JPWO2019021862A1 - Resin composition, insulating layer for wiring board and laminate - Google Patents

Resin composition, insulating layer for wiring board and laminate Download PDF

Info

Publication number
JPWO2019021862A1
JPWO2019021862A1 JP2019532512A JP2019532512A JPWO2019021862A1 JP WO2019021862 A1 JPWO2019021862 A1 JP WO2019021862A1 JP 2019532512 A JP2019532512 A JP 2019532512A JP 2019532512 A JP2019532512 A JP 2019532512A JP WO2019021862 A1 JPWO2019021862 A1 JP WO2019021862A1
Authority
JP
Japan
Prior art keywords
resin
compound
resin composition
compounds
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019532512A
Other languages
Japanese (ja)
Other versions
JP7219216B2 (en
Inventor
和弘 大澤
和弘 大澤
敏文 松島
敏文 松島
孝宏 本郷
孝宏 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2019021862A1 publication Critical patent/JPWO2019021862A1/en
Application granted granted Critical
Publication of JP7219216B2 publication Critical patent/JP7219216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

難燃性、回路埋め込み性、ハンドリング性(柔軟性)等の諸特性に優れながら、有意に低い誘電正接をもたらすことが可能な、樹脂組成物が提供される。この樹脂組成物は、120℃における粘度が8000Pa・s以上である所定の高粘度樹脂(A)と、120℃における粘度が8000Pa・s未満である所定の低粘度樹脂(B)と、下記式:【化1】(式中、nは3又は4である)で表されるリン系化合物(C)と、有機充填剤又は無機充填剤である充填剤(D)とを含む。Provided is a resin composition which is excellent in various properties such as flame retardancy, circuit embedding property, handling property (flexibility), and can bring about a significantly low dielectric loss tangent. This resin composition comprises a predetermined high-viscosity resin (A) having a viscosity at 120° C. of 8000 Pa·s or more, a predetermined low-viscosity resin (B) having a viscosity at 120° C. of less than 8000 Pa·s, and the following formula: A phosphorous compound (C) represented by the following formula (wherein n is 3 or 4) and a filler (D) which is an organic filler or an inorganic filler.

Description

本発明は、樹脂組成物、配線板用絶縁層及び積層体に関するものである。   The present invention relates to a resin composition, a wiring board insulating layer, and a laminate.

プリント配線板は携帯用電子機器等の電子機器に広く用いられている。特に、近年の携帯用電子機器等の高機能化に伴って信号の高周波化が進んでおり、こうした高周波用途に適したプリント配線板が求められるようになっている。この高周波用プリント配線板には、高周波信号の質を劣化させずに伝送可能とするために、伝送損失の低いものが望まれる。プリント配線板は配線パターンに加工された銅箔と絶縁樹脂基材とを備えたものであるが、伝送損失は、主として銅箔に起因する導体損失と、絶縁樹脂基材に起因する誘電体損失とからなる。したがって、高周波用途に適用する樹脂層付銅箔においては、樹脂層に起因する誘電体損失を抑制することが望ましい。このためには、樹脂層には優れた誘電特性、特に低い誘電正接が求められる。   Printed wiring boards are widely used in electronic devices such as portable electronic devices. In particular, as the functions of portable electronic devices and the like have become higher in recent years, the frequency of signals has been increasing, and printed wiring boards suitable for such high frequency applications have been demanded. This high-frequency printed wiring board is desired to have a low transmission loss in order to enable transmission without deteriorating the quality of the high-frequency signal. A printed wiring board is provided with a copper foil processed into a wiring pattern and an insulating resin base material, and transmission loss is mainly a conductor loss caused by the copper foil and a dielectric loss caused by the insulating resin base material. Consists of. Therefore, in the copper foil with a resin layer applied to high frequency applications, it is desirable to suppress dielectric loss due to the resin layer. For this purpose, the resin layer is required to have excellent dielectric properties, particularly low dielectric loss tangent.

プリント配線板用材料には、難燃性、耐熱性及び銅箔等とのピール強度等の特性も求められており、こうした要求を満たすべく様々な樹脂組成物が提案されている。特に、誘電正接が低い樹脂は難燃性に劣るものが多い傾向があることから、樹脂組成物には難燃剤が添加されることが望ましい。かかる難燃剤としてハロゲン系化合物が知られているが、焼却時に発生するダイオキシン等の有害物質のため環境上好ましくない。また、フッ素を除くハロゲン(例えば臭素等)の化合物は誘電特性が悪い。   Materials for printed wiring boards are also required to have properties such as flame retardancy, heat resistance, and peel strength with copper foil, etc., and various resin compositions have been proposed to meet these requirements. In particular, since resins having a low dielectric loss tangent tend to have poor flame retardancy, it is desirable to add a flame retardant to the resin composition. Halogen compounds are known as such flame retardants, but they are environmentally unfavorable because they are harmful substances such as dioxins generated during incineration. Further, compounds of halogens (for example, bromine, etc.) other than fluorine have poor dielectric properties.

そこで、ハロゲンフリーの難燃剤であるシクロホスファゼン化合物を含有させた樹脂組成物が提案されている。例えば、特許文献1(国際公開第2015/133292号)には、(A)数平均分子量が500〜5000であるポリフェニレンエーテル(PPE)、(B)ビニル基を含有するシクロホスファゼン化合物、(C)非ハロゲン系エポキシ樹脂、(D)シアン酸エステル化合物、及び(E)充填剤を含有する樹脂組成物が開示されており、この樹脂組成物によれば、難燃性、熱膨張係数、及び吸湿時の耐熱性に優れたプリント配線板を提供できるとされている。   Therefore, a resin composition containing a cyclophosphazene compound which is a halogen-free flame retardant has been proposed. For example, in Patent Document 1 (International Publication No. 2015/133292), (A) a polyphenylene ether (PPE) having a number average molecular weight of 500 to 5000, (B) a cyclophosphazene compound containing a vinyl group, (C). A resin composition containing a non-halogen epoxy resin, a (D) cyanate ester compound, and a (E) filler is disclosed. According to this resin composition, flame retardancy, thermal expansion coefficient, and moisture absorption are disclosed. It is said that it is possible to provide a printed wiring board having excellent heat resistance at the time.

一方、フレキシブルプリント配線板用のソルダーレジストとして好適な難燃性樹脂組成物として、シアノフェノキシ変性ホスファゼンを含有する樹脂組成物が知られている。例えば、特許文献2(特開2009−191252号公報)には、(A)カルボキシル基及びエチレン性不飽和基含有ウレタン樹脂、(B)フェノキシホスファゼン化合物、(C)光重合開始剤、(D)エチレン性不飽和基含有化合物、(E)難燃成分、(F)熱硬化成分、及び(G)熱硬化助剤を含む、難燃性樹脂組成物が開示されている。この文献において、フェノキシホスファゼン化合物はソルダーレジスト用のウレタン樹脂との相溶性に優れる難燃剤として位置付けられているにすぎず、誘電正接に関する検討は一切なされていない。   On the other hand, as a flame-retardant resin composition suitable as a solder resist for a flexible printed wiring board, a resin composition containing cyanophenoxy-modified phosphazene is known. For example, in Patent Document 2 (JP 2009-191252 A), (A) a carboxyl group- and ethylenically unsaturated group-containing urethane resin, (B) a phenoxyphosphazene compound, (C) a photopolymerization initiator, (D). A flame-retardant resin composition containing an ethylenically unsaturated group-containing compound, (E) flame-retardant component, (F) thermosetting component, and (G) thermosetting auxiliary agent is disclosed. In this document, the phenoxyphosphazene compound is merely positioned as a flame retardant having excellent compatibility with the urethane resin for the solder resist, and no study on dielectric loss tangent has been made.

国際公開第2015/133292号International Publication No. 2015/133292 特開2009−191252号公報JP, 2009-191252, A

プリント配線板製造において回路上への絶縁層の形成は、樹脂付銅箔を回路が形成された基板に積層して、絶縁層としての樹脂層で回路を埋め込むことにより行われる。しかしながら、この作業は、樹脂が半硬化状態(B−stage)で行われるため、樹脂の流動性(レジンフロー)が高すぎると、樹脂の流出により必要な絶縁層厚を確保できなくなる反面、樹脂の流動性(レジンフロー)が低すぎると、絶縁層に望ましくないボイド(空隙)が生じたまま硬化することとなる。すなわち、レジンフローが高すぎても低すぎても回路埋め込み性が低下するため、こうした特性の変動を踏まえた極めて慎重な組成設計が望まれる。一方、硬化後(C−stage)の樹脂組成物においては、低い誘電正接、優れた耐熱性、難燃性、ハンドリング性(柔軟性)等の諸性能を具備していることが望まれる。しかしながら、回路埋め込み性やハンドリング性(柔軟性)の向上を重視した組成設計を試みると、硬化後の樹脂組成物の諸特性が悪くなりやすい、特に難燃性と誘電特性(低誘電正接)の両立が難しくなる。すなわち、硬化状態(C−stage)の樹脂組成物の諸特性(誘電特性及び難燃性など)を改善しながら、半硬化状態(B−stage)における回路埋め込み性にも優れた樹脂組成物が望まれる。   In the production of a printed wiring board, an insulating layer is formed on a circuit by laminating a resin-coated copper foil on a substrate on which the circuit is formed and embedding the circuit with a resin layer as an insulating layer. However, since this work is performed in a semi-cured state (B-stage), if the fluidity (resin flow) of the resin is too high, it becomes impossible to secure the required insulating layer thickness due to the outflow of the resin. If the fluidity of the resin (resin flow) is too low, the insulating layer cures with undesired voids (voids). That is, if the resin flow is too high or too low, the circuit embedding property is deteriorated. Therefore, extremely careful compositional design in consideration of such characteristic changes is desired. On the other hand, the resin composition after curing (C-stage) is desired to have various properties such as low dielectric loss tangent, excellent heat resistance, flame retardancy, and handling property (flexibility). However, when a composition design that emphasizes circuit embeddability and handling (flexibility) is emphasized, various properties of the cured resin composition tend to deteriorate, especially flame retardancy and dielectric properties (low dielectric loss tangent). It becomes difficult to achieve both. That is, a resin composition which is excellent in circuit embedding property in a semi-cured state (B-stage) while improving various characteristics (dielectric property and flame retardancy) of the resin composition in a cured state (C-stage) is obtained. desired.

