WO2012073360A1 - Insulating sheet and laminated structure - Google Patents
Insulating sheet and laminated structure Download PDFInfo
- Publication number
- WO2012073360A1 WO2012073360A1 PCT/JP2010/071540 JP2010071540W WO2012073360A1 WO 2012073360 A1 WO2012073360 A1 WO 2012073360A1 JP 2010071540 W JP2010071540 W JP 2010071540W WO 2012073360 A1 WO2012073360 A1 WO 2012073360A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulating sheet
- weight
- sheet according
- inorganic filler
- less
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/26—Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/38—Layered products comprising a layer of synthetic resin comprising epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/104—Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/202—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/302—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0201—Thermal arrangements, e.g. for cooling, heating or preventing overheating
- H05K1/0203—Cooling of mounted components
- H05K1/0209—External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0209—Inorganic, non-metallic particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
Definitions
- the present invention relates to an insulating sheet used for adhering a thermal conductor having a thermal conductivity of 10 W / m ⁇ K or more to a conductive layer, and more specifically, handling property and storage stability in an uncured state.
- the present invention relates to an insulating sheet that is high and has high adhesiveness and heat dissipation of a cured product after curing, and a laminated structure using the insulating sheet.
- insulating layer is formed using a paste-like or sheet-like insulating adhesive material.
- insulating adhesive material the following patent document 1 discloses an insulating adhesive in which a glass cloth is impregnated with an adhesive composition containing an epoxy resin, an epoxy resin curing agent, a curing accelerator, an elastomer and an inorganic filler. A sheet is disclosed.
- Patent Document 2 An insulating adhesive material that does not contain glass cloth is also known.
- the example of Patent Document 2 below includes an insulating adhesive containing bisphenol A type epoxy resin, phenoxy resin, phenol novolac, 1-cyanoethyl-2-phenylimidazole, ⁇ -glycidoxypropyltrimethoxysilane, and alumina.
- Agents are disclosed.
- examples of the epoxy resin curing agent include tertiary amines, acid anhydrides, imidazole compounds, polyphenol resins, and mask isocyanates.
- a glass cloth is used in order to improve handling properties.
- an insulating adhesive sheet including glass cloth it is difficult to make a thin film, and various processes such as laser processing or drilling are difficult.
- cured material of the insulation adhesive sheet containing a glass cloth is comparatively low, sufficient heat dissipation may not be obtained.
- special impregnation equipment must be prepared for impregnating the glass cloth with the adhesive composition.
- the downsizing and high performance of electrical equipment are progressing.
- the printed wiring board used for the said electronic device and communication apparatus multilayering and a thin film are progressing, and the mounting density of an electronic component is high.
- a large amount of heat is easily generated from the electronic components, and the need to dissipate the generated heat is increasing.
- the insulating layer of the printed wiring board needs to have high thermal conductivity.
- a large amount of filler having high thermal conductivity with a thermal conductivity of 10 W / m ⁇ K or more is added to the insulating adhesive material for forming the insulating layer.
- a filling method is generally employed.
- the adhesiveness of the insulating layer tends to be low.
- the adhesive of the above-mentioned insulating adhesive material containing a large amount of filler is likely to be lowered and peeled off, particularly in applications where a member to be bonded provided with a fine wiring pattern is bonded for miniaturization and high performance. There is a problem that it is easy.
- a method of blending a filler such as alumina having high thermal conductivity with a thermal conductivity of 10 W / m ⁇ K or more is used in the insulating adhesive material.
- Alumina is also used in the insulating adhesive described in Patent Document 2.
- the workability of the cured product of the insulating adhesive material containing alumina may be low.
- the object of the present invention is used to adhere a heat conductor having a thermal conductivity of 10 W / m ⁇ K or more to a conductive layer, and can improve handling and storage stability in an uncured state, Furthermore, it is providing the insulating sheet which can make high heat dissipation of the hardened
- a limited object of the present invention is to provide a highly workable insulating sheet and a laminated structure using the insulating sheet.
- a further limited object of the present invention is to provide an insulating sheet having high adhesion of a cured product to a bonding target member provided with a fine wiring pattern, and a laminated structure using the insulating sheet.
- a further limited object of the present invention is to provide an insulating sheet having high heat resistance, voltage resistance and moisture resistance, and a laminated structure using the insulating sheet.
- an insulating sheet used for bonding a thermal conductor having a thermal conductivity of 10 W / m ⁇ K or more to a conductive layer, wherein the polymer has a weight average molecular weight of 10,000 or more.
- An insulating sheet is provided.
- At least one of the polymer, the curable compound, and the curing agent contains a nitrogen atom.
- curing agent contains a nitrogen atom.
- the polymer preferably has an aromatic skeleton. Further, the curable compound preferably has an aromatic skeleton.
- the polymer is preferably a phenoxy resin or an epoxy resin.
- the curable compound has a hydroxyl group equivalent of 6000 or more.
- the inorganic filler is preferably at least one selected from the group consisting of alumina, synthetic magnesite, crystalline silica, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide, magnesium carbonate and magnesium oxide. .
- the inorganic filler preferably contains spherical alumina.
- the inorganic filler preferably contains alumina having a purity by fluorescent X-ray analysis of 90.0% or more and 99.0% or less.
- the inorganic filler preferably contains spherical alumina or crushed alumina having a purity by fluorescent X-ray analysis of 90.0% or more and 99.0% or less.
- an elastomer that is a poly (meth) acrylic ester is further included.
- the elastomer is preferably a polymer using butyl (meth) acrylate.
- the curing agent preferably contains at least one of dicyandiamide and imidazole compounds.
- curing agent contains a dicyandiamide.
- the curing agent includes an imidazole compound.
- the laminated structure according to the present invention includes a heat conductor having a thermal conductivity of 10 W / m ⁇ K or more, an insulating layer laminated on at least one surface of the heat conductor, and the heat conduction of the insulating layer.
- a conductive layer laminated on the surface opposite to the surface on which the body is laminated, and the insulating layer is formed by curing an insulating sheet configured according to the present invention.
- the heat conductor is preferably a metal.
- An insulating sheet according to the present invention includes a polymer having a weight average molecular weight of 10,000 or more, a curable compound having a molecular weight of 1200 or less and having an epoxy group or an oxetanyl group, a curing agent, and an inorganic filler.
- Content of the said inorganic filler in 100 weight% is 60 weight% or more and 95 weight%
- Content of the nitrogen atom contained in the component except the said inorganic filler in 100 weight% of insulating sheets Is 0.3% by weight or more and less than 3.0% by weight
- the handling property and storage stability of the insulating sheet in the uncured state can be increased, and the heat dissipation of the cured product after curing is further increased.
- the adhesion of the cured product can be increased.
- FIG. 1 is a partially cutaway front sectional view schematically showing a laminated structure according to an embodiment of the present invention.
- the insulating sheet which concerns on this invention is an insulating sheet used in order to adhere
- the insulating sheet according to the present invention includes a polymer (A) having a weight average molecular weight of 10,000 or more, a curable compound (B) having a molecular weight of 1200 or less and having an epoxy group or oxetanyl group, and a curing agent (C). And an inorganic filler (D).
- the content of the inorganic filler (D) is 60% by weight or more and 95% by weight or less.
- the content of nitrogen atoms contained in the component excluding the inorganic filler (D) in the insulating sheet is 0.3% by weight or more and less than 3.0% by weight.
- the handling property and storage stability of the insulating sheet in an uncured state can be increased, the heat dissipation of the cured product obtained by curing the insulating sheet can be increased, and the cured product Adhesiveness can also be increased.
- the adhesion target member contains copper
- the adhesion of the cured product to the adhesion target member containing copper can be sufficiently increased.
- the content of the inorganic filler (D) is large and the content of the nitrogen atom is within the above range even when the content is 60% by weight or more, handling properties, storage stability, adhesiveness and heat dissipation are improved. The balance can be improved sufficiently.
- cured material of an insulating sheet has low adhesiveness with respect to the adhesion target member generally provided with the fine wiring pattern. Since the insulating sheet according to the present invention has the above composition, the adhesiveness of the cured product can be sufficiently increased even for a member to be bonded provided with fine wiring.
- the heat resistance, voltage resistance and moisture resistance of the cured product of the insulating sheet can be improved.
- the workability of the cured product of the insulating sheet can be improved.
- the content of nitrogen atoms contained in the component excluding the inorganic filler (D) in the insulating sheet is more preferably 0.4% by weight or more, more preferably 2% by weight or less. Preferably it is 1 weight% or less.
- the content of the nitrogen atom is 0.4% by weight or more, the adhesion to copper and the adhesion to the adhesion target member provided with the fine wiring pattern are further enhanced.
- the nitrogen atom content is 2.5% by weight or less, the storage stability of the insulating sheet in an uncured state is further enhanced.
- the nitrogen atom content does not include the nitrogen atom content contained in the inorganic filler (D).
- the nitrogen atom content includes the nitrogen atom content contained in the polymer (A), the curable compound (B), and the curing agent (C). Furthermore, the content of nitrogen atoms includes the content of nitrogen atoms contained in the elastomer (E) described later.
- the nitrogen atom content is the nitrogen atom content in the components in the insulating sheet (excluding the inorganic filler (D)).
- the insulating sheet according to the present invention includes a polymer (A), a curable compound (B), and a curing agent ( It is preferable that at least one of C) contains a nitrogen atom.
- the polymer (A) may or may not contain nitrogen.
- the curable compound (B) may or may not contain nitrogen.
- the curing agent (C) may or may not contain nitrogen.
- the curing agent (C) contains a nitrogen atom. .
- the insulating sheet according to the present invention is a poly (meth) acrylic ester in addition to the components (A) to (D). It is preferable to further contain an elastomer (E).
- the elastomer (E) may or may not contain nitrogen atoms.
- (Meth) acrylic acid indicates acrylic acid and methacrylic acid.
- the polymer (A) contained in the insulating sheet according to the present invention is not particularly limited as long as the weight average molecular weight is 10,000 or more. From the viewpoint of further improving the heat resistance of the cured product, the polymer (A) preferably has an aromatic skeleton.
- the polymer (A) may have an aromatic skeleton in any part of the whole polymer, and may have in the main chain skeleton. , May be present in the side chain.
- the polymer (A) preferably has an aromatic skeleton in the main chain skeleton. In this case, the heat resistance of the cured product of the insulating sheet is further increased.
- a polymer (A) only 1 type may be used and 2 or more types may be used together.
- the aromatic skeleton is not particularly limited. Specific examples of the aromatic skeleton include naphthalene skeleton, fluorene skeleton, biphenyl skeleton, anthracene skeleton, pyrene skeleton, xanthene skeleton, adamantane skeleton, and bisphenol A skeleton. Of these, a biphenyl skeleton or a fluorene skeleton is preferable. In this case, the heat resistance of the hardened
- thermoplastic resin and thermosetting resin are not particularly limited.
- thermoplastic resins such as polyphenylene sulfide, polyarylate, polysulfone, polyethersulfone, polyetheretherketone, and polyetherketone.
- thermoplastic polyimide, thermosetting polyimide, benzoxazine, and a heat-resistant resin group called super engineering plastics such as a reaction product of polybenzoxazole and benzoxazine, etc. Can be used.
- thermoplastic resin and the said thermosetting resin only 1 type may respectively be used and 2 or more types may be used together. Either one of a thermoplastic resin and a thermosetting resin may be used, and a thermoplastic resin and a thermosetting resin may be used in combination.
- the polymer (A) is preferably an epoxy resin, a styrene polymer, a (meth) acrylic polymer or a phenoxy resin, more preferably an epoxy resin or a phenoxy resin, and further preferably a phenoxy resin.
- this preferable polymer the cured product of the insulating sheet is hardly oxidized and deteriorated, and the heat resistance is further enhanced.
- the use of epoxy resin or phenoxy resin further increases the heat resistance of the cured product, and the use of phenoxy resin further increases the heat resistance of the cured product.
- the epoxy resin is preferably an epoxy resin other than phenoxy resin.
- the epoxy resin include styrene skeleton-containing epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin. , Phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, anthracene type epoxy resin, epoxy resin having adamantane skeleton, epoxy resin having tricyclodecane skeleton, and epoxy resin having triazine nucleus in skeleton Etc.
- styrene polymer specifically, a homopolymer of a styrene monomer, a copolymer of a styrene monomer and an acrylic monomer, or the like can be used. Of these, styrene polymers having a styrene-glycidyl methacrylate structure are preferred.
- styrene monomer examples include styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, p-methoxy styrene, p-phenyl styrene, p-chloro styrene, p-ethyl styrene, pn- Butyl styrene, p-tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene, 2,4-dimethyl Examples include styrene and 3,4-dichlorostyrene.
- acrylic monomer examples include acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, Examples include butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, glycidyl methacrylate, ethyl ⁇ -hydroxyacrylate, propyl ⁇ -aminoacrylate, stearyl methacrylate, dimethylaminoethyl methacrylate, and diethylaminoethyl methacrylate. It is done.
- the phenoxy resin is specifically a resin obtained by reacting, for example, an epihalohydrin and a divalent phenol compound, or a resin obtained by reacting a divalent epoxy compound and a divalent phenol compound.
- the phenoxy resin comprises a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol A / F mixed skeleton, a naphthalene skeleton, a fluorene skeleton, a biphenyl skeleton, an anthracene skeleton, a pyrene skeleton, a xanthene skeleton, an adamantane skeleton, and a dicyclopentadiene skeleton. It is preferred to have at least one skeleton selected from the group.
- the phenoxy resin preferably has at least one skeleton selected from the group consisting of a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol A / F mixed skeleton, a naphthalene skeleton, a fluorene skeleton, and a biphenyl skeleton.
- it has at least one skeleton of a fluorene skeleton and a biphenyl skeleton.
- the phenoxy resin preferably has a polycyclic aromatic skeleton in the main chain.
- the phenoxy resin preferably has at least one skeleton of the skeletons represented by the following formulas (11) to (16) in the main chain.
- R 1 s may be the same or different and are a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom, and X 1 is a single bond, having 1 to 7 divalent hydrocarbon group, —O—, —S—, —SO 2 —, or —CO—.
- R 1a may be the same or different and is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom
- R 2 is a hydrogen atom, carbon number 1 A hydrocarbon group having 1 to 10 carbon atoms or a halogen atom
- R 3 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
- m is an integer of 0 to 5.
- R 1b may be the same or different from each other, and is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom, and R 4 is the same or different from each other. It may be a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom, and l is an integer of 0 to 4.
- R 5 and R 6 are a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a halogen atom, and X 2 is —SO 2 —, —CH 2 —, —C (CH 3 ) 2. -Or -O-, and k is 0 or 1.
- polymer (A) for example, a phenoxy resin represented by the following formula (17) or the following formula (18) is preferably used.
- a 1 has a structure represented by any of the above formulas (11) to (13), and the structure thereof is 0 to 60 mol%, the structure represented by the above formula (12) is 5 to 95 mol%, and the structure represented by the above formula (13) is 5 to 95 mol%, and A 2 is a hydrogen atom or the above formula And n 1 is an average value of 25 to 500.
- the structure represented by the formula (11) may not be included.
- a 3 has a structure represented by the above formula (15) or the above formula (16), and n 2 is a value of at least 21 or more.
- the glass transition temperature Tg of the polymer (A) is preferably 60 ° C. or higher, more preferably 90 ° C. or higher, preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
- the resin is hardly thermally deteriorated.
- the compatibility between the polymer (A) and another resin is increased. As a result, the handling property of the insulating sheet in an uncured state is further improved, and the heat resistance of the cured product of the insulating sheet is further increased.
- the glass transition temperature Tg of the phenoxy resin is preferably 95 ° C or higher, more preferably 110 ° C or higher, preferably 200 ° C or lower, more preferably 180 ° C or lower.
- the Tg of the phenoxy resin is not less than the above lower limit, the thermal deterioration of the resin can be further suppressed.
- the Tg of the phenoxy resin is not more than the above upper limit, the compatibility between the phenoxy resin and the other resin is increased. As a result, the handling property of the insulating sheet in an uncured state and the heat resistance of the cured product of the insulating sheet are further enhanced.
- the weight average molecular weight of the polymer (A) is 10,000 or more.
- the weight average molecular weight of the polymer (A) is preferably 30000 or more, more preferably 40000 or more, preferably 1000000 or less, more preferably 250,000 or less.
- the insulating sheet is hardly thermally deteriorated.
- the compatibility between the polymer (A) and another resin is increased. As a result, the handling property of the insulating sheet in an uncured state is further improved, and the heat resistance of the cured product of the insulating sheet is further increased.
- the polymer (A) may be added as a raw material, or may be a polymer produced by utilizing a reaction in each step such as stirring, coating, and drying during the production of the insulating sheet of the present invention. Good.
- the hydroxyl group equivalent of the polymer (A) is preferably less than 6000. From the viewpoint of further improving the handleability of the insulating sheet in an uncured state, the hydroxyl equivalent of the polymer (A) is preferably 300 or more, more preferably 5500 or less, and even more preferably 5000 or less. It is preferable that the hydroxyl equivalent of the polymer (A) is not more than the above upper limit, and the hydroxyl equivalent of the curable compound (B) is not less than the lower limit described later.
- the content of the polymer (A) is 20% by weight or more and 60% by weight or less in the total 100% by weight of the total resin components (hereinafter sometimes abbreviated as “total resin component X”) contained in the insulating sheet. It is preferable.
- the content of the polymer (A) in 100% by weight of the total resin component X is more preferably 30% by weight or more, and more preferably 50% by weight or less.
- the handling properties of the insulating sheet in an uncured state are further improved. Dispersion
- the total resin component X refers to the total of the polymer (A), the curable compound (B), the curing agent (C), and other resin components added as necessary.
- the total resin component X does not include the inorganic filler (D).
- the total resin component X includes an elastomer (E) that is a poly (meth) acrylic acid ester.
- the curable compound (B) contained in the insulating sheet according to the present invention is not particularly limited as long as it has a molecular weight of 1200 or less and has an epoxy group or an oxetanyl group.
- the curable compound (B) having an epoxy group or oxetanyl group a conventionally known epoxy compound or oxetane compound can be used.
- the curable compound (B) is preferably a monomer.
- the curable compound (B) is cured by the action of the curing agent (C).
- a curable compound (B) only 1 type may be used and 2 or more types may be used together.
- the curable compound (B) may contain an epoxy compound (B1) having an epoxy group, or may contain an oxetane compound (B2) having an oxetanyl group. From the viewpoint of further improving the heat resistance and dielectric breakdown characteristics of the cured product, the curable compound (B) preferably has an aromatic skeleton.
- the epoxy compound (B1) having an epoxy group examples include an epoxy monomer having a bisphenol skeleton, an epoxy monomer having a dicyclopentadiene skeleton, an epoxy monomer having a naphthalene skeleton, an epoxy monomer having an adamantane skeleton, and an epoxy having a fluorene skeleton.
- the monomer examples include an epoxy monomer having a biphenyl skeleton, an epoxy monomer having a bi (glycidyloxyphenyl) methane skeleton, an epoxy monomer having a xanthene skeleton, an epoxy monomer having an anthracene skeleton, and an epoxy monomer having a pyrene skeleton.
- These hydrogenated products or modified products may be used.
- an epoxy compound (B1) only 1 type may be used and 2 or more types may be used together.
- Examples of the epoxy monomer having a bisphenol skeleton include an epoxy monomer having a bisphenol A type, bisphenol F type, or bisphenol S type bisphenol skeleton.
- Examples of the epoxy monomer having a dicyclopentadiene skeleton include dicyclopentadiene dioxide and a phenol novolac epoxy monomer having a dicyclopentadiene skeleton.
- Examples of the epoxy monomer having a naphthalene skeleton include 1-glycidylnaphthalene, 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, 1,7-diglycidyl.
- Examples include naphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene, and 1,2,5,6-tetraglycidylnaphthalene.
- Examples of the epoxy monomer having an adamantane skeleton include 1,3-bis (4-glycidyloxyphenyl) adamantane and 2,2-bis (4-glycidyloxyphenyl) adamantane.
- Examples of the epoxy monomer having a fluorene skeleton include 9,9-bis (4-glycidyloxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3-methylphenyl) fluorene, and 9,9-bis (4- Glycidyloxy-3-chlorophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-bromophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-fluorophenyl) fluorene, 9,9-bis (4-Glycidyloxy-3-methoxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dichlorophenyl) Fluorene and 9,9-bis (4-glycidyloxy-3,5-dibromophenyl) Fluorene,
- Examples of the epoxy monomer having a biphenyl skeleton include 4,4'-diglycidylbiphenyl and 4,4'-diglycidyl-3,3 ', 5,5'-tetramethylbiphenyl.
