WO2019021862A1 - Resin composition, insulating layer for wiring board, and laminate - Google Patents

Resin composition, insulating layer for wiring board, and laminate Download PDF

Info

Publication number
WO2019021862A1
WO2019021862A1 PCT/JP2018/026513 JP2018026513W WO2019021862A1 WO 2019021862 A1 WO2019021862 A1 WO 2019021862A1 JP 2018026513 W JP2018026513 W JP 2018026513W WO 2019021862 A1 WO2019021862 A1 WO 2019021862A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
compound
compounds
resin composition
viscosity resin
Prior art date
Application number
PCT/JP2018/026513
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 大澤
敏文 松島
孝宏 本郷
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN201880037125.8A priority Critical patent/CN110709476A/en
Priority to MYPI2020000925A priority patent/MY195223A/en
Priority to JP2019532512A priority patent/JP7219216B2/en
Priority to KR1020197034222A priority patent/KR102254544B1/en
Publication of WO2019021862A1 publication Critical patent/WO2019021862A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a resin composition, an insulating layer for a wiring board, and a laminate.
  • Printed wiring boards are widely used in electronic devices such as portable electronic devices.
  • the frequency of signals has been increased, and a printed wiring board suitable for such high frequency applications has been required.
  • a low transmission loss is desired for this high frequency printed wiring board in order to enable transmission without deteriorating the quality of high frequency signals.
  • the printed wiring board is provided with a copper foil processed into a wiring pattern and an insulating resin base, but the transmission loss is mainly the conductor loss caused by the copper foil and the dielectric loss caused by the insulating resin base It consists of Therefore, in the copper foil with a resin layer applied to high frequency applications, it is desirable to suppress the dielectric loss caused by the resin layer.
  • the resin layer is required to have excellent dielectric properties, particularly a low dielectric loss tangent.
  • the materials for printed wiring boards are also required to have properties such as flame retardancy, heat resistance, and peel strength with copper foil, etc.
  • Various resin compositions have been proposed to satisfy such requirements.
  • a resin having a low dielectric loss tangent tends to be inferior in flame retardancy in many cases, so that it is desirable to add a flame retardant to the resin composition.
  • halogen compounds are known as such flame retardants, they are not preferable from the environment because of harmful substances such as dioxin generated at the time of incineration.
  • compounds of halogen (for example, bromine etc.) except fluorine have poor dielectric properties.
  • Patent Document 1 (WO 2015/133292) includes (A) polyphenylene ether (PPE) having a number average molecular weight of 500 to 5000, (B) a cyclophosphazene compound containing a vinyl group, (C) A resin composition containing a non-halogen epoxy resin, (D) cyanate ester compound, and (E) filler is disclosed. According to this resin composition, flame retardancy, thermal expansion coefficient, and moisture absorption are disclosed. It is said that a printed wiring board with excellent heat resistance can be provided.
  • PPE polyphenylene ether
  • Patent Document 2 Japanese Patent Laid-Open No. 2009-191252
  • Patent Document 2 includes (A) carboxyl group- and ethylenic unsaturated group-containing urethane resin, (B) phenoxyphosphazene compound, (C) photopolymerization initiator, (D) Disclosed is a flame retardant resin composition comprising an ethylenically unsaturated group-containing compound, (E) a flame retardant component, (F) a thermosetting component, and (G) a thermosetting coagent.
  • the phenoxy phosphazene compound is only positioned as a flame retardant excellent in compatibility with the urethane resin for solder resist, and no study on dielectric loss tangent is made.
  • the resin composition after curing it is desired to have various properties such as low dielectric loss tangent, excellent heat resistance, flame retardancy, handling property (flexibility) and the like.
  • various properties of the resin composition after curing are likely to be deteriorated, and in particular, the flame retardancy and dielectric properties (low dielectric loss tangent) It becomes difficult to achieve both. That is, while improving various properties (such as dielectric properties and flame retardancy) of the resin composition in the cured state (C-stage), the resin composition is also excellent in circuit embedding in the semi-cured state (B-stage). desired.
  • the inventors of the present invention have found that resin compositions containing a predetermined high viscosity resin (A), a predetermined low viscosity resin (B), a predetermined phosphorus compound (C), and a predetermined filler (D) are difficult to obtain. It has been found that, while being excellent in various properties such as flame retardancy, circuit embedding property, and handling property (flexibility), a significantly low dielectric loss tangent can be obtained.
  • an object of the present invention is to provide a resin composition capable of providing significantly lower dielectric loss tangent while having excellent properties such as flame retardancy, circuit embedding property, and handling property (flexibility). is there.
  • cyanate compounds Reacts with cyanate compounds, polyarylene ether compounds, cycloolefin compounds, hydrogenated or non-hydrogenated styrenic elastomers, polyimide compounds, siloxane compounds, polyalkyl compounds, and epoxy compounds, which have a viscosity of 8000 Pa ⁇ s or more at 120 ° C.
  • At least one high viscosity resin (A) selected from the group consisting of compounds having a reaction mechanism which does not generate a hydroxyl group at the time of React with cyanate compounds, polyarylene ether compounds, cycloolefin compounds, hydrogenated or non-hydrogenated styrenic elastomers, polyimide compounds, siloxane compounds, polyalkyl compounds, and epoxy compounds, which have a viscosity of less than 8000 Pa ⁇ s at 120 ° C.
  • At least one low viscosity resin (B) selected from the group consisting of compounds having a reaction mechanism which does not generate a hydroxyl group at the time of The following formula (I): (Wherein n is 3 or 4) And a phosphorus compound (C) represented by A filler (D) which is an organic filler or an inorganic filler;
  • a resin composition comprising
  • a wiring board insulating layer obtained by curing the resin composition.
  • a laminate having a resin layer obtained by curing the resin composition on the surface of a metal layer.
  • the resin composition of the present invention comprises a high viscosity resin (A), a low viscosity resin (B), a phosphorus compound (C), and a filler (D).
  • the high viscosity resin (A) is a resin having a viscosity of 8000 Pa ⁇ s or more at 120 ° C., and cyanate compounds, polyarylene ether compounds, cycloolefin compounds, hydrogenated or non-hydrogenated styrenic elastomers, polyimide compounds, siloxane compounds And at least one member selected from the group consisting of polyalkyl compounds and compounds having a reaction mechanism which does not generate a hydroxyl group when reacting with an epoxy compound.
  • the low viscosity resin (B) has a viscosity of less than 8000 Pa ⁇ s at 120 ° C., and cyanate compounds, polyarylene ether compounds, cycloolefin compounds, hydrogenated or non-hydrogenated styrenic elastomers, polyimide compounds, siloxane compounds, polyalkyls It is one or more selected from the group consisting of a compound and a compound having a reaction mechanism which does not generate a hydroxyl group when reacting with an epoxy compound.
  • the phosphorus compound (C) is a cyclic cyanophenoxy phosphazene compound represented by the above-mentioned formula (I).
  • the filler (D) is an organic filler or an inorganic filler.
  • the circuit embedding can be performed. While being excellent in various properties such as properties and handling properties (flexibility), it can provide significantly lower dielectric loss tangent and flame retardancy after curing.
  • the resin composition of the present invention preferably has a dielectric loss tangent at 10 GHz after curing of less than 0.0030, more preferably less than 0.0025, and still more preferably less than 0.0020.
  • the lower limit value of the dielectric loss tangent is not particularly limited, it is typically 0.0001 or more.
  • High viscosity resin (A) and low viscosity resin (B) The high-viscosity resin (A) contained in the resin composition of the present invention has a viscosity of at least 8000 Pa ⁇ s at 120 ° C., preferably 10000 to 300000 Pa ⁇ s, more preferably 50000 to 200 000 Pa ⁇ s, particularly preferably 70000 to It is 150000 Pa ⁇ s.
  • the low viscosity resin (B) contained in the resin composition of the present invention has a viscosity at 120 ° C.
  • the “viscosity at 120 ° C.” referred to in the present specification refers to a JIS-Rheometer (dynamic visco-elasticity measuring device) (HAAKE MARS manufactured by Thermo Scientific) with respect to a semi-cured state (B-stage).
  • HAAKE MARS dynamic visco-elasticity measuring device
  • K7117 it shall measure by the following methods. That is, a resin sample of 10 mm in diameter ⁇ 100 ⁇ m in thickness is placed between a plate of 10 mm in diameter and a flat plate of a torque measurement portion of 10 mm in diameter, and the temperature is raised at an angular velocity of 6.2832 rad / s and a heating rate of 2 ° C./min. The viscosity at 120 ° C. was measured. The viscosity was measured three times and an average value of three times was adopted.
  • the high-viscosity resin (A) and the low-viscosity resin (B) are each independently a cyanate compound, a polyarylene ether compound, a cycloolefin compound, a hydrogenated or non-hydrogenated styrenic elastomer, a polyimide compound, a siloxane compound, a polyalkyl It is selected from the group consisting of a compound and a compound having a reaction mechanism which does not generate a hydroxyl group when reacting with an epoxy compound. These compounds either provide low dielectric properties (e.g., a dielectric loss tangent of less than 0.005 at 10 Gz) either as such (for polymers) or when cured with the addition of curing agents (for monomers). It is a thing.
  • the high viscosity resin (A) and / or the low viscosity resin (B) can comprise a cyanate compound.
  • the low viscosity resin (B) contains a cyanate compound.
  • the cyanate compound can be any organic compound containing a cyanato group or a triazine skeleton, and is not particularly limited.
  • the functional number of the compound containing a cyanate group may be monofunctional or polyfunctional and is not particularly limited, but from the viewpoint of crosslinking and curing, polyfunctional is preferable for resin-coated copper foil (RCC).
  • Examples of compounds containing a cyanate group include phenol novolac cyanate, cresol novolac cyanate, dicyclopentadiene novolac cyanate, biphenyl novolac cyanate, bisphenol A dicyanate, bisphenol F dicyanate, dicyclopentadiene dicyanate, and biphenyl diphenol. Cyanate etc. are mentioned. These cyanate compounds may be used alone or in combination of two or more.
  • a cyanate compound containing a triazine skeleton there is no particular limitation as long as it is a compound containing a skeleton in which one or two or more compounds of a cyanate compound containing a cyanato group are trimerized.
  • the triazine skeleton may or may not contain a reactive functional group, but it is preferable for the resin-coated copper foil (RCC) to be easy to use if it contains a reactive functional group from the viewpoint of crosslinking and curing.
  • the high viscosity resin (A) and / or the low viscosity resin (B) can comprise a polyarylene ether compound, preferably a polyphenylene ether compound.
  • the low viscosity resin (B) more preferably contains a polyphenylene ether compound.
  • the polyarylene ether compound or the polyphenylene ether compound has the following formula: (Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, n is a repeating number, and is typically 4 to 1000) is there) It is preferable that it is a compound which contains frame
  • polyphenylene ether compounds used for the low viscosity resin (B) include styrene derivatives of polyphenylene ether oligomers, terminal hydroxyl group-modified polyphenylene ether oligomers, terminal methacryl-modified polyphenylene ether oligomers, terminal glycidyl ether-modified polyphenylene ether oligomers and the like.
  • examples of products of styrene derivatives of polyphenylene ether oligomers include OPE-2St-1200 and OPE-2St-2200 manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • products of terminal hydroxyl group-modified polyphenylene ether oligomers include SA-90 and SA-120 manufactured by SABIC.
  • SA-9000 manufactured by SABIC can be mentioned.
  • the polyphenylene ether compound used for the low viscosity resin (B) has the following formula: (Wherein, n is 1 to 30, m is 1 to 30) And a polyphenylene ether resin having a number average molecular weight of less than 3,000, and a more preferable number average molecular weight is 800 to 2800.
  • Examples of products of polyphenylene ether resin satisfying the above formula include OPE-2St-1200 and OPE-2St-2200 manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • the number average molecular weight may be a value measured in terms of polystyrene by GPC (gel permeation chromatography) method.
  • the high viscosity resin (A) and / or the low viscosity resin (B) may contain a cycloolefin compound.
  • the cycloolefin compound has the following formula: (Wherein, R 1, R 2, R 3 and R 4 are each independently —H or an alkyl group having 1 to 5 carbon atoms, and n is 1 to 3000)
  • the high viscosity resin (A) and / or the low viscosity resin (B) may contain a styrenic elastomer.
  • the high viscosity resin (A) more preferably contains a styrenic elastomer.
  • the styrene-based elastomer may be either hydrogenated or non-hydrogenated.
  • the styrene-based elastomer is a compound containing a site derived from styrene and is a polymer which may contain a site derived from a compound having a polymerizable unsaturated group such as an olefin other than styrene.
  • the double bond may be hydrogenated or may not be hydrogenated. It may be.
  • styrene-based elastomers examples include TR manufactured by JSR Corporation, SIS manufactured by JSR Corporation, Tuftec (registered trademark) manufactured by Asahi Kasei Corporation, Septon (registered trademark) manufactured by Kuraray Co., Ltd., Hibler (registered trademark) manufactured by Kuraray Co., etc. Can be mentioned.
  • the high viscosity resin (A) and / or the low viscosity resin (B) can contain a polyimide compound.
  • the polyimide compound is a compound containing an imide skeleton, and the skeleton of the precursor acid anhydride and the amine may be any skeleton.
  • the high viscosity resin (A) and / or the low viscosity resin (B) may contain a siloxane compound.
  • the siloxane compound has the following formula: (Wherein, R 1 and R 2 are each independently an alkyl group, a phenyl group or a siloxane skeleton branched to a side chain, and n is 1 to 100) It is typical that it is a compound containing a siloxane skeleton represented by the above, but it is preferable to contain a skeleton or a functional group other than siloxane in terms of compatibility with other resins and reactivity. As an example of a siloxane compound, silicone oil etc. are mentioned.
  • the high viscosity resin (A) and / or the low viscosity resin (B) may contain a polyalkyl compound.
  • the polyalkyl compound has the following formula: (Wherein, n is 2 to 100,000) Although it is typical that it is a compound containing the alkyl skeleton represented by these, skeletons other than an alkyl skeleton can also be included arbitrarily. Examples of polyalkyl compounds, polyethylene, polypropylene, olefin copolymers such as manufactured by Mitsui Chemicals, Inc. APEL TM, include long-chain alkyl epoxy.
  • the high viscosity resin (A) and / or the low viscosity resin (B) can include a compound having a reaction mechanism which does not generate a hydroxyl group when reacting with the epoxy compound.
  • the low viscosity resin (B) more preferably contains the above-mentioned compound.
  • examples of the above compounds include imidazole, active esters, carbodiimides and the like, and carbodiimides are particularly preferable from the viewpoint of reactivity.
  • the high-viscosity resin (A) and the low-viscosity resin (B) can use the same or different resins except for viscosity, but as the high-viscosity resin (A), hydrogenated or non-hydrogenated styrenic elastomers It is particularly preferable to select the polyarylene ether compound as the low viscosity resin (B). And it is more preferable to select a polyphenylene ether compound as a polyarylene ether compound.
  • content of high viscosity resin (A) is high viscosity
  • the total amount of the resin (A), low viscosity resin (B) and phosphorus compound (C) is 100 parts by weight, preferably 10 to 80 parts by weight, more preferably 15 to 75 parts by weight, and still more preferably It is 20 to 70 parts by weight, particularly preferably 25 to 65 parts by weight, and most preferably 30 to 60 parts by weight.
  • the content of the high viscosity resin (A) described above is particularly preferable when the high viscosity resin (A) is a hydrogenated or non-hydrogenated styrenic elastomer and the low viscosity resin (B) is a polyphenylene ether compound. apply.
  • the content of the low viscosity resin (B) in the resin composition of the present invention is 10 parts by weight based on the total amount of the high viscosity resin (A), the low viscosity resin (B) and the phosphorus compound (C).
  • the amount is preferably about 50 parts by weight, more preferably 15 to 45 parts by weight, still more preferably 15 to 40 parts by weight, particularly preferably 20 to 40 parts by weight, and most preferably 20 to 35 parts by weight.
  • the content of the low viscosity resin (B) described above is particularly preferable when the high viscosity resin (A) is a hydrogenated or non-hydrogenated styrenic elastomer and the low viscosity resin (B) is a polyphenylene ether compound. apply.
  • FP-300B manufactured by Fushimi Pharmaceutical Co., Ltd. is mentioned.
  • the content of the phosphorus compound (C) in the resin composition of the present invention is 10 to 50 based on the total amount of the high viscosity resin (A), the low viscosity resin (B) and the phosphorus compound (C) as 100 parts by weight. It is preferable that it is part by weight, more preferably 15 to 45 parts by weight, still more preferably 15 to 40 parts by weight, particularly preferably 18 to 38 parts by weight, and most preferably 20 to 35 parts by weight.
  • the content of the phosphorus compound (C) described above is particularly preferable when the high viscosity resin (A) is a hydrogenated or non-hydrogenated styrenic elastomer and the low viscosity resin (B) is a polyphenylene ether compound. apply.
  • filler refers to one that does not compatibilize in the resin composition and is present in the resin composition as a filler single phase.
  • the filler may or may not have a surface treatment layer on the surface of the filler, and the surface treatment layer may be or may be compatible with the resin component in the resin composition. You do not have to.
  • the filler (D) contained in the resin composition of the present invention is not particularly limited, and various fillers generally used for addition to the resin composition can be used. Therefore, the filler may be either an organic filler or an inorganic filler, but an inorganic filler is preferred from the viewpoint of electrical properties and flame retardancy.
  • inorganic fillers examples include silica, talc, boron nitride (BN) and the like.
  • the inorganic filler is not particularly limited as long as it can be dispersed in the resin composition, but silica is preferable from the viewpoint of dispersibility and dielectric properties.
  • the organic filler is not particularly limited as long as it is incompatible with the high-viscosity resin (A) and the low-viscosity resin (B), but a fluorine-based organic filler is preferable from the viewpoint of dielectric properties and flame retardancy .
  • the filler (D) is preferably an inorganic filler.
  • the average particle size D50 of the inorganic filler is preferably 0.1 to 3 ⁇ m, more preferably 0.3 to 1.5 ⁇ m.
  • silica particles for example, spherical silica particles
  • the filler (D) may be in any form such as crushed particles, spherical particles, core-shell particles, hollow particles and the like.
  • the content of the filler (D) in the resin composition of the present invention is 5 to 200 parts by weight based on 100 parts by weight of the total of high viscosity resin (A), low viscosity resin (B) and phosphorus compound (C). It is preferably part, more preferably 25 to 190 parts by weight, still more preferably 45 to 180 parts by weight, particularly preferably 90 to 170 parts by weight, and most preferably 110 to 160 parts by weight.
  • the content of the above-described filler (D) is particularly preferably applied to the case where the high viscosity resin (A) is a hydrogenated or non-hydrogenated styrenic elastomer and the low viscosity resin (B) is a polyphenylene ether compound .
  • the resin composition of the present invention is excellent in various properties such as circuit embedding property and handling property (flexibility) at the time of circuit formation, but exhibits low dielectric loss tangent and excellent flame retardancy after curing, so it is suitable for high frequency applications It is particularly suitable for the insulating layer of printed wiring boards of That is, it is preferable that the resin composition of this invention is used for the insulating layer for wiring boards. Therefore, according to a preferred embodiment of the present invention, there is provided a wiring board insulating layer obtained by curing a resin composition. Moreover, according to another preferable aspect of this invention, the laminated body provided with the resin layer formed by hardening a resin composition on the surface of a metal layer is provided.
  • ⁇ High viscosity resin (A)> MP-10 (hydrogenated styrenic elastomer, manufactured by Asahi Kasei Corporation, viscosity at 120 ° C .: 75400 Pa ⁇ s) HG-252 (SEEPS-OH: polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene, modified terminal hydroxyl group, manufactured by Kuraray Co., Ltd., viscosity at 120 ° C .: 1,0060 Pa ⁇ s) ⁇ Low viscosity resin (B)> V-03 (carbodiimide resin, manufactured by Nisshinbo Chemical Co., Ltd., viscosity at 120 ° C .: less than 8000 Pa ⁇ s) OPE-2St-1200 (Styrene derivative of difunctional polyphenylene ether oligomer, manufactured by Mitsubishi Gas Chemical Co., Ltd., number average molecular weight about 1200, viscosity at
  • the dielectric constant Dk and the dielectric loss tangent Df at 10 GHz were measured for the resin film alone by the perturbation-type cavity resonator method. This measurement was performed according to JIS R 1641 using a measuring device (a resonator made by KEYCOM and a network analyzer made by KEYSIGHT) after cutting the resin film alone according to the sample size of the resonator. The measured Df values were rated based on the following criteria.
  • Tg Glass transition temperature
  • DMA Dynamic Mechanical Analysis
  • Tg ⁇ Glass transition temperature (Tg) evaluation criteria> -Evaluation A: Tg is 170 ° C or more-Evaluation B: Tg is 150 ° C or more and less than 170 ° C-Evaluation C: Tg is 130 ° C or more and less than 150 ° C-Evaluation D: Tg is less than 130 ° C
  • Resin flow Four sheet pieces of a size of 10 cm ⁇ 10 cm were cut out from the resin-coated copper foil (resin layer thickness 130 ⁇ m) in a semi-cured state (B-stage). These four sheet pieces were laminated so that the resin-copper foil layer was alternately made into a sample. The obtained sample was heat-pressed at a pressure of 14 kgf / cm 2 at 170 ° C. for 10 minutes using a heat press. The resin flow was measured by dividing the weight of the resin protruding from the original size area of 10 cm ⁇ 10 cm by the weight of the original resin and multiplying the obtained value by 100. The resin flow values measured were rated according to the following criteria.
  • Circuit embedding property A resin-deposited copper foil (resin layer thickness 130 ⁇ m) in a semi-cured state (B-stage) is laminated on a substrate on which a circuit pattern (circuit height 35 ⁇ m) is formed, and insulation made of resin layer A laminate having a circuit pattern embedded in the layer was obtained.
  • the resulting laminate confirm (i) whether or not the void exists, and (ii) whether or not the required insulating layer thickness (specifically, within 95 ⁇ m ⁇ 10% from the top of the circuit) can be secured.
  • the rating was evaluated based on the following criteria. ⁇ Embedability evaluation criteria> -Evaluation A: The required insulating layer thickness can be secured, and no void exists.
  • -Evaluation B There is no void, but the required insulating layer thickness can not be secured, or the insulating layer thickness can be secured but a void is present.
  • -Evaluation D The required insulating layer thickness can not be secured, and voids are present.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a resin composition which is excellent in terms of various properties including flame retardancy, circuit embedding property, and handleability (flexibility) and which nevertheless can bring about a significantly low dielectric dissipation factor. The resin composition comprises a given high-viscosity resin (A) having a viscosity at 120°C of 8,000 Pa∙s or higher, a given low-viscosity resin (B) having a viscosity at 120°C less than 8,000 Pa∙s, a phosphorus compound (C) represented by the formula (wherein n is 3 or 4), and a filler (D) which is an organic filler or inorganic filler.