本発明者は、今般、所定の高粘度樹脂(A)、所定の低粘度樹脂(B)、所定のリン系化合物(C)、及び所定の充填剤(D)を含む樹脂組成物が、難燃性、回路埋め込み性、ハンドリング性(柔軟性)等の諸特性に優れながら、有意に低い誘電正接をもたらすとの知見を得た。   The present inventor has recently found that a resin composition containing a predetermined high-viscosity resin (A), a predetermined low-viscosity resin (B), a predetermined phosphorus compound (C), and a predetermined filler (D) is difficult. It has been found that it has a significantly low dielectric loss tangent while being excellent in various properties such as flammability, circuit embedding property, and handling property (flexibility).

したがって、本発明の目的は、難燃性、回路埋め込み性、ハンドリング性(柔軟性)等の諸特性に優れながら、有意に低い誘電正接をもたらすことが可能な、樹脂組成物を提供することにある。   Therefore, an object of the present invention is to provide a resin composition which is excellent in various properties such as flame retardancy, circuit embedding property, handling property (flexibility), and can bring about a significantly low dielectric loss tangent. is there.

本発明の一態様によれば、
120℃における粘度が8000Pa・s以上である、シアネート化合物、ポリアリーレンエーテル化合物、シクロオレフィン化合物、水添又は非水添スチレン系エラストマー、ポリイミド化合物、シロキサン化合物、ポリアルキル化合物、並びにエポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物からなる群から選択される1種以上の高粘度樹脂(A)と、
120℃における粘度が8000Pa・s未満である、シアネート化合物、ポリアリーレンエーテル化合物、シクロオレフィン化合物、水添又は非水添スチレン系エラストマー、ポリイミド化合物、シロキサン化合物、ポリアルキル化合物、並びにエポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物からなる群から選択される1種以上の低粘度樹脂(B)と、
下記式(I):

Figure 2019021862
(式中、nは3又は4である)
で表されるリン系化合物(C)と、
有機充填剤又は無機充填剤である充填剤(D)と、
を含む、樹脂組成物が提供される。According to one aspect of the invention,
Reacts with cyanate compounds, polyarylene ether compounds, cycloolefin compounds, hydrogenated or non-hydrogenated styrene elastomers, polyimide compounds, siloxane compounds, polyalkyl compounds, and epoxy compounds having a viscosity at 120° C. of 8000 Pa·s or more. And at least one high-viscosity resin (A) selected from the group consisting of compounds having a reaction mechanism that does not generate a hydroxyl group,
Reacts with cyanate compounds, polyarylene ether compounds, cycloolefin compounds, hydrogenated or non-hydrogenated styrene elastomers, polyimide compounds, siloxane compounds, polyalkyl compounds, and epoxy compounds having a viscosity at 120° C. of less than 8000 Pa·s. At least one low-viscosity resin (B) selected from the group consisting of compounds having a reaction mechanism that does not generate a hydroxyl group,
Formula (I) below:
Figure 2019021862
(In the formula, n is 3 or 4)
A phosphorus compound (C) represented by
A filler (D) which is an organic filler or an inorganic filler,
A resin composition comprising:

本発明の他の一態様によれば、前記樹脂組成物を硬化させてなる、配線板用絶縁層が提供される。   According to another aspect of the present invention, there is provided an insulating layer for a wiring board, which is obtained by curing the resin composition.

本発明の他の一態様によれば、前記樹脂組成物を硬化させてなる樹脂層を金属層の表面に備えた、積層体が提供される。   According to another aspect of the present invention, there is provided a laminate having a resin layer formed by curing the resin composition on the surface of a metal layer.

樹脂組成物
本発明の樹脂組成物は、高粘度樹脂(A)と、低粘度樹脂(B)と、リン系化合物(C)と、充填剤(D)とを含む。高粘度樹脂(A)は、120℃における粘度が8000Pa・s以上である樹脂であり、シアネート化合物、ポリアリーレンエーテル化合物、シクロオレフィン化合物、水添又は非水添スチレン系エラストマー、ポリイミド化合物、シロキサン化合物、ポリアルキル化合物、並びにエポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物からなる群から選択される1種以上である。低粘度樹脂(B)は、120℃における粘度が8000Pa・s未満であり、シアネート化合物、ポリアリーレンエーテル化合物、シクロオレフィン化合物、水添又は非水添スチレン系エラストマー、ポリイミド化合物、シロキサン化合物、ポリアルキル化合物、並びにエポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物からなる群から選択される1種以上である。リン系化合物(C)は、前述した式(I)で表される環状シアノフェノキシホスファゼン化合物である。充填剤(D)は有機充填剤又は無機充填剤である。このように、所定の高粘度樹脂(A)、所定の低粘度樹脂(B)、所定のリン系化合物(C)、及び所定の充填剤(D)を含む樹脂組成物によれば、回路埋め込み性及びハンドリング性(柔軟性)等の諸特性に優れながら、硬化後には有意に低い誘電正接と難燃性をもたらすことができる。例えば、本発明の樹脂組成物は、硬化後の10GHzにおける誘電正接が、好ましくは0.0030未満、より好ましくは0.0025未満、さらに好ましくは0.0020未満である。誘電正接の下限値は特に限定されないが、典型的には0.0001以上である。
Resin composition The resin composition of the present invention contains a high-viscosity resin (A), a low-viscosity resin (B), a phosphorus compound (C), and a filler (D). The high-viscosity resin (A) is a resin having a viscosity at 120° C. of 8000 Pa·s or more, and is a cyanate compound, a polyarylene ether compound, a cycloolefin compound, a hydrogenated or non-hydrogenated styrene elastomer, a polyimide compound, a siloxane compound. , A polyalkyl compound, and one or more compounds selected from the group consisting of compounds having a reaction mechanism that does not generate a hydroxyl group when reacting with an epoxy compound. The low-viscosity resin (B) has a viscosity of less than 8000 Pa·s at 120° C., and is a cyanate compound, polyarylene ether compound, cycloolefin compound, hydrogenated or non-hydrogenated styrene elastomer, polyimide compound, siloxane compound, polyalkyl. One or more compounds selected from the group consisting of compounds and compounds having a reaction mechanism that does not generate a hydroxyl group when reacting with an epoxy compound. The phosphorus compound (C) is a cyclic cyanophenoxyphosphazene compound represented by the above formula (I). The filler (D) is an organic filler or an inorganic filler. Thus, according to the resin composition containing the predetermined high-viscosity resin (A), the predetermined low-viscosity resin (B), the predetermined phosphorus compound (C), and the predetermined filler (D), circuit embedding is performed. It is possible to bring about significantly low dielectric loss tangent and flame retardancy after curing while being excellent in various properties such as property and handling property (flexibility). For example, the resin composition of the present invention has a dielectric loss tangent at 10 GHz after curing of preferably less than 0.0030, more preferably less than 0.0025, and even more preferably less than 0.0020. The lower limit of the dielectric loss tangent is not particularly limited, but is typically 0.0001 or more.

高粘度樹脂(A)及び低粘度樹脂(B)
本発明の樹脂組成物に含まれる高粘度樹脂(A)は120℃における粘度が8000Pa・s以上であり、好ましくは10000〜300000Pa・s、より好ましくは50000〜200000Pa・s、特に好ましくは70000〜150000Pa・sである。一方、本発明の樹脂組成物に含まれる低粘度樹脂(B)は、120℃における粘度が8000Pa・s未満であり、好ましくは5000Pa・s以下、より好ましくは1000Pa・s以下、特に好ましくは0.0001〜10Pa・sである。このように2種類の樹脂を混合することで、望ましいレジンフローを実現して回路形成時の回路埋め込み性を向上するとともに、ハンドリング性(柔軟性)をも向上させることができる。
High viscosity resin (A) and low viscosity resin (B)
The high-viscosity resin (A) contained in the resin composition of the present invention has a viscosity at 120° C. of 8000 Pa·s or more, preferably 10,000 to 300,000 Pa·s, more preferably 50,000 to 200,000 Pa·s, and particularly preferably 70,000 to It is 150000 Pa·s. On the other hand, the low-viscosity resin (B) contained in the resin composition of the present invention has a viscosity at 120° C. of less than 8000 Pa·s, preferably 5000 Pa·s or less, more preferably 1000 Pa·s or less, and particularly preferably 0. It is 0.0001-10 Pa*s. By mixing two kinds of resins in this way, it is possible to realize a desired resin flow, improve the circuit embedding property at the time of circuit formation, and also improve the handling property (flexibility).

なお、本明細書において言及される「120℃における粘度」は、半硬化状態(B−stage)に対して、レオメーター(動的粘弾性測定装置)(Thermo Scientific製HAAKE MARS)を用い、JIS K 7117に準拠し、以下の方法にて測定するものとする。すなわち、直径10mmのプレート及び直径10mmのトルク測定部の平板間に直径10mm×厚み100μmの樹脂サンプルを設置し、角速度6.2832rad/s、昇温速度2℃/minで昇温させた際の120℃における粘度を測定した。粘度の測定を3回行い、3回の平均値を採用した。   In addition, the "viscosity at 120 degreeC" referred to in this specification uses a rheometer (dynamic viscoelasticity measuring device) (Thermo Scientific HAAKE MARS) for a semi-cured state (B-stage), and JIS. According to K 7117, it shall be measured by the following method. That is, when a resin sample having a diameter of 10 mm and a thickness of 100 μm was installed between a plate having a diameter of 10 mm and a flat plate of a torque measuring portion having a diameter of 10 mm, the temperature was raised at an angular velocity of 6.2832 rad/s and a heating rate of 2° C./min. The viscosity at 120° C. was measured. The viscosity was measured 3 times and the average value of 3 times was adopted.

高粘度樹脂(A)及び低粘度樹脂(B)は、それぞれ独立して、シアネート化合物、ポリアリーレンエーテル化合物、シクロオレフィン化合物、水添又は非水添スチレン系エラストマー、ポリイミド化合物、シロキサン化合物、ポリアルキル化合物、並びにエポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物からなる群から選択される。これらの化合物は、それ自体で(ポリマーの場合)又は硬化剤が添加されて硬化された場合(モノマーの場合)に、いずれも低い誘電性質(例えば10Gzにおいて0.005以下の誘電正接)をもたらすものである。   The high-viscosity resin (A) and the low-viscosity resin (B) are each independently a cyanate compound, polyarylene ether compound, cycloolefin compound, hydrogenated or non-hydrogenated styrene elastomer, polyimide compound, siloxane compound, polyalkyl. It is selected from the group consisting of a compound and a compound having a reaction mechanism that does not generate a hydroxyl group when reacting with an epoxy compound. Both of these compounds provide low dielectric properties (eg, 0.005 or less dielectric loss tangent at 10 Gz) either by themselves (in the case of a polymer) or when cured with a hardener (in the case of a monomer). It is a thing.

