23 1991-06-03 Matsushita Electric Works Ltd Manufacture of printed circuit board
JPH0624211B2 (en) 1989-04-26 1994-03-30 新日本製鐵株式会社 Insulation coating bonding wire
DE3912580C2 (en) 1989-04-17 1997-08-21 F&K Delvotec Bondtechnik Gmbh Bond stamp
JPH03242992A (en) 1990-02-21 1991-10-29 Mitsubishi Plastics Ind Ltd Manufacture of printed circuit board with curved surface shape
US5141702A (en) * 1990-03-13 1992-08-25 Olin Corporation Method of making coated electrical connectors
JPH03278494A (en) 1990-03-28 1991-12-10 Toshiba Chem Corp Printed circuit board
JPH07120858B2 (en) 1990-03-30 1995-12-20 株式会社日立製作所 Multilayer printed circuit board and manufacturing method thereof
US5059728A (en) * 1990-06-29 1991-10-22 Allied-Signal Inc. Partially fluorinated alkanes having a tertiary structure
JPH0465184A (en) * 1990-07-05 1992-03-02 Kansai Paint Co Ltd Electrodeposition pretreatment method
JPH04208597A (en) 1990-12-01 1992-07-30 Fujitsu Ltd Multilayer printed circuit board
JPH04219901A (en) * 1990-12-19 1992-08-11 Nippon Steel Corp Electric parts with protective film
ATE125666T1 (en) 1991-02-07 1995-08-15 Siemens Ag MICRO MULTILAYER WIRING.
US5274913A (en) * 1991-10-25 1994-01-04 International Business Machines Corporation Method of fabricating a reworkable module
JP3129796B2 (en) 1991-11-21 2001-01-31 ニチモウ株式会社 Cutting method
JPH05275487A (en) 1991-11-22 1993-10-22 Sumitomo 3M Ltd Electronic parts surface protecting material, electronic parts equipped with the same, and electric connection method of electronic parts using said material
JP3242992B2 (en) 1992-06-17 2001-12-25 パイオニア株式会社 Organic electroluminescence device
JP3348454B2 (en) * 1993-02-05 2002-11-20 ソニー株式会社 Antioxidant method
JP3552241B2 (en) * 1993-04-07 2004-08-11 千住金属工業株式会社 Pre-flux
JP3278494B2 (en) 1993-06-04 2002-04-30 アクトロニクス株式会社 How to heat the windings of stationary induction equipment
JP3334301B2 (en) 1993-11-25 2002-10-15 日本メクトロン株式会社 Adhesive between fluoroplastic substrate and metal
IL111497A (en) * 1993-12-08 2001-01-28 Rohco Inc Mcgean Silane compositions useful as adhesives
JPH07201502A (en) 1993-12-28 1995-08-04 Japan Gore Tex Inc Board mounding type electronic component
CA2118544A1 (en) 1993-12-30 1995-07-01 Henry W. Krautter Reliability elastomeric keypads and method for making same
US5639989A (en) 1994-04-19 1997-06-17 Motorola Inc. Shielded electronic component assembly and method for making the same
US5658962A (en) * 1994-05-20 1997-08-19 Minnesota Mining And Manufacturing Company Omega-hydrofluoroalkyl ethers, precursor carboxylic acids and derivatives thereof, and their preparation and application
JP2614190B2 (en) 1994-06-01 1997-05-28 日本ピラー工業株式会社 Prepreg for multilayer board, laminated board, multilayer printed circuit board and method of manufacturing the same
JPH0827453A (en) 1994-07-14 1996-01-30 Nitto Denko Corp Flame-retardant adhesive
JP2533747B2 (en) 1994-07-25 1996-09-11 株式会社日立製作所 Laminated board and manufacturing method thereof
US5734008A (en) 1994-10-28 1998-03-31 Sumitomo Chemical Company, Limited Polyimide film
JPH08143846A (en) 1994-11-24 1996-06-04 Nitto Denko Corp Flame-retardant adhesive
JPH08288331A (en) 1995-04-17 1996-11-01 Tanaka Denshi Kogyo Kk Bonding wire for semiconductor device and production thereof