Description

樹脂組成物、配線板用絶縁層及び積層体Resin composition, insulating layer for wiring board and laminate
 本発明は、樹脂組成物、配線板用絶縁層及び積層体に関するものである。 The present invention relates to a resin composition, an insulating layer for a wiring board, and a laminate.
 プリント配線板は携帯用電子機器等の電子機器に広く用いられている。特に、近年の携帯用電子機器等の高機能化に伴って信号の高周波化が進んでおり、こうした高周波用途に適したプリント配線板が求められるようになっている。この高周波用プリント配線板には、高周波信号の質を劣化させずに伝送可能とするために、伝送損失の低いものが望まれる。プリント配線板は配線パターンに加工された銅箔と絶縁樹脂基材とを備えたものであるが、伝送損失は、主として銅箔に起因する導体損失と、絶縁樹脂基材に起因する誘電体損失とからなる。したがって、高周波用途に適用する樹脂層付銅箔においては、樹脂層に起因する誘電体損失を抑制することが望ましい。このためには、樹脂層には優れた誘電特性、特に低い誘電正接が求められる。 Printed wiring boards are widely used in electronic devices such as portable electronic devices. In particular, with the recent advancement of functions of portable electronic devices and the like, the frequency of signals has been increased, and a printed wiring board suitable for such high frequency applications has been required. A low transmission loss is desired for this high frequency printed wiring board in order to enable transmission without deteriorating the quality of high frequency signals. The printed wiring board is provided with a copper foil processed into a wiring pattern and an insulating resin base, but the transmission loss is mainly the conductor loss caused by the copper foil and the dielectric loss caused by the insulating resin base It consists of Therefore, in the copper foil with a resin layer applied to high frequency applications, it is desirable to suppress the dielectric loss caused by the resin layer. For this purpose, the resin layer is required to have excellent dielectric properties, particularly a low dielectric loss tangent.
 プリント配線板用材料には、難燃性、耐熱性及び銅箔等とのピール強度等の特性も求められており、こうした要求を満たすべく様々な樹脂組成物が提案されている。特に、誘電正接が低い樹脂は難燃性に劣るものが多い傾向があることから、樹脂組成物には難燃剤が添加されることが望ましい。かかる難燃剤としてハロゲン系化合物が知られているが、焼却時に発生するダイオキシン等の有害物質のため環境上好ましくない。また、フッ素を除くハロゲン(例えば臭素等)の化合物は誘電特性が悪い。 The materials for printed wiring boards are also required to have properties such as flame retardancy, heat resistance, and peel strength with copper foil, etc. Various resin compositions have been proposed to satisfy such requirements. In particular, a resin having a low dielectric loss tangent tends to be inferior in flame retardancy in many cases, so that it is desirable to add a flame retardant to the resin composition. Although halogen compounds are known as such flame retardants, they are not preferable from the environment because of harmful substances such as dioxin generated at the time of incineration. In addition, compounds of halogen (for example, bromine etc.) except fluorine have poor dielectric properties.
 そこで、ハロゲンフリーの難燃剤であるシクロホスファゼン化合物を含有させた樹脂組成物が提案されている。例えば、特許文献1(国際公開第2015/133292号)には、(A)数平均分子量が500~5000であるポリフェニレンエーテル(PPE)、(B)ビニル基を含有するシクロホスファゼン化合物、(C)非ハロゲン系エポキシ樹脂、(D)シアン酸エステル化合物、及び(E)充填剤を含有する樹脂組成物が開示されており、この樹脂組成物によれば、難燃性、熱膨張係数、及び吸湿時の耐熱性に優れたプリント配線板を提供できるとされている。 Therefore, a resin composition containing a cyclophosphazene compound, which is a halogen-free flame retardant, has been proposed. For example, Patent Document 1 (WO 2015/133292) includes (A) polyphenylene ether (PPE) having a number average molecular weight of 500 to 5000, (B) a cyclophosphazene compound containing a vinyl group, (C) A resin composition containing a non-halogen epoxy resin, (D) cyanate ester compound, and (E) filler is disclosed. According to this resin composition, flame retardancy, thermal expansion coefficient, and moisture absorption are disclosed. It is said that a printed wiring board with excellent heat resistance can be provided.
 一方、フレキシブルプリント配線板用のソルダーレジストとして好適な難燃性樹脂組成物として、シアノフェノキシ変性ホスファゼンを含有する樹脂組成物が知られている。例えば、特許文献2(特開2009-191252号公報)には、(A)カルボキシル基及びエチレン性不飽和基含有ウレタン樹脂、(B)フェノキシホスファゼン化合物、(C)光重合開始剤、(D)エチレン性不飽和基含有化合物、(E)難燃成分、(F)熱硬化成分、及び(G)熱硬化助剤を含む、難燃性樹脂組成物が開示されている。この文献において、フェノキシホスファゼン化合物はソルダーレジスト用のウレタン樹脂との相溶性に優れる難燃剤として位置付けられているにすぎず、誘電正接に関する検討は一切なされていない。 On the other hand, resin compositions containing cyanophenoxy-modified phosphazene are known as flame retardant resin compositions suitable as solder resists for flexible printed wiring boards. For example, Patent Document 2 (Japanese Patent Laid-Open No. 2009-191252) includes (A) carboxyl group- and ethylenic unsaturated group-containing urethane resin, (B) phenoxyphosphazene compound, (C) photopolymerization initiator, (D) Disclosed is a flame retardant resin composition comprising an ethylenically unsaturated group-containing compound, (E) a flame retardant component, (F) a thermosetting component, and (G) a thermosetting coagent. In this document, the phenoxy phosphazene compound is only positioned as a flame retardant excellent in compatibility with the urethane resin for solder resist, and no study on dielectric loss tangent is made.
国際公開第2015/133292号International Publication No. 2015/133292 特開2009-191252号公報JP, 2009-191252, A
 プリント配線板製造において回路上への絶縁層の形成は、樹脂付銅箔を回路が形成された基板に積層して、絶縁層としての樹脂層で回路を埋め込むことにより行われる。しかしながら、この作業は、樹脂が半硬化状態(B-stage)で行われるため、樹脂の流動性(レジンフロー)が高すぎると、樹脂の流出により必要な絶縁層厚を確保できなくなる反面、樹脂の流動性(レジンフロー)が低すぎると、絶縁層に望ましくないボイド(空隙)が生じたまま硬化することとなる。すなわち、レジンフローが高すぎても低すぎても回路埋め込み性が低下するため、こうした特性の変動を踏まえた極めて慎重な組成設計が望まれる。一方、硬化後(C-stage)の樹脂組成物においては、低い誘電正接、優れた耐熱性、難燃性、ハンドリング性(柔軟性)等の諸性能を具備していることが望まれる。しかしながら、回路埋め込み性やハンドリング性(柔軟性)の向上を重視した組成設計を試みると、硬化後の樹脂組成物の諸特性が悪くなりやすい、特に難燃性と誘電特性(低誘電正接)の両立が難しくなる。すなわち、硬化状態(C-stage)の樹脂組成物の諸特性(誘電特性及び難燃性など)を改善しながら、半硬化状態(B-stage)における回路埋め込み性にも優れた樹脂組成物が望まれる。 In printed wiring board manufacture, formation of the insulating layer on a circuit is performed by laminating | stacking copper foil with resin on the board | substrate with which the circuit was formed, and embedding a circuit with the resin layer as an insulating layer. However, since this work is carried out in a semi-cured state (B-stage), if the resin flowability (resin flow) is too high, it is not possible to ensure the necessary insulating layer thickness due to the outflow of the resin, but the resin If the fluidity (resin flow) of the resin is too low, the insulating layer will be cured while having an undesirable void (void). That is, if the resin flow is too high or too low, the circuit embedding property is reduced, so it is desirable to design the composition very carefully in consideration of the fluctuation of the characteristics. On the other hand, in the resin composition after curing (C-stage), it is desired to have various properties such as low dielectric loss tangent, excellent heat resistance, flame retardancy, handling property (flexibility) and the like. However, when attempting to design a composition that emphasizes the improvement of the circuit embedding property and the handling property (flexibility), various properties of the resin composition after curing are likely to be deteriorated, and in particular, the flame retardancy and dielectric properties (low dielectric loss tangent) It becomes difficult to achieve both. That is, while improving various properties (such as dielectric properties and flame retardancy) of the resin composition in the cured state (C-stage), the resin composition is also excellent in circuit embedding in the semi-cured state (B-stage). desired.
 本発明者は、今般、所定の高粘度樹脂(A)、所定の低粘度樹脂(B)、所定のリン系化合物(C)、及び所定の充填剤(D)を含む樹脂組成物が、難燃性、回路埋め込み性、ハンドリング性(柔軟性)等の諸特性に優れながら、有意に低い誘電正接をもたらすとの知見を得た。 The inventors of the present invention have found that resin compositions containing a predetermined high viscosity resin (A), a predetermined low viscosity resin (B), a predetermined phosphorus compound (C), and a predetermined filler (D) are difficult to obtain. It has been found that, while being excellent in various properties such as flame retardancy, circuit embedding property, and handling property (flexibility), a significantly low dielectric loss tangent can be obtained.
 したがって、本発明の目的は、難燃性、回路埋め込み性、ハンドリング性(柔軟性)等の諸特性に優れながら、有意に低い誘電正接をもたらすことが可能な、樹脂組成物を提供することにある。 Therefore, an object of the present invention is to provide a resin composition capable of providing significantly lower dielectric loss tangent while having excellent properties such as flame retardancy, circuit embedding property, and handling property (flexibility). is there.
 本発明の一態様によれば、
 120℃における粘度が8000Pa・s以上である、シアネート化合物、ポリアリーレンエーテル化合物、シクロオレフィン化合物、水添又は非水添スチレン系エラストマー、ポリイミド化合物、シロキサン化合物、ポリアルキル化合物、並びにエポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物からなる群から選択される1種以上の高粘度樹脂(A)と、
 120℃における粘度が8000Pa・s未満である、シアネート化合物、ポリアリーレンエーテル化合物、シクロオレフィン化合物、水添又は非水添スチレン系エラストマー、ポリイミド化合物、シロキサン化合物、ポリアルキル化合物、並びにエポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物からなる群から選択される1種以上の低粘度樹脂(B)と、
 下記式(I):
Figure JPOXMLDOC01-appb-C000006
(式中、nは3又は4である)
で表されるリン系化合物(C)と、
 有機充填剤又は無機充填剤である充填剤(D)と、
を含む、樹脂組成物が提供される。
According to one aspect of the invention:
Reacts with cyanate compounds, polyarylene ether compounds, cycloolefin compounds, hydrogenated or non-hydrogenated styrenic elastomers, polyimide compounds, siloxane compounds, polyalkyl compounds, and epoxy compounds, which have a viscosity of 8000 Pa · s or more at 120 ° C. At least one high viscosity resin (A) selected from the group consisting of compounds having a reaction mechanism which does not generate a hydroxyl group at the time of
React with cyanate compounds, polyarylene ether compounds, cycloolefin compounds, hydrogenated or non-hydrogenated styrenic elastomers, polyimide compounds, siloxane compounds, polyalkyl compounds, and epoxy compounds, which have a viscosity of less than 8000 Pa · s at 120 ° C. At least one low viscosity resin (B) selected from the group consisting of compounds having a reaction mechanism which does not generate a hydroxyl group at the time of
The following formula (I):
Figure JPOXMLDOC01-appb-C000006
(Wherein n is 3 or 4)
And a phosphorus compound (C) represented by
A filler (D) which is an organic filler or an inorganic filler;
There is provided a resin composition comprising
 本発明の他の一態様によれば、前記樹脂組成物を硬化させてなる、配線板用絶縁層が提供される。 According to another aspect of the present invention, there is provided a wiring board insulating layer obtained by curing the resin composition.