- Examples of the epoxy monomer having a bi (glycidyloxyphenyl) methane skeleton include 1,1′-bi (2,7-glycidyloxynaphthyl) methane, 1,8′-bi (2,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,7-glycidyloxynaphthyl) methane, 1,8′-bi (3,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,5-glycidyloxynaphthyl) methane 1,8'-bi (3,5-glycidyloxynaphthyl) methane, 1,2'-bi (2,7-glycidyloxynaphthyl) methane, 1,2'-bi (3,7-glycidyloxynaphthyl) And methane and 1,2
- Examples of the epoxy monomer having a xanthene skeleton include 1,3,4,5,6,8-hexamethyl-2,7-bis-oxiranylmethoxy-9-phenyl-9H-xanthene.
- oxetane compound (B2) having an oxetanyl group include, for example, 4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, 1,4-benzenedicarboxylate bis [(3- Ethyl-3-oxetanyl) methyl] ester, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, and oxetane-modified phenol novolac.
- an oxetane compound (B2) only 1 type may be used and 2 or more types may be used together.
- the molecular weight of the curable compound (B) is 1200 or less.
- the molecular weight of the curable compound (B) is preferably 200 or more, preferably 600 or less, more preferably 550.
- the molecular weight of the curable compound (B) is not less than the above lower limit, the volatility of the curable compound (B) is lowered, and the handleability of the insulating sheet is further enhanced.
- the molecular weight of the curable compound (B) is not more than the above upper limit, the adhesiveness of the cured product is further enhanced.
- the insulating sheet is hard and not easily brittle, and the adhesiveness of the cured product is further enhanced.
- the molecular weight in the curable compound (B) means a molecular weight that can be calculated from the structural formula when it is not a polymer and when the structural formula can be specified. Means weight average molecular weight.
- the hydroxyl group equivalent of the curable compound (B) is preferably 6000 or more.
- the hydroxyl equivalent of the curable compound (B) is 6000 or more, even if curing proceeds during storage, the insulating sheet does not crack at the time of handling, and the insulating sheet in an uncured state Storage stability is also sufficiently high.
- the hydroxyl equivalent of the curable compound (B) is more preferably 6500 or more, further preferably 7000 or more, and particularly preferably 15000. That's it.
- the content of the curable compound (B) is preferably 10% by weight or more and 60% by weight or less.
- the content of the curable compound (B) in 100% by weight of the total resin component X is more preferably 20% by weight or more, and more preferably 50% by weight or less.
- the content of the curable compound (B) is not less than the above lower limit, the adhesiveness and heat resistance of the cured product are further increased.
- the content of the curable compound (B) is not more than the above upper limit, the handling property of the insulating sheet is further enhanced.
- the curing agent (C) contained in the insulating sheet according to the present invention is not particularly limited as long as the insulating sheet can be cured.
- the curing agent (C) is preferably a thermosetting agent.
- curing agent (C) only 1 type may be used and 2 or more types may be used together.
- the curing agent (C) is a dicyandiamide and imidazole compound. It is preferable to contain at least one of the above, more preferably dicyandiamide, and more preferably both dicyandiamide and an imidazole compound. By using a dicyandiamide or an imidazole compound, it is easy to contain a lot of nitrogen atoms in the insulating sheet.
- the curing agent (C) may be dicyandiamide or an imidazole compound. By using dicyandiamide, the adhesiveness of the cured product of the insulating sheet is further enhanced. From the viewpoint of further improving the heat resistance of the cured product and shortening the curing time, the curing agent (C) preferably contains an imidazole compound.
- imidazole compound examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-
- the content of nitrogen atoms is preferably 10 in 100% by weight of all atoms in the curing agent. % By weight or more, more preferably 20% by weight or more, preferably 30% by weight or more, more preferably 80% by weight or less.
- the content of nitrogen atoms contained in the curing agent (C) in 100% by weight of the insulating sheet is preferably 0.3% by weight or more, more preferably 0.4% by weight or more, more preferably 2% by weight or less.
- the content of nitrogen atoms contained in the imidazole compound in the insulating sheet 100% by weight is preferably 1.3% by weight or more, more preferably 2% by weight. % Or more.
- the content of the curing agent (C) is preferably 10% by weight or more and 40% by weight or less. In the total 100% by weight of all the resin components X, the content of the curing agent (C) is more preferably 12% by weight or more, and more preferably 25% by weight or less.
- the content of the curing agent (C) is not less than the above lower limit, it is easy to sufficiently cure the insulating sheet.
- the content of the curing agent (C) is not more than the above upper limit, it becomes difficult to generate an excessive curing agent (C) that does not participate in curing. For this reason, the heat resistance and adhesiveness of hardened
- Dicyandiamide in a total of 100% by weight of the total resin component X in order to improve the handling property, storage stability, adhesiveness, heat resistance, voltage resistance and moisture resistance in a balanced manner and to further improve the adhesiveness.
- the total content of imidazole and imidazole compound is preferably 10% by weight or more, more preferably 12% by weight or more, preferably 40% by weight or less, more preferably 25% by weight or less.
- the insulating sheet preferably contains dicyandiamide and imidazole compound in a weight ratio of 1:99 to 99: 1, and 90:10 to 10:90. More preferred.
- the blending ratio of dicyandiamide and imidazole compound is within the above range, handling property, storage stability, adhesiveness, heat resistance, voltage resistance, and moisture resistance can be effectively improved in a balanced manner, and further adhesiveness can be improved. Can be further increased.
- the inorganic filler (D) contained in the insulating sheet according to the present invention is not particularly limited as long as the thermal conductivity is 10 W / m ⁇ K or more.
- the thermal conductivity of the cured product can be increased.
- the heat dissipation of the cured product is increased.
- an inorganic filler (D) only 1 type may be used and 2 or more types may be used together.
- the thermal conductivity of the inorganic filler (D) is preferably 15 W / m ⁇ K or more, more preferably 20 W / m ⁇ K or more.
- the upper limit of the thermal conductivity of the inorganic filler (D) is not particularly limited. Inorganic fillers having a thermal conductivity of about 300 W / m ⁇ K are widely known, and inorganic fillers having a thermal conductivity of about 200 W / m ⁇ K are easily available.
- the inorganic filler (D) is at least one selected from the group consisting of alumina, synthetic magnesite, crystalline silica, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide, magnesium carbonate and magnesium oxide. Is preferable, and at least one selected from the group consisting of alumina, crystalline silica, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide, magnesium carbonate and magnesium oxide is more preferable. By using these preferable fillers, the heat dissipation of the cured product can be further enhanced.
- the magnesium carbonate is different from synthetic magnesite.
- the inorganic filler (D) is preferably at least one selected from the group consisting of spherical alumina, crushed alumina and spherical aluminum nitride, and more preferably spherical alumina or spherical aluminum nitride.
- the inorganic filler (D) may be a spherical filler or a crushed filler.
- the inorganic filler (D) is particularly preferably spherical. In the case of a spherical filler, since it can be filled with high density, the heat dissipation of the cured product is further enhanced.
- the inorganic filler (D) preferably contains spherical alumina.
- the inorganic filler (D) preferably contains 50% by weight or more of spherical alumina, preferably 75% by weight or more, and contains 100% by weight or less. All of the inorganic filler (D) may be spherical alumina.
- the inorganic filler (D) is made of alumina having a purity (alumina purity) by fluorescent X-ray analysis of 90.0% or more and 99.0% or less. It is preferable to include. In addition, when the purity exceeds 99.0%, the workability tends to be low. When the purity is 90.0% or more, the heat dissipation of the cured product is further enhanced.
- the inorganic filler (D) preferably contains 50% by weight or more of alumina having a purity of 90.0 to 99.0%, preferably 75% by weight or more, and contains 100% by weight or less.
- All of the inorganic fillers (D) may be alumina having a purity of 90.0 to 99.0%.
- the purity (%) is the content (%) of alumina in 100% of the inorganic filler which is alumina to be blended.
- alumina whose purity by fluorescent X-ray analysis is 90.0% or more and 99.0% or less is an inorganic substance whose purity by alumina X-ray analysis is 90.0% or more and 99.0% or less. It is a filler.
- the inorganic filler (D) preferably contains spherical alumina or crushed alumina whose purity by fluorescent X-ray analysis is 90.0% or more and 99.0% or less. .
- the inorganic filler (D) preferably contains 50% by weight or more of spherical alumina or crushed alumina having a purity of 90.0 to 99.0%, preferably 75% by weight or more, and contains 100% by weight or less. All of the inorganic fillers (D) may be spherical alumina or crushed alumina having a purity of 90.0 to 99.0%.
- Crushed filler may be mentioned as the crushed filler.
- the crushed filler can be obtained, for example, by crushing a massive inorganic substance using a uniaxial crusher, a biaxial crusher, a hammer crusher, a ball mill, or the like.
- the filler in the insulating sheet is likely to have a structure that is bridged or effectively brought close together. Therefore, the thermal conductivity of the cured product of the insulating sheet is further increased.
- the crushed filler is generally cheaper than a normal filler. For this reason, the cost of an insulating sheet can be reduced by using the crushed filler.
- the average particle size of the crushed filler is preferably 12 ⁇ m or less. When the average particle size is 12 ⁇ m or less, it is easy to disperse the crushed filler in the insulating sheet at a high density, and the dielectric breakdown characteristics of the cured product of the insulating sheet are further enhanced.
- the average particle size of the crushed filler is more preferably 10 ⁇ m or less, and preferably 1 ⁇ m or more. When the average particle size of the crushed filler is not less than the above lower limit, it is easy to fill the crushed filler with high density.
- the aspect ratio of the crushed filler is not particularly limited.
- the aspect ratio of the crushed filler is preferably 1.5 or more and 20 or less. Fillers with an aspect ratio of less than 1.5 are relatively expensive. Therefore, the cost of the insulating sheet increases. When the aspect ratio is 20 or less, filling of the crushed filler is easy.
- the aspect ratio of the crushed filler can be determined, for example, by measuring the crushed surface of the filler using a digital image analysis type particle size distribution measuring device (trade name: FPA, manufactured by Nippon Lucas).
- the average particle diameter of the spherical filler is preferably 0.1 ⁇ m or more and 40 ⁇ m or less.
- the average particle size is 0.1 ⁇ m or more, the inorganic filler (D) can be easily filled at a high density.
- the average particle size is 40 ⁇ m or less, the dielectric breakdown characteristics of the cured product are further enhanced.
- the above-mentioned “average particle diameter” is an average particle diameter obtained from a volume average particle size distribution measurement result measured with a laser diffraction particle size distribution measuring apparatus.
- the new Mohs hardness of the inorganic filler (D) is preferably 12 or less, more preferably 9 or less. When the new Mohs hardness of the inorganic filler (D) is 9 or less, the workability of the cured product is further enhanced.
- the inorganic filler (D) was selected from the group consisting of synthetic magnesite, crystalline silica, zinc oxide, and magnesium oxide. It is preferable that there is at least one.
- the content of the inorganic filler (D) in 100% by weight of the insulating sheet is 60% by weight or more. Moreover, content of the inorganic filler (D) in 100 weight% of insulating sheets is 95 weight% or less.
- the content of the inorganic filler (D) in 100% by weight of the insulating sheet is preferably 90% by weight or less, more preferably 85% by weight or less, still more preferably 80% by weight or less, and particularly preferably 70% by weight or less.
- the elastomer (E) contained in the insulating sheet according to the present invention is a poly (meth) acrylic ester.
- the elastomer (E) that is the poly (meth) acrylate is not particularly limited.
- Elastomers are compounds that exhibit rubber elasticity near room temperature. Only one type of elastomer (E) may be used, or two or more types may be used in combination.
- an elastomer (E) which is a poly (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate Hexyl (meth) acrylate and 2-ethylhexyl (meth) acrylate.
- polymerization components for obtaining an elastomer (E) that is a poly (meth) acrylic acid ester include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid and maleic anhydride And epoxy group-containing monomers such as glycidyl acrylate and allyl glycidyl ether.
- the elastomer (E) which is a poly (meth) acrylic acid ester is preferably a polymer using butyl (meth) acrylate, and butyl methacrylate is used. More preferred is a polymer.
- the “polymer” includes a copolymer.
- the elastomer (E) may be included in the form of rubber particles. By adding the elastomer (E) in the form of rubber particles, the stress relaxation property and flexibility of the insulating sheet can be enhanced without impairing the heat resistance.
- the content of the elastomer (E) is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 30% by weight or less.
- the content of the elastomer (E) is equal to or more than the above lower limit, the flexibility of the cured product is further increased, and the cooling cycle reliability is further increased.
- the content of the elastomer (E) is not more than the above upper limit, the heat resistance of the cured product is further increased.
- the insulating sheet according to the present invention may contain a dispersant. Use of the dispersant can further enhance the thermal conductivity and dielectric breakdown characteristics of the cured product.
- the dispersant preferably has a functional group containing a hydrogen atom having hydrogen bonding properties.
- the dispersing agent has a functional group containing a hydrogen atom having hydrogen bonding properties, the thermal conductivity and dielectric breakdown characteristics of the cured product can be further enhanced.
- the pKa of the functional group containing a hydrogen atom having hydrogen bonding property is preferably 2 or more, more preferably 3 or more, preferably 10 or less, more preferably 9 or less.
- the pKa of the functional group is not less than the lower limit, the acidity of the dispersant does not become too high. Therefore, the storage stability of the insulating sheet is further enhanced.
- the pKa of the functional group is not more than the above upper limit, the function as the dispersant is sufficiently fulfilled, and the thermal conductivity and dielectric breakdown characteristics of the cured product are further enhanced.
- the functional group containing a hydrogen atom having hydrogen bonding properties is preferably a carboxyl group or a phosphate group. In this case, the thermal conductivity and dielectric breakdown characteristics of the cured product are further enhanced.
- the dispersant examples include a polyester carboxylic acid, a polyether carboxylic acid, a polyacrylic carboxylic acid, an aliphatic carboxylic acid, a polysiloxane carboxylic acid, a polyester phosphoric acid, and a polyether type.
- examples thereof include phosphoric acid, polyacrylic phosphoric acid, aliphatic phosphoric acid, polysiloxane phosphoric acid, polyester phenol, polyether phenol, polyacrylic phenol, aliphatic phenol, and polysiloxane phenol.
- the said dispersing agent only 1 type may be used and 2 or more types may be used together.
- the content of the dispersant is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 20% by weight or less, more preferably 10% by weight. % By weight or less.
- the content of the dispersant is not less than the above lower limit and not more than the upper limit, aggregation of the inorganic filler (D) is difficult to occur, and the heat dissipation and dielectric breakdown characteristics of the cured product are further enhanced.
- the insulating sheet according to the present invention may contain a base material such as glass cloth, glass nonwoven fabric, and aramid nonwoven fabric.
- the insulating sheet has a self-supporting property at room temperature (23 ° C.) and an excellent handling property. Therefore, the insulating sheet preferably does not contain a base material, and particularly preferably does not contain glass cloth.
- the thickness of an insulating sheet can be made thin and the thermal conductivity of hardened
- an insulating sheet does not contain the said base material, various processes, such as a laser processing or a drilling process, can also be easily performed to an insulating sheet as needed.
- self-supporting means that the shape of a sheet can be maintained and handled as a sheet even if there is no support such as a PET film or copper foil.
- the insulating sheet according to the present invention may contain a tackifier, a plasticizer, a coupling agent, a thixotropic agent, a flame retardant, a photosensitizer, a colorant, and the like as necessary.
- the insulating sheet according to the present invention is used for bonding a heat conductor having a thermal conductivity of 10 W / m ⁇ K or more to a conductive layer.
- the manufacturing method of the insulating sheet which concerns on this invention is not specifically limited.
- the insulating sheet can be obtained, for example, by forming a mixture obtained by mixing the above-described materials into a sheet shape by a method such as a solvent casting method or an extrusion film forming method. Defoaming is preferred when forming into a sheet.
- the thickness of the insulating sheet is not particularly limited.
- the thickness of the insulating sheet is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, further preferably 70 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and still more preferably 120 ⁇ m or less.
- the thickness is not less than the above lower limit, the insulating property of the cured product of the insulating sheet is increased.
- the thickness is less than or equal to the above upper limit, the heat dissipation becomes high when the metal body is bonded to the conductive layer.
- the glass transition temperature Tg of the insulating sheet in the uncured state is preferably 25 ° C. or lower.
- the glass transition temperature is 25 ° C. or lower, the insulating sheet is hard and not easily brittle at room temperature. For this reason, the handleability of the insulating sheet in an uncured state is enhanced.
- the thermal conductivity of the cured product of the insulating sheet is preferably 0.7 W / m ⁇ K or more, more preferably 1.0 W / m ⁇ K or more, and further preferably 1.5 W / m ⁇ K or more.
- cured material of an insulating sheet becomes high enough that heat conductivity is more than the said minimum.
- the dielectric breakdown voltage of the cured product of the insulating sheet is preferably 25 kV / mm or more, more preferably 30 kV / mm or more, still more preferably 40 kV / mm or more, still more preferably 50 kV / mm or more, and particularly preferably 80 kV / mm or more. It is. If the dielectric breakdown voltage is too low, the insulating property may be lowered when the insulating sheet is used for a large current application such as for a power element.
- the insulating sheet according to the present invention constitutes an insulating layer of a laminated structure in which a conductive layer is laminated on at least one surface of a heat conductor having a thermal conductivity of 10 W / m ⁇ K or more via an insulating layer. Is preferably used.
- the laminated structure 1 shown in FIG. 1 includes a heat conductor 2, an insulating layer 3 laminated on the first surface 2a of the heat conductor 2, and a surface on which the heat conductor 2 of the insulating layer 3 is laminated. And a conductive layer 4 laminated on the opposite surface.
- the insulating layer and the conductive layer are not laminated on the second surface 2b opposite to the first surface 2a of the heat conductor 2.
- the insulating layer 3 is formed by curing the insulating sheet according to the present invention.
- the heat conductivity of the heat conductor 2 is 10 W / m ⁇ K or more.
- the insulating layer and the conductive layer are laminated in this order on at least one surface of the heat conductor, and the insulating layer and the conductive layer are laminated in this order on the other surface of the heat conductor. Good.
- the insulating layer 3 has a high thermal conductivity, heat from the conductive layer 4 side is easily transmitted to the thermal conductor 2 through the insulating layer 3. In the laminated structure 1, heat can be efficiently dissipated by the heat conductor 2.
- the laminated structure 1 can be obtained.
- the thermal conductor having a thermal conductivity of 10 W / m ⁇ K or more is not particularly limited.
- Examples of the heat conductor having a thermal conductivity of 10 W / m ⁇ K or more include aluminum, copper, alumina, beryllia, silicon carbide, silicon nitride, aluminum nitride, and graphite sheet.
- the heat conductor whose said heat conductivity is 10 W / m * K or more is copper or aluminum. Copper or aluminum is excellent in heat dissipation.
- the insulating sheet according to the present invention is suitably used for bonding a heat conductor having a thermal conductivity of 10 W / m ⁇ K or more to a conductive layer of a semiconductor device in which a semiconductor element is mounted on a substrate.
- the insulating sheet according to the present invention adheres a heat conductor having a thermal conductivity of 10 W / m ⁇ K or more to a conductive layer of an electronic component device in which electronic component elements other than semiconductor elements are mounted on a substrate. Also preferably used.
- the insulating sheet of this invention is used suitably for such a use.
- measuring agent (C) (1) Dicyandiamide (Nippon Carbite, trade name: DD, nitrogen atom content 66.6% by weight) (2) Isocyanur-modified solid dispersion type imidazole (imidazole curing accelerator, manufactured by Shikoku Kasei Co., Ltd., trade name: 2MZA-PW, nitrogen atom content 44.7% by weight) (3) Biphenyl skeleton phenol resin (Madewa Kasei Co., Ltd., trade name: MEH-7851-S)
- Elastomer (E) which is a poly (meth) acrylic ester (1) MMA / BMA elastomer (manufactured by Mitsubishi Rayon Co., Ltd., trade name: KW4426, rubber fine particles having a shell formed of methyl methacrylate and a core formed of n-butyl methacrylate, average particle size of 5 ⁇ m) (2) BMA elastomer (a polymer using n-butyl methacrylate, manufactured by Negami Kogyo Co., Ltd., trade name: Hyperl M-6003) (3) Acrylic polymer (butyl acrylate / ethyl acrylate / acrylonitrile terpolymer, manufactured by Nagase Chemtech Co., Ltd., trade name: WS-023)
- Epoxysilane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBE403
- Examples 1 to 22 and Comparative Examples 1 to 5 Using a homodisper type stirrer, each raw material was blended in the proportions shown in Tables 1 and 2 below (blending unit is parts by weight) and kneaded to prepare an insulating material.