DE19535068C2 (en) * 1995-09-21 1997-08-21 Lpkf Cad Cam Systeme Gmbh Coating for the structured production of conductor tracks on the surface of electrically insulating substrates, method for producing the coating and of structured conductor tracks
GB9608952D0 (en) 1995-09-22 1996-07-03 Bnfl Fluorchem Ltd Coating compositions
US7112265B1 (en) 1996-02-14 2006-09-26 Lifescan Scotland Limited Disposable test strips with integrated reagent/blood separation layer
JP4252631B2 (en) * 1996-02-29 2009-04-08 和夫 杉山 Method for cleaning and modifying surface for solder joint and soldering method
WO1997039610A1 (en) * 1996-04-18 1997-10-23 International Business Machines Corporation Organic-metallic composite coating for copper surface protection
JPH09307219A (en) * 1996-05-14 1997-11-28 Tamura Seisakusho Co Ltd Soldering treatment
WO1998058117A1 (en) 1997-06-14 1998-12-23 The Secretary Of State For Defence Surface coatings
JPH1112716A (en) 1997-06-19 1999-01-19 Seiko Epson Corp Material for brazing and its production
JPH1131270A (en) 1997-07-10 1999-02-02 Sanden Corp Product storage device for automatic vending machine
JPH1140907A (en) * 1997-07-17 1999-02-12 Fuji Photo Film Co Ltd Printed circuit board and component mounting method thereon
US5858074A (en) * 1997-07-29 1999-01-12 National Research Council Of Canada Organic solderability preservative compositions
JP3420492B2 (en) 1998-01-23 2003-06-23 京セラ株式会社 Semiconductor device
JP3551007B2 (en) 1998-03-02 2004-08-04 セイコーエプソン株式会社 Wire bonding method and apparatus, and wire bump forming method
JP3974256B2 (en) 1998-04-22 2007-09-12 新日鐵化学株式会社 Alkali development type photosensitive resin composition
JPH11319635A (en) 1998-05-15 1999-11-24 Omron Corp Device for and method of coating organic material to contact point
GB9821267D0 (en) 1998-10-01 1998-11-25 Secr Defence Surface coatings
US6284308B2 (en) * 1998-12-25 2001-09-04 Victor Company Of Japan, Ltd. Manufacturing method of printed circuit board
JP2000211057A (en) 1999-01-26 2000-08-02 Hitachi Chem Co Ltd Intermediate plate for laminate
JP2000277654A (en) * 1999-03-25 2000-10-06 Kokusai Electric Co Ltd Semiconductor device
US6306273B1 (en) * 1999-04-13 2001-10-23 Aclara Biosciences, Inc. Methods and compositions for conducting processes in microfluidic devices
SG93210A1 (en) * 1999-06-29 2002-12-17 Univ Singapore Method for lamination of fluoropolymer to metal and printed circuit board (pcb) substrate
JP3640337B2 (en) 1999-10-04 2005-04-20 信越化学工業株式会社 Pressure sensor device
JP4343354B2 (en) * 1999-11-02 2009-10-14 Agcセイミケミカル株式会社 Solder flux creeping-up inhibitor composition and its use
IL132898A (en) * 1999-11-11 2009-09-01 Nds Ltd System for bitstream generation
EP1172393B1 (en) * 1999-12-17 2007-10-31 DAICEL CHEMICAL INDUSTRIES, Ltd. Curable resin composition, process for producing the same, and coated object made with the same
US6335224B1 (en) 2000-05-16 2002-01-01 Sandia Corporation Protection of microelectronic devices during packaging
DE10026714A1 (en) * 2000-05-30 2001-12-13 Hueck Folien Gmbh Composite film, process for its production and its use
US7465478B2 (en) 2000-08-11 2008-12-16 Applied Materials, Inc. Plasma immersion ion implantation process