 本発明の他の一態様によれば、前記樹脂組成物を硬化させてなる樹脂層を金属層の表面に備えた、積層体が提供される。 According to another aspect of the present invention, there is provided a laminate having a resin layer obtained by curing the resin composition on the surface of a metal layer.
 樹脂組成物
 本発明の樹脂組成物は、高粘度樹脂(A)と、低粘度樹脂(B)と、リン系化合物(C)と、充填剤(D)とを含む。高粘度樹脂(A)は、120℃における粘度が8000Pa・s以上である樹脂であり、シアネート化合物、ポリアリーレンエーテル化合物、シクロオレフィン化合物、水添又は非水添スチレン系エラストマー、ポリイミド化合物、シロキサン化合物、ポリアルキル化合物、並びにエポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物からなる群から選択される1種以上である。低粘度樹脂(B)は、120℃における粘度が8000Pa・s未満であり、シアネート化合物、ポリアリーレンエーテル化合物、シクロオレフィン化合物、水添又は非水添スチレン系エラストマー、ポリイミド化合物、シロキサン化合物、ポリアルキル化合物、並びにエポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物からなる群から選択される1種以上である。リン系化合物(C)は、前述した式(I)で表される環状シアノフェノキシホスファゼン化合物である。充填剤(D)は有機充填剤又は無機充填剤である。このように、所定の高粘度樹脂(A)、所定の低粘度樹脂(B)、所定のリン系化合物(C)、及び所定の充填剤(D)を含む樹脂組成物によれば、回路埋め込み性及びハンドリング性(柔軟性)等の諸特性に優れながら、硬化後には有意に低い誘電正接と難燃性をもたらすことができる。例えば、本発明の樹脂組成物は、硬化後の10GHzにおける誘電正接が、好ましくは0.0030未満、より好ましくは0.0025未満、さらに好ましくは0.0020未満である。誘電正接の下限値は特に限定されないが、典型的には0.0001以上である。
Resin Composition The resin composition of the present invention comprises a high viscosity resin (A), a low viscosity resin (B), a phosphorus compound (C), and a filler (D). The high viscosity resin (A) is a resin having a viscosity of 8000 Pa · s or more at 120 ° C., and cyanate compounds, polyarylene ether compounds, cycloolefin compounds, hydrogenated or non-hydrogenated styrenic elastomers, polyimide compounds, siloxane compounds And at least one member selected from the group consisting of polyalkyl compounds and compounds having a reaction mechanism which does not generate a hydroxyl group when reacting with an epoxy compound. The low viscosity resin (B) has a viscosity of less than 8000 Pa · s at 120 ° C., and cyanate compounds, polyarylene ether compounds, cycloolefin compounds, hydrogenated or non-hydrogenated styrenic elastomers, polyimide compounds, siloxane compounds, polyalkyls It is one or more selected from the group consisting of a compound and a compound having a reaction mechanism which does not generate a hydroxyl group when reacting with an epoxy compound. The phosphorus compound (C) is a cyclic cyanophenoxy phosphazene compound represented by the above-mentioned formula (I). The filler (D) is an organic filler or an inorganic filler. Thus, according to the resin composition containing the predetermined high viscosity resin (A), the predetermined low viscosity resin (B), the predetermined phosphorus compound (C), and the predetermined filler (D), the circuit embedding can be performed. While being excellent in various properties such as properties and handling properties (flexibility), it can provide significantly lower dielectric loss tangent and flame retardancy after curing. For example, the resin composition of the present invention preferably has a dielectric loss tangent at 10 GHz after curing of less than 0.0030, more preferably less than 0.0025, and still more preferably less than 0.0020. Although the lower limit value of the dielectric loss tangent is not particularly limited, it is typically 0.0001 or more.
 高粘度樹脂(A)及び低粘度樹脂(B)
 本発明の樹脂組成物に含まれる高粘度樹脂(A)は120℃における粘度が8000Pa・s以上であり、好ましくは10000~300000Pa・s、より好ましくは50000~200000Pa・s、特に好ましくは70000~150000Pa・sである。一方、本発明の樹脂組成物に含まれる低粘度樹脂(B)は、120℃における粘度が8000Pa・s未満であり、好ましくは5000Pa・s以下、より好ましくは1000Pa・s以下、特に好ましくは0.0001~10Pa・sである。このように2種類の樹脂を混合することで、望ましいレジンフローを実現して回路形成時の回路埋め込み性を向上するとともに、ハンドリング性(柔軟性)をも向上させることができる。
High viscosity resin (A) and low viscosity resin (B)
The high-viscosity resin (A) contained in the resin composition of the present invention has a viscosity of at least 8000 Pa · s at 120 ° C., preferably 10000 to 300000 Pa · s, more preferably 50000 to 200 000 Pa · s, particularly preferably 70000 to It is 150000 Pa · s. On the other hand, the low viscosity resin (B) contained in the resin composition of the present invention has a viscosity at 120 ° C. of less than 8000 Pa · s, preferably 5000 Pa · s or less, more preferably 1000 Pa · s or less, particularly preferably 0 It is .0001 to 10 Pa · s. By mixing two types of resins in this manner, it is possible to realize a desirable resin flow to improve the circuit embedding property at the time of circuit formation, and to improve the handling property (flexibility).
 なお、本明細書において言及される「120℃における粘度」は、半硬化状態(B-stage)に対して、レオメーター(動的粘弾性測定装置)(Thermo Scientific製HAAKE MARS)を用い、JIS K 7117に準拠し、以下の方法にて測定するものとする。すなわち、直径10mmのプレート及び直径10mmのトルク測定部の平板間に直径10mm×厚み100μmの樹脂サンプルを設置し、角速度6.2832rad/s、昇温速度2℃/minで昇温させた際の120℃における粘度を測定した。粘度の測定を3回行い、3回の平均値を採用した。 The “viscosity at 120 ° C.” referred to in the present specification refers to a JIS-Rheometer (dynamic visco-elasticity measuring device) (HAAKE MARS manufactured by Thermo Scientific) with respect to a semi-cured state (B-stage). According to K7117, it shall measure by the following methods. That is, a resin sample of 10 mm in diameter × 100 μm in thickness is placed between a plate of 10 mm in diameter and a flat plate of a torque measurement portion of 10 mm in diameter, and the temperature is raised at an angular velocity of 6.2832 rad / s and a heating rate of 2 ° C./min. The viscosity at 120 ° C. was measured. The viscosity was measured three times and an average value of three times was adopted.
 高粘度樹脂(A)及び低粘度樹脂(B)は、それぞれ独立して、シアネート化合物、ポリアリーレンエーテル化合物、シクロオレフィン化合物、水添又は非水添スチレン系エラストマー、ポリイミド化合物、シロキサン化合物、ポリアルキル化合物、並びにエポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物からなる群から選択される。これらの化合物は、それ自体で(ポリマーの場合)又は硬化剤が添加されて硬化された場合(モノマーの場合)に、いずれも低い誘電性質(例えば10Gzにおいて0.005以下の誘電正接)をもたらすものである。 The high-viscosity resin (A) and the low-viscosity resin (B) are each independently a cyanate compound, a polyarylene ether compound, a cycloolefin compound, a hydrogenated or non-hydrogenated styrenic elastomer, a polyimide compound, a siloxane compound, a polyalkyl It is selected from the group consisting of a compound and a compound having a reaction mechanism which does not generate a hydroxyl group when reacting with an epoxy compound. These compounds either provide low dielectric properties (e.g., a dielectric loss tangent of less than 0.005 at 10 Gz) either as such (for polymers) or when cured with the addition of curing agents (for monomers). It is a thing.
 本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)はシアネート化合物を含むことができる。とりわけ、低粘度樹脂(B)がシアネート化合物を含むのがより好ましい。いずれにしても、シアネート化合物は、シアナト基又はトリアジン骨格を含むあらゆる有機化合物であることができ、特に限定されない。シアネート基を含む化合物の官能数は単官能でも多官能でもよく特に限定されないが、架橋硬化の観点から多官能の方が樹脂付銅箔(RCC)に使いやすく好ましい。シアネート基を含む化合物の例としては、フェノールノボラック型シアネート、クレゾールノボラック型シアネート、ジシクロペンタジエンノボラック型シアネート、ビフェニルノボラック型シアネート、ビスフェノールA型ジシアネート、ビスフェノールF型ジシアネート、ジシクロペンタジエンジシアネート、ビフェニルジシアネート等が挙げられる。これらのシアネート化合物は1種で用いてもよいし、2種以上を併用してもよい。一方、トリアジン骨格を含むシアネート化合物の場合、シアナト基を含むシアネート化合物の1種又は2種以上の化合物が三量化した骨格を含む化合物であれば特に限定はされない。トリアジン骨格は、反応性官能基を含んでいても含んでいなくてもよいが、架橋硬化の観点で反応性官能基を含んでいる方が樹脂付銅箔(RCC)に使いやすく好ましい。 According to a preferred embodiment of the present invention, the high viscosity resin (A) and / or the low viscosity resin (B) can comprise a cyanate compound. In particular, it is more preferable that the low viscosity resin (B) contains a cyanate compound. In any case, the cyanate compound can be any organic compound containing a cyanato group or a triazine skeleton, and is not particularly limited. The functional number of the compound containing a cyanate group may be monofunctional or polyfunctional and is not particularly limited, but from the viewpoint of crosslinking and curing, polyfunctional is preferable for resin-coated copper foil (RCC). Examples of compounds containing a cyanate group include phenol novolac cyanate, cresol novolac cyanate, dicyclopentadiene novolac cyanate, biphenyl novolac cyanate, bisphenol A dicyanate, bisphenol F dicyanate, dicyclopentadiene dicyanate, and biphenyl diphenol. Cyanate etc. are mentioned. These cyanate compounds may be used alone or in combination of two or more. On the other hand, in the case of a cyanate compound containing a triazine skeleton, there is no particular limitation as long as it is a compound containing a skeleton in which one or two or more compounds of a cyanate compound containing a cyanato group are trimerized. The triazine skeleton may or may not contain a reactive functional group, but it is preferable for the resin-coated copper foil (RCC) to be easy to use if it contains a reactive functional group from the viewpoint of crosslinking and curing.
 本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)はポリアリーレンエーテル化合物、好ましくはポリフェニレンエーテル化合物を含むことができる。とりわけ、低粘度樹脂(B)がポリフェニレンエーテル化合物を含むのがより好ましい。いずれにしても、ポリアリーレンエーテル化合物ないしポリフェニレンエーテル化合物は下記式:
Figure JPOXMLDOC01-appb-C000007
(式中、R、R、R及びRはそれぞれ独立して水素原子又は炭素数1~3の炭化水素基であり、nは繰り返し数であり、典型的には4~1000である)
で表される骨格を分子中に含む化合物であるのが好ましい。低粘度樹脂(B)に用いるポリフェニレンエーテル化合物の例としては、ポリフェニレンエーテルオリゴマーのスチレン誘導体、末端水酸基変性ポリフェニレンエーテルオリゴマー、末端メタクリル変性ポリフェニレンエーテルオリゴマー、末端グリシジルエーテル変性ポリフェニレンエーテルオリゴマー等が挙げられる。ポリフェニレンエーテルオリゴマーのスチレン誘導体の製品例としては、三菱ガス化学株式会社製OPE-2St-1200及びOPE-2St-2200が挙げられる。末端水酸基変性ポリフェニレンエーテルオリゴマーの製品例としては、SABIC社製SA-90及びSA-120が挙げられる。末端メタクリル変性ポリフェニレンエーテルオリゴマーの製品例としては、SABIC社製SA-9000が挙げられる。
According to a preferred embodiment of the present invention, the high viscosity resin (A) and / or the low viscosity resin (B) can comprise a polyarylene ether compound, preferably a polyphenylene ether compound. In particular, the low viscosity resin (B) more preferably contains a polyphenylene ether compound. In any case, the polyarylene ether compound or the polyphenylene ether compound has the following formula:
Figure JPOXMLDOC01-appb-C000007
(Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, n is a repeating number, and is typically 4 to 1000) is there)
It is preferable that it is a compound which contains frame | skeleton represented by these in a molecule | numerator. Examples of polyphenylene ether compounds used for the low viscosity resin (B) include styrene derivatives of polyphenylene ether oligomers, terminal hydroxyl group-modified polyphenylene ether oligomers, terminal methacryl-modified polyphenylene ether oligomers, terminal glycidyl ether-modified polyphenylene ether oligomers and the like. Examples of products of styrene derivatives of polyphenylene ether oligomers include OPE-2St-1200 and OPE-2St-2200 manufactured by Mitsubishi Gas Chemical Co., Ltd. Examples of products of terminal hydroxyl group-modified polyphenylene ether oligomers include SA-90 and SA-120 manufactured by SABIC. As a product example of the terminal methacryl modified polyphenylene ether oligomer, SA-9000 manufactured by SABIC can be mentioned.