本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)はシアネート化合物を含むことができる。とりわけ、低粘度樹脂(B)がシアネート化合物を含むのがより好ましい。いずれにしても、シアネート化合物は、シアナト基又はトリアジン骨格を含むあらゆる有機化合物であることができ、特に限定されない。シアネート基を含む化合物の官能数は単官能でも多官能でもよく特に限定されないが、架橋硬化の観点から多官能の方が樹脂付銅箔(RCC)に使いやすく好ましい。シアネート基を含む化合物の例としては、フェノールノボラック型シアネート、クレゾールノボラック型シアネート、ジシクロペンタジエンノボラック型シアネート、ビフェニルノボラック型シアネート、ビスフェノールA型ジシアネート、ビスフェノールF型ジシアネート、ジシクロペンタジエンジシアネート、ビフェニルジシアネート等が挙げられる。これらのシアネート化合物は1種で用いてもよいし、2種以上を併用してもよい。一方、トリアジン骨格を含むシアネート化合物の場合、シアナト基を含むシアネート化合物の1種又は2種以上の化合物が三量化した骨格を含む化合物であれば特に限定はされない。トリアジン骨格は、反応性官能基を含んでいても含んでいなくてもよいが、架橋硬化の観点で反応性官能基を含んでいる方が樹脂付銅箔(RCC)に使いやすく好ましい。   According to a preferred embodiment of the present invention, the high viscosity resin (A) and/or the low viscosity resin (B) may contain a cyanate compound. Especially, it is more preferable that the low-viscosity resin (B) contains a cyanate compound. In any case, the cyanate compound can be any organic compound containing a cyanato group or a triazine skeleton, and is not particularly limited. The functional number of the compound containing a cyanate group may be monofunctional or polyfunctional and is not particularly limited, but from the viewpoint of cross-linking and curing, polyfunctionality is preferred because it is easy to use for resin-coated copper foil (RCC). Examples of the compound having a cyanate group include phenol novolac type cyanate, cresol novolac type cyanate, dicyclopentadiene novolac type cyanate, biphenyl novolac type cyanate, bisphenol A type dicyanate, bisphenol F type dicyanate, dicyclopentadiene dicyanate, biphenyl diphenylate. Cyanate and the like can be mentioned. These cyanate compounds may be used alone or in combination of two or more. On the other hand, in the case of a cyanate compound having a triazine skeleton, it is not particularly limited as long as it is a compound having a skeleton obtained by trimerizing one or more cyanate compounds having a cyanato group. The triazine skeleton may or may not contain a reactive functional group, but it is preferable that the triazine skeleton contains a reactive functional group because it is easy to use for a resin-coated copper foil (RCC) from the viewpoint of crosslinking and curing.

本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)はポリアリーレンエーテル化合物、好ましくはポリフェニレンエーテル化合物を含むことができる。とりわけ、低粘度樹脂(B)がポリフェニレンエーテル化合物を含むのがより好ましい。いずれにしても、ポリアリーレンエーテル化合物ないしポリフェニレンエーテル化合物は下記式:

Figure 2019021862
(式中、R、R、R及びRはそれぞれ独立して水素原子又は炭素数1〜3の炭化水素基であり、nは繰り返し数であり、典型的には4〜1000である)
で表される骨格を分子中に含む化合物であるのが好ましい。低粘度樹脂(B)に用いるポリフェニレンエーテル化合物の例としては、ポリフェニレンエーテルオリゴマーのスチレン誘導体、末端水酸基変性ポリフェニレンエーテルオリゴマー、末端メタクリル変性ポリフェニレンエーテルオリゴマー、末端グリシジルエーテル変性ポリフェニレンエーテルオリゴマー等が挙げられる。ポリフェニレンエーテルオリゴマーのスチレン誘導体の製品例としては、三菱ガス化学株式会社製OPE−2St−1200及びOPE−2St−2200が挙げられる。末端水酸基変性ポリフェニレンエーテルオリゴマーの製品例としては、SABIC社製SA−90及びSA−120が挙げられる。末端メタクリル変性ポリフェニレンエーテルオリゴマーの製品例としては、SABIC社製SA−9000が挙げられる。According to a preferred embodiment of the present invention, the high-viscosity resin (A) and/or the low-viscosity resin (B) can contain a polyarylene ether compound, preferably a polyphenylene ether compound. Especially, it is more preferable that the low-viscosity resin (B) contains a polyphenylene ether compound. In any case, the polyarylene ether compound or polyphenylene ether compound has the following formula:
Figure 2019021862
(Wherein, R 1, R 2, R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, n is a repeating number, typically 4 to 1000 is there)
It is preferable that the compound has a skeleton represented by Examples of the polyphenylene ether compound used for the low-viscosity resin (B) include a styrene derivative of a polyphenylene ether oligomer, a terminal hydroxyl group-modified polyphenylene ether oligomer, a terminal methacryl modified polyphenylene ether oligomer, and a terminal glycidyl ether modified polyphenylene ether oligomer. Examples of products of styrene derivatives of polyphenylene ether oligomer include OPE-2St-1200 and OPE-2St-2200 manufactured by Mitsubishi Gas Chemical Co., Inc. Examples of the product of the terminal hydroxyl group-modified polyphenylene ether oligomer include SA-90 and SA-120 manufactured by SABIC. As an example of the product of the terminal methacryl-modified polyphenylene ether oligomer, SA-9000 manufactured by SABIC is mentioned.

特に好ましくは、低粘度樹脂(B)に用いるポリフェニレンエーテル化合物は下記式:

Figure 2019021862
(式中、nは1〜30、mは1〜30である)
で表される数平均分子量3000未満のポリフェニレンエーテル樹脂を含むものであり、より好ましい数平均分子量は800〜2800である。かかる上記式を満たすポリフェニレンエーテル樹脂の製品例としては、三菱ガス化学株式会社製OPE−2St−1200及びOPE−2St−2200が挙げられる。なお、数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法によりポリスチレン換算で測定した値を用いてもよい。Particularly preferably, the polyphenylene ether compound used for the low-viscosity resin (B) has the following formula:
Figure 2019021862
(In the formula, n is 1 to 30 and m is 1 to 30)
A polyphenylene ether resin having a number average molecular weight of less than 3,000 represented by is included, and a more preferable number average molecular weight is 800 to 2,800. Examples of products of the polyphenylene ether resin satisfying the above formula include OPE-2St-1200 and OPE-2St-2200 manufactured by Mitsubishi Gas Chemical Co., Inc. The number average molecular weight may be a value measured in terms of polystyrene by GPC (gel permeation chromatography) method.

本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)がシクロオレフィン化合物を含みうる。シクロオレフィン化合物は、下記式:

Figure 2019021862
(式中、R1、2、及びRはそれぞれ独立して−H又は炭素数1〜5のアルキル基であり、nは1〜3000である)
で表されるジシクロペンタジエン骨格を含む化合物、又は下記式:
Figure 2019021862
(式中、Xは−CH−又は−C−であり、R1、2、及びRはそれぞれ独立して−H又は炭素数1〜5のアルキル基であり、nは0〜2、mは1〜1000である)
で表されるノルボルネン骨格を含む化合物、又は下記式:
Figure 2019021862
(式中、R1、2、及びRはそれぞれ独立して−H又は炭素数1〜5のアルキル基であり、nは1〜3000である)
で表されるインダン骨格を含む化合物のいずれかであるのが好ましい。シクロオレフィン化合物の例としては、(i)ジシクロペンタジエン型エポキシ樹脂、(ii)ノルボルネンモノマー、(iii)上記ジシクロペンタジエン骨格、上記ノルボルネン骨格及び上記インダン骨格から選ばれる1種以上の骨格を含むシクロオレフィン系ポリマー等が挙げられる。シクロオレフィン系ポリマーの製品例としては、日本ゼオン株式会社製ZEONOR(登録商標)、Topas Advanced Polymers GmbH製TOPAS(登録商標)等が挙げられる。According to a preferred embodiment of the present invention, the high viscosity resin (A) and/or the low viscosity resin (B) may contain a cycloolefin compound. The cycloolefin compound has the following formula:
Figure 2019021862
(In the formula, R 1, R 2, R 3 and R 4 are each independently —H or an alkyl group having 1 to 5 carbon atoms, and n is 1 to 3000)
A compound containing a dicyclopentadiene skeleton represented by, or the following formula:
Figure 2019021862
(In the formula, X is —CH 2 — or —C 2 H 4 —, R 1, R 2, R 3 and R 4 are each independently —H or an alkyl group having 1 to 5 carbon atoms, (n is 0 to 2 and m is 1 to 1000)
A compound containing a norbornene skeleton represented by, or the following formula:
Figure 2019021862
(In the formula, R 1, R 2, R 3 and R 4 are each independently —H or an alkyl group having 1 to 5 carbon atoms, and n is 1 to 3000)
It is preferably any of the compounds containing an indane skeleton represented by Examples of the cycloolefin compound include (i) a dicyclopentadiene type epoxy resin, (ii) a norbornene monomer, (iii) one or more skeletons selected from the above dicyclopentadiene skeleton, the above norbornene skeleton and the above indane skeleton. Examples include cycloolefin-based polymers. Examples of products of the cycloolefin polymer include ZEONOR (registered trademark) manufactured by Nippon Zeon Co., Ltd. and TOPAS (registered trademark) manufactured by Topas Advanced Polymers GmbH.

本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)がスチレン系エラストマーを含みうる。とりわけ、高粘度樹脂(A)がスチレン系エラストマーを含むのがより好ましい。いずれにしても、スチレン系エラストマーは水添及び非水添のいずれであってもよい。すなわち、スチレン系エラストマーは、スチレン由来の部位を含む化合物であって、スチレン以外にもオレフィン等の重合可能な不飽和基を有する化合物由来の部位を含んでもよい重合体である。スチレン系エラストマーの重合可能な不飽和基を有する化合物由来の部位に二重結合が存在する場合、二重結合部は水添されているものであってもよいし、水添されていないものであってもよい。スチレン系エラストマーの例としては、JSR株式会社製TR、JSR株式会社製SIS、旭化成株式会社製タフテック(登録商標)、株式会社クラレ製セプトン(登録商標)、株式会社クラレ製ハイブラー(登録商標)等が挙げられる。特に、高粘度樹脂(A)として水添スチレン−ブタジエン系エラストマーを用いるのが好ましい。   According to a preferred embodiment of the present invention, the high-viscosity resin (A) and/or the low-viscosity resin (B) may contain a styrene elastomer. In particular, it is more preferable that the high viscosity resin (A) contains a styrene elastomer. In any case, the styrene elastomer may be hydrogenated or non-hydrogenated. That is, the styrene-based elastomer is a compound containing a site derived from styrene, and may be a polymer containing a site derived from a compound having a polymerizable unsaturated group such as olefin other than styrene. When a double bond is present at the site derived from the compound having a polymerizable unsaturated group of the styrene-based elastomer, the double bond part may be hydrogenated or may not be hydrogenated. It may be. Examples of styrene elastomers include TR manufactured by JSR Corporation, SIS manufactured by JSR Corporation, Tuftec (registered trademark) manufactured by Asahi Kasei Corporation, Septon (registered trademark) manufactured by Kuraray Co., Ltd., and Hibler (registered trademark) manufactured by Kuraray Co., Ltd., etc. Is mentioned. In particular, it is preferable to use a hydrogenated styrene-butadiene elastomer as the high viscosity resin (A).