- the insulating material was applied to a release PET sheet having a thickness of 50 ⁇ m so as to have a thickness of 100 ⁇ m, and dried in an oven at 90 ° C. for 30 minutes to produce an insulating sheet on the PET sheet.
- Nitrogen atom content An uncured insulation sheet was thermally decomposed at a sample furnace temperature of 950 ° C. using a micro coder JM-10 manufactured by J Science Lab. The content (% by weight) of nitrogen atoms contained in the components excluding the inorganic filler in the sheet was measured.
- ⁇ The insulating sheet is not deformed and can be easily peeled.
- ⁇ The insulating sheet can be peeled, but the sheet is stretched or broken.
- ⁇ The insulating sheet cannot be peeled.
- Insulation sheet is not deformed and can be easily peeled
- Insulation sheet can be peeled off, but chipping or cracking occurs during peeling
- ⁇ Chipping or cracking occurs during peeling and the insulating sheet cannot be peeled off
- Peel strength A (adhesiveness) An insulating sheet is sandwiched between an aluminum plate having a thickness of 1 mm and a middle profile electrolytic copper foil having a thickness of 35 ⁇ m, and the insulating sheet is held at 120 ° C. for 1 hour and further at 200 ° C. for 1 hour while maintaining a pressure of 4 MPa with a vacuum press. Press-cured to form a copper-clad laminate. The copper foil of the obtained copper-clad laminate was etched to form a copper foil strip having a width of 10 mm. The copper foil was peeled from the substrate at an angle of 90 ° C. at a pulling rate of 50 mm / min, and the peel strength A was measured.
- solder heat resistance test (heat resistance) The copper-clad laminate obtained by the evaluation of (6) peeling strength A was cut out to a size of 50 mm ⁇ 60 mm to obtain a test sample. The obtained test sample was floated in a solder bath at 288 ° C. with the copper foil side facing down, and the time until the copper foil swelled or peeled off was measured and judged according to the following criteria.
- Dielectric breakdown voltage (withstand voltage)
- the insulating sheet was cut into a size of 100 mm ⁇ 100 mm to obtain a test sample.
- the obtained test sample was cured in an oven at 120 ° C. for 1 hour and further in an oven at 200 ° C. for 1 hour to obtain a cured product of an insulating sheet.
- An AC voltage was applied using a withstand voltage tester (MODEL7473, manufactured by EXTECH Electronics) so that the voltage increased at a rate of 1 kV / second between the cured products of the insulating sheet.
- the voltage at which the cured product of the insulating sheet was broken was defined as the dielectric breakdown voltage.
- Cooling cycle test The copper-clad laminate obtained by the evaluation of the above (6) peel strength A was cut into a size of 100 mm ⁇ 100 mm and the copper foil was peeled off to obtain a test sample. Using the test sample, a 500-cycle or 1000-cycle thermal cycle test is performed using a one-chamber type thermal cycle tester (WINTECH NT510, manufactured by ETACH) at -40 ° C, 20 minutes, and 125 ° C for 20 minutes. It was. The presence or absence of cracks on the surface of the insulating layer formed by the insulating sheet after the test was observed with an optical microscope (TRANSFORMER-XN, manufactured by Nikon).
- WINTECH NT510 manufactured by ETACH
- Tables 1 and 2 below show the composition and evaluation results of the insulating material for forming the insulating sheet.
- * 1 indicates the content (% by weight) of the total resin component X in a total of 100% by weight.
- * 2 indicates the content (% by weight) of nitrogen atoms contained in the component excluding the inorganic filler in the insulating sheet in 100% by weight of the insulating sheet. “-” Indicates that evaluation is not performed.
- the following peel strength B adheresiveness
- the adhesiveness is hardly exhibited.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Inorganic Insulating Materials (AREA)
- Organic Insulating Materials (AREA)
- Insulating Bodies (AREA)
Abstract
Provided is an insulating sheet that can increase handleability and storage stability in an uncured state and, further, can increase heat dissipation characteristics and adhesiveness of the cured article after curing.
This insulating sheet is used to make a thermal conductor with thermal conductivity of 10 W/m·K or greater adhere to an electrically conductive layer. This insulating sheet contains a polymer with weight average molecular weight of 10000 or greater, a curable compound that has a molecular weight of 1200 or less and has an epoxy group or oxetanyl group, a curing agent, and an inorganic filler. In 100 wt% of the insulating sheet, the content for the inorganic filler is 60 wt% or greater and 95 vol% or less. In 100 wt% of the insulating sheet, the content for nitrogen atoms included in components in the insulating sheet excluding the inorganic filler is 0.3 wt% to less than 3.0 wt%.
Description
本発明は、熱伝導率が10W/m・K以上である熱伝導体を導電層に接着するために用いられる絶縁シートに関し、より詳細には、未硬化状態でのハンドリング性及び貯蔵安定性が高く、かつ硬化後の硬化物の接着性及び放熱性が高い絶縁シート、並びに該絶縁シートを用いた積層構造体に関する。
The present invention relates to an insulating sheet used for adhering a thermal conductor having a thermal conductivity of 10 W / m · K or more to a conductive layer, and more specifically, handling property and storage stability in an uncured state. The present invention relates to an insulating sheet that is high and has high adhesiveness and heat dissipation of a cured product after curing, and a laminated structure using the insulating sheet.
電子機器及び通信機器では、絶縁層を有するプリント配線板が用いられている。該絶縁層は、ペースト状又はシート状の絶縁接着材料を用いて形成されている。
上記絶縁接着材料の一例として、下記の特許文献1には、エポキシ樹脂、エポキシ樹脂用硬化剤、硬化促進剤、エラストマー及び無機充填剤を含む接着剤組成物を、ガラスクロスに含浸させた絶縁接着シートが開示されている。 In electronic devices and communication devices, printed wiring boards having an insulating layer are used. The insulating layer is formed using a paste-like or sheet-like insulating adhesive material.
As an example of the above-mentioned insulating adhesive material, the following patent document 1 discloses an insulating adhesive in which a glass cloth is impregnated with an adhesive composition containing an epoxy resin, an epoxy resin curing agent, a curing accelerator, an elastomer and an inorganic filler. A sheet is disclosed.
上記絶縁接着材料の一例として、下記の特許文献1には、エポキシ樹脂、エポキシ樹脂用硬化剤、硬化促進剤、エラストマー及び無機充填剤を含む接着剤組成物を、ガラスクロスに含浸させた絶縁接着シートが開示されている。 In electronic devices and communication devices, printed wiring boards having an insulating layer are used. The insulating layer is formed using a paste-like or sheet-like insulating adhesive material.
As an example of the above-mentioned insulating adhesive material, the following patent document 1 discloses an insulating adhesive in which a glass cloth is impregnated with an adhesive composition containing an epoxy resin, an epoxy resin curing agent, a curing accelerator, an elastomer and an inorganic filler. A sheet is disclosed.
ガラスクロスを含まない絶縁接着材料も知られている。例えば、下記の特許文献2の実施例には、ビスフェノールA型エポキシ樹脂、フェノキシ樹脂、フェノールノボラック、1-シアノエチル-2-フェニルイミダゾール、γ-グリシドキシプロピルトリメトキシシラン、及びアルミナを含む絶縁接着剤が開示されている。ここでは、エポキシ樹脂の硬化剤としては、3級アミン、酸無水物、イミダゾール化合物、ポリフェノール樹脂及びマスクイソシアネート等が挙げられている。
An insulating adhesive material that does not contain glass cloth is also known. For example, the example of Patent Document 2 below includes an insulating adhesive containing bisphenol A type epoxy resin, phenoxy resin, phenol novolac, 1-cyanoethyl-2-phenylimidazole, γ-glycidoxypropyltrimethoxysilane, and alumina. Agents are disclosed. Here, examples of the epoxy resin curing agent include tertiary amines, acid anhydrides, imidazole compounds, polyphenol resins, and mask isocyanates.
特許文献1に記載の絶縁接着シートでは、ハンドリング性を高めるために、ガラスクロスが用いられている。ガラスクロスを含む絶縁接着シートでは、薄膜化が困難であり、かつレーザー加工又はドリル穴開け加工等の各種加工が困難である。また、ガラスクロスを含む絶縁接着シートの硬化物の熱伝導率は比較的低いため、充分な放熱性が得られないことがある。さらに、ガラスクロスに接着剤組成物を含浸させるために、特殊な含浸設備を用意しなければならない。
In the insulating adhesive sheet described in Patent Document 1, a glass cloth is used in order to improve handling properties. With an insulating adhesive sheet including glass cloth, it is difficult to make a thin film, and various processes such as laser processing or drilling are difficult. Moreover, since the heat conductivity of the hardened | cured material of the insulation adhesive sheet containing a glass cloth is comparatively low, sufficient heat dissipation may not be obtained. Furthermore, special impregnation equipment must be prepared for impregnating the glass cloth with the adhesive composition.
特許文献2に記載の絶縁接着剤では、ガラスクロスが用いられていないため、未硬化状態ではそれ自体が自立性を有するシートではない。このため、絶縁接着剤のハンドリング性が低い。
In the insulating adhesive described in Patent Document 2, since glass cloth is not used, the sheet itself is not self-supporting in an uncured state. For this reason, the handling property of the insulating adhesive is low.
また、近年、電気機器の小型化及び高性能化が進行している。このため、上記電子機器及び通信機器に用いられるプリント配線板では、多層化及び薄膜化が進行しており、かつ電子部品の実装密度が高くなっている。これに伴って、電子部品から大きな熱量が発生しやすくなっており、発生した熱を放散させる必要が高まっている。熱を放散させるために、プリント配線板の絶縁層は、高い熱伝導率を有する必要がある。
Also, in recent years, the downsizing and high performance of electrical equipment are progressing. For this reason, in the printed wiring board used for the said electronic device and communication apparatus, multilayering and a thin film are progressing, and the mounting density of an electronic component is high. Along with this, a large amount of heat is easily generated from the electronic components, and the need to dissipate the generated heat is increasing. In order to dissipate heat, the insulating layer of the printed wiring board needs to have high thermal conductivity.
高い熱伝導率を上記絶縁層に付与するためには、例えば、該絶縁層を形成するための絶縁接着材料に、熱伝導率が10W/m・K以上の熱伝導性が高いフィラーを多量に充填する方法が一般的に採用されている。しかしながら、フィラーを多量に充填すると、上記絶縁層の接着性が低くなる傾向がある。さらに、小型化及び高性能化のために、微細な配線パターンが設けられた接着対象部材を接着する用途では特に、フィラーを多量に含む上記絶縁接着材料の接着性が低くなりやすく、剥離が生じやすいという問題がある。
In order to impart high thermal conductivity to the insulating layer, for example, a large amount of filler having high thermal conductivity with a thermal conductivity of 10 W / m · K or more is added to the insulating adhesive material for forming the insulating layer. A filling method is generally employed. However, if a large amount of filler is filled, the adhesiveness of the insulating layer tends to be low. Furthermore, the adhesive of the above-mentioned insulating adhesive material containing a large amount of filler is likely to be lowered and peeled off, particularly in applications where a member to be bonded provided with a fine wiring pattern is bonded for miniaturization and high performance. There is a problem that it is easy.
また、高い熱伝導率を上記絶縁層に付与するために、絶縁接着材料に、熱伝導率が10W/m・K以上の熱伝導性が高いアルミナなどのフィラーを配合する方法も用いられている。特許文献2に記載の絶縁接着剤でも、アルミナが用いられている。しかしながら、アルミナを含む絶縁接着材料の硬化物の加工性は低いことがある。
In order to impart high thermal conductivity to the insulating layer, a method of blending a filler such as alumina having high thermal conductivity with a thermal conductivity of 10 W / m · K or more is used in the insulating adhesive material. . Alumina is also used in the insulating adhesive described in Patent Document 2. However, the workability of the cured product of the insulating adhesive material containing alumina may be low.
本発明の目的は、熱伝導率が10W/m・K以上である熱伝導体を導電層に接着するために用いられ、未硬化状態でのハンドリング性及び貯蔵安定性を高くすることができ、更に硬化後の硬化物の放熱性を高くすることができ、かつ硬化物の接着性も高くすることができる絶縁シート、並びに該絶縁シートを用いた積層構造体を提供することである。
The object of the present invention is used to adhere a heat conductor having a thermal conductivity of 10 W / m · K or more to a conductive layer, and can improve handling and storage stability in an uncured state, Furthermore, it is providing the insulating sheet which can make high heat dissipation of the hardened | cured material after hardening, and can also make adhesiveness of hardened | cured material high, and a laminated structure using this insulating sheet.
本発明の限定的な目的は、加工性が高い絶縁シート、並びに該絶縁シートを用いた積層構造体を提供することである。本発明のさらに限定的な目的は、微細な配線パターンが設けられた接着対象部材に対する硬化物の接着性が高い絶縁シート、並びに該絶縁シートを用いた積層構造体を提供することである。
A limited object of the present invention is to provide a highly workable insulating sheet and a laminated structure using the insulating sheet. A further limited object of the present invention is to provide an insulating sheet having high adhesion of a cured product to a bonding target member provided with a fine wiring pattern, and a laminated structure using the insulating sheet.
本発明のさらに限定的な目的は、耐熱性、耐電圧性及び耐湿性が高い絶縁シート、並びに該絶縁シートを用いた積層構造体を提供することである。
A further limited object of the present invention is to provide an insulating sheet having high heat resistance, voltage resistance and moisture resistance, and a laminated structure using the insulating sheet.
本発明の広い局面によれば、熱伝導率が10W/m・K以上である熱伝導体を導電層に接着するために用いられる絶縁シートであって、重量平均分子量が10000以上であるポリマーと、分子量が1200以下であり、かつエポキシ基又はオキセタニル基を有する硬化性化合物と、硬化剤と、無機フィラーとを含み、絶縁シート100重量%中、上記無機フィラーの含有量が60重量%以上、95重量%以下であり、絶縁シート100重量%中、絶縁シート中の上記無機フィラーを除く成分に含まれている窒素原子の含有量が0.3重量%以上、3.0重量%未満である、絶縁シートが提供される。
According to a wide aspect of the present invention, there is provided an insulating sheet used for bonding a thermal conductor having a thermal conductivity of 10 W / m · K or more to a conductive layer, wherein the polymer has a weight average molecular weight of 10,000 or more. A curable compound having a molecular weight of 1200 or less and having an epoxy group or an oxetanyl group, a curing agent, and an inorganic filler, and the content of the inorganic filler is 60% by weight or more in 100% by weight of the insulating sheet, 95% by weight or less, and in 100% by weight of the insulating sheet, the content of nitrogen atoms contained in the insulating sheet excluding the inorganic filler is 0.3% by weight or more and less than 3.0% by weight. An insulating sheet is provided.
本発明に係る絶縁シートのある特定の局面では、上記ポリマー、上記硬化性化合物及び上記硬化剤の内の少なくとも1種が、窒素原子を含む。本発明に係る絶縁シートの他の特定の局面では、上記硬化剤が窒素原子を含む。
In a specific aspect of the insulating sheet according to the present invention, at least one of the polymer, the curable compound, and the curing agent contains a nitrogen atom. On the other specific situation of the insulating sheet which concerns on this invention, the said hardening | curing agent contains a nitrogen atom.
上記ポリマーが芳香族骨格を有することが好ましい。さらに、上記硬化性化合物が芳香族骨格を有することが好ましい。
上記ポリマーは、フェノキシ樹脂又はエポキシ樹脂であることが好ましい。 The polymer preferably has an aromatic skeleton. Further, the curable compound preferably has an aromatic skeleton.
The polymer is preferably a phenoxy resin or an epoxy resin.
上記ポリマーは、フェノキシ樹脂又はエポキシ樹脂であることが好ましい。 The polymer preferably has an aromatic skeleton. Further, the curable compound preferably has an aromatic skeleton.
The polymer is preferably a phenoxy resin or an epoxy resin.
本発明に係る絶縁シートの他の特定の局面では、上記硬化性化合物の水酸基当量が6000以上である。
In another specific aspect of the insulating sheet according to the present invention, the curable compound has a hydroxyl group equivalent of 6000 or more.
上記無機フィラーは、アルミナ、合成マグネサイト、結晶性シリカ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛、炭酸マグネシウム及び酸化マグネシウムからなる群から選択された少なくとも1種であることが好ましい。上記無機フィラーは、球状アルミナを含むことが好ましい。上記無機フィラーは、蛍光X線分析による純度が90.0%以上、99.0%以下であるアルミナを含むことが好ましい。上記無機フィラーは、球状アルミナ、又は蛍光X線分析による純度が90.0%以上、99.0%以下である破砕アルミナを含むことが好ましい。
The inorganic filler is preferably at least one selected from the group consisting of alumina, synthetic magnesite, crystalline silica, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide, magnesium carbonate and magnesium oxide. . The inorganic filler preferably contains spherical alumina. The inorganic filler preferably contains alumina having a purity by fluorescent X-ray analysis of 90.0% or more and 99.0% or less. The inorganic filler preferably contains spherical alumina or crushed alumina having a purity by fluorescent X-ray analysis of 90.0% or more and 99.0% or less.
本発明に係る絶縁シートの他の特定の局面では、ポリ(メタ)アクリル酸エステルであるエラストマーがさらに含まれている。該エラストマーはブチル(メタ)クリレートを用いた重合体であることが好ましい。
In another specific aspect of the insulating sheet according to the present invention, an elastomer that is a poly (meth) acrylic ester is further included. The elastomer is preferably a polymer using butyl (meth) acrylate.
上記硬化剤は、ジシアンジアミド及びイミダゾール化合物の内の少なくとも1種を含むことが好ましい。
本発明に係る絶縁シートのある特定の局面では、上記硬化剤はジシアンジアミドを含む。本発明に係る絶縁シートの他の特定の局面では、上記硬化剤はイミダゾール化合物を含む。 The curing agent preferably contains at least one of dicyandiamide and imidazole compounds.
On the specific situation with the insulating sheet which concerns on this invention, the said hardening | curing agent contains a dicyandiamide. In another specific aspect of the insulating sheet according to the present invention, the curing agent includes an imidazole compound.
本発明に係る絶縁シートのある特定の局面では、上記硬化剤はジシアンジアミドを含む。本発明に係る絶縁シートの他の特定の局面では、上記硬化剤はイミダゾール化合物を含む。 The curing agent preferably contains at least one of dicyandiamide and imidazole compounds.
On the specific situation with the insulating sheet which concerns on this invention, the said hardening | curing agent contains a dicyandiamide. In another specific aspect of the insulating sheet according to the present invention, the curing agent includes an imidazole compound.
本発明に係る積層構造体は、熱伝導率が10W/m・K以上である熱伝導体と、該熱伝導体の少なくとも一方の表面に積層された絶縁層と、該絶縁層の上記熱伝導体が積層された表面とは反対側の表面に積層された導電層とを備えており、上記絶縁層が、本発明に従って構成された絶縁シートを硬化させることにより形成されている。上記熱伝導体は金属であることが好ましい。
The laminated structure according to the present invention includes a heat conductor having a thermal conductivity of 10 W / m · K or more, an insulating layer laminated on at least one surface of the heat conductor, and the heat conduction of the insulating layer. A conductive layer laminated on the surface opposite to the surface on which the body is laminated, and the insulating layer is formed by curing an insulating sheet configured according to the present invention. The heat conductor is preferably a metal.
本発明に係る絶縁シートは、重量平均分子量が10000以上であるポリマーと、分子量が1200以下でありかつエポキシ基又はオキセタニル基を有する硬化性化合物と、硬化剤と、無機フィラーとを含み、絶縁シート100重量%中の上記無機フィラーの含有量が60重量%以上、95重量%であり、絶縁シート100重量%中、絶縁シート中の上記無機フィラーを除く成分に含まれている窒素原子の含有量が0.3重量%以上、3.0重量%未満であるので、未硬化状態での絶縁シートのハンドリング性及び貯蔵安定性を高くすることができ、更に硬化後の硬化物の放熱性を高くすることができ、かつ硬化物の接着性も高くすることができる。
An insulating sheet according to the present invention includes a polymer having a weight average molecular weight of 10,000 or more, a curable compound having a molecular weight of 1200 or less and having an epoxy group or an oxetanyl group, a curing agent, and an inorganic filler. Content of the said inorganic filler in 100 weight% is 60 weight% or more and 95 weight%, Content of the nitrogen atom contained in the component except the said inorganic filler in 100 weight% of insulating sheets Is 0.3% by weight or more and less than 3.0% by weight, the handling property and storage stability of the insulating sheet in the uncured state can be increased, and the heat dissipation of the cured product after curing is further increased. And the adhesion of the cured product can be increased.