 特に好ましくは、低粘度樹脂(B)に用いるポリフェニレンエーテル化合物は下記式:
Figure JPOXMLDOC01-appb-C000008
(式中、nは1~30、mは1~30である)
で表される数平均分子量3000未満のポリフェニレンエーテル樹脂を含むものであり、より好ましい数平均分子量は800~2800である。かかる上記式を満たすポリフェニレンエーテル樹脂の製品例としては、三菱ガス化学株式会社製OPE-2St-1200及びOPE-2St-2200が挙げられる。なお、数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法によりポリスチレン換算で測定した値を用いてもよい。
Particularly preferably, the polyphenylene ether compound used for the low viscosity resin (B) has the following formula:
Figure JPOXMLDOC01-appb-C000008
(Wherein, n is 1 to 30, m is 1 to 30)
And a polyphenylene ether resin having a number average molecular weight of less than 3,000, and a more preferable number average molecular weight is 800 to 2800. Examples of products of polyphenylene ether resin satisfying the above formula include OPE-2St-1200 and OPE-2St-2200 manufactured by Mitsubishi Gas Chemical Co., Ltd. The number average molecular weight may be a value measured in terms of polystyrene by GPC (gel permeation chromatography) method.
 本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)がシクロオレフィン化合物を含みうる。シクロオレフィン化合物は、下記式:
Figure JPOXMLDOC01-appb-C000009
(式中、R1、2、及びRはそれぞれ独立して-H又は炭素数1~5のアルキル基であり、nは1~3000である)
で表されるジシクロペンタジエン骨格を含む化合物、又は下記式:
Figure JPOXMLDOC01-appb-C000010
(式中、Xは-CH-又は-C-であり、R1、2、及びRはそれぞれ独立して-H又は炭素数1~5のアルキル基であり、nは0~2、mは1~1000である)
で表されるノルボルネン骨格を含む化合物、又は下記式:
Figure JPOXMLDOC01-appb-C000011
(式中、R1、2、及びRはそれぞれ独立して-H又は炭素数1~5のアルキル基であり、nは1~3000である)
で表されるインダン骨格を含む化合物のいずれかであるのが好ましい。シクロオレフィン化合物の例としては、(i)ジシクロペンタジエン型エポキシ樹脂、(ii)ノルボルネンモノマー、(iii)上記ジシクロペンタジエン骨格、上記ノルボルネン骨格及び上記インダン骨格から選ばれる1種以上の骨格を含むシクロオレフィン系ポリマー等が挙げられる。シクロオレフィン系ポリマーの製品例としては、日本ゼオン株式会社製ZEONOR(登録商標)、Topas Advanced Polymers GmbH製TOPAS(登録商標)等が挙げられる。
According to a preferred embodiment of the present invention, the high viscosity resin (A) and / or the low viscosity resin (B) may contain a cycloolefin compound. The cycloolefin compound has the following formula:
Figure JPOXMLDOC01-appb-C000009
(Wherein, R 1, R 2, R 3 and R 4 are each independently —H or an alkyl group having 1 to 5 carbon atoms, and n is 1 to 3000)
A compound containing a dicyclopentadiene skeleton represented by the formula:
Figure JPOXMLDOC01-appb-C000010
(Wherein, X is -CH 2 - or -C 2 H 4 - a and an alkyl group of R 1, R 2, R 3 and R 4 are each independently -H or C 1-5, n is 0 to 2 and m is 1 to 1000)
Or a compound containing a norbornene skeleton represented by the formula:
Figure JPOXMLDOC01-appb-C000011
(Wherein, R 1, R 2, R 3 and R 4 are each independently —H or an alkyl group having 1 to 5 carbon atoms, and n is 1 to 3000)
It is preferable that it is any of the compounds containing an indane skeleton represented by Examples of the cycloolefin compound include (i) dicyclopentadiene type epoxy resin, (ii) norbornene monomer, (iii) the above dicyclopentadiene skeleton, the above norbornene skeleton, and one or more skeletons selected from the above indane skeleton Cycloolefin polymers and the like can be mentioned. Examples of the cycloolefin-based polymer include ZEONOR (registered trademark) manufactured by ZEON Corporation, TOPAS (registered trademark) manufactured by Topas Advanced Polymers GmbH, and the like.
 本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)がスチレン系エラストマーを含みうる。とりわけ、高粘度樹脂(A)がスチレン系エラストマーを含むのがより好ましい。いずれにしても、スチレン系エラストマーは水添及び非水添のいずれであってもよい。すなわち、スチレン系エラストマーは、スチレン由来の部位を含む化合物であって、スチレン以外にもオレフィン等の重合可能な不飽和基を有する化合物由来の部位を含んでもよい重合体である。スチレン系エラストマーの重合可能な不飽和基を有する化合物由来の部位に二重結合が存在する場合、二重結合部は水添されているものであってもよいし、水添されていないものであってもよい。スチレン系エラストマーの例としては、JSR株式会社製TR、JSR株式会社製SIS、旭化成株式会社製タフテック(登録商標)、株式会社クラレ製セプトン(登録商標)、株式会社クラレ製ハイブラー(登録商標)等が挙げられる。特に、高粘度樹脂(A)として水添スチレン-ブタジエン系エラストマーを用いるのが好ましい。 According to a preferred embodiment of the present invention, the high viscosity resin (A) and / or the low viscosity resin (B) may contain a styrenic elastomer. In particular, the high viscosity resin (A) more preferably contains a styrenic elastomer. In any case, the styrene-based elastomer may be either hydrogenated or non-hydrogenated. That is, the styrene-based elastomer is a compound containing a site derived from styrene and is a polymer which may contain a site derived from a compound having a polymerizable unsaturated group such as an olefin other than styrene. When a double bond is present at a site derived from a compound having a polymerizable unsaturated group of a styrenic elastomer, the double bond may be hydrogenated or may not be hydrogenated. It may be. Examples of styrene-based elastomers include TR manufactured by JSR Corporation, SIS manufactured by JSR Corporation, Tuftec (registered trademark) manufactured by Asahi Kasei Corporation, Septon (registered trademark) manufactured by Kuraray Co., Ltd., Hibler (registered trademark) manufactured by Kuraray Co., etc. Can be mentioned. In particular, it is preferable to use a hydrogenated styrene-butadiene elastomer as the high viscosity resin (A).
 本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)がポリイミド化合物を含むことができる。ポリイミド化合物はイミド骨格を含む化合物であり、前駆体の酸無水物及びアミンの骨格は任意の骨格であってよい。 According to a preferred embodiment of the present invention, the high viscosity resin (A) and / or the low viscosity resin (B) can contain a polyimide compound. The polyimide compound is a compound containing an imide skeleton, and the skeleton of the precursor acid anhydride and the amine may be any skeleton.
 本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)がシロキサン化合物を含みうる。シロキサン化合物は下記式:
Figure JPOXMLDOC01-appb-C000012
(式中、R及びRはそれぞれ独立してアルキル基、フェニル基又は側鎖に枝分かれしたシロキサン骨格であり、nは1~100である)
で表されるシロキサン骨格を含む化合物であるのが典型的であるが、他の樹脂との相溶性や反応性という点でシロキサン以外の骨格ないし官能基を含むのが好ましい。シロキサン化合物の例としては、シリコーンオイル等が挙げられる。例えば、他成分との反応性や相溶性の観点から、信越化学工業株式会社製KF-8010、X-22-161A、X-22-2445や東レダウコーニング株式会社製BY16-853U、BY16-855等の反応性官能基を有するシリコーンオイルを任意に変性させたものやプレポリマー化したものを用いてもよい。
According to a preferred embodiment of the present invention, the high viscosity resin (A) and / or the low viscosity resin (B) may contain a siloxane compound. The siloxane compound has the following formula:
Figure JPOXMLDOC01-appb-C000012
(Wherein, R 1 and R 2 are each independently an alkyl group, a phenyl group or a siloxane skeleton branched to a side chain, and n is 1 to 100)
It is typical that it is a compound containing a siloxane skeleton represented by the above, but it is preferable to contain a skeleton or a functional group other than siloxane in terms of compatibility with other resins and reactivity. As an example of a siloxane compound, silicone oil etc. are mentioned. For example, from the viewpoint of reactivity and compatibility with other components, Shin-Etsu Chemical Co., Ltd. KF-8010, X-22-161A, X-22-2445 or Toray Dow Corning Co., Ltd. BY16-853U, BY16-855 Those obtained by optionally modifying or pre-polymerizing silicone oils having reactive functional groups such as these may be used.
 本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)がポリアルキル化合物を含みうる。ポリアルキル化合物は下記式:
Figure JPOXMLDOC01-appb-C000013
(式中、nは2~100000である)
で表されるアルキル骨格を含む化合物であるのが典型的であるが、アルキル骨格以外の骨格も任意に含むことができる。ポリアルキル化合物の例としては、ポリエチレン、ポリプロピレン、三井化学株式会社製APELTM等のオレフィンコポリマー、長鎖アルキルエポキシ等が挙げられる。
According to a preferred embodiment of the present invention, the high viscosity resin (A) and / or the low viscosity resin (B) may contain a polyalkyl compound. The polyalkyl compound has the following formula:
Figure JPOXMLDOC01-appb-C000013
(Wherein, n is 2 to 100,000)
Although it is typical that it is a compound containing the alkyl skeleton represented by these, skeletons other than an alkyl skeleton can also be included arbitrarily. Examples of polyalkyl compounds, polyethylene, polypropylene, olefin copolymers such as manufactured by Mitsui Chemicals, Inc. APEL TM, include long-chain alkyl epoxy.
 本発明の好ましい態様によれば、高粘度樹脂(A)及び/又は低粘度樹脂(B)は、エポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物を含むことができる。とりわけ、低粘度樹脂(B)が、上記化合物を含むのがより好ましい。いずれにしても、上記化合物の例としては、イミダゾール、活性エステル、カルボジイミド等が挙げられ、反応性の観点からカルボジイミドが特に好ましい。 According to a preferred embodiment of the present invention, the high viscosity resin (A) and / or the low viscosity resin (B) can include a compound having a reaction mechanism which does not generate a hydroxyl group when reacting with the epoxy compound. In particular, the low viscosity resin (B) more preferably contains the above-mentioned compound. In any case, examples of the above compounds include imidazole, active esters, carbodiimides and the like, and carbodiimides are particularly preferable from the viewpoint of reactivity.
 上述のとおり、高粘度樹脂(A)及び低粘度樹脂(B)は粘度を除けば同種又は異種の樹脂を用いることができるが、高粘度樹脂(A)として水添又は非水添スチレン系エラストマーを選択し、かつ、低粘度樹脂(B)としてポリアリーレンエーテル化合物を選択するのが特に好ましい。そして、ポリアリーレンエーテル化合物としてポリフェニレンエーテル化合物を選択するのがより好ましい。 As described above, the high-viscosity resin (A) and the low-viscosity resin (B) can use the same or different resins except for viscosity, but as the high-viscosity resin (A), hydrogenated or non-hydrogenated styrenic elastomers It is particularly preferable to select the polyarylene ether compound as the low viscosity resin (B). And it is more preferable to select a polyphenylene ether compound as a polyarylene ether compound.
 本発明の樹脂組成物の各種成分の含有比率は各成分の組み合わせにより最適化することができ、含有比率は特に限定されるものではないが、高粘度樹脂(A)の含有量は、高粘度樹脂(A)、低粘度樹脂(B)及びリン系化合物(C)の合計量を100重量部として、10~80重量部であるのが好ましく、より好ましくは15~75重量部、さらに好ましくは20~70重量部、特に好ましくは25~65重量部、最も好ましくは30~60重量部である。上述した高粘度樹脂(A)の含有量は、高粘度樹脂(A)が水添又は非水添スチレン系エラストマーであり、かつ、低粘度樹脂(B)がポリフェニレンエーテル化合物である場合に特に好ましく当てはまる。 Although the content ratio of the various components of the resin composition of this invention can be optimized by the combination of each component and a content ratio is not specifically limited, content of high viscosity resin (A) is high viscosity The total amount of the resin (A), low viscosity resin (B) and phosphorus compound (C) is 100 parts by weight, preferably 10 to 80 parts by weight, more preferably 15 to 75 parts by weight, and still more preferably It is 20 to 70 parts by weight, particularly preferably 25 to 65 parts by weight, and most preferably 30 to 60 parts by weight. The content of the high viscosity resin (A) described above is particularly preferable when the high viscosity resin (A) is a hydrogenated or non-hydrogenated styrenic elastomer and the low viscosity resin (B) is a polyphenylene ether compound. apply.