本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)がポリイミド化合物を含むことができる。ポリイミド化合物はイミド骨格を含む化合物であり、前駆体の酸無水物及びアミンの骨格は任意の骨格であってよい。   According to a preferred embodiment of the present invention, the high viscosity resin (A) and/or the low viscosity resin (B) can contain a polyimide compound. The polyimide compound is a compound containing an imide skeleton, and the skeleton of the precursor acid anhydride and amine may be any skeleton.

本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)がシロキサン化合物を含みうる。シロキサン化合物は下記式:

Figure 2019021862
(式中、R及びRはそれぞれ独立してアルキル基、フェニル基又は側鎖に枝分かれしたシロキサン骨格であり、nは1〜100である)
で表されるシロキサン骨格を含む化合物であるのが典型的であるが、他の樹脂との相溶性や反応性という点でシロキサン以外の骨格ないし官能基を含むのが好ましい。シロキサン化合物の例としては、シリコーンオイル等が挙げられる。例えば、他成分との反応性や相溶性の観点から、信越化学工業株式会社製KF−8010、X−22−161A、X−22−2445や東レダウコーニング株式会社製BY16−853U、BY16−855等の反応性官能基を有するシリコーンオイルを任意に変性させたものやプレポリマー化したものを用いてもよい。According to a preferred embodiment of the present invention, the high viscosity resin (A) and/or the low viscosity resin (B) may contain a siloxane compound. The siloxane compound has the following formula:
Figure 2019021862
(In the formula, R 1 and R 2 are each independently an alkyl group, a phenyl group or a siloxane skeleton branched into a side chain, and n is 1 to 100)
A compound having a siloxane skeleton represented by is typically used, but it is preferable that the compound has a skeleton or a functional group other than siloxane from the viewpoint of compatibility and reactivity with other resins. Examples of the siloxane compound include silicone oil and the like. For example, from the viewpoint of reactivity and compatibility with other components, Shin-Etsu Chemical Co., Ltd. KF-8010, X-22-161A, X-22-2445 and Toray Dow Corning Co., Ltd. BY16-853U, BY16-855. A silicone oil having a reactive functional group such as the above may be optionally modified or prepolymerized.

本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)がポリアルキル化合物を含みうる。ポリアルキル化合物は下記式:

Figure 2019021862
(式中、nは2〜100000である)
で表されるアルキル骨格を含む化合物であるのが典型的であるが、アルキル骨格以外の骨格も任意に含むことができる。ポリアルキル化合物の例としては、ポリエチレン、ポリプロピレン、三井化学株式会社製APELTM等のオレフィンコポリマー、長鎖アルキルエポキシ等が挙げられる。According to a preferred embodiment of the present invention, the high viscosity resin (A) and/or the low viscosity resin (B) may contain a polyalkyl compound. The polyalkyl compound has the following formula:
Figure 2019021862
(In the formula, n is 2 to 100,000)
It is typically a compound containing an alkyl skeleton represented by, but it is possible to optionally include a skeleton other than the alkyl skeleton. Examples of polyalkyl compounds include polyethylene, polypropylene, olefin copolymers such as APEL manufactured by Mitsui Chemicals, Inc., long chain alkyl epoxies, and the like.

本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)は、エポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物を含むことができる。とりわけ、低粘度樹脂(B)が、上記化合物を含むのがより好ましい。いずれにしても、上記化合物の例としては、イミダゾール、活性エステル、カルボジイミド等が挙げられ、反応性の観点からカルボジイミドが特に好ましい。   According to a preferred embodiment of the present invention, the high-viscosity resin (A) and/or the low-viscosity resin (B) can contain a compound having a reaction mechanism that does not generate a hydroxyl group when reacting with an epoxy compound. In particular, it is more preferable that the low-viscosity resin (B) contains the above compound. In any case, examples of the above compound include imidazole, active ester, carbodiimide and the like, and carbodiimide is particularly preferable from the viewpoint of reactivity.

上述のとおり、高粘度樹脂(A)及び低粘度樹脂(B)は粘度を除けば同種又は異種の樹脂を用いることができるが、高粘度樹脂(A)として水添又は非水添スチレン系エラストマーを選択し、かつ、低粘度樹脂(B)としてポリアリーレンエーテル化合物を選択するのが特に好ましい。そして、ポリアリーレンエーテル化合物としてポリフェニレンエーテル化合物を選択するのがより好ましい。   As described above, as the high-viscosity resin (A) and the low-viscosity resin (B), the same or different resins can be used except for the viscosity, but as the high-viscosity resin (A), a hydrogenated or non-hydrogenated styrene elastomer is used. It is particularly preferable to select and a polyarylene ether compound as the low-viscosity resin (B). It is more preferable to select a polyphenylene ether compound as the polyarylene ether compound.

本発明の樹脂組成物の各種成分の含有比率は各成分の組み合わせにより最適化することができ、含有比率は特に限定されるものではないが、高粘度樹脂(A)の含有量は、高粘度樹脂(A)、低粘度樹脂(B)及びリン系化合物(C)の合計量を100重量部として、10〜80重量部であるのが好ましく、より好ましくは15〜75重量部、さらに好ましくは20〜70重量部、特に好ましくは25〜65重量部、最も好ましくは30〜60重量部である。上述した高粘度樹脂(A)の含有量は、高粘度樹脂(A)が水添又は非水添スチレン系エラストマーであり、かつ、低粘度樹脂(B)がポリフェニレンエーテル化合物である場合に特に好ましく当てはまる。   The content ratio of various components of the resin composition of the present invention can be optimized by combining each component, and the content ratio is not particularly limited, but the content of the high-viscosity resin (A) is high. The total amount of the resin (A), the low viscosity resin (B) and the phosphorus compound (C) is 100 parts by weight, preferably 10 to 80 parts by weight, more preferably 15 to 75 parts by weight, further preferably 20 to 70 parts by weight, particularly preferably 25 to 65 parts by weight, most preferably 30 to 60 parts by weight. The content of the high-viscosity resin (A) described above is particularly preferable when the high-viscosity resin (A) is a hydrogenated or non-hydrogenated styrene elastomer and the low-viscosity resin (B) is a polyphenylene ether compound. apply.

一方、本発明の樹脂組成物における低粘度樹脂(B)の含有量は、高粘度樹脂(A)、低粘度樹脂(B)及びリン系化合物(C)の合計量を100重量部として、10〜50重量部であるのが好ましく、より好ましくは15〜45重量部、さらに好ましくは15〜40重量部、特に好ましくは20〜40重量部、最も好ましくは20〜35重量部である。上述した低粘度樹脂(B)の含有量は、高粘度樹脂(A)が水添又は非水添スチレン系エラストマーであり、かつ、低粘度樹脂(B)がポリフェニレンエーテル化合物である場合に特に好ましく当てはまる。   On the other hand, the content of the low viscosity resin (B) in the resin composition of the present invention is 10 with the total amount of the high viscosity resin (A), the low viscosity resin (B) and the phosphorus compound (C) being 100 parts by weight. It is preferably from 50 to 50 parts by weight, more preferably from 15 to 45 parts by weight, further preferably from 15 to 40 parts by weight, particularly preferably from 20 to 40 parts by weight, most preferably from 20 to 35 parts by weight. The content of the low-viscosity resin (B) described above is particularly preferable when the high-viscosity resin (A) is a hydrogenated or non-hydrogenated styrene elastomer and the low-viscosity resin (B) is a polyphenylene ether compound. apply.

リン系化合物(C)
本発明の樹脂組成物に含まれるリン系化合物(C)は、難燃剤として機能するものであり、下記式(I):

Figure 2019021862
(式中、nは3〜4である)
で表される環状シアノフェノキシホスファゼン化合物である。リン系化合物は、上記式におけるn=3の化合物と、式(I)におけるn=4の化合物との混合物であってもよい。例えば、式(I)におけるn=3単独の化合物の製品例としては、株式会社伏見製薬所製FP−300が挙げられ、式(I)におけるn=3の化合物とn=4の化合物の混合物の製品例としては、株式会社伏見製薬所製FP−300Bが挙げられる。 Phosphorus compound (C)
The phosphorus compound (C) contained in the resin composition of the present invention functions as a flame retardant and has the following formula (I):
Figure 2019021862
(In the formula, n is 3 to 4)
It is a cyclic cyanophenoxyphosphazene compound represented by. The phosphorus compound may be a mixture of the compound of n=3 in the above formula and the compound of n=4 in the formula (I). For example, as an example of the product of the compound of n=3 alone in the formula (I), FP-300 manufactured by Fushimi Pharmaceutical Co., Ltd. may be mentioned, and a mixture of the compound of n=3 and the compound of n=4 in the formula (I). As an example of the product, FP-300B manufactured by Fushimi Pharmaceutical Co., Ltd.

本発明の樹脂組成物におけるリン系化合物(C)の含有量は、高粘度樹脂(A)、低粘度樹脂(B)及びリン系化合物(C)の合計量を100重量部として、10〜50重量部であるのが好ましく、より好ましくは15〜45重量部、さらに好ましくは15〜40重量部、特に好ましくは18〜38重量部、最も好ましくは20〜35重量部である。上述したリン系化合物(C)の含有量は、高粘度樹脂(A)が水添又は非水添スチレン系エラストマーであり、かつ、低粘度樹脂(B)がポリフェニレンエーテル化合物である場合に特に好ましく当てはまる。   The content of the phosphorus compound (C) in the resin composition of the present invention is 10 to 50, with the total amount of the high viscosity resin (A), the low viscosity resin (B) and the phosphorus compound (C) being 100 parts by weight. It is preferably 15 parts by weight, more preferably 15 to 45 parts by weight, further preferably 15 to 40 parts by weight, particularly preferably 18 to 38 parts by weight, and most preferably 20 to 35 parts by weight. The content of the phosphorus compound (C) described above is particularly preferable when the high-viscosity resin (A) is a hydrogenated or non-hydrogenated styrene-based elastomer and the low-viscosity resin (B) is a polyphenylene ether compound. apply.

