JP2005112981A - Low-permittivity resin composition, prepreg using the same, metal-clad laminate, and printed circuit board - Google Patents

Low-permittivity resin composition, prepreg using the same, metal-clad laminate, and printed circuit board Download PDF

Info

Publication number
JP2005112981A
JP2005112981A JP2003348161A JP2003348161A JP2005112981A JP 2005112981 A JP2005112981 A JP 2005112981A JP 2003348161 A JP2003348161 A JP 2003348161A JP 2003348161 A JP2003348161 A JP 2003348161A JP 2005112981 A JP2005112981 A JP 2005112981A
Authority
JP
Japan
Prior art keywords
resin composition
resin
same
prepreg
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003348161A
Other languages
Japanese (ja)
Inventor
Kenichi Ohashi
健一 大橋
Yasuhiro Murai
康裕 村井
Shuji Aitsu
周治 合津
Hiroshi Shimizu
浩 清水
Kenichi Tomioka
健一 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003348161A priority Critical patent/JP2005112981A/en
Publication of JP2005112981A publication Critical patent/JP2005112981A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition having such high heat resistance as to permit soldering with a lead-free solder and having excellent permittivity characteristics, to provide a prepreg using the same, to provide a metal-clad laminate, and to provide a printed circuit board. <P>SOLUTION: The resin composition comprises (a) a difunctional polyphenylene ether resin represented by structural formula (1) (wherein m and n are each an integer of 1 or greater; X is an optionally substituted divalent chain or cyclic hydrocarbon skeleton; R<SP>1</SP>is a hydrogen atom or a monovalent functional group; R<SP>2</SP>, R<SP>3</SP>, R<SP>8</SP>, and R<SP>9</SP>, which may be the same or different from each other, are 1 to 6C hydrocarbon groups; and R<SP>4</SP>, R<SP>5</SP>, R<SP>6</SP>, and R<SP>7</SP>, which may be the same as or different from each other, are hydrogen atoms or 1 to 6C hydrocarbon groups), (b) a thermosetting resin, and (c) a curing agent for the thermosetting resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、樹脂組成物及びそれを用いたプリプレグ、金属張積層板、印刷配線板に関する。   The present invention relates to a resin composition, a prepreg using the resin composition, a metal-clad laminate, and a printed wiring board.

近年、パーソナルコンピュータや携帯電話等の情報端末電子機器は,大容量の情報を高速で処理することが要求され、ここで扱われる電気信号の高周波化が進んでいる。それに伴い、これらの電子機器に用いられる積層板は高周波へ対応する特性、すなわち低誘電率化・低誘電正接化が求められている。
また,環境問題に対する意識が高まる中で、はんだ材料に使用される鉛の自然環境への流出が問題となっており、その対策の一環として鉛フリーはんだの使用が開始されている。
これに伴い、はんだ処理温度が、従来と比較して約10〜15℃上昇することとなり、積層板材料にはさらなる高耐熱性が要求されてきている。
これらの要求の中で高周波対応を満たすため、積層板用途の低誘電率樹脂材料としてポリフェニレンエーテル(PPE)が用いられている。このPPEは熱可塑性樹脂であり、耐熱性を付与するため積層板用途においてはエポキシ樹脂等の熱硬化性樹脂およびその硬化剤と共に用いられる。しかし、一般にPPEは数平均分子量10000〜50000と比較的高分子量であるため、熱硬化性樹脂およびその硬化剤との相溶性が低い。そのため,相溶性を改善する手法として、高分子量のPPEと2官能フェノール性化合物をラジカル反応開始剤下で再分配反応させ、生成された低分子量のPPEを用いる方法(特開2001−261791号公報)や、同再分配反応で得られた低分子PPEのフェノール性水酸基にエポキシ樹脂を反応させ付加した変性エポキシ樹脂を用いる方法(特許第3265984号公報)等が提案されている。
In recent years, information terminal electronic devices such as personal computers and mobile phones are required to process large amounts of information at high speed, and the frequency of electrical signals handled here is increasing. Accordingly, laminates used in these electronic devices are required to have characteristics corresponding to high frequencies, that is, low dielectric constant and low dielectric loss tangent.
In addition, as the awareness of environmental issues increases, the leakage of lead used in solder materials to the natural environment has become a problem, and the use of lead-free solder has been started as part of the countermeasure.
Along with this, the soldering temperature is increased by about 10 to 15 ° C. as compared with the conventional one, and further higher heat resistance is required for the laminated plate material.
In order to satisfy the high frequency response among these requirements, polyphenylene ether (PPE) is used as a low dielectric constant resin material for laminates. This PPE is a thermoplastic resin, and is used together with a thermosetting resin such as an epoxy resin and its curing agent in a laminated board application in order to impart heat resistance. However, since PPE generally has a relatively high molecular weight of 10000 to 50000, its compatibility with the thermosetting resin and its curing agent is low. Therefore, as a method for improving the compatibility, a method in which a high molecular weight PPE and a bifunctional phenolic compound are redistributed under a radical reaction initiator and the generated low molecular weight PPE is used (Japanese Patent Laid-Open No. 2001-261791). And a method using a modified epoxy resin obtained by reacting an epoxy resin with a phenolic hydroxyl group of a low molecular weight PPE obtained by the redistribution reaction (Japanese Patent No. 3265984) has been proposed.