 一方、本発明の樹脂組成物における低粘度樹脂(B)の含有量は、高粘度樹脂(A)、低粘度樹脂(B)及びリン系化合物(C)の合計量を100重量部として、10~50重量部であるのが好ましく、より好ましくは15~45重量部、さらに好ましくは15~40重量部、特に好ましくは20~40重量部、最も好ましくは20~35重量部である。上述した低粘度樹脂(B)の含有量は、高粘度樹脂(A)が水添又は非水添スチレン系エラストマーであり、かつ、低粘度樹脂(B)がポリフェニレンエーテル化合物である場合に特に好ましく当てはまる。 On the other hand, the content of the low viscosity resin (B) in the resin composition of the present invention is 10 parts by weight based on the total amount of the high viscosity resin (A), the low viscosity resin (B) and the phosphorus compound (C). The amount is preferably about 50 parts by weight, more preferably 15 to 45 parts by weight, still more preferably 15 to 40 parts by weight, particularly preferably 20 to 40 parts by weight, and most preferably 20 to 35 parts by weight. The content of the low viscosity resin (B) described above is particularly preferable when the high viscosity resin (A) is a hydrogenated or non-hydrogenated styrenic elastomer and the low viscosity resin (B) is a polyphenylene ether compound. apply.
 リン系化合物(C)
 本発明の樹脂組成物に含まれるリン系化合物(C)は、難燃剤として機能するものであり、下記式(I):
Figure JPOXMLDOC01-appb-C000014
(式中、nは3~4である)
で表される環状シアノフェノキシホスファゼン化合物である。リン系化合物は、上記式におけるn=3の化合物と、式(I)におけるn=4の化合物との混合物であってもよい。例えば、式(I)におけるn=3単独の化合物の製品例としては、株式会社伏見製薬所製FP-300が挙げられ、式(I)におけるn=3の化合物とn=4の化合物の混合物の製品例としては、株式会社伏見製薬所製FP-300Bが挙げられる。
Phosphorus compound (C)
The phosphorus compound (C) contained in the resin composition of the present invention functions as a flame retardant, and is represented by the following formula (I):
Figure JPOXMLDOC01-appb-C000014
(Wherein n is 3 to 4)
It is a cyclic cyano phenoxy phosphazene compound represented by The phosphorus-based compound may be a mixture of the compound of n = 3 in the above formula and the compound of n = 4 in formula (I). For example, as an example of the product of n = 3 single compound in formula (I), FP-300 manufactured by Fushimi Pharmaceutical Co., Ltd. may be mentioned, and a mixture of n = 3 compound and n = 4 compound in formula (I) As an example of a product, FP-300B manufactured by Fushimi Pharmaceutical Co., Ltd. is mentioned.
 本発明の樹脂組成物におけるリン系化合物(C)の含有量は、高粘度樹脂(A)、低粘度樹脂(B)及びリン系化合物(C)の合計量を100重量部として、10~50重量部であるのが好ましく、より好ましくは15~45重量部、さらに好ましくは15~40重量部、特に好ましくは18~38重量部、最も好ましくは20~35重量部である。上述したリン系化合物(C)の含有量は、高粘度樹脂(A)が水添又は非水添スチレン系エラストマーであり、かつ、低粘度樹脂(B)がポリフェニレンエーテル化合物である場合に特に好ましく当てはまる。 The content of the phosphorus compound (C) in the resin composition of the present invention is 10 to 50 based on the total amount of the high viscosity resin (A), the low viscosity resin (B) and the phosphorus compound (C) as 100 parts by weight. It is preferable that it is part by weight, more preferably 15 to 45 parts by weight, still more preferably 15 to 40 parts by weight, particularly preferably 18 to 38 parts by weight, and most preferably 20 to 35 parts by weight. The content of the phosphorus compound (C) described above is particularly preferable when the high viscosity resin (A) is a hydrogenated or non-hydrogenated styrenic elastomer and the low viscosity resin (B) is a polyphenylene ether compound. apply.
 充填剤(D)
 本明細書において「充填剤」とは、樹脂組成物中において相溶化せず、充填剤単相として樹脂組成物中に存在するものをいう。充填剤は、充填剤表面に表面処理層を有していてもよいし有していなくてもよく、表面処理層は樹脂組成物中の樹脂成分と相溶化していてもよいし相溶化していなくてもよい。本発明の樹脂組成物に含まれる充填剤(D)は特に限定されず、樹脂組成物への添加に一般的に用いられる様々な充填剤が使用可能である。したがって、充填剤は、有機充填剤及び無機充填剤のいずれであってもよいが、電気特性及び難燃性の観点から無機充填剤が好ましい。無機充填剤の例としては、シリカ、タルク、窒化ホウ素(BN)等が挙げられる。無機充填剤は、樹脂組成物中に分散可能であれば特に限定されるものではないが、分散性及び誘電特性の観点からシリカが好ましい。有機充填剤としては高粘度樹脂(A)及び低粘度樹脂(B)と非相溶であれば特に限定されるものではないが、誘電特性及び難燃性の観点からフッ素系有機充填剤が好ましい。
Filler (D)
In the present specification, the term "filler" refers to one that does not compatibilize in the resin composition and is present in the resin composition as a filler single phase. The filler may or may not have a surface treatment layer on the surface of the filler, and the surface treatment layer may be or may be compatible with the resin component in the resin composition. You do not have to. The filler (D) contained in the resin composition of the present invention is not particularly limited, and various fillers generally used for addition to the resin composition can be used. Therefore, the filler may be either an organic filler or an inorganic filler, but an inorganic filler is preferred from the viewpoint of electrical properties and flame retardancy. Examples of inorganic fillers include silica, talc, boron nitride (BN) and the like. The inorganic filler is not particularly limited as long as it can be dispersed in the resin composition, but silica is preferable from the viewpoint of dispersibility and dielectric properties. The organic filler is not particularly limited as long as it is incompatible with the high-viscosity resin (A) and the low-viscosity resin (B), but a fluorine-based organic filler is preferable from the viewpoint of dielectric properties and flame retardancy .
 充填剤(D)は無機充填剤であるのが好ましい。無機充填剤の平均粒径D50は好ましくは0.1~3μm、より好ましくは0.3~1.5μmである。上記範囲内の平均粒径D50を有するシリカ粒子(例えば球状シリカ粒子)を用いることで、流動性及び加工性に優れた樹脂組成物を提供することができる。充填剤(D)は粉砕粒子、球状粒子、コアシェル粒子、中空粒子等、いかなる形態であってもよい。 The filler (D) is preferably an inorganic filler. The average particle size D50 of the inorganic filler is preferably 0.1 to 3 μm, more preferably 0.3 to 1.5 μm. By using silica particles (for example, spherical silica particles) having an average particle diameter D50 within the above range, a resin composition having excellent flowability and processability can be provided. The filler (D) may be in any form such as crushed particles, spherical particles, core-shell particles, hollow particles and the like.
 本発明の樹脂組成物における充填剤(D)の含有量は、高粘度樹脂(A)、低粘度樹脂(B)及びリン系化合物(C)の合計量を100重量部として、5~200重量部であるのが好ましく、より好ましくは25~190重量部、さらに好ましくは45~180重量部、特に好ましくは90~170重量部、最も好ましくは110~160重量部である。上述した充填剤(D)の含有量は、高粘度樹脂(A)が水添又は非水添スチレン系エラストマーであり、かつ、低粘度樹脂(B)がポリフェニレンエーテル化合物である場合に特に好ましく当てはまる。 The content of the filler (D) in the resin composition of the present invention is 5 to 200 parts by weight based on 100 parts by weight of the total of high viscosity resin (A), low viscosity resin (B) and phosphorus compound (C). It is preferably part, more preferably 25 to 190 parts by weight, still more preferably 45 to 180 parts by weight, particularly preferably 90 to 170 parts by weight, and most preferably 110 to 160 parts by weight. The content of the above-described filler (D) is particularly preferably applied to the case where the high viscosity resin (A) is a hydrogenated or non-hydrogenated styrenic elastomer and the low viscosity resin (B) is a polyphenylene ether compound .
 用途
 本発明の樹脂組成物は、回路形成時の回路埋め込み性及びハンドリング性(柔軟性)等の諸特性に優れながら、硬化後には低い誘電正接と優れた難燃性を示すため、高周波用途向けのプリント配線板の絶縁層に特に適している。すなわち、本発明の樹脂組成物は配線板用絶縁層に用いられることが好ましい。したがって、本発明の好ましい態様によれば、樹脂組成物を硬化させてなる、配線板用絶縁層が提供される。また、本発明の別の好ましい態様によれば、樹脂組成物を硬化させてなる樹脂層を金属層の表面に備えた、積層体が提供される。
Applications The resin composition of the present invention is excellent in various properties such as circuit embedding property and handling property (flexibility) at the time of circuit formation, but exhibits low dielectric loss tangent and excellent flame retardancy after curing, so it is suitable for high frequency applications It is particularly suitable for the insulating layer of printed wiring boards of That is, it is preferable that the resin composition of this invention is used for the insulating layer for wiring boards. Therefore, according to a preferred embodiment of the present invention, there is provided a wiring board insulating layer obtained by curing a resin composition. Moreover, according to another preferable aspect of this invention, the laminated body provided with the resin layer formed by hardening a resin composition on the surface of a metal layer is provided.
 本発明を以下の例によってさらに具体的に説明する。 The invention is further illustrated by the following examples.
 例1~16
(1)原料の用意
 まず、表1に示される各種原料を用意した。各原料の詳細は以下のとおりである。
Examples 1 to 16
(1) Preparation of Raw Materials First, various raw materials shown in Table 1 were prepared. Details of each raw material are as follows.
<高粘度樹脂(A)>
 MP-10(水添スチレン系エラストマー、旭化成株式会社製、120℃での粘度:75400Pa・s)
 HG-252(SEEPS-OH:ポリスチレン-ポリ(エチレン-エチレン/プロピレン)ブロック-ポリスチレン、末端水酸基変性、株式会社クラレ製、120℃での粘度:10060Pa・s)
<低粘度樹脂(B)>
 V-03(カルボジイミド樹脂、日清紡ケミカル株式会社製、120℃での粘度:8000Pa・s未満)
 OPE-2St-1200(二官能ポリフェニレンエーテルオリゴマーのスチレン誘導体、三菱ガス化学株式会社製、数平均分子量約1200、120℃での粘度:8000Pa・s未満)
 OPE-2St-2200(二官能ポリフェニレンエーテルオリゴマーのスチレン誘導体、三菱ガス化学株式会社製、数平均分子量約2200、120℃での粘度:8000Pa・s未満)
 SA-90(二官能ポリフェニレンエーテルオリゴマー、SABIC社製、120℃での粘度:8000Pa・s未満)
<リン系化合物(C)>
 FP-300B(環状シアノフェノキシホスファゼン化合物、株式会社伏見製薬所製、式(I)においてn=3~4である化合物)
 FP-110(環状フェノキシホスファゼン化合物、株式会社伏見製薬所製、式(I)を満たさない化合物)
 SPH-100(環状ヒドロキシフェノキシホスファゼン化合物、大塚化学株式会社製、式(I)を満たさない化合物)
<充填剤(D)>
 SC4050(球状シリカ粒子、株式会社アドマテックス製、レーザー回折式粒度分布測定により測定された平均粒径D50:1.0μm)
<High viscosity resin (A)>
MP-10 (hydrogenated styrenic elastomer, manufactured by Asahi Kasei Corporation, viscosity at 120 ° C .: 75400 Pa · s)
HG-252 (SEEPS-OH: polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene, modified terminal hydroxyl group, manufactured by Kuraray Co., Ltd., viscosity at 120 ° C .: 1,0060 Pa · s)
<Low viscosity resin (B)>
V-03 (carbodiimide resin, manufactured by Nisshinbo Chemical Co., Ltd., viscosity at 120 ° C .: less than 8000 Pa · s)
OPE-2St-1200 (Styrene derivative of difunctional polyphenylene ether oligomer, manufactured by Mitsubishi Gas Chemical Co., Ltd., number average molecular weight about 1200, viscosity at 120 ° C .: less than 8000 Pa · s)
OPE-2St-2200 (Styrene derivative of difunctional polyphenylene ether oligomer, manufactured by Mitsubishi Gas Chemical Co., Ltd., number average molecular weight about 2200, viscosity at 120 ° C .: less than 8000 Pa · s)