DK1326718T3 (en) * 2000-10-04 2004-04-13 Dow Corning Ireland Ltd Method and apparatus for forming a coating
DE10051053A1 (en) * 2000-10-14 2002-05-02 Bosch Gmbh Robert Process for protecting electronic or micromechanical components
JP4401049B2 (en) * 2000-12-11 2010-01-20 旭硝子株式会社 Curable composition, cured coating and coated substrate
US20020134588A1 (en) 2000-12-18 2002-09-26 Dollarhite James Michael Hardsurfacing/hardfacing pertaining primarly to the horizontal directional drilling (HDD) industry utilizing technogenia
DE10114897A1 (en) * 2001-03-26 2002-10-24 Infineon Technologies Ag Electronic component
US6969472B2 (en) 2001-04-19 2005-11-29 Lsi Logic Corporation Method of fabricating sub-micron hemispherical and hemicylidrical structures from non-spherically shaped templates
JP2002329741A (en) 2001-05-07 2002-11-15 Sumiden Magnet Wire Kk Bonding copper wire
US6589639B2 (en) * 2001-05-23 2003-07-08 International Business Machines Corporation Hole fill composition and method for filling holes in a substrate
US6803092B2 (en) * 2001-06-26 2004-10-12 3M Innovative Properties Company Selective deposition of circuit-protective polymers
EP1402321A1 (en) * 2001-07-04 2004-03-31 Showa Denko K.K. Resist curable resin composition and cured article thereof
DE10133739A1 (en) 2001-07-11 2003-01-30 Mewa Textil Service Ag & Co Man Ohg transport container
SG117395A1 (en) 2001-08-29 2005-12-29 Micron Technology Inc Wire bonded microelectronic device assemblies and methods of manufacturing same
US6500529B1 (en) * 2001-09-14 2002-12-31 Tonoga, Ltd. Low signal loss bonding ply for multilayer circuit boards
JP4409134B2 (en) * 2001-10-09 2010-02-03 パナソニック株式会社 Mounting system
TW545092B (en) * 2001-10-25 2003-08-01 Matsushita Electric Ind Co Ltd Prepreg and circuit board and method for manufacturing the same
JP4075379B2 (en) 2002-01-08 2008-04-16 株式会社デンソー Surface treatment method of fluororesin and method of manufacturing printed wiring board using fluororesin
KR100502179B1 (en) * 2002-02-25 2005-08-08 스마트알앤씨 주식회사 Preparation of Metal Clad Laminate for Printed Circuit Board
US20030215588A1 (en) 2002-04-09 2003-11-20 Yeager Gary William Thermoset composition, method, and article
JP4499344B2 (en) 2002-05-28 2010-07-07 株式会社日立製作所 Resin composition and prepreg, laminate and multilayer printed circuit board using the same
US6776827B2 (en) 2002-09-23 2004-08-17 Syed M. Hasan Method and solution for treating fluorocarbon surfaces
JP2004134675A (en) * 2002-10-11 2004-04-30 Sharp Corp Soi substrate, manufacturing method thereof and display device
JP2004184340A (en) 2002-12-05 2004-07-02 Tanaka Kikinzoku Kogyo Kk Manufacturing method of dna probe fixed electrode
JP4208597B2 (en) 2003-02-17 2009-01-14 シャープ株式会社 Display device, and mobile phone terminal, mobile game terminal, television receiver, and stereoscopic display system using the same
JP4020006B2 (en) * 2003-05-09 2007-12-12 Jsr株式会社 Insulating resin composition, cured product thereof, and solder joining method
EP1505146A1 (en) * 2003-08-05 2005-02-09 Air Products And Chemicals, Inc. Processing of substrates with dense fluids comprising acetylenic diols and/or alcohols
JP2005112981A (en) 2003-10-07 2005-04-28 Hitachi Chem Co Ltd Low-permittivity resin composition, prepreg using the same, metal-clad laminate, and printed circuit board