特開2001−261791号公報JP 2001-261791 A 特許第3265984号公報Japanese Patent No. 3265984

しかし、前者の方法を用いた場合、再分配反応で得られるPPEの分子量はばらつきが多く、生成物中には高分子量PPEや単官能PPEが比較的多く存在し2官能PPEを効率良く得られないため、この生成物を含む硬化物は架橋密度が低く、この樹脂組成物を用いた積層板は、従来の鉛含有はんだへの対応の指標となる低温はんだ耐熱性(260℃)は満足しても、鉛フリーはんだへの対応の指標となる高温はんだ耐熱性(288℃)についてはふくれ等が発生して満足しないという問題があった。また、後者の方法でも、前者の方法と同様に2官能低分子PPEを効率よく得られないため、高温はんだ耐熱性に劣るという問題を抱えていた。
本発明は、上記の従来技術の問題点を解消し、鉛フリーはんだに対応した高耐熱性および誘電特性に優れた樹脂組成物及びそれを用いたプリプレグ、金属張積層板、印刷配線板を提供するものである。
However, when the former method is used, the molecular weight of PPE obtained by the redistribution reaction varies widely, and the product has a relatively large amount of high molecular weight PPE and monofunctional PPE, so that bifunctional PPE can be obtained efficiently. Therefore, the cured product containing this product has a low crosslinking density, and the laminate using this resin composition satisfies the low-temperature solder heat resistance (260 ° C.), which is an index for dealing with conventional lead-containing solder. However, there is a problem that high temperature soldering heat resistance (288 ° C.), which is an index for dealing with lead-free solder, is not satisfied due to blistering. Also, the latter method has a problem that it is inferior in high-temperature solder heat resistance because it cannot efficiently obtain a bifunctional low-molecular PPE as in the former method.
The present invention solves the above-mentioned problems of the prior art and provides a resin composition excellent in high heat resistance and dielectric properties corresponding to lead-free solder, and a prepreg, a metal-clad laminate, and a printed wiring board using the same. To do.

本発明の請求項1に記載の発明は、(a)構造式(1)で示される2官能ポリフェニレンエーテル樹脂(構造式(1)中、mおよびnは、1以上の整数を示し,Xは、置換基を有していてもよい2価の鎖状または環状の炭化水素骨格、Rは水素原子または1価の官能基,R,R,R,Rは同一または異なっても良い炭素数1〜6の炭化水素、R,R,R,Rは、同一または異なっても良い水素原子または炭素数1〜6の炭化水素を示す)、(b)熱硬化性樹脂、(c)熱硬化性樹脂の硬化剤を含有してなる樹脂組成物である。 According to the first aspect of the present invention, (a) a bifunctional polyphenylene ether resin represented by structural formula (1) (in structural formula (1), m and n represent an integer of 1 or more, and X represents , A divalent chain-like or cyclic hydrocarbon skeleton which may have a substituent, R 1 is a hydrogen atom or a monovalent functional group, R 2 , R 3 , R 8 and R 9 are the same or different. Or a hydrocarbon having 1 to 6 carbon atoms, R 4 , R 5 , R 6 and R 7 may be the same or different hydrogen atoms or hydrocarbons having 1 to 6 carbon atoms), (b) thermosetting And (c) a resin composition comprising a thermosetting resin curing agent.

Figure 2005112981
請求項2に記載の発明は、構造式(1)で示される2官能ポリフェニレンエーテル樹脂のRが、水素原子またはグリシジル基であり,かつ、グリシジル基の場合、2官能ポリフェニレンエーテルに含有される加水分解性塩素の濃度が100〜600重量ppmである請求項1に記載の樹脂組成物である。
請求項3に記載の発明は、構造式(1)で示される2官能ポリフェニレンエーテル樹脂の数平均分子量が、800〜6000である請求項1または請求項2に記載の樹脂組成物である。
請求項4に記載の発明は、請求項1ないし請求項3のいずれかに記載の樹脂組成物をワニスとして基材に含浸・乾燥させて得られるプリプレグである。
請求項5に記載の発明は、請求項4に記載のプリプレグ、または、そのプリプレグを複数枚積層した積層体の片面または両面に金属箔を積層し加熱加圧して得られる金属張積層板である。
請求項6に記載の発明は、請求項5に記載の金属張積層板に回路加工を施して得られる印刷配線板である。
Figure 2005112981
In the invention according to claim 2, when R 1 of the bifunctional polyphenylene ether resin represented by the structural formula (1) is a hydrogen atom or a glycidyl group, and is a glycidyl group, the bifunctional polyphenylene ether is contained. The resin composition according to claim 1, wherein the concentration of hydrolyzable chlorine is 100 to 600 ppm by weight.
Invention of Claim 3 is a resin composition of Claim 1 or Claim 2 whose number average molecular weights of bifunctional polyphenylene ether resin shown by Structural formula (1) are 800-6000.
The invention described in claim 4 is a prepreg obtained by impregnating and drying a base material using the resin composition according to any one of claims 1 to 3 as a varnish.
The invention according to claim 5 is a metal-clad laminate obtained by laminating metal foil on one or both sides of the prepreg according to claim 4 or a laminate in which a plurality of the prepregs are laminated and heating and pressing. .
The invention described in claim 6 is a printed wiring board obtained by subjecting the metal-clad laminate according to claim 5 to circuit processing.