以下、本発明の詳細を説明する。
本発明に係る絶縁シートは、熱伝導率が10W/m・K以上である熱伝導体を導電層に接着するために用いられる絶縁シートである。本発明に係る絶縁シートは、重量平均分子量が10000以上であるポリマー(A)と、分子量が1200以下でありかつエポキシ基又はオキセタニル基を有する硬化性化合物(B)と、硬化剤(C)と、無機フィラー(D)とを含む。絶縁シート100重量%中、無機フィラー(D)の含有量は60重量%以上、95重量%以下である。絶縁シート100重量%中、絶縁シート中の無機フィラー(D)を除く成分に含まれている窒素原子の含有量は0.3重量%以上、3.0重量%未満である。 Details of the present invention will be described below.
The insulating sheet which concerns on this invention is an insulating sheet used in order to adhere | attach the heat conductor whose heat conductivity is 10 W / m * K or more to a conductive layer. The insulating sheet according to the present invention includes a polymer (A) having a weight average molecular weight of 10,000 or more, a curable compound (B) having a molecular weight of 1200 or less and having an epoxy group or oxetanyl group, and a curing agent (C). And an inorganic filler (D). In 100% by weight of the insulating sheet, the content of the inorganic filler (D) is 60% by weight or more and 95% by weight or less. In 100% by weight of the insulating sheet, the content of nitrogen atoms contained in the component excluding the inorganic filler (D) in the insulating sheet is 0.3% by weight or more and less than 3.0% by weight.
本発明に係る絶縁シートは、熱伝導率が10W/m・K以上である熱伝導体を導電層に接着するために用いられる絶縁シートである。本発明に係る絶縁シートは、重量平均分子量が10000以上であるポリマー(A)と、分子量が1200以下でありかつエポキシ基又はオキセタニル基を有する硬化性化合物(B)と、硬化剤(C)と、無機フィラー(D)とを含む。絶縁シート100重量%中、無機フィラー(D)の含有量は60重量%以上、95重量%以下である。絶縁シート100重量%中、絶縁シート中の無機フィラー(D)を除く成分に含まれている窒素原子の含有量は0.3重量%以上、3.0重量%未満である。 Details of the present invention will be described below.
The insulating sheet which concerns on this invention is an insulating sheet used in order to adhere | attach the heat conductor whose heat conductivity is 10 W / m * K or more to a conductive layer. The insulating sheet according to the present invention includes a polymer (A) having a weight average molecular weight of 10,000 or more, a curable compound (B) having a molecular weight of 1200 or less and having an epoxy group or oxetanyl group, and a curing agent (C). And an inorganic filler (D). In 100% by weight of the insulating sheet, the content of the inorganic filler (D) is 60% by weight or more and 95% by weight or less. In 100% by weight of the insulating sheet, the content of nitrogen atoms contained in the component excluding the inorganic filler (D) in the insulating sheet is 0.3% by weight or more and less than 3.0% by weight.
上記組成の採用により、未硬化状態での絶縁シートのハンドリング性及び貯蔵安定性を高くすることができ、更に絶縁シートを硬化させた硬化物の放熱性を高くすることができ、かつ硬化物の接着性も高くすることができる。特に、接着対象部材が銅を含んでいても、銅を含む接着対象部材に対する硬化物の接着性を十分に高くすることができる。特に、無機フィラー(D)の含有量が多く、60重量%以上であっても、上記窒素原子の含有量が上記範囲内であることにより、ハンドリング性、貯蔵安定性、接着性及び放熱性をバランス良くかつ十分に高めることができる。さらに、従来の絶縁シートの硬化物では、一般に微細な配線パターンが設けられた接着対象部材に対する接着性が低い。本発明に係る絶縁シートは上記組成を有するので、微細な配線が設けられた接着対象部材に対しても、硬化物の接着性を十分に高くすることができる。
By adopting the above composition, the handling property and storage stability of the insulating sheet in an uncured state can be increased, the heat dissipation of the cured product obtained by curing the insulating sheet can be increased, and the cured product Adhesiveness can also be increased. In particular, even if the adhesion target member contains copper, the adhesion of the cured product to the adhesion target member containing copper can be sufficiently increased. In particular, even if the content of the inorganic filler (D) is large and the content of the nitrogen atom is within the above range even when the content is 60% by weight or more, handling properties, storage stability, adhesiveness and heat dissipation are improved. The balance can be improved sufficiently. Furthermore, the conventional hardened | cured material of an insulating sheet has low adhesiveness with respect to the adhesion target member generally provided with the fine wiring pattern. Since the insulating sheet according to the present invention has the above composition, the adhesiveness of the cured product can be sufficiently increased even for a member to be bonded provided with fine wiring.
さらに、上記組成の採用により、絶縁シートの硬化物の耐熱性、耐電圧性及び耐湿性を高めることができる。また、上記組成の採用により、絶縁シートの硬化物の加工性も高めることが可能である。
Furthermore, by adopting the above composition, the heat resistance, voltage resistance and moisture resistance of the cured product of the insulating sheet can be improved. In addition, by adopting the above composition, the workability of the cured product of the insulating sheet can be improved.
絶縁シート100重量%中、絶縁シート中の無機フィラー(D)を除く成分に含まれている窒素原子の含有量は、より好ましくは0.4重量%以上、より好ましくは2重量%以下、更に好ましくは1重量%以下である。上記窒素原子の含有量が0.4重量%以上であると、銅に対する接着性及び微細な配線パターンが設けられた接着対象部材に対する接着性がより一層高くなる。上記窒素原子の含有量が2.5重量%以下であると、未硬化状態での絶縁シートの貯蔵安定性がより一層高くなる。
In 100% by weight of the insulating sheet, the content of nitrogen atoms contained in the component excluding the inorganic filler (D) in the insulating sheet is more preferably 0.4% by weight or more, more preferably 2% by weight or less. Preferably it is 1 weight% or less. When the content of the nitrogen atom is 0.4% by weight or more, the adhesion to copper and the adhesion to the adhesion target member provided with the fine wiring pattern are further enhanced. When the nitrogen atom content is 2.5% by weight or less, the storage stability of the insulating sheet in an uncured state is further enhanced.
なお、上記窒素原子の含有量には、無機フィラー(D)に含まれている窒素原子の含有量は含まれない。上記窒素原子の含有量には、ポリマー(A)、硬化性化合物(B)及び硬化剤(C)に含まれている窒素原子の含有量が含まれる。さらに、上記窒素原子の含有量には、後述するエラストマー(E)に含まれている窒素原子の含有量が含まれる。上記窒素原子の含有量は、絶縁シート中の成分(但し、無機フィラー(D)を除く)における窒素原子の含有量である。
The nitrogen atom content does not include the nitrogen atom content contained in the inorganic filler (D). The nitrogen atom content includes the nitrogen atom content contained in the polymer (A), the curable compound (B), and the curing agent (C). Furthermore, the content of nitrogen atoms includes the content of nitrogen atoms contained in the elastomer (E) described later. The nitrogen atom content is the nitrogen atom content in the components in the insulating sheet (excluding the inorganic filler (D)).
ハンドリング性と貯蔵安定性と接着性と耐熱性と耐電圧性と耐湿性とをバランス良く高めるために、本発明に係る絶縁シートでは、ポリマー(A)、硬化性化合物(B)及び硬化剤(C)の内の少なくとも1種が、窒素原子を含むことが好ましい。ポリマー(A)は、窒素を含んでいてもよく、含んでいなくてもよい。硬化性化合物(B)は、窒素を含んでいてもよく、含んでいなくてもよい。硬化剤(C)は、窒素を含んでいてもよく、含んでいなくてもよい。ハンドリング性と貯蔵安定性と接着性と耐熱性と耐電圧性と耐湿性とをバランス良く高めるために、更に接着性をより一層高めるために、硬化剤(C)が窒素原子を含むことが好ましい。
In order to enhance the handling property, storage stability, adhesiveness, heat resistance, voltage resistance and moisture resistance in a balanced manner, the insulating sheet according to the present invention includes a polymer (A), a curable compound (B), and a curing agent ( It is preferable that at least one of C) contains a nitrogen atom. The polymer (A) may or may not contain nitrogen. The curable compound (B) may or may not contain nitrogen. The curing agent (C) may or may not contain nitrogen. In order to improve the handling property, storage stability, adhesiveness, heat resistance, voltage resistance and moisture resistance in a balanced manner, in order to further improve the adhesiveness, it is preferable that the curing agent (C) contains a nitrogen atom. .
硬化物の柔軟性を高め、かつ冷熱サイクル信頼性をより一層高める観点からは、本発明に係る絶縁シートは、成分(A)~(D)に加えて、ポリ(メタ)アクリル酸エステルであるエラストマー(E)をさらに含むことが好ましい。エラストマー(E)は窒素原子を含んでいてもよく、含んでいなくてもよい。(メタ)アクリル酸は、アクリル酸とメタクリル酸とを示す。
以下、先ず、本発明に係る絶縁シートに含まれている各成分の詳細を説明する。 From the viewpoint of enhancing the flexibility of the cured product and further improving the reliability of the thermal cycle, the insulating sheet according to the present invention is a poly (meth) acrylic ester in addition to the components (A) to (D). It is preferable to further contain an elastomer (E). The elastomer (E) may or may not contain nitrogen atoms. (Meth) acrylic acid indicates acrylic acid and methacrylic acid.
Hereinafter, first, the detail of each component contained in the insulating sheet which concerns on this invention is demonstrated.
以下、先ず、本発明に係る絶縁シートに含まれている各成分の詳細を説明する。 From the viewpoint of enhancing the flexibility of the cured product and further improving the reliability of the thermal cycle, the insulating sheet according to the present invention is a poly (meth) acrylic ester in addition to the components (A) to (D). It is preferable to further contain an elastomer (E). The elastomer (E) may or may not contain nitrogen atoms. (Meth) acrylic acid indicates acrylic acid and methacrylic acid.
Hereinafter, first, the detail of each component contained in the insulating sheet which concerns on this invention is demonstrated.
(ポリマー(A))
本発明に係る絶縁シートに含まれているポリマー(A)は、重量平均分子量が10000以上であれば特に限定されない。硬化物の耐熱性をより一層高める観点からは、ポリマー(A)は、芳香族骨格を有することが好ましい。ポリマー(A)が芳香族骨格を有する場合には、ポリマー(A)は、芳香族骨格をポリマー全体のいずれかの部分に有していればよく、主鎖骨格内に有していてもよく、側鎖中に有していてもよい。ポリマー(A)は、芳香族骨格を主鎖骨格内に有することが好ましい。この場合には、絶縁シートの硬化物の耐熱性がさらに一層高くなる。ポリマー(A)は、1種のみが用いられてもよく、2種以上が併用されてもよい。 (Polymer (A))
The polymer (A) contained in the insulating sheet according to the present invention is not particularly limited as long as the weight average molecular weight is 10,000 or more. From the viewpoint of further improving the heat resistance of the cured product, the polymer (A) preferably has an aromatic skeleton. When the polymer (A) has an aromatic skeleton, the polymer (A) may have an aromatic skeleton in any part of the whole polymer, and may have in the main chain skeleton. , May be present in the side chain. The polymer (A) preferably has an aromatic skeleton in the main chain skeleton. In this case, the heat resistance of the cured product of the insulating sheet is further increased. As for a polymer (A), only 1 type may be used and 2 or more types may be used together.
本発明に係る絶縁シートに含まれているポリマー(A)は、重量平均分子量が10000以上であれば特に限定されない。硬化物の耐熱性をより一層高める観点からは、ポリマー(A)は、芳香族骨格を有することが好ましい。ポリマー(A)が芳香族骨格を有する場合には、ポリマー(A)は、芳香族骨格をポリマー全体のいずれかの部分に有していればよく、主鎖骨格内に有していてもよく、側鎖中に有していてもよい。ポリマー(A)は、芳香族骨格を主鎖骨格内に有することが好ましい。この場合には、絶縁シートの硬化物の耐熱性がさらに一層高くなる。ポリマー(A)は、1種のみが用いられてもよく、2種以上が併用されてもよい。 (Polymer (A))
The polymer (A) contained in the insulating sheet according to the present invention is not particularly limited as long as the weight average molecular weight is 10,000 or more. From the viewpoint of further improving the heat resistance of the cured product, the polymer (A) preferably has an aromatic skeleton. When the polymer (A) has an aromatic skeleton, the polymer (A) may have an aromatic skeleton in any part of the whole polymer, and may have in the main chain skeleton. , May be present in the side chain. The polymer (A) preferably has an aromatic skeleton in the main chain skeleton. In this case, the heat resistance of the cured product of the insulating sheet is further increased. As for a polymer (A), only 1 type may be used and 2 or more types may be used together.
上記芳香族骨格は特に限定されない。上記芳香族骨格の具体例としては、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格及びビスフェノールA型骨格等が挙げられる。なかでも、ビフェニル骨格又はフルオレン骨格が好ましい。この場合には、絶縁シートの硬化物の耐熱性がより一層高くなる。
The aromatic skeleton is not particularly limited. Specific examples of the aromatic skeleton include naphthalene skeleton, fluorene skeleton, biphenyl skeleton, anthracene skeleton, pyrene skeleton, xanthene skeleton, adamantane skeleton, and bisphenol A skeleton. Of these, a biphenyl skeleton or a fluorene skeleton is preferable. In this case, the heat resistance of the hardened | cured material of an insulating sheet becomes still higher.
ポリマー(A)として、熱可塑性樹脂及び熱硬化性樹脂などの硬化性樹脂等を用いることができる。ポリマー(A)は硬化性樹脂であることが好ましい。
上記熱可塑性樹脂及び熱硬化性樹脂は、特に限定されない。上記熱可塑性樹脂及び熱硬化性樹脂としては、例えば、ポリフェニレンサルファイド、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン又はポリエーテルケトン等の熱可塑性樹脂が挙げられる。また、上記熱可塑性樹脂及び熱硬化性樹脂として、熱可塑性ポリイミド、熱硬化性ポリイミド、ベンゾオキサジン、及びポリベンゾオキサゾールとベンゾオキサジンとの反応物などのスーパーエンプラと呼ばれている耐熱性樹脂群等を使用できる。上記熱可塑性樹脂及び上記熱硬化性樹脂はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。熱可塑性樹脂及び熱硬化性樹脂の内のいずれか一方が用いられてもよく、熱可塑性樹脂と熱硬化性樹脂とが併用されてもよい。 As the polymer (A), a curable resin such as a thermoplastic resin and a thermosetting resin can be used. The polymer (A) is preferably a curable resin.
The thermoplastic resin and thermosetting resin are not particularly limited. Examples of the thermoplastic resin and thermosetting resin include thermoplastic resins such as polyphenylene sulfide, polyarylate, polysulfone, polyethersulfone, polyetheretherketone, and polyetherketone. In addition, as the thermoplastic resin and the thermosetting resin, thermoplastic polyimide, thermosetting polyimide, benzoxazine, and a heat-resistant resin group called super engineering plastics such as a reaction product of polybenzoxazole and benzoxazine, etc. Can be used. As for the said thermoplastic resin and the said thermosetting resin, only 1 type may respectively be used and 2 or more types may be used together. Either one of a thermoplastic resin and a thermosetting resin may be used, and a thermoplastic resin and a thermosetting resin may be used in combination.
上記熱可塑性樹脂及び熱硬化性樹脂は、特に限定されない。上記熱可塑性樹脂及び熱硬化性樹脂としては、例えば、ポリフェニレンサルファイド、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン又はポリエーテルケトン等の熱可塑性樹脂が挙げられる。また、上記熱可塑性樹脂及び熱硬化性樹脂として、熱可塑性ポリイミド、熱硬化性ポリイミド、ベンゾオキサジン、及びポリベンゾオキサゾールとベンゾオキサジンとの反応物などのスーパーエンプラと呼ばれている耐熱性樹脂群等を使用できる。上記熱可塑性樹脂及び上記熱硬化性樹脂はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。熱可塑性樹脂及び熱硬化性樹脂の内のいずれか一方が用いられてもよく、熱可塑性樹脂と熱硬化性樹脂とが併用されてもよい。 As the polymer (A), a curable resin such as a thermoplastic resin and a thermosetting resin can be used. The polymer (A) is preferably a curable resin.
The thermoplastic resin and thermosetting resin are not particularly limited. Examples of the thermoplastic resin and thermosetting resin include thermoplastic resins such as polyphenylene sulfide, polyarylate, polysulfone, polyethersulfone, polyetheretherketone, and polyetherketone. In addition, as the thermoplastic resin and the thermosetting resin, thermoplastic polyimide, thermosetting polyimide, benzoxazine, and a heat-resistant resin group called super engineering plastics such as a reaction product of polybenzoxazole and benzoxazine, etc. Can be used. As for the said thermoplastic resin and the said thermosetting resin, only 1 type may respectively be used and 2 or more types may be used together. Either one of a thermoplastic resin and a thermosetting resin may be used, and a thermoplastic resin and a thermosetting resin may be used in combination.
ポリマー(A)は、エポキシ樹脂、スチレン系重合体、(メタ)アクリル系重合体又はフェノキシ樹脂であることが好ましく、エポキシ樹脂又はフェノキシ樹脂であることがより好ましく、フェノキシ樹脂であることが更に好ましい。この好ましいポリマーの使用により、絶縁シートの硬化物が酸化劣化し難くなり、かつ耐熱性がより一層高くなる。特に、エポキシ樹脂又はフェノキシ樹脂の使用により、硬化物の耐熱性がより一層高くなり、フェノキシ樹脂の使用により、硬化物の耐熱性が更に一層高くなる。
The polymer (A) is preferably an epoxy resin, a styrene polymer, a (meth) acrylic polymer or a phenoxy resin, more preferably an epoxy resin or a phenoxy resin, and further preferably a phenoxy resin. . By using this preferable polymer, the cured product of the insulating sheet is hardly oxidized and deteriorated, and the heat resistance is further enhanced. In particular, the use of epoxy resin or phenoxy resin further increases the heat resistance of the cured product, and the use of phenoxy resin further increases the heat resistance of the cured product.
上記エポキシ樹脂は、フェノキシ樹脂以外のエポキシ樹脂であることが好ましい。該エポキシ樹脂としては、スチレン骨格含有エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、トリシクロデカン骨格を有するエポキシ樹脂、及びトリアジン核を骨格に有するエポキシ樹脂等が挙げられる。
The epoxy resin is preferably an epoxy resin other than phenoxy resin. Examples of the epoxy resin include styrene skeleton-containing epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin. , Phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, anthracene type epoxy resin, epoxy resin having adamantane skeleton, epoxy resin having tricyclodecane skeleton, and epoxy resin having triazine nucleus in skeleton Etc.
上記スチレン系重合体として、具体的には、スチレン系モノマーの単独重合体、又はスチレン系モノマーとアクリル系モノマーとの共重合体等を用いることができる。中でも、スチレン-メタクリル酸グリシジルの構造を有するスチレン系重合体が好ましい。
As the styrene polymer, specifically, a homopolymer of a styrene monomer, a copolymer of a styrene monomer and an acrylic monomer, or the like can be used. Of these, styrene polymers having a styrene-glycidyl methacrylate structure are preferred.
上記スチレン系モノマーとしては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、p-エチルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、2,4-ジメチルスチレン及び3,4-ジクロロスチレン等が挙げられる。
Examples of the styrene monomer include styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, p-methoxy styrene, p-phenyl styrene, p-chloro styrene, p-ethyl styrene, pn- Butyl styrene, p-tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene, 2,4-dimethyl Examples include styrene and 3,4-dichlorostyrene.
上記アクリル系モノマーとしては、例えば、アクリル酸、メタクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸-2-エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸フェニル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸-2-エチルヘキシル、メタクリル酸グリシジル、β-ヒドロキシアクリル酸エチル、γ-アミノアクリル酸プロピル、メタクリル酸ステアリル、メタクリル酸ジメチルアミノエチル及びメタクリル酸ジエチルアミノエチル等が挙げられる。
Examples of the acrylic monomer include acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, Examples include butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, glycidyl methacrylate, ethyl β-hydroxyacrylate, propyl γ-aminoacrylate, stearyl methacrylate, dimethylaminoethyl methacrylate, and diethylaminoethyl methacrylate. It is done.
上記フェノキシ樹脂は、具体的には、例えばエピハロヒドリンと2価フェノール化合物とを反応させて得られる樹脂、又は2価のエポキシ化合物と2価のフェノール化合物とを反応させて得られる樹脂である。
The phenoxy resin is specifically a resin obtained by reacting, for example, an epihalohydrin and a divalent phenol compound, or a resin obtained by reacting a divalent epoxy compound and a divalent phenol compound.