SA-90 (Difunctional polyphenylene ether oligomer, manufactured by SABIC, Viscosity at 120 ° C .: less than 8000 Pa · s)
<Phosphorus Compound (C)>
FP-300B (cyclic cyanophenoxy phosphazene compound, manufactured by Fushimi Pharmaceutical Co., Ltd., a compound wherein n = 3 to 4 in the formula (I))
FP-110 (Cyclic phenoxy phosphazene compound, manufactured by Fushimi Pharmaceutical Co., Ltd., a compound not satisfying the formula (I))
SPH-100 (Cyclic hydroxy phenoxy phosphazene compound, manufactured by Otsuka Chemical Co., Ltd., a compound not satisfying the formula (I))
<Filler (D)>
SC 4050 (spherical silica particles, manufactured by Admatex Co., Ltd., average particle diameter D50 measured by laser diffraction particle size distribution measurement: 1.0 μm)
(2)ワニスの製造
 表1に示される原料名及び固形分重量比の高粘度樹脂、低粘度樹脂(例15を除く)、リン系化合物(例14を除く)及び充填剤(例16を除く)に、固形分濃度が50%となるようにトルエン溶媒を添加し、60℃にて分散機を用いて溶解分散した。こうして調整された樹脂溶液(ワニス)を得た。
(2) Production of Varnish High viscosity resin, low viscosity resin (except Example 15), phosphorus compound (except Example 14) and filler (Example 16) of raw material name and solid weight ratio shown in Table 1 Toluene was added with a toluene solvent so that the solid concentration would be 50%, and dissolved and dispersed at 60 ° C. using a dispersing machine. The resin solution (varnish) thus prepared was obtained.
(3)半硬化状態(B-stage)の樹脂付銅箔の製造
 得られた樹脂溶液を、電解銅箔(TQ-M4-VSP箔、三井金属鉱業株式会社製、厚さ18μm、十点平均粗さ(Rzjis)0.4μm)の表面に、コンマ塗工機を用いて、乾燥後の樹脂層の厚みが130μmとなるように塗布した。塗布膜を150℃で3分間乾燥させることにより、樹脂組成物を半硬化させた。こうして半硬化状態(B-stage)の樹脂層を備えた樹脂付銅箔を作製した。
(3) Production of resin-coated copper foil in a semi-cured state (B-stage) The obtained resin solution was electrodeposited copper foil (TQ-M4-VSP foil, manufactured by Mitsui Mining & Smelting Co., Ltd., thickness 18 μm, ten-point average) It apply | coated so that the thickness of the resin layer after drying might be set to 130 micrometers using the comma coating machine on the surface of roughness (Rzjis) 0.4 micrometer. The resin composition was semi-cured by drying the coated film at 150 ° C. for 3 minutes. Thus, a resin-coated copper foil provided with a resin layer in a semi-cured state (B-stage) was produced.
(4)樹脂フィルム単体の製造
 2枚の樹脂付銅箔をそれらの樹脂層同士が当接するように貼り合わせ、200℃、90分間、30kgf/cmの加熱加圧条件下で熱間真空プレス成形を施して、両面銅張積層板を製造した。得られた銅張積層板の両面の銅を全てエッチングにより除去して、単体としての樹脂フィルムを得た。
(4) Production of resin film alone Two resin-coated copper foils are pasted together so that the resin layers are in contact with each other, and hot vacuum press is applied under heat and pressure conditions of 30 kgf / cm 2 at 200 ° C. for 90 minutes. It was molded to produce a double-sided copper-clad laminate. All copper on both sides of the obtained copper clad laminate was removed by etching to obtain a resin film as a single body.
(5)各種評価
 上記(4)で得られた樹脂フィルム単体又は上記(3)で得られた半硬化状態の樹脂付銅箔について、以下の各種評価を行った。
(5) Various evaluations The following various evaluations were performed about the resin-clad copper foil of the semi-hardened state obtained by said resin film single-piece | piece obtained by said (4) or said (3).
(5a)誘電特性
 樹脂フィルム単体について、摂動式空洞共振器法により、10GHzにおける誘電率Dk及び誘電正接Dfを測定した。この測定は、樹脂フィルム単体を共振器のサンプルサイズに合わせて切断した後、測定装置(KEYCOM製共振器及びKEYSIGHT製ネットワークアナライザー)を用い、JIS R 1641に準拠して行った。測定されたDf値を以下の基準で格付け評価した。
<誘電特性評価基準>
‐評価A:10GHzにおけるDf値が0.0020未満
‐評価B:10GHzにおけるDf値が0.0020以上0.0025未満
‐評価C:10GHzにおけるDf値が0.0025以上0.0030未満
‐評価D:10GHzにおけるDf値が0.0030以上
(5a) Dielectric Properties The dielectric constant Dk and the dielectric loss tangent Df at 10 GHz were measured for the resin film alone by the perturbation-type cavity resonator method. This measurement was performed according to JIS R 1641 using a measuring device (a resonator made by KEYCOM and a network analyzer made by KEYSIGHT) after cutting the resin film alone according to the sample size of the resonator. The measured Df values were rated based on the following criteria.
<Evaluation criteria for dielectric characteristics>
-Evaluation A: Df value less than 0.0020 at 10 GHz-Evaluation B: Df value at 10 GHz less than 0.0020-Evaluation C: Cf at 10 GHz less than 0.0025-Evaluation D : Df value at 10 GHz is 0.0030 or more
(5b)ガラス転移温度(Tg)
 樹脂フィルム単体について、動的粘弾性測定(DMA:Dynamic Mechanical Analysis)により、Tanδのピーク温度をガラス転移温度(Tg)として測定した。この測定は、JIS C 6481に準拠し、動的粘弾性測定装置(セイコーインスツル株式会社製、DMS6100)を用いて行った。測定したガラス転移温度(Tg)を以下の基準で格付け評価した。
<ガラス転移温度(Tg)評価基準>
‐評価A:Tgが170℃以上
‐評価B:Tgが150℃以上170℃未満
‐評価C:Tgが130℃以上150℃未満
‐評価D:Tgが130℃未満
(5b) Glass transition temperature (Tg)
The peak temperature of Tan δ was measured as a glass transition temperature (Tg) by dynamic viscoelasticity measurement (DMA: Dynamic Mechanical Analysis) for the resin film alone. This measurement was performed using a dynamic viscoelasticity measuring device (DMS 6100 manufactured by Seiko Instruments Inc.) in accordance with JIS C 6481. The glass transition temperature (Tg) measured was rated based on the following criteria.
<Glass transition temperature (Tg) evaluation criteria>
-Evaluation A: Tg is 170 ° C or more-Evaluation B: Tg is 150 ° C or more and less than 170 ° C-Evaluation C: Tg is 130 ° C or more and less than 150 ° C-Evaluation D: Tg is less than 130 ° C
(5c)ハンドリング性
 樹脂フィルム単体のハンドリング性評価を以下の手順で行った。まず、サイズ10cm×30cm、厚さ250μmの樹脂フィルム単体を用意した。この樹脂フィルム単体の片側の短辺を水平なクランプに固定し、もう一方の短辺をクランプから15cmの高い位置にまで鉛直に吊り上げた後、樹脂フィルム単体を離した。自重により樹脂フィルムが落下して曲がった際の樹脂フィルムの割れの有無を目視確認し、同サンプルを180°の角度で折り曲げた際の白化の有無を目視確認し、以下の基準で格付け評価した。
<ハンドリング性評価基準>
‐評価A:樹脂フィルムが割れず、かつ、白化が生じなかった。
‐評価B:樹脂フィルムが割れなかったが、白化が生じた。
‐評価D:樹脂フィルムが割れた。
 ここで、「白化」とは、樹脂フィルムに応力が掛かることで内部に微細な亀裂が生じ、白く濁ったように見えることを指す。
(5c) Handling property The handling property evaluation of the resin film single-piece was performed in the following procedures. First, a single resin film having a size of 10 cm × 30 cm and a thickness of 250 μm was prepared. One short side of this resin film alone was fixed to a horizontal clamp, and the other short side was vertically lifted from the clamp to a height of 15 cm, and then the resin film alone was released. The presence or absence of cracks in the resin film when the resin film fell and bent by its own weight was visually confirmed, and the presence or absence of whitening when the same sample was bent at an angle of 180 ° was visually confirmed and rated according to the following criteria .
<Handling evaluation criteria>
-Evaluation A: The resin film did not break and whitening did not occur.
-Evaluation B: The resin film did not break but whitening occurred.
-Evaluation D: The resin film was broken.
Here, "whitening" indicates that a stress is applied to the resin film to generate a fine crack inside and to appear white and cloudy.
(5d)レジンフロー
 半硬化状態(B-stage)の樹脂付銅箔(樹脂層厚み130μm)から10cm×10cmのサイズの4枚のシート片を切り出した。これら4枚のシート片を樹脂-銅箔層が互い違いになるように積層してサンプルとした。得られたサンプルに対し、熱プレス機を用いて、170℃で10分間、14kgf/cmの圧力で熱プレス処理した。元のサイズである10cm×10cmの面積からはみ出した樹脂の重量を元の樹脂重量で除し、得られた値に100を乗じることにより、レジンフローを測定した。測定したレジンフロー値を以下の基準で格付け評価した。
<レジンフロー評価基準>
‐評価A:レジンフロー値が1.0%より大きく5.0%以下
‐評価B:レジンフロー値が0.0%より大きく1.0%以下、又は5.0%より大きく10.0%以下
‐評価C:レジンフロー値が10.0%より大きく20.0%以下
‐評価D:レジンフロー値が0.0%又は20.0%より大きい
(5d) Resin flow Four sheet pieces of a size of 10 cm × 10 cm were cut out from the resin-coated copper foil (resin layer thickness 130 μm) in a semi-cured state (B-stage). These four sheet pieces were laminated so that the resin-copper foil layer was alternately made into a sample. The obtained sample was heat-pressed at a pressure of 14 kgf / cm 2 at 170 ° C. for 10 minutes using a heat press. The resin flow was measured by dividing the weight of the resin protruding from the original size area of 10 cm × 10 cm by the weight of the original resin and multiplying the obtained value by 100. The resin flow values measured were rated according to the following criteria.
<Resin flow evaluation criteria>
-Evaluation A: Resin flow value is more than 1.0% and not more than 5.0%-Evaluation B: Resin flow value is more than 0.0% and not more than 1.0%, or more than 5.0% and 10.0% Below-Evaluation C: Resin flow value is more than 10.0% and not more than 20.0%-Evaluation D: Resin flow value is more than 0.0% or 20.0%
(5e)難燃性
 樹脂フィルム単体に対して、UL94規格に準拠して垂直燃焼試験を実施し、下記の基準で格付け評価した。
<難燃性評価基準>
‐評価A:UL94規格においてV-0評価
‐評価B:UL94規格においてV-1評価
‐評価C:UL94規格においてV-2評価
‐評価D:UL94規格においてHB評価
(5e) Flame retardancy A vertical combustion test was performed on a resin film alone in accordance with the UL 94 standard, and the rating was evaluated on the basis of the following criteria.
<Flame retardancy evaluation criteria>
-Evaluation A: V-0 evaluation in UL 94 standard-Evaluation B: V-1 evaluation in UL 94 standard-Evaluation C: V-2 evaluation in UL 94 standard-Evaluation D: HB evaluation in UL 94 standard
(5f)回路埋め込み性
 半硬化状態(B-stage)の樹脂付銅箔(樹脂層厚み130μm)を、回路パターン(回路高さ35μm)を形成した基板上に積層して、樹脂層からなる絶縁層に回路パターンが埋め込まれた積層体を得た。得られた積層体において、(i)ボイドが存在するか否か、及び(ii)必要な絶縁層厚(具体的には回路頂部から95μm±10%以内)を確保できているかどうかを確認して、以下の基準で格付け評価した。
<埋め込み性評価基準>
‐評価A:必要な絶縁層厚を確保できており、かつ、ボイドが存在しない。
‐評価B:ボイドは存在しないが必要な絶縁層厚を確保できていない、あるいは絶縁層厚を確保できているがボイドが存在する。
‐評価D:必要な絶縁層厚を確保できておらず、かつ、ボイドが存在する。
(5f) Circuit embedding property A resin-deposited copper foil (resin layer thickness 130 μm) in a semi-cured state (B-stage) is laminated on a substrate on which a circuit pattern (circuit height 35 μm) is formed, and insulation made of resin layer A laminate having a circuit pattern embedded in the layer was obtained. In the resulting laminate, confirm (i) whether or not the void exists, and (ii) whether or not the required insulating layer thickness (specifically, within 95 μm ± 10% from the top of the circuit) can be secured. The rating was evaluated based on the following criteria.
<Embedability evaluation criteria>
-Evaluation A: The required insulating layer thickness can be secured, and no void exists.
-Evaluation B: There is no void, but the required insulating layer thickness can not be secured, or the insulating layer thickness can be secured but a void is present.
-Evaluation D: The required insulating layer thickness can not be secured, and voids are present.
(5g)評価結果
 評価結果は表1及び2に示されるとおりであった。
(5 g) Evaluation results The evaluation results are as shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016