本発明の樹脂組成物、及びそれを用いたプリプレグ、それを使用して得られた金属張積層板、それを用いた印刷配線板は、優れた耐熱性および誘電特性を発揮する。すなわち、鉛フリーはんだへの対応の指標となる高温はんだ耐熱性(288℃)に優れ、ふくれ等が発生することの無い耐熱性を示す。また、その優れた耐熱性を有しつつ、高周波用途に適用できる優れた低誘電率、低誘電正接の誘電特性を有する。   The resin composition of the present invention, a prepreg using the same, a metal-clad laminate obtained using the same, and a printed wiring board using the same exhibit excellent heat resistance and dielectric properties. That is, it is excellent in high-temperature solder heat resistance (288 ° C.), which is an index for dealing with lead-free solder, and exhibits heat resistance without causing blistering. Further, it has excellent heat resistance, and has excellent low dielectric constant and low dielectric loss tangent dielectric characteristics applicable to high frequency applications.

以下、本発明を詳細に説明する。
本発明において使用される(a)構造式(1)で示される2官能ポリフェニレンエーテル樹脂(以下、2官能PPE)としては,その両末端に官能基を有することを除けば特に制限されない。2官能PPEの数平均分子量としては、800〜6000であることが好ましい。数平均分子量が800未満の場合、2官能PPEの1分子当りの官能基数が多くなり、これらの官能基は、一般に、誘電特性を悪化させるため、目的の誘電特性を得られないおそれがある。また、2官能PPEの数平均分子量が800未満の場合、これに起因して耐熱性が低下することがある。平均分子量が6000を超える場合、樹脂組成物中のその他の樹脂との相溶性が低下し、相溶性が低下することによりプリプレグの外観が悪化するので好ましくない。また、2官能PPEの1分子当りの官能基数が減るため硬化物の架橋密度が低くなり、耐熱性が悪化する等の問題を生じるおそれがある。
Hereinafter, the present invention will be described in detail.
The bifunctional polyphenylene ether resin (hereinafter referred to as bifunctional PPE) represented by the structural formula (1) used in the present invention is not particularly limited except that it has functional groups at both ends. The number average molecular weight of the bifunctional PPE is preferably 800 to 6000. When the number average molecular weight is less than 800, the number of functional groups per molecule of the bifunctional PPE increases, and these functional groups generally deteriorate the dielectric properties, and thus there is a possibility that the target dielectric properties cannot be obtained. Moreover, when the number average molecular weight of bifunctional PPE is less than 800, heat resistance may fall resulting from this. When the average molecular weight exceeds 6000, the compatibility with other resins in the resin composition is lowered, and the appearance of the prepreg is deteriorated due to the lowering of the compatibility. In addition, since the number of functional groups per molecule of bifunctional PPE is reduced, the crosslink density of the cured product is lowered, and there is a risk of problems such as deterioration in heat resistance.

2官能PPEの両末端の官能基がグリシジル基である場合、その製造の際に残留する加水分解性塩素の濃度が100〜600重量ppmであることが好ましい。加水分解性塩素の濃度が600重量ppmを超える場合、残留塩素の存在により耐熱性が低下する場合がある。また、加水分解性塩素の濃度を100重量ppm以下にするのは技術的・コスト的にみて非常に困難であり、同濃度が600重量ppm以下であれば耐熱性への影響は極めて小さくなり、同濃度が100〜600重量ppmであれば耐熱性・低コストを両立可能であり好ましい。   When the functional groups at both ends of the bifunctional PPE are glycidyl groups, the concentration of hydrolyzable chlorine remaining during the production is preferably 100 to 600 ppm by weight. When the concentration of hydrolyzable chlorine exceeds 600 ppm by weight, the heat resistance may decrease due to the presence of residual chlorine. In addition, it is very difficult in terms of technical and cost to make the concentration of hydrolyzable chlorine 100 ppm or less. If the concentration is 600 ppm by weight or less, the influence on heat resistance is extremely small. If the concentration is 100 to 600 ppm by weight, it is preferable because both heat resistance and low cost can be achieved.

本発明で用いる構造式(1)で示される2官能ポリフェニレンエーテル樹脂の置換基を有していてもよい2価の鎖状または環状の炭化水素骨格を示すXとして、例えば、ビスフェノールA、ビスフェノールF、ジフェニルメタン、ジフェニルエタン骨格等が例示される。
また、Rは水素原子または1価の官能基であり、官能基としては、グリシジル基、シアノ基等が挙げられ、水素原子またはグリシジル基が、反応性、耐熱性の理由で好ましい。
,R,R,Rは同一または異なっても良い炭素数1〜6の炭化水素であり、例えば、メチル基、エチル基、プロピル基等のアルキル基やフェニル基 が例示される。また、R,R,R,Rは、同一または異なっても良い水素原子または炭素数1〜6の炭化水素を示し、炭素数1〜6の炭化水素としては例えばメチル基、エチル基、プロピル基等のアルキル基やフェニル基が例示される。
これらの中で、好ましいのは、Xが、ビスフェノールA、ビスフェノールF骨格で、Rが水素原子またはグリシジル基であり、R-Rは、メチル基、エチル基、プロピル基である。
Examples of X representing a divalent chain or cyclic hydrocarbon skeleton which may have a substituent of the bifunctional polyphenylene ether resin represented by the structural formula (1) used in the present invention include, for example, bisphenol A and bisphenol F. , Diphenylmethane, diphenylethane skeleton and the like.
R 1 is a hydrogen atom or a monovalent functional group. Examples of the functional group include a glycidyl group and a cyano group, and a hydrogen atom or a glycidyl group is preferable for the reason of reactivity and heat resistance.
R 2 , R 3 , R 8 and R 9 are the same or different hydrocarbons having 1 to 6 carbon atoms, and examples thereof include alkyl groups such as methyl, ethyl and propyl groups, and phenyl groups. . R 4 , R 5 , R 6 and R 7 represent the same or different hydrogen atoms or hydrocarbons having 1 to 6 carbon atoms, and examples of the hydrocarbon having 1 to 6 carbon atoms include methyl group, ethyl And alkyl groups such as a propyl group and a phenyl group.
Among these, X is preferably a bisphenol A or bisphenol F skeleton, R 1 is a hydrogen atom or a glycidyl group, and R 2 -R 9 is a methyl group, an ethyl group, or a propyl group.