充填剤(D)
本明細書において「充填剤」とは、樹脂組成物中において相溶化せず、充填剤単相として樹脂組成物中に存在するものをいう。充填剤は、充填剤表面に表面処理層を有していてもよいし有していなくてもよく、表面処理層は樹脂組成物中の樹脂成分と相溶化していてもよいし相溶化していなくてもよい。本発明の樹脂組成物に含まれる充填剤(D)は特に限定されず、樹脂組成物への添加に一般的に用いられる様々な充填剤が使用可能である。したがって、充填剤は、有機充填剤及び無機充填剤のいずれであってもよいが、電気特性及び難燃性の観点から無機充填剤が好ましい。無機充填剤の例としては、シリカ、タルク、窒化ホウ素(BN)等が挙げられる。無機充填剤は、樹脂組成物中に分散可能であれば特に限定されるものではないが、分散性及び誘電特性の観点からシリカが好ましい。有機充填剤としては高粘度樹脂(A)及び低粘度樹脂(B)と非相溶であれば特に限定されるものではないが、誘電特性及び難燃性の観点からフッ素系有機充填剤が好ましい。
Filler (D)
In the present specification, the "filler" refers to a filler which is not compatibilized in the resin composition and exists in the resin composition as a single phase of the filler. The filler may or may not have a surface treatment layer on the surface of the filler, and the surface treatment layer may or may not be compatibilized with the resin component in the resin composition. You don't have to. The filler (D) contained in the resin composition of the present invention is not particularly limited, and various fillers generally used for addition to the resin composition can be used. Therefore, the filler may be either an organic filler or an inorganic filler, but the inorganic filler is preferable from the viewpoint of electrical characteristics and flame retardancy. Examples of inorganic fillers include silica, talc, boron nitride (BN), and the like. The inorganic filler is not particularly limited as long as it can be dispersed in the resin composition, but silica is preferable from the viewpoint of dispersibility and dielectric properties. The organic filler is not particularly limited as long as it is incompatible with the high-viscosity resin (A) and the low-viscosity resin (B), but a fluorine-based organic filler is preferable from the viewpoint of dielectric properties and flame retardancy. ..

充填剤(D)は無機充填剤であるのが好ましい。無機充填剤の平均粒径D50は好ましくは0.1〜3μm、より好ましくは0.3〜1.5μmである。上記範囲内の平均粒径D50を有するシリカ粒子(例えば球状シリカ粒子)を用いることで、流動性及び加工性に優れた樹脂組成物を提供することができる。充填剤(D)は粉砕粒子、球状粒子、コアシェル粒子、中空粒子等、いかなる形態であってもよい。   The filler (D) is preferably an inorganic filler. The average particle diameter D50 of the inorganic filler is preferably 0.1 to 3 μm, more preferably 0.3 to 1.5 μm. By using silica particles having an average particle diameter D50 within the above range (for example, spherical silica particles), it is possible to provide a resin composition having excellent fluidity and processability. The filler (D) may be in any form such as crushed particles, spherical particles, core-shell particles and hollow particles.

本発明の樹脂組成物における充填剤(D)の含有量は、高粘度樹脂(A)、低粘度樹脂(B)及びリン系化合物(C)の合計量を100重量部として、5〜200重量部であるのが好ましく、より好ましくは25〜190重量部、さらに好ましくは45〜180重量部、特に好ましくは90〜170重量部、最も好ましくは110〜160重量部である。上述した充填剤(D)の含有量は、高粘度樹脂(A)が水添又は非水添スチレン系エラストマーであり、かつ、低粘度樹脂(B)がポリフェニレンエーテル化合物である場合に特に好ましく当てはまる。   The content of the filler (D) in the resin composition of the present invention is 5 to 200 parts by weight, with the total amount of the high viscosity resin (A), the low viscosity resin (B) and the phosphorus compound (C) being 100 parts by weight. It is preferably 25 parts by weight, more preferably 25 parts by weight to 190 parts by weight, still more preferably 45 parts by weight to 180 parts by weight, particularly preferably 90 parts by weight to 170 parts by weight, most preferably 110 parts by weight to 160 parts by weight. The content of the filler (D) described above is particularly preferably applied when the high-viscosity resin (A) is a hydrogenated or non-hydrogenated styrene elastomer and the low-viscosity resin (B) is a polyphenylene ether compound. .

用途
本発明の樹脂組成物は、回路形成時の回路埋め込み性及びハンドリング性(柔軟性)等の諸特性に優れながら、硬化後には低い誘電正接と優れた難燃性を示すため、高周波用途向けのプリント配線板の絶縁層に特に適している。すなわち、本発明の樹脂組成物は配線板用絶縁層に用いられることが好ましい。したがって、本発明の好ましい態様によれば、樹脂組成物を硬化させてなる、配線板用絶縁層が提供される。また、本発明の別の好ましい態様によれば、樹脂組成物を硬化させてなる樹脂層を金属層の表面に備えた、積層体が提供される。
Applications The resin composition of the present invention is excellent in various properties such as circuit embedding property and handling property (flexibility) at the time of circuit formation, but exhibits low dielectric loss tangent and excellent flame retardancy after curing. It is particularly suitable as an insulating layer for printed wiring boards. That is, the resin composition of the present invention is preferably used for the insulating layer for wiring boards. Therefore, according to a preferred aspect of the present invention, there is provided an insulating layer for a wiring board, which is obtained by curing the resin composition. Further, according to another preferred embodiment of the present invention, there is provided a laminate including a resin layer formed by curing a resin composition on the surface of a metal layer.

本発明を以下の例によってさらに具体的に説明する。   The present invention will be described more specifically by the following examples.

例1〜16
(1)原料の用意
まず、表1に示される各種原料を用意した。各原料の詳細は以下のとおりである。
Examples 1-16
(1) Preparation of Raw Materials First, various raw materials shown in Table 1 were prepared. Details of each raw material are as follows.

<高粘度樹脂(A)>
MP−10(水添スチレン系エラストマー、旭化成株式会社製、120℃での粘度:75400Pa・s)
HG−252(SEEPS−OH:ポリスチレン−ポリ(エチレン−エチレン/プロピレン)ブロック−ポリスチレン、末端水酸基変性、株式会社クラレ製、120℃での粘度:10060Pa・s)
<低粘度樹脂(B)>
V−03(カルボジイミド樹脂、日清紡ケミカル株式会社製、120℃での粘度:8000Pa・s未満)
OPE−2St−1200(二官能ポリフェニレンエーテルオリゴマーのスチレン誘導体、三菱ガス化学株式会社製、数平均分子量約1200、120℃での粘度:8000Pa・s未満)
OPE−2St−2200(二官能ポリフェニレンエーテルオリゴマーのスチレン誘導体、三菱ガス化学株式会社製、数平均分子量約2200、120℃での粘度:8000Pa・s未満)
SA−90(二官能ポリフェニレンエーテルオリゴマー、SABIC社製、120℃での粘度:8000Pa・s未満)
<リン系化合物(C)>
FP−300B(環状シアノフェノキシホスファゼン化合物、株式会社伏見製薬所製、式(I)においてn=3〜4である化合物)
FP−110(環状フェノキシホスファゼン化合物、株式会社伏見製薬所製、式(I)を満たさない化合物)
SPH−100(環状ヒドロキシフェノキシホスファゼン化合物、大塚化学株式会社製、式(I)を満たさない化合物)
<充填剤(D)>
SC4050(球状シリカ粒子、株式会社アドマテックス製、レーザー回折式粒度分布測定により測定された平均粒径D50:1.0μm)
<High viscosity resin (A)>
MP-10 (hydrogenated styrene elastomer, manufactured by Asahi Kasei Co., Ltd., viscosity at 120° C.: 75400 Pa·s)
HG-252 (SEEPS-OH: polystyrene-poly(ethylene-ethylene/propylene) block-polystyrene, terminal hydroxyl group modification, manufactured by Kuraray Co., Ltd., viscosity at 120° C.: 10060 Pa·s)
<Low viscosity resin (B)>
V-03 (carbodiimide resin, manufactured by Nisshinbo Chemical Co., Ltd., viscosity at 120° C.: less than 8000 Pa·s)
OPE-2St-1200 (styrene derivative of bifunctional polyphenylene ether oligomer, manufactured by Mitsubishi Gas Chemical Co., Inc., number average molecular weight of about 1200, viscosity at 120°C: less than 8000 Pa·s)
OPE-2St-2200 (styrene derivative of bifunctional polyphenylene ether oligomer, manufactured by Mitsubishi Gas Chemical Co., Inc., number average molecular weight of about 2200, viscosity at 120° C.: less than 8000 Pa·s)
SA-90 (bifunctional polyphenylene ether oligomer, manufactured by SABIC, viscosity at 120°C: less than 8000 Pa·s)
<Phosphorus compound (C)>
FP-300B (cyclic cyanophenoxyphosphazene compound, manufactured by Fushimi Pharmaceutical Co., Ltd., compound in which n=3 to 4 in formula (I))
FP-110 (Cyclic phenoxyphosphazene compound, manufactured by Fushimi Pharmaceutical Co., Ltd., compound not satisfying formula (I))
SPH-100 (cyclic hydroxyphenoxyphosphazene compound, manufactured by Otsuka Chemical Co., Ltd., compound not satisfying formula (I))
<Filler (D)>
SC4050 (spherical silica particles, manufactured by Admatechs Co., Ltd., average particle diameter D50 measured by laser diffraction type particle size distribution measurement: 1.0 μm)

(2)ワニスの製造
表1に示される原料名及び固形分重量比の高粘度樹脂、低粘度樹脂(例15を除く)、リン系化合物(例14を除く)及び充填剤(例16を除く)に、固形分濃度が50%となるようにトルエン溶媒を添加し、60℃にて分散機を用いて溶解分散した。こうして調整された樹脂溶液(ワニス)を得た。
(2) Production of varnish High-viscosity resin, low-viscosity resin (excluding Example 15), phosphorus compound (excluding Example 14) and filler (excluding Example 16) having the raw material names and solid content weight ratios shown in Table 1 To the above), a toluene solvent was added so that the solid content concentration became 50%, and the mixture was dissolved and dispersed at 60° C. using a disperser. A resin solution (varnish) thus prepared was obtained.