US20050121226A1 (en) * 2003-10-21 2005-06-09 Park Electrochemical Corporation Laminates having a low dielectric constant, low disapation factor bond core and method of making same
JP4896367B2 (en) * 2003-10-23 2012-03-14 パナソニック株式会社 Electronic component processing method and apparatus
US6923221B2 (en) * 2003-12-04 2005-08-02 Gilbarco Inc. Vapor recovery system with ORVR compensation
JP4195365B2 (en) 2003-12-05 2008-12-10 アルプス電気株式会社 Circuit board with flame resistance and moisture resistance
JP4551654B2 (en) 2003-12-09 2010-09-29 株式会社神戸製鋼所 Resin-coated metal plate used for drilling printed circuit boards
JP4694251B2 (en) * 2004-06-10 2011-06-08 四国化成工業株式会社 Copper or copper alloy surface treatment agent for lead-free soldering and use thereof
US8183386B2 (en) * 2004-06-10 2012-05-22 Shikoku Chemicals Corporation Phenylnaphthylimidazole compound and usage of the same
DE102004030388A1 (en) * 2004-06-23 2006-01-26 Ormecon Gmbh An article with a coating of electrically conductive polymer and process for its preparation
US7673970B2 (en) * 2004-06-30 2010-03-09 Lexmark International, Inc. Flexible circuit corrosion protection
JP4737552B2 (en) * 2004-07-22 2011-08-03 国立大学法人京都大学 Fluorocarbon film and method for forming the same
JP5010112B2 (en) 2004-07-26 2012-08-29 新神戸電機株式会社 Manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board
JP4843214B2 (en) 2004-11-16 2011-12-21 株式会社東芝 Module board and disk device
US7985677B2 (en) * 2004-11-30 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
JP4655663B2 (en) * 2005-02-21 2011-03-23 コニカミノルタオプト株式会社 Method for producing roll-shaped film having coating layer, roll-shaped optical film, polarizing plate, liquid crystal display device
US7579134B2 (en) * 2005-03-15 2009-08-25 E. I. Dupont De Nemours And Company Polyimide composite coverlays and methods and compositions relating thereto
JP4262699B2 (en) * 2005-06-22 2009-05-13 日本航空電子工業株式会社 Wiring board
JP2007010794A (en) 2005-06-28 2007-01-18 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element
JP2007084764A (en) 2005-09-26 2007-04-05 Jsr Corp Coating material and method for producing the same
JP4722669B2 (en) 2005-10-26 2011-07-13 株式会社日立ハイテクインスツルメンツ Plasma cleaning device
JP4438735B2 (en) 2005-10-31 2010-03-24 日本ピラー工業株式会社 Fluorine resin printed circuit board
JP2007129039A (en) 2005-11-02 2007-05-24 Nippon Pillar Packing Co Ltd Fluorine resin printed circuit board and manufacturing method thereof
US20070258722A1 (en) 2006-05-08 2007-11-08 Jin Yu Optical receiver
JP2007326956A (en) 2006-06-07 2007-12-20 Kaneka Corp Prepreg, laminate, and printed circuit board comprising the same
US7527915B2 (en) * 2006-07-19 2009-05-05 E. I. Du Pont De Nemours And Company Flame retardant multi-layer photoimagable coverlay compositions and methods relating thereto
CN101145451B (en) * 2006-08-29 2010-04-14 松下电器产业株式会社 Contact switch
US8004860B2 (en) 2006-08-29 2011-08-23 Texas Instruments Incorporated Radiofrequency and electromagnetic interference shielding
US20090008796A1 (en) 2006-12-29 2009-01-08 United Test And Assembly Center Ltd. Copper on organic solderability preservative (osp) interconnect
US20080176096A1 (en) 2007-01-22 2008-07-24 Yen-Hang Cheng Solderable layer and a method for manufacturing the same