2官能PPEの配合量は、特に制限されないが、樹脂組成物中の有機成分の固形分総量100重量部に対して10〜60重量部が好ましい。配合量が、10重量部未満では目的の誘電特性を十分に得られないことがあり、また60重量部を超える場合、樹脂組成物中の熱硬化性樹脂の割合が相対的に減るため硬化物の架橋密度が低くなり耐熱性が悪化することがある。   Although the compounding quantity of bifunctional PPE is not restrict | limited in particular, 10-60 weight part is preferable with respect to 100 weight part of solid content total amount of the organic component in a resin composition. If the blending amount is less than 10 parts by weight, the desired dielectric properties may not be sufficiently obtained. If the blending amount exceeds 60 parts by weight, the ratio of the thermosetting resin in the resin composition is relatively reduced, so that the cured product is obtained. The crosslink density of the resin may be lowered, and the heat resistance may deteriorate.

本発明において使用される(b)熱硬化性樹脂としては、特に制限されないが、エポキシ樹脂、ポリイミド樹脂、トリアジン樹脂、メラミン樹脂、フェノール樹脂、シアネート類化合物等が挙げられ,これらを単独で、または、2種以上使用することができる。この中で、例えば、エポキシ樹脂を例に挙げると、ビスフェノールA型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールビフェニレンノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェノールのジグリシジリエーテル化物、ナフタレンジオールのジグリシジリエーテル化物、フェノール類のジグリシジリエーテル化物、アルコール類のジグリシジリエーテル化物、および、これらのアルキル置換体、水素添加物等が用いられ、これらから単独で、または、2種以上を使用することができる。   The (b) thermosetting resin used in the present invention is not particularly limited, and examples thereof include an epoxy resin, a polyimide resin, a triazine resin, a melamine resin, a phenol resin, a cyanate compound, and the like alone or Two or more types can be used. Among these, for example, when an epoxy resin is taken as an example, bisphenol A type epoxy resin, bisphenol AD type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin , Phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, phenol biphenylene novolac type epoxy resin, bisphenol A novolac type epoxy resin, diglycidyl etherified product of biphenol, diglycidyl etherified product of naphthalenediol, phenol Diglycidyl etherified products, alcohol diglycidyl etherified products, alkyl substitution products thereof, hydrogenated products, etc. are used alone or from these two or more. It is possible to use.

本発明において使用される(c)硬化剤としては、特に制限されないが、熱硬化性樹脂としてエポキシ樹脂を使用する場合の硬化剤を例に挙げると、アミン化合物、多官能性フェノール化合物、酸無水物化合物等が挙げられ、これらから単独または2種以上選択される。硬化剤の配合量は、特に制限されないが、熱硬化性樹脂の主材の官能基に対して0.01〜5.0当量が好ましい。いずれの熱硬化性樹脂を用いる場合でも、硬化促進剤を使用しても良い。この場合の硬化促進剤としては、特に制限されないが、例えばイミダゾール系化合物、有機リン系化合物、第2級アミン、第3級アミン、第4級アンモニウム塩等が用いられ、これらから単独または2種以上選択される。硬化促進剤の配合量についても、特に制限されないが、樹脂組成物中の有機成分の固形分総量100重量部に対して0.01〜10重量部が好ましい。
また、本発明において使用される樹脂組成物は、必要に応じて触媒、可とう剤、難燃剤、充填材等を適宜加えても良い。
The (c) curing agent used in the present invention is not particularly limited, but examples of the curing agent in the case of using an epoxy resin as a thermosetting resin include amine compounds, polyfunctional phenol compounds, and acid anhydrides. Compound, etc. are mentioned, and these are selected singly or in combination of two or more. Although the compounding quantity of a hardening | curing agent is not restrict | limited in particular, 0.01-5.0 equivalent is preferable with respect to the functional group of the main material of a thermosetting resin. Even when any thermosetting resin is used, a curing accelerator may be used. The curing accelerator in this case is not particularly limited. For example, imidazole compounds, organophosphorus compounds, secondary amines, tertiary amines, quaternary ammonium salts, and the like are used. These are selected. The blending amount of the curing accelerator is not particularly limited, but is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the total solid content of the organic component in the resin composition.
In addition, the resin composition used in the present invention may contain a catalyst, a flexible agent, a flame retardant, a filler, and the like as needed.