上記フェノキシ樹脂は、ビスフェノールA型骨格、ビスフェノールF型骨格、ビスフェノールA/F混合型骨格、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格及びジシクロペンタジエン骨格からなる群から選択された少なくとも1つの骨格を有することが好ましい。中でも、上記フェノキシ樹脂は、ビスフェノールA型骨格、ビスフェノールF型骨格、ビスフェノールA/F混合型骨格、ナフタレン骨格、フルオレン骨格及びビフェニル骨格からなる群から選択された少なくとも1種の骨格を有することがより好ましく、フルオレン骨格及びビフェニル骨格の内の少なくとも1種の骨格を有することが更に好ましい。これらの好ましい骨格を有するフェノキシ樹脂の使用により、絶縁シートの硬化物の耐熱性がさらに一層高くなる。
The phenoxy resin comprises a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol A / F mixed skeleton, a naphthalene skeleton, a fluorene skeleton, a biphenyl skeleton, an anthracene skeleton, a pyrene skeleton, a xanthene skeleton, an adamantane skeleton, and a dicyclopentadiene skeleton. It is preferred to have at least one skeleton selected from the group. Among these, the phenoxy resin preferably has at least one skeleton selected from the group consisting of a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol A / F mixed skeleton, a naphthalene skeleton, a fluorene skeleton, and a biphenyl skeleton. Preferably, it has at least one skeleton of a fluorene skeleton and a biphenyl skeleton. By using the phenoxy resin having these preferable skeletons, the heat resistance of the cured product of the insulating sheet is further increased.
上記フェノキシ樹脂は、主鎖中に多環式芳香族骨格を有することが好ましい。また、上記フェノキシ樹脂は、下記式(11)~(16)で表される骨格の内の少なくとも1つの骨格を主鎖中に有することがより好ましい。
The phenoxy resin preferably has a polycyclic aromatic skeleton in the main chain. The phenoxy resin preferably has at least one skeleton of the skeletons represented by the following formulas (11) to (16) in the main chain.
上記式(11)中、R1は互いに同一であっても異なっていてもよく、水素原子、炭素数1~10の炭化水素基又はハロゲン原子であり、X1は単結合、炭素数1~7の2価の炭化水素基、-O-、-S-、-SO2-、又は-CO-である。
In the above formula (11), R 1 s may be the same or different and are a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom, and X 1 is a single bond, having 1 to 7 divalent hydrocarbon group, —O—, —S—, —SO 2 —, or —CO—.
上記式(12)中、R1aは互いに同一であっても異なっていてもよく、水素原子、炭素数1~10の炭化水素基又はハロゲン原子であり、R2は、水素原子、炭素数1~10の炭化水素基又はハロゲン原子であり、R3は、水素原子又は炭素数1~10の炭化水素基であり、mは0~5の整数である。
In the above formula (12), R 1a may be the same or different and is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom, and R 2 is a hydrogen atom, carbon number 1 A hydrocarbon group having 1 to 10 carbon atoms or a halogen atom, R 3 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and m is an integer of 0 to 5.
上記式(13)中、R1bは互いに同一であっても異なっていてもよく、水素原子、炭素数1~10の炭化水素基又はハロゲン原子であり、R4は互いに同一であっても異なっていてもよく水素原子、炭素数1~10の炭化水素基又はハロゲン原子であり、lは0~4の整数である。
In the above formula (13), R 1b may be the same or different from each other, and is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom, and R 4 is the same or different from each other. It may be a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom, and l is an integer of 0 to 4.
上記式(15)中、R5及びR6は水素原子、炭素数1~5のアルキル基又はハロゲン原子であり、X2は-SO2-、-CH2-、-C(CH3)2-、又は-O-であり、kは0又は1である。
In the above formula (15), R 5 and R 6 are a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a halogen atom, and X 2 is —SO 2 —, —CH 2 —, —C (CH 3 ) 2. -Or -O-, and k is 0 or 1.
ポリマー(A)として、例えば、下記式(17)又は下記式(18)で表されるフェノキシ樹脂が好適に用いられる。
As the polymer (A), for example, a phenoxy resin represented by the following formula (17) or the following formula (18) is preferably used.
上記式(17)中、A1は上記式(11)~(13)の内のいずれかで表される構造を有し、かつその構成は上記式(11)で表される構造が0~60モル%、上記式(12)で表される構造が5~95モル%、及び上記式(13)で表される構造が5~95モル%であり、A2は水素原子、又は上記式(14)で表される基であり、n1は平均値で25~500の数である。上記式(17)中、上記式(11)で表される構造は含まれていなくてもよい。
In the above formula (17), A 1 has a structure represented by any of the above formulas (11) to (13), and the structure thereof is 0 to 60 mol%, the structure represented by the above formula (12) is 5 to 95 mol%, and the structure represented by the above formula (13) is 5 to 95 mol%, and A 2 is a hydrogen atom or the above formula And n 1 is an average value of 25 to 500. In the formula (17), the structure represented by the formula (11) may not be included.
上記式(18)中、A3は上記式(15)又は上記式(16)で表される構造を有し、n2は少なくとも21以上の値である。
ポリマー(A)のガラス転移温度Tgは、好ましくは60℃以上、より好ましくは90℃以上、好ましくは200℃以下、より好ましくは180℃以下である。ポリマー(A)のTgが上記下限以上であると、樹脂が熱劣化し難い。ポリマー(A)のTgが上記上限以下であると、ポリマー(A)と他の樹脂との相溶性が高くなる。この結果、未硬化状態での絶縁シートのハンドリング性がより一層良好になり、かつ絶縁シートの硬化物の耐熱性がより一層高くなる。 In the above formula (18), A 3 has a structure represented by the above formula (15) or the above formula (16), and n 2 is a value of at least 21 or more.
The glass transition temperature Tg of the polymer (A) is preferably 60 ° C. or higher, more preferably 90 ° C. or higher, preferably 200 ° C. or lower, more preferably 180 ° C. or lower. When the Tg of the polymer (A) is not less than the above lower limit, the resin is hardly thermally deteriorated. When the Tg of the polymer (A) is not more than the above upper limit, the compatibility between the polymer (A) and another resin is increased. As a result, the handling property of the insulating sheet in an uncured state is further improved, and the heat resistance of the cured product of the insulating sheet is further increased.
ポリマー(A)のガラス転移温度Tgは、好ましくは60℃以上、より好ましくは90℃以上、好ましくは200℃以下、より好ましくは180℃以下である。ポリマー(A)のTgが上記下限以上であると、樹脂が熱劣化し難い。ポリマー(A)のTgが上記上限以下であると、ポリマー(A)と他の樹脂との相溶性が高くなる。この結果、未硬化状態での絶縁シートのハンドリング性がより一層良好になり、かつ絶縁シートの硬化物の耐熱性がより一層高くなる。 In the above formula (18), A 3 has a structure represented by the above formula (15) or the above formula (16), and n 2 is a value of at least 21 or more.
The glass transition temperature Tg of the polymer (A) is preferably 60 ° C. or higher, more preferably 90 ° C. or higher, preferably 200 ° C. or lower, more preferably 180 ° C. or lower. When the Tg of the polymer (A) is not less than the above lower limit, the resin is hardly thermally deteriorated. When the Tg of the polymer (A) is not more than the above upper limit, the compatibility between the polymer (A) and another resin is increased. As a result, the handling property of the insulating sheet in an uncured state is further improved, and the heat resistance of the cured product of the insulating sheet is further increased.
ポリマー(A)がフェノキシ樹脂である場合には、フェノキシ樹脂のガラス転移温度Tgは、好ましくは95℃以上、より好ましくは110℃以上、好ましくは200℃以下、より好ましくは180℃以下である。フェノキシ樹脂のTgが上記下限以上であると、樹脂の熱劣化をより一層抑制できる。フェノキシ樹脂のTgが上記上限以下であると、フェノキシ樹脂と他の樹脂との相溶性が高くなる。この結果、未硬化状態での絶縁シートのハンドリング性、並びに絶縁シートの硬化物の耐熱性がより一層高くなる。
When the polymer (A) is a phenoxy resin, the glass transition temperature Tg of the phenoxy resin is preferably 95 ° C or higher, more preferably 110 ° C or higher, preferably 200 ° C or lower, more preferably 180 ° C or lower. When the Tg of the phenoxy resin is not less than the above lower limit, the thermal deterioration of the resin can be further suppressed. When the Tg of the phenoxy resin is not more than the above upper limit, the compatibility between the phenoxy resin and the other resin is increased. As a result, the handling property of the insulating sheet in an uncured state and the heat resistance of the cured product of the insulating sheet are further enhanced.
ポリマー(A)の重量平均分子量は、10000以上である。ポリマー(A)の重量平均分子量は、好ましくは30000以上、より好ましくは40000以上、好ましくは1000000以下、より好ましくは250000以下である。ポリマー(A)の重量平均分子量が上記下限以上であると、絶縁シートが熱劣化し難い。ポリマー(A)の重量平均分子量が上記上限以下であると、ポリマー(A)と他の樹脂との相溶性が高くなる。この結果、未硬化状態での絶縁シートのハンドリング性がより一層良好になり、並びに絶縁シートの硬化物の耐熱性がより一層高くなる。
The weight average molecular weight of the polymer (A) is 10,000 or more. The weight average molecular weight of the polymer (A) is preferably 30000 or more, more preferably 40000 or more, preferably 1000000 or less, more preferably 250,000 or less. When the weight average molecular weight of the polymer (A) is not less than the above lower limit, the insulating sheet is hardly thermally deteriorated. When the weight average molecular weight of the polymer (A) is not more than the above upper limit, the compatibility between the polymer (A) and another resin is increased. As a result, the handling property of the insulating sheet in an uncured state is further improved, and the heat resistance of the cured product of the insulating sheet is further increased.
ポリマー(A)は、原材料として添加されていてもよく、また本発明の絶縁シートの作製時における攪拌、塗工及び乾燥などの各工程中における反応を利用して生成されたポリマーであってもよい。
The polymer (A) may be added as a raw material, or may be a polymer produced by utilizing a reaction in each step such as stirring, coating, and drying during the production of the insulating sheet of the present invention. Good.
未硬化状態での絶縁シートのハンドリング性をより一層高める観点からは、ポリマー(A)の水酸基当量は6000未満であることが好ましい。未硬化状態での絶縁シートのハンドリング性をより一層高める観点からは、ポリマー(A)の水酸基当量は、好ましくは300以上、より好ましくは5500以下、更に好ましくは5000以下である。ポリマー(A)の水酸基当量が上記上限以下であり、かつ硬化性化合物(B)の水酸基当量が後述の下限以上であることが好ましい。
From the viewpoint of further improving the handleability of the insulating sheet in an uncured state, the hydroxyl group equivalent of the polymer (A) is preferably less than 6000. From the viewpoint of further improving the handleability of the insulating sheet in an uncured state, the hydroxyl equivalent of the polymer (A) is preferably 300 or more, more preferably 5500 or less, and even more preferably 5000 or less. It is preferable that the hydroxyl equivalent of the polymer (A) is not more than the above upper limit, and the hydroxyl equivalent of the curable compound (B) is not less than the lower limit described later.
ポリマー(A)の水酸基当量は、高速液体クロマトグラフ質量分析計(LC-MS)、又は1H-核磁気共鳴スペクトル(1H-NMR)により、ポリマー(A)全体に対する水酸基量をWモル%として定量し、下記式により求めた値である。
水酸基当量=(重量平均分子量/W)×100 The hydroxyl group equivalent of the polymer (A) is determined by calculating the amount of hydroxyl group based on the total amount of the polymer (A) by W mol% using a high performance liquid chromatograph mass spectrometer (LC-MS) or 1 H-nuclear magnetic resonance spectrum ( 1 H-NMR). As a value determined by the following formula.
Hydroxyl equivalent = (weight average molecular weight / W) × 100
水酸基当量=(重量平均分子量/W)×100 The hydroxyl group equivalent of the polymer (A) is determined by calculating the amount of hydroxyl group based on the total amount of the polymer (A) by W mol% using a high performance liquid chromatograph mass spectrometer (LC-MS) or 1 H-nuclear magnetic resonance spectrum ( 1 H-NMR). As a value determined by the following formula.
Hydroxyl equivalent = (weight average molecular weight / W) × 100
絶縁シートに含まれている全樹脂成分(以下、全樹脂成分Xと略記することがある)の合計100重量%中、ポリマー(A)の含有量は20重量%以上、60重量%以下であることが好ましい。全樹脂成分Xの合計100重量%中のポリマー(A)の含有量は、より好ましくは30重量%以上、より好ましくは50重量%以下である。ポリマー(A)の含有量が上記下限以上であると、未硬化状態での絶縁シートのハンドリング性がより一層良好になる。ポリマー(A)の含有量が上記上限以下であると、無機フィラー(D)の分散が容易になる。なお、全樹脂成分Xとは、ポリマー(A)、硬化性化合物(B)、硬化剤(C)及び必要に応じて添加される他の樹脂成分の総和をいう。全樹脂成分Xには、無機フィラー(D)は含まれない。全樹脂成分Xには、ポリ(メタ)アクリル酸エステルであるエラストマー(E)が含まれる。
The content of the polymer (A) is 20% by weight or more and 60% by weight or less in the total 100% by weight of the total resin components (hereinafter sometimes abbreviated as “total resin component X”) contained in the insulating sheet. It is preferable. The content of the polymer (A) in 100% by weight of the total resin component X is more preferably 30% by weight or more, and more preferably 50% by weight or less. When the content of the polymer (A) is at least the above lower limit, the handling properties of the insulating sheet in an uncured state are further improved. Dispersion | distribution of an inorganic filler (D) becomes easy that content of a polymer (A) is below the said upper limit. The total resin component X refers to the total of the polymer (A), the curable compound (B), the curing agent (C), and other resin components added as necessary. The total resin component X does not include the inorganic filler (D). The total resin component X includes an elastomer (E) that is a poly (meth) acrylic acid ester.
(エポキシ基又はオキセタニル基を有する硬化性化合物(B))
本発明に係る絶縁シートに含まれている硬化性化合物(B)は、分子量が1200以下であり、かつエポキシ基又はオキセタニル基を有していれば特に限定されない。エポキシ基又はオキセタニル基を有する硬化性化合物(B)として、従来公知のエポキシ化合物又はオキセタン化合物を用いることができる。硬化性化合物(B)はモノマーであることが好ましい。硬化性化合物(B)は、硬化剤(C)の作用により硬化する。硬化性化合物(B)は1種のみが用いられてもよく、2種以上が併用されてもよい。 (Curable compound having epoxy group or oxetanyl group (B))
The curable compound (B) contained in the insulating sheet according to the present invention is not particularly limited as long as it has a molecular weight of 1200 or less and has an epoxy group or an oxetanyl group. As the curable compound (B) having an epoxy group or oxetanyl group, a conventionally known epoxy compound or oxetane compound can be used. The curable compound (B) is preferably a monomer. The curable compound (B) is cured by the action of the curing agent (C). As for a curable compound (B), only 1 type may be used and 2 or more types may be used together.
本発明に係る絶縁シートに含まれている硬化性化合物(B)は、分子量が1200以下であり、かつエポキシ基又はオキセタニル基を有していれば特に限定されない。エポキシ基又はオキセタニル基を有する硬化性化合物(B)として、従来公知のエポキシ化合物又はオキセタン化合物を用いることができる。硬化性化合物(B)はモノマーであることが好ましい。硬化性化合物(B)は、硬化剤(C)の作用により硬化する。硬化性化合物(B)は1種のみが用いられてもよく、2種以上が併用されてもよい。 (Curable compound having epoxy group or oxetanyl group (B))
The curable compound (B) contained in the insulating sheet according to the present invention is not particularly limited as long as it has a molecular weight of 1200 or less and has an epoxy group or an oxetanyl group. As the curable compound (B) having an epoxy group or oxetanyl group, a conventionally known epoxy compound or oxetane compound can be used. The curable compound (B) is preferably a monomer. The curable compound (B) is cured by the action of the curing agent (C). As for a curable compound (B), only 1 type may be used and 2 or more types may be used together.
硬化性化合物(B)は、エポキシ基を有するエポキシ化合物(B1)を含んでいてもよく、オキセタニル基を有するオキセタン化合物(B2)を含んでいてもよい。
硬化物の耐熱性及び絶縁破壊特性をより一層高める観点からは、硬化性化合物(B)は、芳香族骨格を有することが好ましい。 The curable compound (B) may contain an epoxy compound (B1) having an epoxy group, or may contain an oxetane compound (B2) having an oxetanyl group.
From the viewpoint of further improving the heat resistance and dielectric breakdown characteristics of the cured product, the curable compound (B) preferably has an aromatic skeleton.
硬化物の耐熱性及び絶縁破壊特性をより一層高める観点からは、硬化性化合物(B)は、芳香族骨格を有することが好ましい。 The curable compound (B) may contain an epoxy compound (B1) having an epoxy group, or may contain an oxetane compound (B2) having an oxetanyl group.
From the viewpoint of further improving the heat resistance and dielectric breakdown characteristics of the cured product, the curable compound (B) preferably has an aromatic skeleton.
エポキシ基を有するエポキシ化合物(B1)の具体例としては、ビスフェノール骨格を有するエポキシモノマー、ジシクロペンタジエン骨格を有するエポキシモノマー、ナフタレン骨格を有するエポキシモノマー、アダマンタン骨格を有するエポキシモノマー、フルオレン骨格を有するエポキシモノマー、ビフェニル骨格を有するエポキシモノマー、バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシモノマー、キサンテン骨格を有するエポキシモノマー、アントラセン骨格を有するエポキシモノマー、及びピレン骨格を有するエポキシモノマー等が挙げられる。これらの水素添加物又は変性物を用いてもよい。エポキシ化合物(B1)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
Specific examples of the epoxy compound (B1) having an epoxy group include an epoxy monomer having a bisphenol skeleton, an epoxy monomer having a dicyclopentadiene skeleton, an epoxy monomer having a naphthalene skeleton, an epoxy monomer having an adamantane skeleton, and an epoxy having a fluorene skeleton. Examples of the monomer include an epoxy monomer having a biphenyl skeleton, an epoxy monomer having a bi (glycidyloxyphenyl) methane skeleton, an epoxy monomer having a xanthene skeleton, an epoxy monomer having an anthracene skeleton, and an epoxy monomer having a pyrene skeleton. These hydrogenated products or modified products may be used. As for an epoxy compound (B1), only 1 type may be used and 2 or more types may be used together.
上記ビスフェノール骨格を有するエポキシモノマーとしては、例えば、ビスフェノールA型、ビスフェノールF型又はビスフェノールS型のビスフェノール骨格を有するエポキシモノマー等が挙げられる。
Examples of the epoxy monomer having a bisphenol skeleton include an epoxy monomer having a bisphenol A type, bisphenol F type, or bisphenol S type bisphenol skeleton.
上記ジシクロペンタジエン骨格を有するエポキシモノマーとしては、ジシクロペンタジエンジオキシド、及びジシクロペンタジエン骨格を有するフェノールノボラックエポキシモノマー等が挙げられる。
Examples of the epoxy monomer having a dicyclopentadiene skeleton include dicyclopentadiene dioxide and a phenol novolac epoxy monomer having a dicyclopentadiene skeleton.
上記ナフタレン骨格を有するエポキシモノマーとしては、1-グリシジルナフタレン、2-グリシジルナフタレン、1,2-ジグリシジルナフタレン、1,5-ジグリシジルナフタレン、1,6-ジグリシジルナフタレン、1,7-ジグリシジルナフタレン、2,7-ジグリシジルナフタレン、トリグリシジルナフタレン、及び1,2,5,6-テトラグリシジルナフタレン等が挙げられる。
Examples of the epoxy monomer having a naphthalene skeleton include 1-glycidylnaphthalene, 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, 1,7-diglycidyl. Examples include naphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene, and 1,2,5,6-tetraglycidylnaphthalene.
上記アダマンタン骨格を有するエポキシモノマーとしては、1,3-ビス(4-グリシジルオキシフェニル)アダマンタン、及び2,2-ビス(4-グリシジルオキシフェニル)アダマンタン等が挙げられる。
Examples of the epoxy monomer having an adamantane skeleton include 1,3-bis (4-glycidyloxyphenyl) adamantane and 2,2-bis (4-glycidyloxyphenyl) adamantane.
上記フルオレン骨格を有するエポキシモノマーとしては、9,9-ビス(4-グリシジルオキシフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-クロロフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-ブロモフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-フルオロフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-メトキシフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3,5-ジクロロフェニル)フルオレン、及び9,9-ビス(4-グリシジルオキシ-3,5-ジブロモフェニル)フルオレン等が挙げられる。
Examples of the epoxy monomer having a fluorene skeleton include 9,9-bis (4-glycidyloxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3-methylphenyl) fluorene, and 9,9-bis (4- Glycidyloxy-3-chlorophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-bromophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-fluorophenyl) fluorene, 9,9-bis (4-Glycidyloxy-3-methoxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dichlorophenyl) Fluorene and 9,9-bis (4-glycidyloxy-3,5-dibromophenyl) Fluorene, and the like.