Claims (15)

  1.  120℃における粘度が8000Pa・s以上である、シアネート化合物、ポリアリーレンエーテル化合物、シクロオレフィン化合物、水添又は非水添スチレン系エラストマー、ポリイミド化合物、シロキサン化合物、ポリアルキル化合物、並びにエポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物からなる群から選択される1種以上の高粘度樹脂(A)と、
     120℃における粘度が8000Pa・s未満である、シアネート化合物、ポリアリーレンエーテル化合物、シクロオレフィン化合物、水添又は非水添スチレン系エラストマー、ポリイミド化合物、シロキサン化合物、ポリアルキル化合物、並びにエポキシ化合物と反応する際に水酸基を発生しない反応機構を有する化合物からなる群から選択される1種以上の低粘度樹脂(B)と、
     下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは3又は4である)
    で表されるリン系化合物(C)と、
     有機充填剤又は無機充填剤である充填剤(D)と、
    を含む、樹脂組成物。
    Reacts with cyanate compounds, polyarylene ether compounds, cycloolefin compounds, hydrogenated or non-hydrogenated styrenic elastomers, polyimide compounds, siloxane compounds, polyalkyl compounds, and epoxy compounds, which have a viscosity of 8000 Pa · s or more at 120 ° C. At least one high viscosity resin (A) selected from the group consisting of compounds having a reaction mechanism which does not generate a hydroxyl group at the time of
    React with cyanate compounds, polyarylene ether compounds, cycloolefin compounds, hydrogenated or non-hydrogenated styrenic elastomers, polyimide compounds, siloxane compounds, polyalkyl compounds, and epoxy compounds, which have a viscosity of less than 8000 Pa · s at 120 ° C. At least one low viscosity resin (B) selected from the group consisting of compounds having a reaction mechanism which does not generate a hydroxyl group at the time of
    The following formula (I):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein n is 3 or 4)
    And a phosphorus compound (C) represented by
    A filler (D) which is an organic filler or an inorganic filler;
    A resin composition containing
  2.  前記充填剤(D)が無機充填剤である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the filler (D) is an inorganic filler.
  3.  前記無機充填剤が、平均粒径D50が0.1~3μmのシリカ粒子である、請求項2に記載の樹脂組成物。 The resin composition according to claim 2, wherein the inorganic filler is silica particles having an average particle diameter D50 of 0.1 to 3 μm.
  4.  前記高粘度樹脂(A)及び/又は前記低粘度樹脂(B)が前記ポリアリーレンエーテル化合物としてポリフェニレンエーテル化合物を含み、前記ポリフェニレンエーテル化合物が下記式:
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、R、R及びRはそれぞれ独立して水素原子又は炭素数1~3のアルキル基であり、nは繰り返し数である)
    で表される骨格を分子中に含む化合物である、請求項1~3のいずれか一項に記載の樹脂組成物。
    The high viscosity resin (A) and / or the low viscosity resin (B) contains a polyphenylene ether compound as the polyarylene ether compound, and the polyphenylene ether compound has the following formula:
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and n is a repeating number)
    The resin composition according to any one of claims 1 to 3, which is a compound containing in the molecule a skeleton represented by
  5.  前記高粘度樹脂(A)及び/又は前記低粘度樹脂(B)が前記シアネート化合物を含み、前記シアネート化合物が、シアナト基又はトリアジン骨格を含む有機化合物である、請求項1~4のいずれか一項に記載の樹脂組成物。 The high viscosity resin (A) and / or the low viscosity resin (B) contains the cyanate compound, and the cyanate compound is an organic compound containing a cyanato group or a triazine skeleton. The resin composition as described in a term.
  6.  前記高粘度樹脂(A)及び/又は前記低粘度樹脂(B)が前記シクロオレフィン化合物を含み、前記シクロオレフィン化合物が、下記式:
    Figure JPOXMLDOC01-appb-C000003
    (式中、R、R、R及びRはそれぞれ独立して-H又は炭素数1~5のアルキル基であり、nは1~3000である)
    で表されるジシクロペンタジエン骨格を含む化合物、又は下記式:
    Figure JPOXMLDOC01-appb-C000004
    (式中、Xは-CH-又は-C-であり、R、R、R及びRはそれぞれ独立して-H又は炭素数1~5のアルキル基であり、nは0~2、mは1~1000である)
    で表されるノルボルネン骨格を含む化合物、又は下記式:
    Figure JPOXMLDOC01-appb-C000005
    (式中、R、R、R及びRはそれぞれ独立して-H又は炭素数1~5のアルキル基であり、nは1~3000である)
    で表されるインダン骨格を含む化合物である、請求項1~5のいずれか一項に記載の樹脂組成物。
    The high viscosity resin (A) and / or the low viscosity resin (B) contains the cycloolefin compound, and the cycloolefin compound has the following formula:
    Figure JPOXMLDOC01-appb-C000003
    (Wherein, R 1 , R 2 , R 3 and R 4 are each independently —H or an alkyl group of 1 to 5 carbon atoms, and n is 1 to 3000)
    A compound containing a dicyclopentadiene skeleton represented by the formula:
    Figure JPOXMLDOC01-appb-C000004
    (Wherein, X is -CH 2 - or -C 2 H 4 - a and an alkyl group of R 1, R 2, R 3 and R 4 are each independently -H or C 1-5, n is 0 to 2 and m is 1 to 1000)
    Or a compound containing a norbornene skeleton represented by the formula:
    Figure JPOXMLDOC01-appb-C000005
    (Wherein, R 1 , R 2 , R 3 and R 4 are each independently —H or an alkyl group of 1 to 5 carbon atoms, and n is 1 to 3000)
    The resin composition according to any one of claims 1 to 5, which is a compound containing an indane skeleton represented by
  7.  前記高粘度樹脂(A)及び/又は前記低粘度樹脂(B)が前記スチレン系エラストマーを含む、請求項1~6のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the high viscosity resin (A) and / or the low viscosity resin (B) contains the styrene-based elastomer.
  8.  前記高粘度樹脂(A)及び/又は前記低粘度樹脂(B)が前記ポリイミド化合物を含む、請求項1~7のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the high viscosity resin (A) and / or the low viscosity resin (B) contains the polyimide compound.
  9.  前記高粘度樹脂(A)及び/又は前記低粘度樹脂(B)が前記シロキサン化合物を含む、請求項1~8のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, wherein the high viscosity resin (A) and / or the low viscosity resin (B) contains the siloxane compound.
  10.  前記高粘度樹脂(A)が前記スチレン系エラストマーであり、前記低粘度樹脂(B)が前記ポリアリーレンエーテル化合物としてのポリフェニレンエーテル化合物である、請求項1~4及び7のいずれか一項に記載の樹脂組成物。 The high viscosity resin (A) is the styrene-based elastomer, and the low viscosity resin (B) is a polyphenylene ether compound as the polyarylene ether compound, according to any one of claims 1 to 4 and 7. Resin composition.
  11.  前記高粘度樹脂(A)、前記低粘度樹脂(B)及び前記リン系化合物(C)の合計量を100重量部として、10~80重量部の前記高粘度樹脂(A)と、10~50重量部の前記低粘度樹脂(B)と、10~50重量部の前記リン系化合物(C)と、5~200重量部の前記充填剤(D)とを含む、請求項1~10のいずれか一項に記載の樹脂組成物。 10 to 80 parts by weight of the high viscosity resin (A), wherein the total amount of the high viscosity resin (A), the low viscosity resin (B) and the phosphorus compound (C) is 100 parts by weight; 11. Any one of claims 1 to 10, comprising: parts by weight of said low viscosity resin (B), 10 to 50 parts by weight of said phosphorus compound (C), and 5 to 200 parts by weight of said filler (D). The resin composition according to any one of the preceding claims.
  12.  20~70重量部の前記高粘度樹脂(A)と、15~40重量部の前記低粘度樹脂(B)と、15~40重量部の前記リン系化合物(C)と、45~180重量部の前記充填剤(D)とを含む、請求項11に記載の樹脂組成物。 20 to 70 parts by weight of the high viscosity resin (A), 15 to 40 parts by weight of the low viscosity resin (B), and 15 to 40 parts by weight of the phosphorus compound (C), 45 to 180 parts by weight The resin composition according to claim 11, comprising the filler (D) of
  13.  請求項1~12のいずれか一項に記載の樹脂組成物を硬化させてなる、配線板用絶縁層。 An insulating layer for wiring board, which is obtained by curing the resin composition according to any one of claims 1 to 12.
  14.  硬化後の10GHzにおける誘電正接が0.003未満である、請求項1~12のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 12, wherein the dielectric loss tangent at 10 GHz after curing is less than 0.003.
  15.  請求項1~12及び14のいずれか一項に記載の樹脂組成物を硬化させてなる樹脂層を金属層の表面に備えた、積層体。