本発明の樹脂組成物のワニスは、上記の配合材料に必要に応じて有機溶剤を加え、混合することにより得られる。本発明に用いられる有機溶剤としては、特に制限されないが、メタノール、エタノール、イソプロピルアルコール、n-ブタノール等のアルコール系溶剤、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレン等の芳香族炭化水素系溶剤、ジメチルスルホキシド等の硫黄化合物系溶剤、N-メチルピロリドン、N-メチルホルムアルデヒド、N,N-ジメチルホルムアミド等のアミド系溶剤、メチルセロソルブ、エチルセロソルブ、セロソルブアセテート等のセロソルブ系溶剤等が使用可能であり、これらから単独または2種以上選択される。   The varnish of the resin composition of the present invention can be obtained by adding an organic solvent to the above compounded material as necessary and mixing them. The organic solvent used in the present invention is not particularly limited, but alcohol solvents such as methanol, ethanol, isopropyl alcohol and n-butanol, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone, and aromatic carbonization such as toluene and xylene. Hydrogen solvents, sulfur compound solvents such as dimethyl sulfoxide, amide solvents such as N-methylpyrrolidone, N-methylformaldehyde, N, N-dimethylformamide, cellosolv solvents such as methyl cellosolve, ethyl cellosolve, cellosolve acetate, etc. They can be used and are selected from these alone or in combination.

本発明の樹脂組成物のワニスを基材に含浸させ、さらに乾燥させてプリプレグを製造する。本発明に用いられる基材としては、特に制限されないが、通常織布や不織布等が用いられる。基材の材質としては、特に制限されないが、ガラス、アルミナ、シリカアルミナガラス、シリカガラス、炭化ケイ素、ジルコニア等の無機繊維や、アラミド、ポリエーテルイミド、カーボン、セルロース等の有機繊維等が用いられる。   The base material is impregnated with the varnish of the resin composition of the present invention, and further dried to produce a prepreg. Although it does not restrict | limit especially as a base material used for this invention, Usually, a woven fabric, a nonwoven fabric, etc. are used. The material of the substrate is not particularly limited, but inorganic fibers such as glass, alumina, silica alumina glass, silica glass, silicon carbide, and zirconia, and organic fibers such as aramid, polyetherimide, carbon, and cellulose are used. .

本発明の金属張積層板は、本発明のプリプレグ、または、それを複数枚積層した積層体の片面または両面に金属箔を重ね加熱加圧成形することにより得られる。本発明に用いられる金属箔は、特に制限されないが、銅箔やアルミニウム箔などが用いられる。加熱加圧成形する際の条件は、2官能ポリフェニレンエーテル樹脂および熱硬化性樹脂と硬化剤との反応性に依存するため、用いられる樹脂材料により選択され、通常130〜250℃、好ましくは150〜200℃の範囲の温度、通常0.5〜20MPa、好ましくは1〜8MPaの範囲の圧力、通常10〜200分、好ましくは30〜120分の範囲の加熱加圧時間が選ばれる。   The metal-clad laminate of the present invention can be obtained by stacking a metal foil on one side or both sides of the prepreg of the present invention or a laminate in which a plurality of the prepregs are laminated and press-molding them. The metal foil used in the present invention is not particularly limited, but copper foil, aluminum foil, and the like are used. The conditions for heat and pressure molding depend on the reactivity of the bifunctional polyphenylene ether resin and thermosetting resin with the curing agent, and therefore are selected according to the resin material used, and are usually 130 to 250 ° C., preferably 150 to A temperature in the range of 200 ° C., usually 0.5 to 20 MPa, preferably a pressure in the range of 1 to 8 MPa, usually a heating and pressing time in the range of 10 to 200 minutes, preferably 30 to 120 minutes is selected.

本発明の印刷配線板は、本発明の金属張積層板の金属箔表面もしくは金属箔エッチング面に対して回路加工を施すことにより得られる。   The printed wiring board of the present invention can be obtained by subjecting a metal foil surface or a metal foil etched surface of the metal-clad laminate of the present invention to circuit processing.

以下に、本発明を実施例により具体的にに説明するが、本発明はこれに限定されるものではない。
(実施例1〜5、比較例1、2及び参考例1)
セパラブルフラスコに、表1および表2に示した配合量の材料と溶剤としてトルエンを配合し、100℃で60分間撹拌し樹脂組成物のワニスを得た。なお、トルエンはワニスの固形分が50重量%となるよう配合した。作製したワニスを厚さ0.1mmのガラスクロス(2116:旭シュエーベル株式会社製、商品名)に含浸後、160℃で5分間加熱、乾燥して樹脂分50重量%のプリプレグを得た。このプリプレグを4枚重ね、その両側に厚さ18μmの銅箔(GTS−18:古河サーキットフォイル株式会社製、商品名)を配置し、200℃、3MPa、60分間、真空下で加温加圧成形することにより銅張積層板を作製した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
(Examples 1 to 5, Comparative Examples 1 and 2 and Reference Example 1)
Toluene was blended into the separable flask as a material and solvent in the blending amounts shown in Tables 1 and 2, and stirred at 100 ° C. for 60 minutes to obtain a resin composition varnish. Toluene was blended so that the solid content of the varnish was 50% by weight. The prepared varnish was impregnated into a 0.1 mm thick glass cloth (2116: trade name, manufactured by Asahi Sebel Co., Ltd.), then heated and dried at 160 ° C. for 5 minutes to obtain a prepreg having a resin content of 50% by weight. Four prepregs are stacked, and 18 μm thick copper foil (GTS-18: manufactured by Furukawa Circuit Foil Co., Ltd., trade name) is placed on both sides of the prepreg and heated and pressurized under vacuum at 200 ° C., 3 MPa for 60 minutes. A copper clad laminate was produced by molding.