上記ビフェニル骨格を有するエポキシモノマーとしては、4,4’-ジグリシジルビフェニル、及び4,4’-ジグリシジル-3,3’,5,5’-テトラメチルビフェニル等が挙げられる。
Examples of the epoxy monomer having a biphenyl skeleton include 4,4'-diglycidylbiphenyl and 4,4'-diglycidyl-3,3 ', 5,5'-tetramethylbiphenyl.
上記バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシモノマーとしては、1,1’-バイ(2,7-グリシジルオキシナフチル)メタン、1,8’-バイ(2,7-グリシジルオキシナフチル)メタン、1,1’-バイ(3,7-グリシジルオキシナフチル)メタン、1,8’-バイ(3,7-グリシジルオキシナフチル)メタン、1,1’-バイ(3,5-グリシジルオキシナフチル)メタン、1,8’-バイ(3,5-グリシジルオキシナフチル)メタン、1,2’-バイ(2,7-グリシジルオキシナフチル)メタン、1,2’-バイ(3,7-グリシジルオキシナフチル)メタン、及び1,2’-バイ(3,5-グリシジルオキシナフチル)メタン等が挙げられる。
Examples of the epoxy monomer having a bi (glycidyloxyphenyl) methane skeleton include 1,1′-bi (2,7-glycidyloxynaphthyl) methane, 1,8′-bi (2,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,7-glycidyloxynaphthyl) methane, 1,8′-bi (3,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,5-glycidyloxynaphthyl) methane 1,8'-bi (3,5-glycidyloxynaphthyl) methane, 1,2'-bi (2,7-glycidyloxynaphthyl) methane, 1,2'-bi (3,7-glycidyloxynaphthyl) And methane and 1,2′-bi (3,5-glycidyloxynaphthyl) methane.
上記キサンテン骨格を有するエポキシモノマーとしては、1,3,4,5,6,8-ヘキサメチル-2,7-ビス-オキシラニルメトキシ-9-フェニル-9H-キサンテン等が挙げられる。
Examples of the epoxy monomer having a xanthene skeleton include 1,3,4,5,6,8-hexamethyl-2,7-bis-oxiranylmethoxy-9-phenyl-9H-xanthene.
オキセタニル基を有するオキセタン化合物(B2)の具体例としては、例えば、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、1,4-ベンゼンジカルボン酸ビス[(3-エチル-3-オキセタニル)メチル]エステル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、及びオキセタン変性フェノールノボラック等が挙げられる。オキセタン化合物(B2)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
Specific examples of the oxetane compound (B2) having an oxetanyl group include, for example, 4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, 1,4-benzenedicarboxylate bis [(3- Ethyl-3-oxetanyl) methyl] ester, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, and oxetane-modified phenol novolac. As for an oxetane compound (B2), only 1 type may be used and 2 or more types may be used together.
硬化性化合物(B)の分子量は、1200以下である。硬化性化合物(B)の分子量は、好ましくは200以上、好ましくは600以下、より好ましくは550である。硬化性化合物(B)の分子量が上記下限以上であると、硬化性化合物(B)の揮発性が低くなり、絶縁シートの取扱い性がより一層高くなる。硬化性化合物(B)の分子量が上記上限以下であると、硬化物の接着性がより一層高くなる。さらに、絶縁シートが固くかつ脆くなり難く、硬化物の接着性がより一層高くなる。
The molecular weight of the curable compound (B) is 1200 or less. The molecular weight of the curable compound (B) is preferably 200 or more, preferably 600 or less, more preferably 550. When the molecular weight of the curable compound (B) is not less than the above lower limit, the volatility of the curable compound (B) is lowered, and the handleability of the insulating sheet is further enhanced. When the molecular weight of the curable compound (B) is not more than the above upper limit, the adhesiveness of the cured product is further enhanced. Furthermore, the insulating sheet is hard and not easily brittle, and the adhesiveness of the cured product is further enhanced.
なお、本明細書において、硬化性化合物(B)における分子量とは、重合体ではない場合、及び構造式が特定できる場合は、当該構造式から算出できる分子量を意味し、重合体である場合は、重量平均分子量を意味する。
In the present specification, the molecular weight in the curable compound (B) means a molecular weight that can be calculated from the structural formula when it is not a polymer and when the structural formula can be specified. Means weight average molecular weight.
未硬化状態での絶縁シートのハンドリング性をより一層高める観点からは、硬化性化合物(B)の水酸基当量は6000以上であることが好ましい。また、硬化性化合物(B)の水酸基当量が6000以上であると、貯蔵時に硬化が進行しても、取扱い時に絶縁シートに割れが発生するまでには至らず、未硬化状態での絶縁シートの貯蔵安定性も十分に高くなる。
From the viewpoint of further improving the handleability of the insulating sheet in the uncured state, the hydroxyl group equivalent of the curable compound (B) is preferably 6000 or more. In addition, when the hydroxyl equivalent of the curable compound (B) is 6000 or more, even if curing proceeds during storage, the insulating sheet does not crack at the time of handling, and the insulating sheet in an uncured state Storage stability is also sufficiently high.
未硬化状態での絶縁シートのハンドリング性及び貯蔵安定性をより一層高くする観点からは、硬化性化合物(B)の水酸基当量は、より好ましくは6500以上、更に好ましくは7000以上、特に好ましくは15000以上である。
From the viewpoint of further improving the handleability and storage stability of the insulating sheet in an uncured state, the hydroxyl equivalent of the curable compound (B) is more preferably 6500 or more, further preferably 7000 or more, and particularly preferably 15000. That's it.
硬化性化合物(B)の水酸基当量は、高速液体クロマトグラフ質量分析計(LC-MS)、又は1H-核磁気共鳴スペクトル(1H-NMR)により、硬化性化合物(B)全体に対する水酸基量をWモル%として定量し、下記式により求めた値である。
水酸基当量=(重量平均分子量/W)×100 The hydroxyl group equivalent of the curable compound (B) is determined by the amount of hydroxyl group relative to the entire curable compound (B) by high performance liquid chromatography mass spectrometer (LC-MS) or 1 H-nuclear magnetic resonance spectrum ( 1 H-NMR). Is a value determined by the following formula.
Hydroxyl equivalent = (weight average molecular weight / W) × 100
水酸基当量=(重量平均分子量/W)×100 The hydroxyl group equivalent of the curable compound (B) is determined by the amount of hydroxyl group relative to the entire curable compound (B) by high performance liquid chromatography mass spectrometer (LC-MS) or 1 H-nuclear magnetic resonance spectrum ( 1 H-NMR). Is a value determined by the following formula.
Hydroxyl equivalent = (weight average molecular weight / W) × 100
上記全樹脂成分Xの合計100重量%中、硬化性化合物(B)の含有量は10重量%以上、60重量%以下であることが好ましい。全樹脂成分Xの合計100重量%中の硬化性化合物(B)の含有量は、より好ましくは20重量%以上、より好ましくは50重量%以下である。硬化性化合物(B)の含有量が上記下限以上であると、硬化物の接着性及び耐熱性がより一層高くなる。硬化性化合物(B)の含有量が上記上限以下であると、絶縁シートのハンドリング性がより一層高くなる。
In the total 100% by weight of all the resin components X, the content of the curable compound (B) is preferably 10% by weight or more and 60% by weight or less. The content of the curable compound (B) in 100% by weight of the total resin component X is more preferably 20% by weight or more, and more preferably 50% by weight or less. When the content of the curable compound (B) is not less than the above lower limit, the adhesiveness and heat resistance of the cured product are further increased. When the content of the curable compound (B) is not more than the above upper limit, the handling property of the insulating sheet is further enhanced.
(硬化剤(C))
本発明に係る絶縁シートに含まれている硬化剤(C)は、絶縁シートを硬化させることが可能であれば特に限定されない。硬化剤(C)は、熱硬化剤であることが好ましい。硬化剤(C)は、1種のみが用いられてもよく、2種以上が併用されてもよい。 (Curing agent (C))
The curing agent (C) contained in the insulating sheet according to the present invention is not particularly limited as long as the insulating sheet can be cured. The curing agent (C) is preferably a thermosetting agent. As for a hardening | curing agent (C), only 1 type may be used and 2 or more types may be used together.
本発明に係る絶縁シートに含まれている硬化剤(C)は、絶縁シートを硬化させることが可能であれば特に限定されない。硬化剤(C)は、熱硬化剤であることが好ましい。硬化剤(C)は、1種のみが用いられてもよく、2種以上が併用されてもよい。 (Curing agent (C))
The curing agent (C) contained in the insulating sheet according to the present invention is not particularly limited as long as the insulating sheet can be cured. The curing agent (C) is preferably a thermosetting agent. As for a hardening | curing agent (C), only 1 type may be used and 2 or more types may be used together.
ハンドリング性と貯蔵安定性と接着性と耐熱性と耐電圧性と耐湿性とをバランス良く高めるために、更に接着性をより一層高めるために、硬化剤(C)は、ジシアンジアミド及びイミダゾール化合物の内の少なくとも1種を含むことが好ましく、ジシアンジアミドを含むことがより好ましく、ジシアンジアミドとイミダゾール化合物との双方を含むこともより好ましい。ジシアンジアミド又はイミダゾール化合物の使用により、絶縁シートに窒素原子を多く含ませることが容易である。硬化剤(C)は、ジシアンジアミドであってもよく、イミダゾール化合物であってもよい。ジシアンジアミドの使用により、絶縁シートの硬化物の接着性がより一層高くなる。硬化物の耐熱性をより一層高め、硬化時間を短縮する観点からは、硬化剤(C)は、イミダゾール化合物を含むことが好ましい。
In order to improve the handling property, storage stability, adhesiveness, heat resistance, voltage resistance and moisture resistance in a well-balanced manner and to further improve the adhesiveness, the curing agent (C) is a dicyandiamide and imidazole compound. It is preferable to contain at least one of the above, more preferably dicyandiamide, and more preferably both dicyandiamide and an imidazole compound. By using a dicyandiamide or an imidazole compound, it is easy to contain a lot of nitrogen atoms in the insulating sheet. The curing agent (C) may be dicyandiamide or an imidazole compound. By using dicyandiamide, the adhesiveness of the cured product of the insulating sheet is further enhanced. From the viewpoint of further improving the heat resistance of the cured product and shortening the curing time, the curing agent (C) preferably contains an imidazole compound.
上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。
Examples of the imidazole compound include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-Ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine Isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-dihydroxymethylimidazole, etc. Can be mentioned.
未硬化状態での絶縁シートのハンドリング性及び貯蔵安定性、並びに硬化物の接着性を効果的に高める観点からは、硬化剤中の全原子100重量%中、窒素原子の含有量は好ましくは10重量%以上、より好ましくは20重量%以上、好ましくは30重量%以上、より好ましくは80重量%以下である。
From the viewpoint of effectively improving the handling property and storage stability of the insulating sheet in an uncured state, and the adhesiveness of the cured product, the content of nitrogen atoms is preferably 10 in 100% by weight of all atoms in the curing agent. % By weight or more, more preferably 20% by weight or more, preferably 30% by weight or more, more preferably 80% by weight or less.
未硬化状態での絶縁シートのハンドリング性及び貯蔵安定性及び硬化物の接着性を効果的に高める観点からは、絶縁シート100重量%中、硬化剤(C)に含まれている窒素原子の含有量は好ましくは0.3重量%以上、より好ましくは0.4重量%以上、より好ましくは2重量%以下である。
From the viewpoint of effectively enhancing the handleability and storage stability of the insulating sheet in an uncured state and the adhesiveness of the cured product, the content of nitrogen atoms contained in the curing agent (C) in 100% by weight of the insulating sheet The amount is preferably 0.3% by weight or more, more preferably 0.4% by weight or more, more preferably 2% by weight or less.
硬化剤(C)がイミダゾール化合物のみである場合には、絶縁シート100重量%中、イミダゾール化合物に含まれている窒素原子の含有量は、好ましくは1.3重量%以上、より好ましくは2重量%以上である。
When the curing agent (C) is only an imidazole compound, the content of nitrogen atoms contained in the imidazole compound in the insulating sheet 100% by weight is preferably 1.3% by weight or more, more preferably 2% by weight. % Or more.
上記全樹脂成分Xの合計100重量%中、硬化剤(C)の含有量は10重量%以上、40重量%以下であることが好ましい。全樹脂成分Xの合計100重量%中、硬化剤(C)の含有量は、より好ましくは12重量%以上、より好ましくは25重量%以下である。硬化剤(C)の含有量が上記下限以上であると、絶縁シートを充分に硬化させることが容易である。硬化剤(C)の含有量が上記上限以下であると、硬化に関与しない余剰な硬化剤(C)が発生し難くなる。このため、硬化物の耐熱性及び接着性がより一層高くなる。
In the total 100% by weight of all the resin components X, the content of the curing agent (C) is preferably 10% by weight or more and 40% by weight or less. In the total 100% by weight of all the resin components X, the content of the curing agent (C) is more preferably 12% by weight or more, and more preferably 25% by weight or less. When the content of the curing agent (C) is not less than the above lower limit, it is easy to sufficiently cure the insulating sheet. When the content of the curing agent (C) is not more than the above upper limit, it becomes difficult to generate an excessive curing agent (C) that does not participate in curing. For this reason, the heat resistance and adhesiveness of hardened | cured material become still higher.
ハンドリング性と貯蔵安定性と接着性と耐熱性と耐電圧性と耐湿性とをバランス良く高めるために、更に接着性をより一層高めるために、上記全樹脂成分Xの合計100重量%中、ジシアンジアミドとイミダゾール化合物との合計の含有量は、好ましくは10重量%以上、より好ましくは12重量%以上、好ましくは40重量%以下、より好ましくは25重量%以下である。
Dicyandiamide in a total of 100% by weight of the total resin component X in order to improve the handling property, storage stability, adhesiveness, heat resistance, voltage resistance and moisture resistance in a balanced manner and to further improve the adhesiveness. The total content of imidazole and imidazole compound is preferably 10% by weight or more, more preferably 12% by weight or more, preferably 40% by weight or less, more preferably 25% by weight or less.
ジシアンジアミドとイミダゾール化合物とを併用する場合には、絶縁シートは、ジシアンジアミドとイミダゾール化合物とを重量比で、1:99~99:1で含むことが好ましく、90:10~10:90で含むことがより好ましい。ジシアンジアミドとイミダゾール化合物との配合比が上記範囲内であると、ハンドリング性と貯蔵安定性と接着性と耐熱性と耐電圧性と耐湿性とをバランス良く効果的に高めることができ、更に接着性をより一層高めることができる。
When dicyandiamide and imidazole compound are used in combination, the insulating sheet preferably contains dicyandiamide and imidazole compound in a weight ratio of 1:99 to 99: 1, and 90:10 to 10:90. More preferred. When the blending ratio of dicyandiamide and imidazole compound is within the above range, handling property, storage stability, adhesiveness, heat resistance, voltage resistance, and moisture resistance can be effectively improved in a balanced manner, and further adhesiveness can be improved. Can be further increased.
(無機フィラー(D))
本発明に係る絶縁シートに含まれている無機フィラー(D)は、熱伝導率が10W/m・K以上であれば特に限定されない。この無機フィラー(D)の使用により、硬化物の熱伝導性を高めることができる。この結果、硬化物の放熱性が高くなる。無機フィラー(D)は、1種のみが用いられてもよく、2種以上が併用されてもよい。 (Inorganic filler (D))
The inorganic filler (D) contained in the insulating sheet according to the present invention is not particularly limited as long as the thermal conductivity is 10 W / m · K or more. By using this inorganic filler (D), the thermal conductivity of the cured product can be increased. As a result, the heat dissipation of the cured product is increased. As for an inorganic filler (D), only 1 type may be used and 2 or more types may be used together.
本発明に係る絶縁シートに含まれている無機フィラー(D)は、熱伝導率が10W/m・K以上であれば特に限定されない。この無機フィラー(D)の使用により、硬化物の熱伝導性を高めることができる。この結果、硬化物の放熱性が高くなる。無機フィラー(D)は、1種のみが用いられてもよく、2種以上が併用されてもよい。 (Inorganic filler (D))
The inorganic filler (D) contained in the insulating sheet according to the present invention is not particularly limited as long as the thermal conductivity is 10 W / m · K or more. By using this inorganic filler (D), the thermal conductivity of the cured product can be increased. As a result, the heat dissipation of the cured product is increased. As for an inorganic filler (D), only 1 type may be used and 2 or more types may be used together.
無機フィラー(D)の熱伝導率が10W/m・Kよりも小さいと、硬化物の熱伝導性を充分に高めることは困難である。無機フィラー(D)の熱伝導率は、好ましくは15W/m・K以上、より好ましくは20W/m・K以上である。無機フィラー(D)の熱伝導率の上限は特に限定されない。熱伝導率300W/m・K程度の無機フィラーは広く知られており、また熱伝導率200W/m・K程度の無機フィラーは容易に入手できる。
If the thermal conductivity of the inorganic filler (D) is smaller than 10 W / m · K, it is difficult to sufficiently increase the thermal conductivity of the cured product. The thermal conductivity of the inorganic filler (D) is preferably 15 W / m · K or more, more preferably 20 W / m · K or more. The upper limit of the thermal conductivity of the inorganic filler (D) is not particularly limited. Inorganic fillers having a thermal conductivity of about 300 W / m · K are widely known, and inorganic fillers having a thermal conductivity of about 200 W / m · K are easily available.
無機フィラー(D)は、アルミナ、合成マグネサイト、結晶性シリカ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛、炭酸マグネシウム及び酸化マグネシウムからなる群から選択された少なくとも1種であることが好ましく、アルミナ、結晶性シリカ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛、炭酸マグネシウム及び酸化マグネシウムからなる群から選択された少なくとも1種であることがより好ましい。これらの好ましいフィラーの使用により、硬化物の放熱性をより一層高めることができる。上記炭酸マグネシウムは合成マグネサイトとは異なる。
The inorganic filler (D) is at least one selected from the group consisting of alumina, synthetic magnesite, crystalline silica, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide, magnesium carbonate and magnesium oxide. Is preferable, and at least one selected from the group consisting of alumina, crystalline silica, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide, magnesium carbonate and magnesium oxide is more preferable. By using these preferable fillers, the heat dissipation of the cured product can be further enhanced. The magnesium carbonate is different from synthetic magnesite.
無機フィラー(D)は、球状アルミナ、破砕アルミナ及び球状窒化アルミニウムからなる群から選択された少なくとも1種であることがより好ましく、球状アルミナ又は球状窒化アルミニウムであることがさらに好ましい。これらの好ましいフィラーの使用により、硬化物の放熱性をより一層高めることができる。
The inorganic filler (D) is preferably at least one selected from the group consisting of spherical alumina, crushed alumina and spherical aluminum nitride, and more preferably spherical alumina or spherical aluminum nitride. By using these preferable fillers, the heat dissipation of the cured product can be further enhanced.
無機フィラー(D)は球状のフィラーであってもよく、破砕されたフィラーであってもよい。無機フィラー(D)は、球状であることが特に好ましい。球状フィラーの場合には、高密度で充填可能であるため、硬化物の放熱性がより一層高くなる。
The inorganic filler (D) may be a spherical filler or a crushed filler. The inorganic filler (D) is particularly preferably spherical. In the case of a spherical filler, since it can be filled with high density, the heat dissipation of the cured product is further enhanced.
硬化物の放熱性及び加工性を効果的に高めるために、無機フィラー(D)は、球状アルミナを含むことが好ましい。無機フィラー(D)は、球状アルミナを50重量%以上含むことが好ましく、75重量%以上含むことが好ましく、100重量%以下含む。無機フィラー(D)の全てが球状アルミナであってもよい。
In order to effectively improve the heat dissipation and workability of the cured product, the inorganic filler (D) preferably contains spherical alumina. The inorganic filler (D) preferably contains 50% by weight or more of spherical alumina, preferably 75% by weight or more, and contains 100% by weight or less. All of the inorganic filler (D) may be spherical alumina.