     
    A laminate comprising a resin layer obtained by curing the resin composition according to any one of claims 1 to 12 and 14 on the surface of a metal layer.

PCT/JP2018/026513 2017-07-27 2018-07-13 Resin composition, insulating layer for wiring board, and laminate WO2019021862A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880037125.8A CN110709476A (en) 2017-07-27 2018-07-13 Resin composition, insulating layer for wiring board, and laminate
MYPI2020000925A MY195223A (en) 2017-07-27 2018-07-13 Resin Composition, Insulating Layer for Wiring Board, and Laminate
JP2019532512A JP7219216B2 (en) 2017-07-27 2018-07-13 Resin composition, insulating layer for wiring board, and laminate
KR1020197034222A KR102254544B1 (en) 2017-07-27 2018-07-13 Resin composition, insulation layer and laminate for wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017145841 2017-07-27
JP2017-145841 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019021862A1 true WO2019021862A1 (en) 2019-01-31

Family

ID=65039633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026513 WO2019021862A1 (en) 2017-07-27 2018-07-13 Resin composition, insulating layer for wiring board, and laminate

Country Status (6)

Country Link
JP (1) JP7219216B2 (en)
KR (1) KR102254544B1 (en)
CN (1) CN110709476A (en)
MY (1) MY195223A (en)
TW (1) TWI739017B (en)
WO (1) WO2019021862A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054303A1 (en) * 2020-09-11 2022-03-17 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022099778A (en) * 2020-12-23 2022-07-05 日鉄ケミカル&マテリアル株式会社 Polyimide composition, resin film, laminate, cover lay film, copper foil with resin, metal-clad laminate, and circuit board
CN112795169B (en) * 2020-12-31 2022-07-19 广东生益科技股份有限公司 Resin composition, resin film containing resin composition, prepreg, laminated board, copper-clad plate and printed circuit board

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224162A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd Flame-retardant resin composition, prepreg, resin sheet, and molded product
JP2009078209A (en) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd Metal foil bearing resin, method for manufacturing the same, and metal-coated flexible laminated sheet
JP2010111758A (en) * 2008-11-06 2010-05-20 Hitachi Chem Co Ltd Resin composition, prepreg, laminate and printed board
JP2010138364A (en) * 2008-02-12 2010-06-24 Mitsubishi Gas Chemical Co Inc Resin composition, prepreg and metal foil laminated plate
JP2010168487A (en) * 2009-01-23 2010-08-05 Nippon Zeon Co Ltd Polymerizable composition, crosslinked body, and crosslinked resin composite object
JP2014001276A (en) * 2012-06-15 2014-01-09 Asahi Kasei E-Materials Corp Curable resin composition
JP2015224304A (en) * 2014-05-28 2015-12-14 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate sheet, multilayer printed circuit board and semiconductor package
JP2016191029A (en) * 2015-03-31 2016-11-10 新日鉄住金化学株式会社 Polyamide acid composition, polyimide, resin film, and metal-clad laminate
WO2017029917A1 (en) * 2015-08-19 2017-02-23 東洋紡株式会社 Low dielectric adhesive composition

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114981A (en) * 1997-02-14 2002-04-16 Otsuka Chem Co Ltd Flame-retardant, flame-retardant resin composition and flame-retardant resin molded product
JP2005112981A (en) * 2003-10-07 2005-04-28 Hitachi Chem Co Ltd Low-permittivity resin composition, prepreg using the same, metal-clad laminate, and printed circuit board
JP2007030326A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Copper foil with resin, laminate for producing printed wiring boad, and multilayer printed wiring board
JP5493347B2 (en) 2008-01-17 2014-05-14 東洋インキScホールディングス株式会社 Flame retardant resin composition
KR20120112657A (en) * 2010-01-28 2012-10-11 미쓰이 가가쿠 가부시키가이샤 Metal-resin composite
JP2011162615A (en) * 2010-02-05 2011-08-25 Kyocera Chemical Corp Prepreg and metal-clad laminated plate
JP5791983B2 (en) * 2011-07-07 2015-10-07 三井化学株式会社 Resin composition, polyimide metal laminate using the same, and substrate for electronic circuit
JP6215711B2 (en) * 2012-01-11 2017-10-18 三井金属鉱業株式会社 Copper foil with adhesive layer, copper-clad laminate and printed wiring board
JP5901066B2 (en) * 2012-04-27 2016-04-06 三井金属鉱業株式会社 Resin composition, metal foil with resin layer, metal-clad laminate and printed wiring board
JP6364202B2 (en) * 2014-02-24 2018-07-25 矢崎総業株式会社 Molding machine and molding method
US10370536B2 (en) 2014-03-06 2019-08-06 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
US10863621B2 (en) * 2014-06-03 2020-12-08 Mitsui Mining & Smelting Co., Ltd. Metal foil with releasing resin layer, and printed wiring board
US10316187B2 (en) * 2015-03-13 2019-06-11 Kyocera Corporation Resin composition, prepreg, metal-clad laminated plate, and wiring board
JP6675183B2 (en) * 2015-11-30 2020-04-01 ナミックス株式会社 Thermosetting resin composition, thermosetting resin film, printed wiring board, and semiconductor device
CN108136736B (en) * 2015-12-07 2021-09-14 三井金属矿业株式会社 Method for producing laminate and metal foil with resin layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224162A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd Flame-retardant resin composition, prepreg, resin sheet, and molded product
JP2009078209A (en) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd Metal foil bearing resin, method for manufacturing the same, and metal-coated flexible laminated sheet
JP2010138364A (en) * 2008-02-12 2010-06-24 Mitsubishi Gas Chemical Co Inc Resin composition, prepreg and metal foil laminated plate
JP2010111758A (en) * 2008-11-06 2010-05-20 Hitachi Chem Co Ltd Resin composition, prepreg, laminate and printed board
JP2010168487A (en) * 2009-01-23 2010-08-05 Nippon Zeon Co Ltd Polymerizable composition, crosslinked body, and crosslinked resin composite object
JP2014001276A (en) * 2012-06-15 2014-01-09 Asahi Kasei E-Materials Corp Curable resin composition
JP2015224304A (en) * 2014-05-28 2015-12-14 日立化成株式会社 Thermosetting resin composition, prepreg, film with resin, laminate sheet, multilayer printed circuit board and semiconductor package
JP2016191029A (en) * 2015-03-31 2016-11-10 新日鉄住金化学株式会社 Polyamide acid composition, polyimide, resin film, and metal-clad laminate
WO2017029917A1 (en) * 2015-08-19 2017-02-23 東洋紡株式会社 Low dielectric adhesive composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054303A1 (en) * 2020-09-11 2022-03-17 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board

Also Published As

Publication number Publication date
MY195223A (en) 2023-01-11
CN110709476A (en) 2020-01-17
KR20190133787A (en) 2019-12-03
TW201910411A (en) 2019-03-16
JPWO2019021862A1 (en) 2020-05-28
JP7219216B2 (en) 2023-02-07
TWI739017B (en) 2021-09-11
KR102254544B1 (en) 2021-05-24

Similar Documents

Publication Publication Date Title
JP4495768B2 (en) Insulating sheet and laminated structure
JP7202691B2 (en) Resin compositions, films, laminates and semiconductor devices
JP6188788B2 (en) Resin composition, and adhesive film, coverlay film, and interlayer adhesive formed thereby
JP5463110B2 (en) Coverlay film
JP6981007B2 (en) Resin composition, resin sheet and printed wiring board
JP2009144072A (en) Insulation sheet and laminated structure
TW201406849A (en) Epoxy resin composition, adhesive film and cover lay film thereof
JP2010205498A (en) Insulating sheet, and laminated structure
JP7219216B2 (en) Resin composition, insulating layer for wiring board, and laminate
JP2011168672A (en) Insulation sheet
WO2018097010A1 (en) Resin composition, thermosetting film using same, resin cured product, laminate, printed wiring board and semiconductor device
JP2009161578A (en) Insulating sheet and laminated structure
WO2012073360A1 (en) Insulating sheet and laminated structure
JP2011124075A (en) Insulating sheet, laminated structure, and manufacturing method of laminated structure
JP2009224109A (en) Insulation sheet and laminated structural body
JP2010129968A (en) Insulating sheet, laminated structure, multilayer circuit board, and method of manufacturing laminated structure
WO2017094489A1 (en) Thermally curable resin composition, thermally curable resin film, printed wiring board, and semiconductor device
JP7264485B2 (en) Thermosetting resin composition, insulating film, interlayer insulating film, multilayer wiring board, and semiconductor device
JP2011124078A (en) Insulating sheet, laminated structure, and manufacturing method of laminated structure
JP2011124077A (en) Insulating sheet, laminated structure, and manufacturing method of laminated structure
US10543661B2 (en) Metal foil with resin, and metal-clad laminate and circuit board using same
JP2009149770A (en) Insulating sheet and multilayer structure
JP2009224110A (en) Insulation sheet and laminated structural body
JP2012116985A (en) Insulating material and laminated structure
JP7249162B2 (en) Resin composition, cured product, and build-up film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532512

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197034222

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838376

Country of ref document: EP

Kind code of ref document: A1