(3)半硬化状態(B−stage)の樹脂付銅箔の製造
得られた樹脂溶液を、電解銅箔(TQ−M4−VSP箔、三井金属鉱業株式会社製、厚さ18μm、十点平均粗さ(Rzjis)0.4μm)の表面に、コンマ塗工機を用いて、乾燥後の樹脂層の厚みが130μmとなるように塗布した。塗布膜を150℃で3分間乾燥させることにより、樹脂組成物を半硬化させた。こうして半硬化状態(B−stage)の樹脂層を備えた樹脂付銅箔を作製した。
(3) Manufacture of semi-cured (B-stage) resin-coated copper foil The obtained resin solution was used as an electrolytic copper foil (TQ-M4-VSP foil, manufactured by Mitsui Mining & Smelting Co., Ltd., thickness 18 μm, ten-point average). It was applied to a surface having a roughness (Rzjis) of 0.4 μm using a comma coater so that the thickness of the dried resin layer was 130 μm. The coating film was dried at 150° C. for 3 minutes to semi-cure the resin composition. Thus, a resin-coated copper foil having a semi-cured (B-stage) resin layer was produced.

(4)樹脂フィルム単体の製造
2枚の樹脂付銅箔をそれらの樹脂層同士が当接するように貼り合わせ、200℃、90分間、30kgf/cmの加熱加圧条件下で熱間真空プレス成形を施して、両面銅張積層板を製造した。得られた銅張積層板の両面の銅を全てエッチングにより除去して、単体としての樹脂フィルムを得た。
(4) Manufacture of a resin film alone Two resin-coated copper foils are stuck together such that their resin layers are in contact with each other, and hot vacuum pressing is performed at 200° C. for 90 minutes under a heating/pressurizing condition of 30 kgf/cm 2. Molding was performed to produce a double-sided copper clad laminate. All of the copper on both sides of the obtained copper-clad laminate was removed by etching to obtain a resin film as a simple substance.

(5)各種評価
上記(4)で得られた樹脂フィルム単体又は上記(3)で得られた半硬化状態の樹脂付銅箔について、以下の各種評価を行った。
(5) Various Evaluations The following various evaluations were performed on the resin film alone obtained in (4) above or the semi-cured resin-coated copper foil obtained in (3) above.

(5a)誘電特性
樹脂フィルム単体について、摂動式空洞共振器法により、10GHzにおける誘電率Dk及び誘電正接Dfを測定した。この測定は、樹脂フィルム単体を共振器のサンプルサイズに合わせて切断した後、測定装置(KEYCOM製共振器及びKEYSIGHT製ネットワークアナライザー)を用い、JIS R 1641に準拠して行った。測定されたDf値を以下の基準で格付け評価した。
<誘電特性評価基準>
‐評価A:10GHzにおけるDf値が0.0020未満
‐評価B:10GHzにおけるDf値が0.0020以上0.0025未満
‐評価C:10GHzにおけるDf値が0.0025以上0.0030未満
‐評価D:10GHzにおけるDf値が0.0030以上
(5a) Dielectric Property The dielectric constant Dk and the dielectric loss tangent Df at 10 GHz of the resin film alone were measured by the perturbation type cavity resonator method. This measurement was performed in accordance with JIS R 1641 using a measuring device (a resonator made by KEYCOM and a network analyzer made by KEYSIGHT) after cutting the resin film alone according to the sample size of the resonator. The measured Df value was rated and evaluated according to the following criteria.
<Dielectric property evaluation criteria>
-Evaluation A: Df value at 10 GHz is less than 0.0020-Evaluation B: Df value at 10 GHz is 0.0020 to less than 0.0025-Evaluation C: Df value at 10 GHz is 0.0025 to less than 0.0030-Evaluation D : Df value at 10 GHz is 0.0030 or more

(5b)ガラス転移温度(Tg)
樹脂フィルム単体について、動的粘弾性測定(DMA:Dynamic Mechanical Analysis)により、Tanδのピーク温度をガラス転移温度(Tg)として測定した。この測定は、JIS C 6481に準拠し、動的粘弾性測定装置(セイコーインスツル株式会社製、DMS6100)を用いて行った。測定したガラス転移温度(Tg)を以下の基準で格付け評価した。
<ガラス転移温度(Tg)評価基準>
‐評価A:Tgが170℃以上
‐評価B:Tgが150℃以上170℃未満
‐評価C:Tgが130℃以上150℃未満
‐評価D:Tgが130℃未満
(5b) Glass transition temperature (Tg)
With respect to the resin film alone, the peak temperature of Tan δ was measured as the glass transition temperature (Tg) by dynamic viscoelasticity measurement (DMA: Dynamic Mechanical Analysis). This measurement was performed using a dynamic viscoelasticity measuring device (DMS6100 manufactured by Seiko Instruments Inc.) according to JIS C6481. The measured glass transition temperature (Tg) was rated and evaluated according to the following criteria.
<Glass transition temperature (Tg) evaluation criteria>
-Evaluation A: Tg is 170°C or higher-Evaluation B: Tg is 150°C or higher and lower than 170°C-Evaluation C: Tg is 130°C or higher and lower than 150°C-Evaluation D: Tg is lower than 130°C

(5c)ハンドリング性
樹脂フィルム単体のハンドリング性評価を以下の手順で行った。まず、サイズ10cm×30cm、厚さ250μmの樹脂フィルム単体を用意した。この樹脂フィルム単体の片側の短辺を水平なクランプに固定し、もう一方の短辺をクランプから15cmの高い位置にまで鉛直に吊り上げた後、樹脂フィルム単体を離した。自重により樹脂フィルムが落下して曲がった際の樹脂フィルムの割れの有無を目視確認し、同サンプルを180°の角度で折り曲げた際の白化の有無を目視確認し、以下の基準で格付け評価した。
<ハンドリング性評価基準>
‐評価A:樹脂フィルムが割れず、かつ、白化が生じなかった。
‐評価B:樹脂フィルムが割れなかったが、白化が生じた。
‐評価D:樹脂フィルムが割れた。
ここで、「白化」とは、樹脂フィルムに応力が掛かることで内部に微細な亀裂が生じ、白く濁ったように見えることを指す。
(5c) Handling property The handling property of the resin film itself was evaluated by the following procedure. First, a single resin film having a size of 10 cm×30 cm and a thickness of 250 μm was prepared. One short side of this resin film alone was fixed to a horizontal clamp, the other short side was vertically hung up to a position as high as 15 cm from the clamp, and then the resin film alone was separated. The presence or absence of cracks in the resin film when the resin film was dropped and bent due to its own weight was visually checked, and the presence or absence of whitening when the sample was bent at an angle of 180° was visually checked, and the rating was evaluated according to the following criteria. .
<Handling evaluation criteria>
-Evaluation A: The resin film was not cracked and whitening did not occur.
-Evaluation B: The resin film was not cracked, but whitening occurred.
-Evaluation D: The resin film was cracked.
Here, "whitening" refers to the appearance of white turbidity due to the generation of minute cracks inside the resin film when stress is applied to it.

(5d)レジンフロー
半硬化状態(B−stage)の樹脂付銅箔(樹脂層厚み130μm)から10cm×10cmのサイズの4枚のシート片を切り出した。これら4枚のシート片を樹脂−銅箔層が互い違いになるように積層してサンプルとした。得られたサンプルに対し、熱プレス機を用いて、170℃で10分間、14kgf/cmの圧力で熱プレス処理した。元のサイズである10cm×10cmの面積からはみ出した樹脂の重量を元の樹脂重量で除し、得られた値に100を乗じることにより、レジンフローを測定した。測定したレジンフロー値を以下の基準で格付け評価した。
<レジンフロー評価基準>
‐評価A:レジンフロー値が1.0%より大きく5.0%以下
‐評価B:レジンフロー値が0.0%より大きく1.0%以下、又は5.0%より大きく10.0%以下
‐評価C:レジンフロー値が10.0%より大きく20.0%以下
‐評価D:レジンフロー値が0.0%又は20.0%より大きい
(5d) Resin flow Four sheet pieces with a size of 10 cm×10 cm were cut out from a resin-coated copper foil (resin layer thickness 130 μm) in a semi-cured state (B-stage). A sample was prepared by laminating these four sheet pieces so that the resin-copper foil layers were staggered. The obtained sample was hot-pressed at 170° C. for 10 minutes at a pressure of 14 kgf/cm 2 using a hot-pressing machine. The resin flow was measured by dividing the weight of the resin protruding from the area of 10 cm×10 cm, which is the original size, by the original resin weight, and multiplying the obtained value by 100. The resin flow value measured was rated and evaluated according to the following criteria.
<Resin flow evaluation criteria>
-Evaluation A: Resin flow value is more than 1.0% and 5.0% or less-Evaluation B: Resin flow value is more than 0.0% and 1.0% or less, or more than 5.0% and 10.0% Below-Evaluation C: Resin flow value is more than 10.0% and 20.0% or less-Evaluation D: Resin flow value is 0.0% or more than 20.0%

(5e)難燃性
樹脂フィルム単体に対して、UL94規格に準拠して垂直燃焼試験を実施し、下記の基準で格付け評価した。
<難燃性評価基準>
‐評価A:UL94規格においてV−0評価
‐評価B:UL94規格においてV−1評価
‐評価C:UL94規格においてV−2評価
‐評価D:UL94規格においてHB評価
(5e) Flame Retardancy A vertical burning test was carried out on the resin film alone in accordance with the UL94 standard, and the rating was evaluated according to the following criteria.
<Flame retardancy evaluation criteria>
-Evaluation A: V-0 evaluation in UL94 standard-Evaluation B: V-1 evaluation in UL94 standard-Evaluation C: V-2 evaluation in UL94 standard-Evaluation D: HB evaluation in UL94 standard

(5f)回路埋め込み性
半硬化状態(B−stage)の樹脂付銅箔(樹脂層厚み130μm)を、回路パターン(回路高さ35μm)を形成した基板上に積層して、樹脂層からなる絶縁層に回路パターンが埋め込まれた積層体を得た。得られた積層体において、(i)ボイドが存在するか否か、及び(ii)必要な絶縁層厚(具体的には回路頂部から95μm±10%以内)を確保できているかどうかを確認して、以下の基準で格付け評価した。
<埋め込み性評価基準>
‐評価A:必要な絶縁層厚を確保できており、かつ、ボイドが存在しない。
‐評価B:ボイドは存在しないが必要な絶縁層厚を確保できていない、あるいは絶縁層厚を確保できているがボイドが存在する。
‐評価D:必要な絶縁層厚を確保できておらず、かつ、ボイドが存在する。
(5f) Circuit embedding property A resin-coated copper foil (resin layer thickness 130 μm) in a semi-cured state (B-stage) is laminated on a substrate on which a circuit pattern (circuit height 35 μm) is formed, and insulation consisting of the resin layer is formed. A laminate having a circuit pattern embedded in the layers was obtained. In the obtained laminated body, (i) whether or not there are voids, and (ii) whether or not the required insulating layer thickness (specifically within 95 μm±10% from the circuit top) is secured The rating was evaluated based on the following criteria.
<Embedding evaluation criteria>
-Evaluation A: The required insulating layer thickness can be secured and no void exists.
-Evaluation B: The void is not present but the required insulating layer thickness is not secured, or the insulating layer thickness is secured but the void is present.
-Evaluation D: The required insulating layer thickness is not secured, and voids are present.