硬化物の放熱性及び加工性を効果的に高めるために、無機フィラー(D)は、蛍光X線分析による純度(アルミナの純度)が90.0%以上、99.0%以下であるアルミナを含むことが好ましい。なお、純度が99.0%を超えるアルミナでは、加工性が低くなる傾向がある。純度が90.0%以上であると、硬化物の放熱性がより一層高くなる。無機フィラー(D)は、純度が90.0~99.0%であるアルミナを50重量%以上含むことが好ましく、75重量%以上含むことが好ましく、100重量%以下含む。無機フィラー(D)の全てが、純度が90.0~99.0%であるアルミナであってもよい。上記純度(%)は、配合されるアルミナである無機フィラー100%中のアルミナの含有量(%)である。蛍光X線分析による純度が90.0%以上、99.0%以下であるアルミナは、言いかえれば、蛍光X線分析によるアルミナの純度が90.0%以上、99.0%以下である無機フィラーである。
In order to effectively improve the heat dissipation and workability of the cured product, the inorganic filler (D) is made of alumina having a purity (alumina purity) by fluorescent X-ray analysis of 90.0% or more and 99.0% or less. It is preferable to include. In addition, when the purity exceeds 99.0%, the workability tends to be low. When the purity is 90.0% or more, the heat dissipation of the cured product is further enhanced. The inorganic filler (D) preferably contains 50% by weight or more of alumina having a purity of 90.0 to 99.0%, preferably 75% by weight or more, and contains 100% by weight or less. All of the inorganic fillers (D) may be alumina having a purity of 90.0 to 99.0%. The purity (%) is the content (%) of alumina in 100% of the inorganic filler which is alumina to be blended. In other words, alumina whose purity by fluorescent X-ray analysis is 90.0% or more and 99.0% or less is an inorganic substance whose purity by alumina X-ray analysis is 90.0% or more and 99.0% or less. It is a filler.
硬化物の加工性をより一層高めるために、無機フィラー(D)は、球状アルミナ、又は蛍光X線分析による純度が90.0%以上、99.0%以下である破砕アルミナを含むことが好ましい。無機フィラー(D)は、球状アルミナ又は純度が90.0~99.0%である破砕アルミナを50重量%以上含むことが好ましく、75重量%以上含むことが好ましく、100重量%以下含む。無機フィラー(D)の全てが、球状アルミナ又は純度が90.0~99.0%である破砕アルミナであってもよい。
In order to further improve the workability of the cured product, the inorganic filler (D) preferably contains spherical alumina or crushed alumina whose purity by fluorescent X-ray analysis is 90.0% or more and 99.0% or less. . The inorganic filler (D) preferably contains 50% by weight or more of spherical alumina or crushed alumina having a purity of 90.0 to 99.0%, preferably 75% by weight or more, and contains 100% by weight or less. All of the inorganic fillers (D) may be spherical alumina or crushed alumina having a purity of 90.0 to 99.0%.
上記破砕されたフィラーとしては、破砕アルミナ等が挙げられる。破砕されたフィラーは、例えば、一軸破砕機、二軸破砕機、ハンマークラッシャー又はボールミル等を用いて、塊状の無機物質を破砕することにより得られる。破砕されたフィラーの使用により、絶縁シート中のフィラーが、橋掛け又は効率的に近接された構造となりやすい。従って、絶縁シートの硬化物の熱伝導性がより一層高くなる。また、破砕されたフィラーは、一般的に、通常のフィラーに比べて安価である。このため、破砕されたフィラーの使用により、絶縁シートのコストを低減できる。
Crushed filler may be mentioned as the crushed filler. The crushed filler can be obtained, for example, by crushing a massive inorganic substance using a uniaxial crusher, a biaxial crusher, a hammer crusher, a ball mill, or the like. By using the crushed filler, the filler in the insulating sheet is likely to have a structure that is bridged or effectively brought close together. Therefore, the thermal conductivity of the cured product of the insulating sheet is further increased. Moreover, the crushed filler is generally cheaper than a normal filler. For this reason, the cost of an insulating sheet can be reduced by using the crushed filler.
破砕されたフィラーの平均粒子径は、12μm以下であることが好ましい。平均粒子径が12μm以下であると、絶縁シート中に、破砕されたフィラーを高密度に分散させることが容易であり、絶縁シートの硬化物の絶縁破壊特性がより一層高くなる。破砕されたフィラーの平均粒子径は、より好ましくは10μm以下、好ましくは1μm以上である。破砕されたフィラーの平均粒子径が上記下限以上であると、破砕されたフィラーを高密度に充填させることが容易である。
The average particle size of the crushed filler is preferably 12 μm or less. When the average particle size is 12 μm or less, it is easy to disperse the crushed filler in the insulating sheet at a high density, and the dielectric breakdown characteristics of the cured product of the insulating sheet are further enhanced. The average particle size of the crushed filler is more preferably 10 μm or less, and preferably 1 μm or more. When the average particle size of the crushed filler is not less than the above lower limit, it is easy to fill the crushed filler with high density.
破砕されたフィラーのアスペクト比は、特に限定されない。破砕されたフィラーのアスペクト比は、1.5以上、20以下であることが好ましい。アスペクト比が1.5未満のフィラーは、比較的高価である。従って、絶縁シートのコストが高くなる。上記アスペクト比が20以下であると、破砕されたフィラーの充填が容易である。
The aspect ratio of the crushed filler is not particularly limited. The aspect ratio of the crushed filler is preferably 1.5 or more and 20 or less. Fillers with an aspect ratio of less than 1.5 are relatively expensive. Therefore, the cost of the insulating sheet increases. When the aspect ratio is 20 or less, filling of the crushed filler is easy.
破砕されたフィラーのアスペクト比は、例えば、デジタル画像解析方式粒度分布測定装置(商品名:FPA、日本ルフト社製)を用いて、フィラーの破砕面を測定することにより求めることができる。
The aspect ratio of the crushed filler can be determined, for example, by measuring the crushed surface of the filler using a digital image analysis type particle size distribution measuring device (trade name: FPA, manufactured by Nippon Luft).
無機フィラー(D)が球状のフィラーである場合には、球状のフィラーの平均粒子径は、0.1μm以上、40μm以下であることが好ましい。平均粒子径が0.1μm以上であると、無機フィラー(D)を高密度で容易に充填できる。平均粒子径が40μm以下であると、硬化物の絶縁破壊特性がより一層高くなる。
When the inorganic filler (D) is a spherical filler, the average particle diameter of the spherical filler is preferably 0.1 μm or more and 40 μm or less. When the average particle size is 0.1 μm or more, the inorganic filler (D) can be easily filled at a high density. When the average particle size is 40 μm or less, the dielectric breakdown characteristics of the cured product are further enhanced.
上記「平均粒子径」とは、レーザー回折式粒度分布測定装置により測定した体積平均での粒度分布測定結果から求められる平均粒子径である。
The above-mentioned “average particle diameter” is an average particle diameter obtained from a volume average particle size distribution measurement result measured with a laser diffraction particle size distribution measuring apparatus.
無機フィラー(D)の新モース硬度は、好ましくは12以下、より好ましくは9以下である。無機フィラー(D)の新モース硬度が9以下であると、硬化物の加工性がより一層高くなる。
The new Mohs hardness of the inorganic filler (D) is preferably 12 or less, more preferably 9 or less. When the new Mohs hardness of the inorganic filler (D) is 9 or less, the workability of the cured product is further enhanced.
硬化物の加工性をより一層高める観点からは、新モース硬度が9以下であるので、無機フィラー(D)は、合成マグネサイト、結晶シリカ、酸化亜鉛、及び酸化マグネシウムからなる群から選択された少なくとも1種であることが好ましい。
From the viewpoint of further improving the workability of the cured product, since the new Mohs hardness is 9 or less, the inorganic filler (D) was selected from the group consisting of synthetic magnesite, crystalline silica, zinc oxide, and magnesium oxide. It is preferable that there is at least one.
硬化物の放熱性を十分に高めるために、絶縁シート100重量%中の無機フィラー(D)の含有量は、60重量%以上である。また、絶縁シート100重量%中の無機フィラー(D)の含有量は95重量%以下である。絶縁シート100重量%中、無機フィラー(D)の含有量は好ましくは90重量%以下、より好ましくは85重量%以下、更に好ましくは80重量%以下、特に好ましくは70重量%以下である。無機フィラー(D)の含有量が上記上限以下であると、絶縁シートのハンドリング性及び硬化物の加工性がより一層高くなる。
In order to sufficiently improve the heat dissipation of the cured product, the content of the inorganic filler (D) in 100% by weight of the insulating sheet is 60% by weight or more. Moreover, content of the inorganic filler (D) in 100 weight% of insulating sheets is 95 weight% or less. The content of the inorganic filler (D) in 100% by weight of the insulating sheet is preferably 90% by weight or less, more preferably 85% by weight or less, still more preferably 80% by weight or less, and particularly preferably 70% by weight or less. When the content of the inorganic filler (D) is not more than the above upper limit, the handling property of the insulating sheet and the workability of the cured product are further enhanced.
(エラストマー(E))
本発明に係る絶縁シートに含まれているエラストマー(E)は、ポリ(メタ)アクリル酸エステルである。該ポリ(メタ)アクリル酸エステルであるエラストマー(E)は特に限定されない。エラストマー(E)として、例えば、従来公知のポリ(メタ)アクリル酸エステルエラストマー及び粒子状のポリ(メタ)アクリル酸エステルをコアとし、該コアをシェルで被覆した被覆物を用いることができる。エラストマーは常温付近でゴム弾性を示す化合物である。エラストマー(E)は1種のみが用いられてもよく、2種以上が併用されてもよい。 (Elastomer (E))
The elastomer (E) contained in the insulating sheet according to the present invention is a poly (meth) acrylic ester. The elastomer (E) that is the poly (meth) acrylate is not particularly limited. As the elastomer (E), for example, a conventionally known poly (meth) acrylic acid ester elastomer and particulate poly (meth) acrylic acid ester as a core and the core covered with a shell can be used. Elastomers are compounds that exhibit rubber elasticity near room temperature. Only one type of elastomer (E) may be used, or two or more types may be used in combination.
本発明に係る絶縁シートに含まれているエラストマー(E)は、ポリ(メタ)アクリル酸エステルである。該ポリ(メタ)アクリル酸エステルであるエラストマー(E)は特に限定されない。エラストマー(E)として、例えば、従来公知のポリ(メタ)アクリル酸エステルエラストマー及び粒子状のポリ(メタ)アクリル酸エステルをコアとし、該コアをシェルで被覆した被覆物を用いることができる。エラストマーは常温付近でゴム弾性を示す化合物である。エラストマー(E)は1種のみが用いられてもよく、2種以上が併用されてもよい。 (Elastomer (E))
The elastomer (E) contained in the insulating sheet according to the present invention is a poly (meth) acrylic ester. The elastomer (E) that is the poly (meth) acrylate is not particularly limited. As the elastomer (E), for example, a conventionally known poly (meth) acrylic acid ester elastomer and particulate poly (meth) acrylic acid ester as a core and the core covered with a shell can be used. Elastomers are compounds that exhibit rubber elasticity near room temperature. Only one type of elastomer (E) may be used, or two or more types may be used in combination.
ポリ(メタ)アクリル酸エステルであるエラストマー(E)を得るための重合成分として、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート及び2-エチルヘキシル(メタ)アクリレートが挙げられる。
As a polymerization component for obtaining an elastomer (E) which is a poly (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate Hexyl (meth) acrylate and 2-ethylhexyl (meth) acrylate.
ポリ(メタ)アクリル酸エステルであるエラストマー(E)を得るための重合成分の他の例としては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸及び無水マレイン酸等のカルボキシル基含有モノマー、並びにグリシジルアクリレート及びアリルグリシジルエーテル等のエポキシ基含有モノマー等が挙げられる。
Other examples of polymerization components for obtaining an elastomer (E) that is a poly (meth) acrylic acid ester include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid and maleic anhydride And epoxy group-containing monomers such as glycidyl acrylate and allyl glycidyl ether.
硬化物の冷熱サイクル信頼性をより一層高める観点からは、ポリ(メタ)アクリル酸エステルであるエラストマー(E)は、ブチル(メタ)アクリレートを用いた重合体であることが好ましく、ブチルメタクリレートを用いた重合体であることがより好ましい。なお、「重合体」には共重合体が含まれる。
From the viewpoint of further improving the thermal cycle reliability of the cured product, the elastomer (E) which is a poly (meth) acrylic acid ester is preferably a polymer using butyl (meth) acrylate, and butyl methacrylate is used. More preferred is a polymer. The “polymer” includes a copolymer.
エラストマー(E)は、ゴム粒子の形状で含まれていてもよい。ゴム粒子の形状のエラストマー(E)を添加することで、耐熱性を損なわず絶縁シートの応力緩和性及び柔軟性を高めることができる。
The elastomer (E) may be included in the form of rubber particles. By adding the elastomer (E) in the form of rubber particles, the stress relaxation property and flexibility of the insulating sheet can be enhanced without impairing the heat resistance.
上記全樹脂成分Xの合計100重量%中、エラストマー(E)の含有量は、好ましくは1重量%以上、より好ましくは3重量%以上、好ましくは30重量%以下である。エラストマー(E)の含有量が上記下限以上であると、硬化物の柔軟性がより一層高くなり、かつ冷熱サイクル信頼性がより一層高くなる。エラストマー(E)の含有量が上記上限以下であると、硬化物の耐熱性がより一層高くなる。
In the total 100% by weight of all the resin components X, the content of the elastomer (E) is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 30% by weight or less. When the content of the elastomer (E) is equal to or more than the above lower limit, the flexibility of the cured product is further increased, and the cooling cycle reliability is further increased. When the content of the elastomer (E) is not more than the above upper limit, the heat resistance of the cured product is further increased.
(他の成分)
本発明に係る絶縁シートは、分散剤を含んでいてもよい。該分散剤の使用により、硬化物の熱伝導率及び絶縁破壊特性をより一層高めることができる。 (Other ingredients)
The insulating sheet according to the present invention may contain a dispersant. Use of the dispersant can further enhance the thermal conductivity and dielectric breakdown characteristics of the cured product.
本発明に係る絶縁シートは、分散剤を含んでいてもよい。該分散剤の使用により、硬化物の熱伝導率及び絶縁破壊特性をより一層高めることができる。 (Other ingredients)
The insulating sheet according to the present invention may contain a dispersant. Use of the dispersant can further enhance the thermal conductivity and dielectric breakdown characteristics of the cured product.
上記分散剤は、水素結合性を有する水素原子を含む官能基を有することが好ましい。上記分散剤が水素結合性を有する水素原子を含む官能基を有することで、硬化物の熱伝導率及び絶縁破壊特性をより一層高めることができる。上記水素結合性を有する水素原子を含む官能基としては、例えば、カルボキシル基(pKa=4)、リン酸基(pKa=7)、及びフェノール基(pKa=10)等が挙げられる。
The dispersant preferably has a functional group containing a hydrogen atom having hydrogen bonding properties. When the dispersing agent has a functional group containing a hydrogen atom having hydrogen bonding properties, the thermal conductivity and dielectric breakdown characteristics of the cured product can be further enhanced. Examples of the functional group containing a hydrogen atom having hydrogen bonding include a carboxyl group (pKa = 4), a phosphoric acid group (pKa = 7), a phenol group (pKa = 10), and the like.
上記水素結合性を有する水素原子を含む官能基のpKaは、好ましくは2以上、より好ましくは3以上、好ましくは10以下、より好ましくは9以下である。上記官能基のpKaが上記下限以上であると、上記分散剤の酸性度が高くなりすぎない。従って、絶縁シートの貯蔵安定性がより一層高くなる。上記官能基のpKaが上記上限以下であると、上記分散剤としての機能が充分に果たされ、硬化物の熱伝導性及び絶縁破壊特性がより一層高くなる。
The pKa of the functional group containing a hydrogen atom having hydrogen bonding property is preferably 2 or more, more preferably 3 or more, preferably 10 or less, more preferably 9 or less. When the pKa of the functional group is not less than the lower limit, the acidity of the dispersant does not become too high. Therefore, the storage stability of the insulating sheet is further enhanced. When the pKa of the functional group is not more than the above upper limit, the function as the dispersant is sufficiently fulfilled, and the thermal conductivity and dielectric breakdown characteristics of the cured product are further enhanced.
上記水素結合性を有する水素原子を含む官能基は、カルボキシル基又はリン酸基であることが好ましい。この場合には、硬化物の熱伝導性及び絶縁破壊特性がさらに一層高くなる。
The functional group containing a hydrogen atom having hydrogen bonding properties is preferably a carboxyl group or a phosphate group. In this case, the thermal conductivity and dielectric breakdown characteristics of the cured product are further enhanced.
上記分散剤としては、具体的には、例えば、ポリエステル系カルボン酸、ポリエーテル系カルボン酸、ポリアクリル系カルボン酸、脂肪族系カルボン酸、ポリシロキサン系カルボン酸、ポリエステル系リン酸、ポリエーテル系リン酸、ポリアクリル系リン酸、脂肪族系リン酸、ポリシロキサン系リン酸、ポリエステル系フェノール、ポリエーテル系フェノール、ポリアクリル系フェノール、脂肪族系フェノール、及びポリシロキサン系フェノール等が挙げられる。上記分散剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
Specific examples of the dispersant include a polyester carboxylic acid, a polyether carboxylic acid, a polyacrylic carboxylic acid, an aliphatic carboxylic acid, a polysiloxane carboxylic acid, a polyester phosphoric acid, and a polyether type. Examples thereof include phosphoric acid, polyacrylic phosphoric acid, aliphatic phosphoric acid, polysiloxane phosphoric acid, polyester phenol, polyether phenol, polyacrylic phenol, aliphatic phenol, and polysiloxane phenol. As for the said dispersing agent, only 1 type may be used and 2 or more types may be used together.
上記全樹脂成分Xの合計100重量%中、上記分散剤の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは20重量%以下、より好ましくは10重量%以下である。上記分散剤の含有量が上記下限以上及び上限以下であると、無機フィラー(D)の凝集が生じ難くなり、かつ硬化物の放熱性及び絶縁破壊特性がより一層高くなる。
In the total 100% by weight of the total resin component X, the content of the dispersant is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 20% by weight or less, more preferably 10% by weight. % By weight or less. When the content of the dispersant is not less than the above lower limit and not more than the upper limit, aggregation of the inorganic filler (D) is difficult to occur, and the heat dissipation and dielectric breakdown characteristics of the cured product are further enhanced.
ハンドリング性をより一層高めるために、本発明に係る絶縁シートは、ガラスクロス、ガラス不織布、アラミド不織布等の基材物質を含んでいてもよい。ただし、上記基材物質を含まなくても、絶縁シートは室温(23℃)において自立性を有し、かつ優れたハンドリング性を有する。よって、絶縁シートは基材物質を含まないことが好ましく、特にガラスクロスを含まないことが好ましい。絶縁シートが上記基材物質を含まない場合には、絶縁シートの厚みを薄くすることができ、かつ硬化物の熱伝導性をより一層高めることができる。さらに、絶縁シートが上記基材物質を含まない場合には、必要に応じて絶縁シートにレーザー加工又はドリル穴開け加工等の各種加工を容易に行うこともできる。なお、自立性とは、PETフィルム又は銅箔といった支持体が存在しなくても、シートの形状を保持し、シートとして取り扱うことができることをいう。
In order to further improve the handleability, the insulating sheet according to the present invention may contain a base material such as glass cloth, glass nonwoven fabric, and aramid nonwoven fabric. However, even if the base material is not included, the insulating sheet has a self-supporting property at room temperature (23 ° C.) and an excellent handling property. Therefore, the insulating sheet preferably does not contain a base material, and particularly preferably does not contain glass cloth. When an insulating sheet does not contain the said base material, the thickness of an insulating sheet can be made thin and the thermal conductivity of hardened | cured material can be improved further. Furthermore, when an insulating sheet does not contain the said base material, various processes, such as a laser processing or a drilling process, can also be easily performed to an insulating sheet as needed. In addition, self-supporting means that the shape of a sheet can be maintained and handled as a sheet even if there is no support such as a PET film or copper foil.
さらに、本発明に係る絶縁シートは、必要に応じて、粘着性付与剤、可塑剤、カップリング剤、チキソ性付与剤、難燃剤、光増感剤及び着色剤などを含んでいてもよい。
Furthermore, the insulating sheet according to the present invention may contain a tackifier, a plasticizer, a coupling agent, a thixotropic agent, a flame retardant, a photosensitizer, a colorant, and the like as necessary.
(絶縁シート)
本発明に係る絶縁シートは、熱伝導率が10W/m・K以上である熱伝導体を導電層に接着するために用いられる。
本発明に係る絶縁シートの製造方法は特に限定されない。絶縁シートは、例えば、上述した材料を混合した混合物を溶剤キャスト法又は押し出し成膜法等の方法でシート状に成形することにより得ることができる。シート状に成形する際に、脱泡することが好ましい。 (Insulating sheet)
The insulating sheet according to the present invention is used for bonding a heat conductor having a thermal conductivity of 10 W / m · K or more to a conductive layer.