Figure 2005112981
Figure 2005112981

Figure 2005112981
Figure 2005112981

2官能PPE(1):旭化成株式会社製(末端水酸基,数平均分子量Mn984,水酸基当量436)
2官能PPE(2):旭化成株式会社製(末端グリシジル基,数平均分子量Mn1040,エポキシ当量515,残留塩素濃度450重量ppm)
2官能PPE(3):ジャパンエポキシレジン株式会社製(末端グリシジル基,数平均分子量Mn5419,エポキシ当量1726,残留塩素濃度320重量ppm)
2官能PPE(4):旭化成株式会社製(末端グリシジル基,数平均分子量Mn960,エポキシ当量498,残留塩素濃度3542重量ppm)
単官能PPE:SA120,GE Plastics社製,商品名(末端水酸基,数平均分子量Mn2350)
熱硬化性樹脂:ESCN−195,住友化学工業株式会社製,商品名(クレゾールノボラック型エポキシ樹脂,エポキシ当量:195)
硬化剤:HP−850N,日立化成工業株式会社製,商品名(フェノールノボラック樹脂,水酸基当量:108)
硬化促進剤:キュアゾール2E4MZ,四国化成工業株式会社製商品名(2-エチル-4-メチルイミダゾール)
Bifunctional PPE (1): Asahi Kasei Corporation (terminal hydroxyl group, number average molecular weight Mn984, hydroxyl group equivalent 436)
Bifunctional PPE (2): Asahi Kasei Corporation (terminal glycidyl group, number average molecular weight Mn1040, epoxy equivalent 515, residual chlorine concentration 450 ppm by weight)
Bifunctional PPE (3): manufactured by Japan Epoxy Resin Co., Ltd. (terminal glycidyl group, number average molecular weight Mn5419, epoxy equivalent 1726, residual chlorine concentration 320 ppm by weight)
Bifunctional PPE (4): Asahi Kasei Corporation (terminal glycidyl group, number average molecular weight Mn960, epoxy equivalent 498, residual chlorine concentration 3542 weight ppm)
Monofunctional PPE: SA120, manufactured by GE Plastics, trade name (terminal hydroxyl group, number average molecular weight Mn2350)
Thermosetting resin: ESCN-195, manufactured by Sumitomo Chemical Co., Ltd., trade name (cresol novolac type epoxy resin, epoxy equivalent: 195)
Curing agent: HP-850N, manufactured by Hitachi Chemical Co., Ltd., trade name (phenol novolac resin, hydroxyl group equivalent: 108)
Curing accelerator: Curesol 2E4MZ, trade name (2-ethyl-4-methylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.

(はんだ耐熱性の評価)
はんだ耐熱性は、作製した銅張積層板の銅箔をエッチングにより除去し50mm×50mmの大きさに切断した試験片を、プレッシャークッカーテスター中(121℃、0.22MPa)に2時間保持した後、260℃または288℃のはんだ中に20秒間浸漬して、外観を目視により評価した。その結果を表1、2中に示した。表中のOKとは、ミーズリング(ガラス繊維の織り目の重なり部分の熱ひずみに伴う樹脂の剥離)および、ふくれの発生がないことを意味し、NGは、ミーズリングまたはふくれが発生したことを示す。
(Evaluation of solder heat resistance)
Solder heat resistance is obtained by holding a test piece obtained by removing the copper foil of the produced copper-clad laminate by etching and cutting it to a size of 50 mm × 50 mm in a pressure cooker tester (121 ° C., 0.22 MPa) for 2 hours. The film was immersed in a solder at 260 ° C. or 288 ° C. for 20 seconds, and the appearance was visually evaluated. The results are shown in Tables 1 and 2. “OK” in the table means that there is no mesling (resin peeling due to thermal strain at the overlapping portion of the glass fiber weave) and no blistering, and NG means that mesling or blistering has occurred. Show.

(誘電特性の評価)
比誘電率および誘電正接は、トリプレート構造直線線路共振器法により測定した。試験片は、50mm×200mmの大きさに切断した銅張積層板を2枚用意し、一方の銅張積層板の銅箔を片面エッチングし、もう一方の銅張積層板の片面にはエッチングにより幅0.8mmのストリップライン(ライン長200mm)を形成した。この2枚の銅張積層板のエッチング面を合わせてストリップ線路とし、ベクトル型ネットワークアナライザ(Hewlett Packard社製、HP-8722C)により共振周波数と減衰定数を25℃の下で測定し、これらから比誘電率および誘電正接を算出した。
(Evaluation of dielectric properties)
The relative dielectric constant and dielectric loss tangent were measured by the triplate structure linear line resonator method. For the test piece, two copper-clad laminates cut to a size of 50 mm × 200 mm were prepared, the copper foil of one copper-clad laminate was etched on one side, and one side of the other copper-clad laminate was etched. A strip line (line length 200 mm) having a width of 0.8 mm was formed. The etched surfaces of the two copper-clad laminates are combined into a strip line, and the resonance frequency and attenuation constant are measured at 25 ° C. with a vector network analyzer (Hewlett Packard, HP-8722C). Dielectric constant and dielectric loss tangent were calculated.