GB0703172D0 (en) 2007-02-19 2007-03-28 Pa Knowledge Ltd Printed circuit boards
KR100882023B1 (en) 2007-05-25 2009-02-05 한국생산기술연구원 Patterning method using surface energy control
JP2009051876A (en) 2007-08-23 2009-03-12 Three M Innovative Properties Co Coating composition, and article using it
TWI377656B (en) 2007-09-19 2012-11-21 Method for manufacturing packaging substrate
US8071160B2 (en) 2007-10-29 2011-12-06 Integrated Surface Technologies Surface coating process
US8618420B2 (en) 2008-08-18 2013-12-31 Semblant Global Limited Apparatus with a wire bond and method of forming the same
WO2010020753A2 (en) 2008-08-18 2010-02-25 Semblant Limited Halo-hydrocarbon polymer coating
TW201041105A (en) 2009-05-13 2010-11-16 Advanced Semiconductor Eng Substrate having single patterned metal layer, and package applied with the same, and methods of manufacturing the substrate and package
US20110049703A1 (en) 2009-08-25 2011-03-03 Jun-Chung Hsu Flip-Chip Package Structure
GB201203927D0 (en) 2012-03-06 2012-04-18 Semblant Ltd Coated electrical assembly
US8995146B2 (en) 2010-02-23 2015-03-31 Semblant Limited Electrical assembly and method
GB2485419B (en) 2010-11-15 2015-02-25 Semblant Ltd Method for reducing creep corrosion

Also Published As

Publication number Publication date
KR20100014493A (en) 2010-02-10
JP2017005280A (en) 2017-01-05
JP2010519728A (en) 2010-06-03
US8492898B2 (en) 2013-07-23
CN101682998A (en) 2010-03-24
CA2678309C (en) 2016-10-04
EP2130417A2 (en) 2009-12-09
KR20150043557A (en) 2015-04-22
GB2453083B (en) 2009-08-05
KR20170089979A (en) 2017-08-04
JP2013141016A (en) 2013-07-18
GB0900635D0 (en) 2009-02-25
KR102096147B1 (en) 2020-04-01
TR201905093T4 (en) 2019-05-21
US20130334292A1 (en) 2013-12-19
CN101682998B (en) 2012-09-19
TWI462671B (en) 2014-11-21
PL2130417T3 (en) 2019-10-31
US9648720B2 (en) 2017-05-09
CA2678309A1 (en) 2008-08-28
DK2130417T3 (en) 2019-05-27
US20100025091A1 (en) 2010-02-04
GB2453083A (en) 2009-03-25
TW200843590A (en) 2008-11-01
RU2009130670A (en) 2011-04-10
JP5558112B2 (en) 2014-07-23
RU2563978C2 (en) 2015-09-27
WO2008102113A3 (en) 2008-12-11
WO2008102113A2 (en) 2008-08-28
AU2008217648A1 (en) 2008-08-28
GB0703172D0 (en) 2007-03-28
EP2130417B1 (en) 2019-03-27
AU2008217648B2 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
ES2728309T3 (en) Printed circuit boards
JP5813850B2 (en) Halohydrocarbon polymer coating
US20110186334A1 (en) Apparatus with a Wire Bond and Method of Forming the Same
CA2011888C (en) Fluxless soldering process
JP5435186B1 (en) Flux composition, liquid flux, flux cored solder and solder paste
JP2011252171A (en) Soldering flux with cationic surfactant
Wang et al. An Assessment of Immersion Silver Surface Finish for Lead-Free Electronics.
GB2462824A (en) Printed circuit board encapsulation
TW201510215A (en) Surface treatment method for substrate for semiconductor, production method for semiconductor package and water-soluble preflux used thereby
GB2462822A (en) Wire bonding
Zhan Surface insulation resistance degradation and electrochemical migration on printed circuit boards
Baudrand Soldering, Brazing, Die & Wire Bonding to Electroless Nickel: Conditions That Influence Reliability
Baudrand htroducti on
JP2527278C (en)