(5g)評価結果
評価結果は表1及び2に示されるとおりであった。
(5g) Evaluation result The evaluation result was as shown in Tables 1 and 2.

Figure 2019021862
Figure 2019021862

Figure 2019021862
Figure 2019021862

Claims (15)

120℃における粘度が8000Pa・s以上である、シアネート化合物、ポリアリーレンエーテル化合物、シクロオレフィン化合物、水添又は非水添スチレン系エラストマー、ポリイミド化合物、シロキサン化合物、ポリアルキル化合物、並びにエポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物からなる群から選択される1種以上の高粘度樹脂(A)と、
120℃における粘度が8000Pa・s未満である、シアネート化合物、ポリアリーレンエーテル化合物、シクロオレフィン化合物、水添又は非水添スチレン系エラストマー、ポリイミド化合物、シロキサン化合物、ポリアルキル化合物、並びにエポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物からなる群から選択される1種以上の低粘度樹脂(B)と、
下記式(I):
Figure 2019021862
(式中、nは3又は4である)
で表されるリン系化合物(C)と、
有機充填剤又は無機充填剤である充填剤(D)と、
を含む、樹脂組成物。
Reacts with cyanate compounds, polyarylene ether compounds, cycloolefin compounds, hydrogenated or non-hydrogenated styrene elastomers, polyimide compounds, siloxane compounds, polyalkyl compounds, and epoxy compounds having a viscosity at 120° C. of 8000 Pa·s or more. And at least one high-viscosity resin (A) selected from the group consisting of compounds having a reaction mechanism that does not generate a hydroxyl group,
Reacts with cyanate compounds, polyarylene ether compounds, cycloolefin compounds, hydrogenated or non-hydrogenated styrene elastomers, polyimide compounds, siloxane compounds, polyalkyl compounds, and epoxy compounds having a viscosity at 120° C. of less than 8000 Pa·s. At least one low-viscosity resin (B) selected from the group consisting of compounds having a reaction mechanism that does not generate a hydroxyl group,
Formula (I) below:
Figure 2019021862
(In the formula, n is 3 or 4)
A phosphorus compound (C) represented by
A filler (D) which is an organic filler or an inorganic filler,
A resin composition comprising:
前記充填剤(D)が無機充填剤である、請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the filler (D) is an inorganic filler. 前記無機充填剤が、平均粒径D50が0.1〜3μmのシリカ粒子である、請求項2に記載の樹脂組成物。   The resin composition according to claim 2, wherein the inorganic filler is silica particles having an average particle diameter D50 of 0.1 to 3 µm. 前記高粘度樹脂(A)及び/又は前記低粘度樹脂(B)が前記ポリアリーレンエーテル化合物としてポリフェニレンエーテル化合物を含み、前記ポリフェニレンエーテル化合物が下記式:
Figure 2019021862
(式中、R、R、R及びRはそれぞれ独立して水素原子又は炭素数1〜3のアルキル基であり、nは繰り返し数である)
で表される骨格を分子中に含む化合物である、請求項1〜3のいずれか一項に記載の樹脂組成物。
The high viscosity resin (A) and/or the low viscosity resin (B) contains a polyphenylene ether compound as the polyarylene ether compound, and the polyphenylene ether compound has the following formula:
Figure 2019021862
(In the formula, R 1 , R 2 , R 3, and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and n is the number of repetitions).
The resin composition according to any one of claims 1 to 3, which is a compound containing a skeleton represented by.
前記高粘度樹脂(A)及び/又は前記低粘度樹脂(B)が前記シアネート化合物を含み、前記シアネート化合物が、シアナト基又はトリアジン骨格を含む有機化合物である、請求項1〜4のいずれか一項に記載の樹脂組成物。   The high viscosity resin (A) and/or the low viscosity resin (B) contains the cyanate compound, and the cyanate compound is an organic compound containing a cyanato group or a triazine skeleton. The resin composition according to item. 前記高粘度樹脂(A)及び/又は前記低粘度樹脂(B)が前記シクロオレフィン化合物を含み、前記シクロオレフィン化合物が、下記式:
Figure 2019021862
(式中、R、R、R及びRはそれぞれ独立して−H又は炭素数1〜5のアルキル基であり、nは1〜3000である)
で表されるジシクロペンタジエン骨格を含む化合物、又は下記式:
Figure 2019021862
(式中、Xは−CH−又は−C−であり、R、R、R及びRはそれぞれ独立して−H又は炭素数1〜5のアルキル基であり、nは0〜2、mは1〜1000である)
で表されるノルボルネン骨格を含む化合物、又は下記式:
Figure 2019021862
(式中、R、R、R及びRはそれぞれ独立して−H又は炭素数1〜5のアルキル基であり、nは1〜3000である)
で表されるインダン骨格を含む化合物である、請求項1〜5のいずれか一項に記載の樹脂組成物。
The high viscosity resin (A) and/or the low viscosity resin (B) contains the cycloolefin compound, and the cycloolefin compound has the following formula:
Figure 2019021862
(In the formula, R 1 , R 2 , R 3 and R 4 are each independently —H or an alkyl group having 1 to 5 carbon atoms, and n is 1 to 3000)
A compound containing a dicyclopentadiene skeleton represented by, or the following formula:
Figure 2019021862
(In the formula, X is —CH 2 — or —C 2 H 4 —, and R 1 , R 2 , R 3 and R 4 are each independently —H or an alkyl group having 1 to 5 carbon atoms, (n is 0 to 2 and m is 1 to 1000)
A compound containing a norbornene skeleton represented by, or the following formula:
Figure 2019021862
(In the formula, R 1 , R 2 , R 3 and R 4 are each independently —H or an alkyl group having 1 to 5 carbon atoms, and n is 1 to 3000)
The resin composition according to any one of claims 1 to 5, which is a compound containing an indane skeleton.
前記高粘度樹脂(A)及び/又は前記低粘度樹脂(B)が前記スチレン系エラストマーを含む、請求項1〜6のいずれか一項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 6, wherein the high viscosity resin (A) and/or the low viscosity resin (B) contains the styrene elastomer. 前記高粘度樹脂(A)及び/又は前記低粘度樹脂(B)が前記ポリイミド化合物を含む、請求項1〜7のいずれか一項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 7, wherein the high-viscosity resin (A) and/or the low-viscosity resin (B) contains the polyimide compound. 前記高粘度樹脂(A)及び/又は前記低粘度樹脂(B)が前記シロキサン化合物を含む、請求項1〜8のいずれか一項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 8, wherein the high-viscosity resin (A) and/or the low-viscosity resin (B) contains the siloxane compound. 前記高粘度樹脂(A)が前記スチレン系エラストマーであり、前記低粘度樹脂(B)が前記ポリアリーレンエーテル化合物としてのポリフェニレンエーテル化合物である、請求項1〜4及び7のいずれか一項に記載の樹脂組成物。   The high viscosity resin (A) is the styrene-based elastomer, and the low viscosity resin (B) is a polyphenylene ether compound as the polyarylene ether compound. Resin composition. 前記高粘度樹脂(A)、前記低粘度樹脂(B)及び前記リン系化合物(C)の合計量を100重量部として、10〜80重量部の前記高粘度樹脂(A)と、10〜50重量部の前記低粘度樹脂(B)と、10〜50重量部の前記リン系化合物(C)と、5〜200重量部の前記充填剤(D)とを含む、請求項1〜10のいずれか一項に記載の樹脂組成物。   Assuming that the total amount of the high-viscosity resin (A), the low-viscosity resin (B) and the phosphorus compound (C) is 100 parts by weight, 10 to 80 parts by weight of the high-viscosity resin (A) and 10 to 50 parts by weight are used. Any of claims 1 to 10, comprising parts by weight of the low viscosity resin (B), 10 to 50 parts by weight of the phosphorus compound (C), and 5 to 200 parts by weight of the filler (D). The resin composition according to 1 above. 20〜70重量部の前記高粘度樹脂(A)と、15〜40重量部の前記低粘度樹脂(B)と、15〜40重量部の前記リン系化合物(C)と、45〜180重量部の前記充填剤(D)とを含む、請求項11に記載の樹脂組成物。   20 to 70 parts by weight of the high viscosity resin (A), 15 to 40 parts by weight of the low viscosity resin (B), 15 to 40 parts by weight of the phosphorus compound (C), and 45 to 180 parts by weight. The resin composition according to claim 11, which comprises the filler (D). 請求項1〜12のいずれか一項に記載の樹脂組成物を硬化させてなる、配線板用絶縁層。   An insulating layer for a wiring board, which is obtained by curing the resin composition according to any one of claims 1 to 12. 硬化後の10GHzにおける誘電正接が0.003未満である、請求項1〜12のいずれか一項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 12, which has a dielectric loss tangent at 10 GHz after curing of less than 0.003. 請求項1〜12及び14のいずれか一項に記載の樹脂組成物を硬化させてなる樹脂層を金属層の表面に備えた、積層体。

A laminate comprising a resin layer obtained by curing the resin composition according to any one of claims 1 to 12 and 14 on the surface of a metal layer.