表1から明らかなように、本発明の実施例1〜5は、2官能PPEを用いることにより、比較例に比べてはんだ耐熱性および誘電特性を両立可能であることが確認された。これに対し、表2に示した、比較例1は、低誘電率材料であるPPEを含まないため実施例と比較して比誘電率および誘電正接に劣る。一方、比較例2は、単官能PPEを含むため実施例と比較して288℃でのはんだ耐熱性に劣る。参考例1は、2官能PPEを用いているが、塩素濃度が高いため実施例と比較してはんだ耐熱性にやや劣る。   As is apparent from Table 1, it was confirmed that Examples 1 to 5 of the present invention can achieve both solder heat resistance and dielectric properties by using bifunctional PPE as compared with the comparative example. On the other hand, Comparative Example 1 shown in Table 2 is inferior in relative dielectric constant and dielectric loss tangent as compared with Examples because it does not contain PPE which is a low dielectric constant material. On the other hand, since Comparative Example 2 contains monofunctional PPE, the solder heat resistance at 288 ° C. is inferior to that of the Example. Although the reference example 1 uses bifunctional PPE, since the chlorine concentration is high, it is slightly inferior in solder heat resistance as compared with the examples.

Claims (6)

(a)構造式(1)で示される2官能ポリフェニレンエーテル樹脂(構造式(1)中、mおよびnは、1以上の整数を示し,Xは、置換基を有していてもよい2価の鎖状または環状の炭化水素骨格、Rは水素原子または1価の官能基,R,R,R,Rは同一または異なっても良い炭素数1〜6の炭化水素、R,R,R,Rは同一または異なっても良い水素原子または炭素数1〜6の炭化水素を示す)、(b)熱硬化性樹脂、(c)熱硬化性樹脂の硬化剤を含有してなる樹脂組成物。
Figure 2005112981
(a) Bifunctional polyphenylene ether resin represented by structural formula (1) (in structural formula (1), m and n represent an integer of 1 or more, and X represents a divalent optionally having substituent. R 1 is a hydrogen atom or a monovalent functional group, R 2 , R 3 , R 8 and R 9 are the same or different hydrocarbons having 1 to 6 carbon atoms, R 1 4 , R 5 , R 6 and R 7 are the same or different hydrogen atoms or hydrocarbons having 1 to 6 carbon atoms), (b) a thermosetting resin, and (c) a curing agent for the thermosetting resin. A resin composition comprising:
Figure 2005112981
構造式(1)で示される2官能ポリフェニレンエーテル樹脂のRが、水素原子またはグリシジル基であり,かつ、グリシジル基の場合、2官能ポリフェニレンエーテルに含有される加水分解性塩素の濃度が100〜600重量ppmである請求項1に記載の樹脂組成物。 When R 1 of the bifunctional polyphenylene ether resin represented by the structural formula (1) is a hydrogen atom or a glycidyl group, and the glycidyl group, the concentration of hydrolyzable chlorine contained in the bifunctional polyphenylene ether is 100 to The resin composition according to claim 1, which is 600 ppm by weight. 構造式(1)で示される2官能ポリフェニレンエーテル樹脂の数平均分子量が、800〜6000である請求項1または請求項2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the bifunctional polyphenylene ether resin represented by the structural formula (1) has a number average molecular weight of 800 to 6000. 請求項1ないし請求項3のいずれかに記載の樹脂組成物をワニスとして基材に含浸・乾燥させて得られるプリプレグ。 A prepreg obtained by impregnating and drying a substrate with the resin composition according to claim 1 as a varnish. 請求項4に記載のプリプレグ、または、そのプリプレグを複数枚積層した積層体の片面または両面に金属箔を積層し加熱加圧して得られる金属張積層板。 A metal-clad laminate obtained by laminating a metal foil on one side or both sides of a prepreg according to claim 4 or a laminate obtained by laminating a plurality of the prepregs, and heating and pressing the laminate. 請求項5に記載の金属張積層板に回路加工を施して得られる印刷配線板。 A printed wiring board obtained by subjecting the metal-clad laminate according to claim 5 to circuit processing.
JP2003348161A 2003-10-07 2003-10-07 Low-permittivity resin composition, prepreg using the same, metal-clad laminate, and printed circuit board Pending JP2005112981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003348161A JP2005112981A (en) 2003-10-07 2003-10-07 Low-permittivity resin composition, prepreg using the same, metal-clad laminate, and printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003348161A JP2005112981A (en) 2003-10-07 2003-10-07 Low-permittivity resin composition, prepreg using the same, metal-clad laminate, and printed circuit board

Publications (1)

Publication Number Publication Date
JP2005112981A true JP2005112981A (en) 2005-04-28

Family

ID=34540438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003348161A Pending JP2005112981A (en) 2003-10-07 2003-10-07 Low-permittivity resin composition, prepreg using the same, metal-clad laminate, and printed circuit board

Country Status (1)

Country Link
JP (1) JP2005112981A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2090612A1 (en) 2008-02-12 2009-08-19 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and their uses
CN101550221A (en) * 2008-04-01 2009-10-07 三菱瓦斯化学株式会社 Resin composition, prepreg and metal-foil-clad laminate
JP2010275342A (en) * 2009-05-26 2010-12-09 Panasonic Electric Works Co Ltd Polyphenylene ether resin composition, prepreg, metal-clad laminate and printed-wiring board
JP2011046816A (en) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd Resin composition, resin varnish, prepreg, metal-clad laminate and printed wiring board
WO2013047041A1 (en) 2011-09-30 2013-04-04 三菱瓦斯化学株式会社 Resin composition, prepreg, and metal foil-clad laminate
US8492898B2 (en) 2007-02-19 2013-07-23 Semblant Global Limited Printed circuit boards
JP2014077139A (en) * 2013-11-29 2014-05-01 Panasonic Corp Resin composition, resin varnish, prepreg, metal-clad laminated board, and printed wiring board
US8995146B2 (en) 2010-02-23 2015-03-31 Semblant Limited Electrical assembly and method
JPWO2013105650A1 (en) * 2012-01-11 2015-05-11 三井金属鉱業株式会社 Copper foil with adhesive layer, copper-clad laminate and printed wiring board
US9055700B2 (en) 2008-08-18 2015-06-09 Semblant Limited Apparatus with a multi-layer coating and method of forming the same
JPWO2019021862A1 (en) * 2017-07-27 2020-05-28 三井金属鉱業株式会社 Resin composition, insulating layer for wiring board and laminate
US11786930B2 (en) 2016-12-13 2023-10-17 Hzo, Inc. Protective coating

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8492898B2 (en) 2007-02-19 2013-07-23 Semblant Global Limited Printed circuit boards
US9648720B2 (en) 2007-02-19 2017-05-09 Semblant Global Limited Method for manufacturing printed circuit boards
EP2090612A1 (en) 2008-02-12 2009-08-19 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and their uses
CN101550221A (en) * 2008-04-01 2009-10-07 三菱瓦斯化学株式会社 Resin composition, prepreg and metal-foil-clad laminate
EP2113534A1 (en) 2008-04-01 2009-11-04 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and metal-foil-clad laminate
CN101550221B (en) * 2008-04-01 2012-09-19 三菱瓦斯化学株式会社 Resin composition, prepreg and metal-foil-clad laminate
US9743515B2 (en) 2008-04-01 2017-08-22 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and metal-foil-clad laminate
US9055700B2 (en) 2008-08-18 2015-06-09 Semblant Limited Apparatus with a multi-layer coating and method of forming the same
JP2010275342A (en) * 2009-05-26 2010-12-09 Panasonic Electric Works Co Ltd Polyphenylene ether resin composition, prepreg, metal-clad laminate and printed-wiring board
JP2011046816A (en) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd Resin composition, resin varnish, prepreg, metal-clad laminate and printed wiring board
US8995146B2 (en) 2010-02-23 2015-03-31 Semblant Limited Electrical assembly and method
WO2013047041A1 (en) 2011-09-30 2013-04-04 三菱瓦斯化学株式会社 Resin composition, prepreg, and metal foil-clad laminate
US10028377B2 (en) * 2011-09-30 2018-07-17 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and metal foil-clad laminate
JPWO2013105650A1 (en) * 2012-01-11 2015-05-11 三井金属鉱業株式会社 Copper foil with adhesive layer, copper-clad laminate and printed wiring board
JP2014077139A (en) * 2013-11-29 2014-05-01 Panasonic Corp Resin composition, resin varnish, prepreg, metal-clad laminated board, and printed wiring board
US11786930B2 (en) 2016-12-13 2023-10-17 Hzo, Inc. Protective coating
JPWO2019021862A1 (en) * 2017-07-27 2020-05-28 三井金属鉱業株式会社 Resin composition, insulating layer for wiring board and laminate
JP7219216B2 (en) 2017-07-27 2023-02-07 三井金属鉱業株式会社 Resin composition, insulating layer for wiring board, and laminate

Similar Documents

Publication Publication Date Title
TWI537341B (en) Thermosetting resin compositions and articles
CN109957203B (en) Resin composition, prepreg, and copper foil substrate
CN102051022A (en) Epoxy resin composition as well as prepreg and laminated board made of same
KR102168903B1 (en) Epoxy resin composition and cured product thereof
TWI666248B (en) Maleimide resin composition, prepreg, laminate and printed circuit board
JP2007211182A (en) Resin composition, pre-preg, laminated board and metal-plated lamianted board and printed wiring board
JP2005112981A (en) Low-permittivity resin composition, prepreg using the same, metal-clad laminate, and printed circuit board
KR102230098B1 (en) Epoxy resin composition and cured product thereof
JP4672930B2 (en) Modified polyimide resin composition and prepreg and laminate using the same
JP2015166431A (en) Thermosetting resin composition, prepreg and laminated plate
JP6575151B2 (en) Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same
JP2004315705A (en) Modified polyimide resin composition and prepreg and laminate using the same
CN109661422B (en) Resin composition for semiconductor encapsulation, prepreg using same, and metal clad laminate
JPH09328601A (en) Thermosetting resin composition, prepreg using the same and laminated sheet
US7087664B2 (en) Resin film and multilayer printed wiring board using thereof
JP4676739B2 (en) Resin composition and prepreg and laminate using the same
JP2004315725A (en) Preparation process of prepreg, metal-clad laminated plate, and printed circuit board
JP2005187800A (en) Resin composition, and prepreg, metal-clad laminated sheet, and printed-wiring board using the composition
JPH1160692A (en) Resin composition for printed wiring board and printed wiring board using the same
EP3241868A1 (en) Halogen-free thermosetting resin composition, and prepreg and laminate for printed circuits using same
JPH1045876A (en) Thermosetting resin composition and prepreg and laminate using the same
JP2006182991A (en) Resin composition for printed wiring board, resin varnish, prepreg and laminated plate using it
JP5432791B2 (en) Epoxy resin composition, prepreg, resin sheet with metal foil, resin sheet, laminated board, multilayer board
JP2005154739A (en) Resin composition, and prepreg and laminate using the composition
JP2003266596A (en) Copper-clad laminated sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090213

A02 Decision of refusal

Effective date: 20090702

Free format text: JAPANESE INTERMEDIATE CODE: A02