JP2019532512A 2017-07-27 2018-07-13 Resin composition, insulating layer for wiring board, and laminate Active JP7219216B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017145841 2017-07-27
JP2017145841 2017-07-27
PCT/JP2018/026513 WO2019021862A1 (en) 2017-07-27 2018-07-13 Resin composition, insulating layer for wiring board, and laminate

Publications (2)

Publication Number Publication Date
JPWO2019021862A1 true JPWO2019021862A1 (en) 2020-05-28
JP7219216B2 JP7219216B2 (en) 2023-02-07

Family

ID=65039633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019532512A Active JP7219216B2 (en) 2017-07-27 2018-07-13 Resin composition, insulating layer for wiring board, and laminate

Country Status (6)

Country Link
JP (1) JP7219216B2 (en)
KR (1) KR102254544B1 (en)
CN (1) CN110709476A (en)
MY (1) MY195223A (en)
TW (1) TWI739017B (en)
WO (1) WO2019021862A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115996843A (en) * 2020-09-11 2023-04-21 松下知识产权经营株式会社 Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal foil-clad laminate, and wiring board
JP2022099778A (en) * 2020-12-23 2022-07-05 日鉄ケミカル&マテリアル株式会社 Polyimide composition, resin film, laminate, cover lay film, copper foil with resin, metal-clad laminate, and circuit board
CN112795169B (en) * 2020-12-31 2022-07-19 广东生益科技股份有限公司 Resin composition, resin film containing resin composition, prepreg, laminated board, copper-clad plate and printed circuit board

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114981A (en) * 1997-02-14 2002-04-16 Otsuka Chem Co Ltd Flame-retardant, flame-retardant resin composition and flame-retardant resin molded product
JP2005112981A (en) * 2003-10-07 2005-04-28 Hitachi Chem Co Ltd Low-permittivity resin composition, prepreg using the same, metal-clad laminate, and printed circuit board
JP2007030326A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Copper foil with resin, laminate for producing printed wiring boad, and multilayer printed wiring board
WO2007097196A1 (en) * 2006-02-23 2007-08-30 Matsushita Electric Works, Ltd. Flame-retardant resin composition, prepreg using same, resin sheet and molded article
JP2009078209A (en) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd Metal foil bearing resin, method for manufacturing the same, and metal-coated flexible laminated sheet
JP2010111758A (en) * 2008-11-06 2010-05-20 Hitachi Chem Co Ltd Resin composition, prepreg, laminate and printed board
JP2010138364A (en) * 2008-02-12 2010-06-24 Mitsubishi Gas Chemical Co Inc Resin composition, prepreg and metal foil laminated plate
JP2010168487A (en) * 2009-01-23 2010-08-05 Nippon Zeon Co Ltd Polymerizable composition, crosslinked body, and crosslinked resin composite object
WO2011093079A1 (en) * 2010-01-28 2011-08-04 三井化学株式会社 Metal-resin composite
JP2011162615A (en) * 2010-02-05 2011-08-25 Kyocera Chemical Corp Prepreg and metal-clad laminated plate
JP2013018806A (en) * 2011-07-07 2013-01-31 Mitsui Chemicals Inc Resin composition, polyimide metal laminate using the same, and electronic circuit substrate
WO2013105650A1 (en) * 2012-01-11 2013-07-18 三井金属鉱業株式会社 Copper foil with adhesive layer, copper-clad laminate and printed wiring board
JP2013231132A (en) * 2012-04-27 2013-11-14 Mitsui Mining & Smelting Co Ltd Resin composition, metal foil with resin layer, metal clad laminated board, and printed wiring board
JP2014001276A (en) * 2012-06-15 2014-01-09 Asahi Kasei E-Materials Corp Curable resin composition
WO2015125973A1 (en) * 2014-02-24 2015-08-27 矢崎総業株式会社 Molding machine and molding method
WO2015133292A1 (en) * 2014-03-06 2015-09-11 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet, metal-foil-clad laminated plate, and printed wiring board
WO2015186589A1 (en) * 2014-06-03 2015-12-10 三井金属鉱業株式会社 Metal foil with releasing resin layer, and printed wiring board
JP2015224304A (en) * 2014-05-28 2015-12-14 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate sheet, multilayer printed circuit board and semiconductor package
WO2016147984A1 (en) * 2015-03-13 2016-09-22 京セラ株式会社 Resin composition, prepreg, metal-clad laminate, and wiring board
JP2016191029A (en) * 2015-03-31 2016-11-10 新日鉄住金化学株式会社 Polyamide acid composition, polyimide, resin film, and metal-clad laminate
WO2017029917A1 (en) * 2015-08-19 2017-02-23 東洋紡株式会社 Low dielectric adhesive composition
WO2017098969A1 (en) * 2015-12-07 2017-06-15 三井金属鉱業株式会社 Method for manufacturing layered body, and metal foil provided with resin layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5493347B2 (en) 2008-01-17 2014-05-14 東洋インキScホールディングス株式会社 Flame retardant resin composition
JP6675183B2 (en) * 2015-11-30 2020-04-01 ナミックス株式会社 Thermosetting resin composition, thermosetting resin film, printed wiring board, and semiconductor device

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114981A (en) * 1997-02-14 2002-04-16 Otsuka Chem Co Ltd Flame-retardant, flame-retardant resin composition and flame-retardant resin molded product
JP2005112981A (en) * 2003-10-07 2005-04-28 Hitachi Chem Co Ltd Low-permittivity resin composition, prepreg using the same, metal-clad laminate, and printed circuit board
JP2007030326A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Copper foil with resin, laminate for producing printed wiring boad, and multilayer printed wiring board
WO2007097196A1 (en) * 2006-02-23 2007-08-30 Matsushita Electric Works, Ltd. Flame-retardant resin composition, prepreg using same, resin sheet and molded article
JP2007224162A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd Flame-retardant resin composition, prepreg, resin sheet, and molded product
JP2009078209A (en) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd Metal foil bearing resin, method for manufacturing the same, and metal-coated flexible laminated sheet
JP2010138364A (en) * 2008-02-12 2010-06-24 Mitsubishi Gas Chemical Co Inc Resin composition, prepreg and metal foil laminated plate
JP2010111758A (en) * 2008-11-06 2010-05-20 Hitachi Chem Co Ltd Resin composition, prepreg, laminate and printed board
JP2010168487A (en) * 2009-01-23 2010-08-05 Nippon Zeon Co Ltd Polymerizable composition, crosslinked body, and crosslinked resin composite object
WO2011093079A1 (en) * 2010-01-28 2011-08-04 三井化学株式会社 Metal-resin composite
JP2011162615A (en) * 2010-02-05 2011-08-25 Kyocera Chemical Corp Prepreg and metal-clad laminated plate
JP2013018806A (en) * 2011-07-07 2013-01-31 Mitsui Chemicals Inc Resin composition, polyimide metal laminate using the same, and electronic circuit substrate
WO2013105650A1 (en) * 2012-01-11 2013-07-18 三井金属鉱業株式会社 Copper foil with adhesive layer, copper-clad laminate and printed wiring board
JP2013231132A (en) * 2012-04-27 2013-11-14 Mitsui Mining & Smelting Co Ltd Resin composition, metal foil with resin layer, metal clad laminated board, and printed wiring board
JP2014001276A (en) * 2012-06-15 2014-01-09 Asahi Kasei E-Materials Corp Curable resin composition
WO2015125973A1 (en) * 2014-02-24 2015-08-27 矢崎総業株式会社 Molding machine and molding method
WO2015133292A1 (en) * 2014-03-06 2015-09-11 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet, metal-foil-clad laminated plate, and printed wiring board
JP2015224304A (en) * 2014-05-28 2015-12-14 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate sheet, multilayer printed circuit board and semiconductor package
WO2015186589A1 (en) * 2014-06-03 2015-12-10 三井金属鉱業株式会社 Metal foil with releasing resin layer, and printed wiring board
WO2016147984A1 (en) * 2015-03-13 2016-09-22 京セラ株式会社 Resin composition, prepreg, metal-clad laminate, and wiring board
JP2016191029A (en) * 2015-03-31 2016-11-10 新日鉄住金化学株式会社 Polyamide acid composition, polyimide, resin film, and metal-clad laminate
WO2017029917A1 (en) * 2015-08-19 2017-02-23 東洋紡株式会社 Low dielectric adhesive composition
WO2017098969A1 (en) * 2015-12-07 2017-06-15 三井金属鉱業株式会社 Method for manufacturing layered body, and metal foil provided with resin layer

Also Published As

Publication number Publication date
MY195223A (en) 2023-01-11
CN110709476A (en) 2020-01-17
KR20190133787A (en) 2019-12-03
TW201910411A (en) 2019-03-16
JP7219216B2 (en) 2023-02-07
WO2019021862A1 (en) 2019-01-31
TWI739017B (en) 2021-09-11
KR102254544B1 (en) 2021-05-24

Similar Documents

Publication Publication Date Title
JP5463110B2 (en) Coverlay film
JP4495768B2 (en) Insulating sheet and laminated structure
TWI609921B (en) Resin composition, and adhesive film, cover lay film and interlayer adhesive formed therefrom
TWI577729B (en) Epoxy resin composition, adhesive film and cover lay film thereof
JP2009144072A (en) Insulation sheet and laminated structure
JP2010212689A (en) Resin composition for printed wiring board, and vanish, prepreg and metal-clad laminate using the same
TW201116588A (en) Thermosetting resin compositions and articles
JP2010205498A (en) Insulating sheet, and laminated structure
JP2011070930A (en) Multi-layer insulating sheet, and laminated structure
JP7219216B2 (en) Resin composition, insulating layer for wiring board, and laminate
JP2018090664A (en) Resin composition, and thermosetting film prepared therewith
JP2009062436A (en) Insulation sheet and laminated structure
TW201823336A (en) Maleimide resin composition, prepreg, laminated board and printed circuit board for obtaining a metal foil-clad laminated board with excellent flame retarding capability, low water absorption rate, high glass transition temperature and excellent stripping temperature
JP2009161578A (en) Insulating sheet and laminated structure
TWI743501B (en) Resin composition, prepreg for printed circuit and metal-clad laminate
JP2011124075A (en) Insulating sheet, laminated structure, and manufacturing method of laminated structure
JP2009224109A (en) Insulation sheet and laminated structural body
JP2010129968A (en) Insulating sheet, laminated structure, multilayer circuit board, and method of manufacturing laminated structure
TW201817805A (en) Resin composition suitable for rigid-flex board and application thereof capable of satisfying the characteristics of low flow amount and low dust weight loss
JP2009029982A (en) Flame-retardant adhesive resin composition and adhesive film using the same
JP5217865B2 (en) Flame-retardant epoxy resin composition, prepreg, laminate and wiring board
JP2011124078A (en) Insulating sheet, laminated structure, and manufacturing method of laminated structure
JP3821797B2 (en) Resin composition, resin-coated metal foil and multilayer printed wiring board
JP2005209489A (en) Insulation sheet
US10543661B2 (en) Metal foil with resin, and metal-clad laminate and circuit board using same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230126

R150 Certificate of patent or registration of utility model

Ref document number: 7219216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150