The manufacturing method of the insulating sheet which concerns on this invention is not specifically limited. The insulating sheet can be obtained, for example, by forming a mixture obtained by mixing the above-described materials into a sheet shape by a method such as a solvent casting method or an extrusion film forming method. Defoaming is preferred when forming into a sheet.
本発明に係る絶縁シートは、熱伝導率が10W/m・K以上である熱伝導体を導電層に接着するために用いられる。
本発明に係る絶縁シートの製造方法は特に限定されない。絶縁シートは、例えば、上述した材料を混合した混合物を溶剤キャスト法又は押し出し成膜法等の方法でシート状に成形することにより得ることができる。シート状に成形する際に、脱泡することが好ましい。 (Insulating sheet)
The insulating sheet according to the present invention is used for bonding a heat conductor having a thermal conductivity of 10 W / m · K or more to a conductive layer.
The manufacturing method of the insulating sheet which concerns on this invention is not specifically limited. The insulating sheet can be obtained, for example, by forming a mixture obtained by mixing the above-described materials into a sheet shape by a method such as a solvent casting method or an extrusion film forming method. Defoaming is preferred when forming into a sheet.
絶縁シートの厚みは特に限定されない。絶縁シートの厚みは、好ましくは10μm以上、より好ましくは50μm以上、更に好ましくは70μm以上、好ましくは300μm以下、より好ましくは200μm以下、更に好ましくは120μm以下である。厚みが上記下限以上であると、絶縁シートの硬化物の絶縁性が高くなる。厚みが上記上限以下であると、金属体を導電層に接着したときに放熱性が高くなる。
The thickness of the insulating sheet is not particularly limited. The thickness of the insulating sheet is preferably 10 μm or more, more preferably 50 μm or more, further preferably 70 μm or more, preferably 300 μm or less, more preferably 200 μm or less, and still more preferably 120 μm or less. When the thickness is not less than the above lower limit, the insulating property of the cured product of the insulating sheet is increased. When the thickness is less than or equal to the above upper limit, the heat dissipation becomes high when the metal body is bonded to the conductive layer.
未硬化状態での絶縁シートのガラス転移温度Tgは、25℃以下であることが好ましい。ガラス転移温度が25℃以下であると、絶縁シートが室温において固く、かつ脆くなり難い。このため、未硬化状態での絶縁シートのハンドリング性が高くなる。
The glass transition temperature Tg of the insulating sheet in the uncured state is preferably 25 ° C. or lower. When the glass transition temperature is 25 ° C. or lower, the insulating sheet is hard and not easily brittle at room temperature. For this reason, the handleability of the insulating sheet in an uncured state is enhanced.
絶縁シートの硬化物の熱伝導率は、好ましくは0.7W/m・K以上、より好ましくは1.0W/m・K以上、更に好ましくは1.5W/m・K以上である。熱伝導率が上記下限以上であると、絶縁シートの硬化物の放熱性が充分に高くなる。
The thermal conductivity of the cured product of the insulating sheet is preferably 0.7 W / m · K or more, more preferably 1.0 W / m · K or more, and further preferably 1.5 W / m · K or more. The heat dissipation of the hardened | cured material of an insulating sheet becomes high enough that heat conductivity is more than the said minimum.
絶縁シートの硬化物の絶縁破壊電圧は、好ましくは25kV/mm以上、より好ましくは30kV/mm以上、より一層好ましくは40kV/mm以上、更に好ましくは50kV/mm以上、特に好ましくは80kV/mm以上である。絶縁破壊電圧が低すぎると、絶縁シートが例えば電力素子用のような大電流用途に用いられた場合に、絶縁性が低くなることがある。
The dielectric breakdown voltage of the cured product of the insulating sheet is preferably 25 kV / mm or more, more preferably 30 kV / mm or more, still more preferably 40 kV / mm or more, still more preferably 50 kV / mm or more, and particularly preferably 80 kV / mm or more. It is. If the dielectric breakdown voltage is too low, the insulating property may be lowered when the insulating sheet is used for a large current application such as for a power element.
(積層構造体)
本発明に係る絶縁シートは、熱伝導率が10W/m・K以上である熱伝導体の少なくとも片面に、絶縁層を介して導電層が積層されている積層構造体の絶縁層を構成するために好適に用いられる。 (Laminated structure)
The insulating sheet according to the present invention constitutes an insulating layer of a laminated structure in which a conductive layer is laminated on at least one surface of a heat conductor having a thermal conductivity of 10 W / m · K or more via an insulating layer. Is preferably used.
本発明に係る絶縁シートは、熱伝導率が10W/m・K以上である熱伝導体の少なくとも片面に、絶縁層を介して導電層が積層されている積層構造体の絶縁層を構成するために好適に用いられる。 (Laminated structure)
The insulating sheet according to the present invention constitutes an insulating layer of a laminated structure in which a conductive layer is laminated on at least one surface of a heat conductor having a thermal conductivity of 10 W / m · K or more via an insulating layer. Is preferably used.
図1に、本発明の一実施形態に係る絶縁シートを用いた積層構造体の一例を示す。
図1に示す積層構造体1は、熱伝導体2と、熱伝導体2の第1の表面2aに積層された絶縁層3と、絶縁層3の熱伝導体2が積層された表面とは反対側の表面に積層された導電層4とを備える。熱伝導体2の第1の表面2aとは反対の第2の表面2bには、絶縁層及び導電層は積層されていない。絶縁層3は、本発明に係る絶縁シートを硬化させることにより形成されている。熱伝導体2の熱伝導率は10W/m・K以上である。 In FIG. 1, an example of the laminated structure using the insulating sheet which concerns on one Embodiment of this invention is shown.
The laminated structure 1 shown in FIG. 1 includes aheat conductor 2, an insulating layer 3 laminated on the first surface 2a of the heat conductor 2, and a surface on which the heat conductor 2 of the insulating layer 3 is laminated. And a conductive layer 4 laminated on the opposite surface. The insulating layer and the conductive layer are not laminated on the second surface 2b opposite to the first surface 2a of the heat conductor 2. The insulating layer 3 is formed by curing the insulating sheet according to the present invention. The heat conductivity of the heat conductor 2 is 10 W / m · K or more.
図1に示す積層構造体1は、熱伝導体2と、熱伝導体2の第1の表面2aに積層された絶縁層3と、絶縁層3の熱伝導体2が積層された表面とは反対側の表面に積層された導電層4とを備える。熱伝導体2の第1の表面2aとは反対の第2の表面2bには、絶縁層及び導電層は積層されていない。絶縁層3は、本発明に係る絶縁シートを硬化させることにより形成されている。熱伝導体2の熱伝導率は10W/m・K以上である。 In FIG. 1, an example of the laminated structure using the insulating sheet which concerns on one Embodiment of this invention is shown.
The laminated structure 1 shown in FIG. 1 includes a
熱伝導体の少なくとも一方の面に、絶縁層と導電層とがこの順に積層されていればよく、熱伝導体の他方の面にも、絶縁層と導電層とがこの順に積層されていてもよい。
積層構造体1では、絶縁層3が高い熱伝導率を有するので、導電層4側からの熱が絶縁層3を介して熱伝導体2に伝わりやすい。積層構造体1では、熱伝導体2によって熱を効率的に放散させることができる。 It is sufficient that the insulating layer and the conductive layer are laminated in this order on at least one surface of the heat conductor, and the insulating layer and the conductive layer are laminated in this order on the other surface of the heat conductor. Good.
In the laminated structure 1, since the insulatinglayer 3 has a high thermal conductivity, heat from the conductive layer 4 side is easily transmitted to the thermal conductor 2 through the insulating layer 3. In the laminated structure 1, heat can be efficiently dissipated by the heat conductor 2.
積層構造体1では、絶縁層3が高い熱伝導率を有するので、導電層4側からの熱が絶縁層3を介して熱伝導体2に伝わりやすい。積層構造体1では、熱伝導体2によって熱を効率的に放散させることができる。 It is sufficient that the insulating layer and the conductive layer are laminated in this order on at least one surface of the heat conductor, and the insulating layer and the conductive layer are laminated in this order on the other surface of the heat conductor. Good.
In the laminated structure 1, since the insulating
例えば、両面に銅回路が設けられた積層板又は多層配線板、銅箔、銅板、半導体素子又は半導体パッケージ等の各導電層に、絶縁シートを介して金属体を接着した後、絶縁シートを硬化させることにより、積層構造体1を得ることができる。
For example, after bonding a metal body to each conductive layer such as a laminated board or multilayer wiring board provided with copper circuits on both sides, copper foil, copper plate, semiconductor element or semiconductor package via an insulating sheet, the insulating sheet is cured. By doing so, the laminated structure 1 can be obtained.
上記熱伝導率が10W/m・K以上である熱伝導体は特に限定されない。上記熱伝導率が10W/m・K以上である熱伝導体としては、例えば、アルミニウム、銅、アルミナ、ベリリア、炭化ケイ素、窒化ケイ素、窒化アルミニウム及びグラファイトシート等が挙げられる。中でも、上記熱伝導率が10W/m・K以上である熱伝導体は、銅又はアルミニウムであることが好ましい。銅又はアルミニウムは、放熱性に優れている。
The thermal conductor having a thermal conductivity of 10 W / m · K or more is not particularly limited. Examples of the heat conductor having a thermal conductivity of 10 W / m · K or more include aluminum, copper, alumina, beryllia, silicon carbide, silicon nitride, aluminum nitride, and graphite sheet. Especially, it is preferable that the heat conductor whose said heat conductivity is 10 W / m * K or more is copper or aluminum. Copper or aluminum is excellent in heat dissipation.
本発明に係る絶縁シートは、基板上に半導体素子が実装されている半導体装置の導電層に、熱伝導率が10W/m・K以上である熱伝導体を接着するために好適に用いられる。
本発明に係る絶縁シートは、半導体素子以外の電子部品素子が基板上に搭載されている電子部品装置の導電層に、熱伝導率が10W/m・K以上である熱伝導体を接着するためにも好適に用いられる。 The insulating sheet according to the present invention is suitably used for bonding a heat conductor having a thermal conductivity of 10 W / m · K or more to a conductive layer of a semiconductor device in which a semiconductor element is mounted on a substrate.
The insulating sheet according to the present invention adheres a heat conductor having a thermal conductivity of 10 W / m · K or more to a conductive layer of an electronic component device in which electronic component elements other than semiconductor elements are mounted on a substrate. Also preferably used.
本発明に係る絶縁シートは、半導体素子以外の電子部品素子が基板上に搭載されている電子部品装置の導電層に、熱伝導率が10W/m・K以上である熱伝導体を接着するためにも好適に用いられる。 The insulating sheet according to the present invention is suitably used for bonding a heat conductor having a thermal conductivity of 10 W / m · K or more to a conductive layer of a semiconductor device in which a semiconductor element is mounted on a substrate.
The insulating sheet according to the present invention adheres a heat conductor having a thermal conductivity of 10 W / m · K or more to a conductive layer of an electronic component device in which electronic component elements other than semiconductor elements are mounted on a substrate. Also preferably used.
半導体素子が大電流用の電力用デバイス素子である場合には、絶縁シートの硬化物には、絶縁性又は耐熱性等により一層優れていることが求められる。従って、このような用途に、本発明の絶縁シートは好適に用いられる。
When the semiconductor element is a power device element for a large current, the cured product of the insulating sheet is required to be more excellent in insulation or heat resistance. Therefore, the insulating sheet of this invention is used suitably for such a use.
以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。なお、本発明は以下の実施例に限定されない。
以下の材料を用意した。 Hereinafter, the present invention will be clarified by giving specific examples and comparative examples of the present invention. The present invention is not limited to the following examples.
The following materials were prepared.
以下の材料を用意した。 Hereinafter, the present invention will be clarified by giving specific examples and comparative examples of the present invention. The present invention is not limited to the following examples.
The following materials were prepared.
[ポリマー(A)]
(1)エポキシ基含有スチレン樹脂(日脂社製、商品名:マープルーフG-1010S、Mw=100000、Tg=93℃)
(2)ビスフェノールA型フェノキシ樹脂(三菱化学社製、商品名:E1256、Mw=51000、Tg=98℃)
(3)高耐熱フェノキシ樹脂(東都化成社製、商品名FX-293、Mw=43700、Tg=163℃) [Polymer (A)]
(1) Epoxy group-containing styrene resin (manufactured by NOF Corporation, trade name: Marproof G-1010S, Mw = 100000, Tg = 93 ° C.)
(2) Bisphenol A type phenoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: E1256, Mw = 51000, Tg = 98 ° C.)
(3) High heat resistant phenoxy resin (trade name FX-293, manufactured by Toto Kasei Co., Ltd., Mw = 43700, Tg = 163 ° C.)
(1)エポキシ基含有スチレン樹脂(日脂社製、商品名:マープルーフG-1010S、Mw=100000、Tg=93℃)
(2)ビスフェノールA型フェノキシ樹脂(三菱化学社製、商品名:E1256、Mw=51000、Tg=98℃)
(3)高耐熱フェノキシ樹脂(東都化成社製、商品名FX-293、Mw=43700、Tg=163℃) [Polymer (A)]
(1) Epoxy group-containing styrene resin (manufactured by NOF Corporation, trade name: Marproof G-1010S, Mw = 100000, Tg = 93 ° C.)
(2) Bisphenol A type phenoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: E1256, Mw = 51000, Tg = 98 ° C.)
(3) High heat resistant phenoxy resin (trade name FX-293, manufactured by Toto Kasei Co., Ltd., Mw = 43700, Tg = 163 ° C.)
[ポリマー(A)以外の他のポリマー]
(1)エポキシ基含有アクリル樹脂(日油社製、商品名:マープルーフG-0130S、Mw=9000、Tg=69℃) [Other polymers other than polymer (A)]
(1) Epoxy group-containing acrylic resin (manufactured by NOF Corporation, trade name: Marproof G-0130S, Mw = 9000, Tg = 69 ° C.)
(1)エポキシ基含有アクリル樹脂(日油社製、商品名:マープルーフG-0130S、Mw=9000、Tg=69℃) [Other polymers other than polymer (A)]
(1) Epoxy group-containing acrylic resin (manufactured by NOF Corporation, trade name: Marproof G-0130S, Mw = 9000, Tg = 69 ° C.)
[硬化性化合物(B)]
(1)ビスフェノールA型液状エポキシ樹脂(三菱化学製、商品名:エピコート828US、Mw=370、水酸基当量8800)
(2)ビスフェノールF型液状エポキシ樹脂(三菱化学製、商品名:エピコート806L、Mw=370、水酸基当量7500)
(3)3官能グリシジルジアミン型液状エポキシ樹脂(三菱化学社製、商品名:エピコート630、Mw=300、水酸基当量8200、窒素原子の含有量16重量%)
(4)フルオレン骨格エポキシ樹脂(大阪ガスケミカル社製、商品名:オンコートEX1011、Mw=486、水酸基当量8500)
(5)ナフタレン骨格液状エポキシ樹脂(DIC社製、商品名EPICLON HP-4032D、Mw=304、水酸基当量7000) [Curable compound (B)]
(1) Bisphenol A type liquid epoxy resin (Mitsubishi Chemical make, brand name: Epicoat 828US, Mw = 370, hydroxyl group equivalent 8800)
(2) Bisphenol F type liquid epoxy resin (Mitsubishi Chemical make, brand name: Epicoat 806L, Mw = 370, hydroxyl group equivalent 7500)
(3) Trifunctional glycidyldiamine type liquid epoxy resin (Mitsubishi Chemical Co., Ltd., trade name: Epicoat 630, Mw = 300, hydroxyl group equivalent 8200, nitrogen atom content 16% by weight)
(4) Fluorene skeleton epoxy resin (manufactured by Osaka Gas Chemical Co., Ltd., trade name: ONCOAT EX1011, Mw = 486, hydroxyl group equivalent 8500)
(5) Naphthalene skeleton liquid epoxy resin (manufactured by DIC, trade name EPICLON HP-4032D, Mw = 304, hydroxyl group equivalent 7000)
(1)ビスフェノールA型液状エポキシ樹脂(三菱化学製、商品名:エピコート828US、Mw=370、水酸基当量8800)
(2)ビスフェノールF型液状エポキシ樹脂(三菱化学製、商品名:エピコート806L、Mw=370、水酸基当量7500)
(3)3官能グリシジルジアミン型液状エポキシ樹脂(三菱化学社製、商品名:エピコート630、Mw=300、水酸基当量8200、窒素原子の含有量16重量%)
(4)フルオレン骨格エポキシ樹脂(大阪ガスケミカル社製、商品名:オンコートEX1011、Mw=486、水酸基当量8500)
(5)ナフタレン骨格液状エポキシ樹脂(DIC社製、商品名EPICLON HP-4032D、Mw=304、水酸基当量7000) [Curable compound (B)]
(1) Bisphenol A type liquid epoxy resin (Mitsubishi Chemical make, brand name: Epicoat 828US, Mw = 370, hydroxyl group equivalent 8800)
(2) Bisphenol F type liquid epoxy resin (Mitsubishi Chemical make, brand name: Epicoat 806L, Mw = 370, hydroxyl group equivalent 7500)
(3) Trifunctional glycidyldiamine type liquid epoxy resin (Mitsubishi Chemical Co., Ltd., trade name: Epicoat 630, Mw = 300, hydroxyl group equivalent 8200, nitrogen atom content 16% by weight)
(4) Fluorene skeleton epoxy resin (manufactured by Osaka Gas Chemical Co., Ltd., trade name: ONCOAT EX1011, Mw = 486, hydroxyl group equivalent 8500)
(5) Naphthalene skeleton liquid epoxy resin (manufactured by DIC, trade name EPICLON HP-4032D, Mw = 304, hydroxyl group equivalent 7000)
[硬化性化合物(B)以外の他の硬化性化合物]
(1)ビスフェノールA型固体状エポキシ樹脂(三菱化学社製、商品名:1003、Mw=1300、水酸基当量380) [Other curable compounds other than the curable compound (B)]
(1) Bisphenol A type solid epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: 1003, Mw = 1300, hydroxyl group equivalent 380)
(1)ビスフェノールA型固体状エポキシ樹脂(三菱化学社製、商品名:1003、Mw=1300、水酸基当量380) [Other curable compounds other than the curable compound (B)]
(1) Bisphenol A type solid epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name: 1003, Mw = 1300, hydroxyl group equivalent 380)
[硬化剤(C)]
(1)ジシアンジアミド(日本カーバイト社製、商品名:DD、窒素原子の含有量66.6重量%)
(2)イソシアヌル変性固体分散型イミダゾール(イミダゾール系硬化促進剤、四国化成社製、商品名:2MZA-PW、窒素原子の含有量44.7重量%)
(3)ビフェニル骨格フェノール樹脂(明和化成社製、商品名:MEH-7851-S) [Curing agent (C)]
(1) Dicyandiamide (Nippon Carbite, trade name: DD, nitrogen atom content 66.6% by weight)
(2) Isocyanur-modified solid dispersion type imidazole (imidazole curing accelerator, manufactured by Shikoku Kasei Co., Ltd., trade name: 2MZA-PW, nitrogen atom content 44.7% by weight)
(3) Biphenyl skeleton phenol resin (Madewa Kasei Co., Ltd., trade name: MEH-7851-S)
(1)ジシアンジアミド(日本カーバイト社製、商品名:DD、窒素原子の含有量66.6重量%)
(2)イソシアヌル変性固体分散型イミダゾール(イミダゾール系硬化促進剤、四国化成社製、商品名:2MZA-PW、窒素原子の含有量44.7重量%)
(3)ビフェニル骨格フェノール樹脂(明和化成社製、商品名:MEH-7851-S) [Curing agent (C)]
(1) Dicyandiamide (Nippon Carbite, trade name: DD, nitrogen atom content 66.6% by weight)
(2) Isocyanur-modified solid dispersion type imidazole (imidazole curing accelerator, manufactured by Shikoku Kasei Co., Ltd., trade name: 2MZA-PW, nitrogen atom content 44.7% by weight)
(3) Biphenyl skeleton phenol resin (Madewa Kasei Co., Ltd., trade name: MEH-7851-S)
[無機フィラー(D)]
(1)破砕アルミナ1(日本軽金属社製、商品名:LS-242C、平均粒子径2μm、蛍光X線分析による純度99.9%、熱伝導率36W/m・K、新モース硬度12)
(2)破砕アルミナ2(キンセイマテック社製、商品名:セラフ02050、平均粒子径2μm、蛍光X線分析による純度98.2%、熱伝導率36W/m・K、新モース硬度12)
(3)球状アルミナ(デンカ社製、商品名:DAM-10、平均粒子径10μm、蛍光X線分析による純度99.9%、熱伝導率36W/m・K、新モース硬度12)
(4)結晶性シリカ(龍森社製、商品名:クリスタライトCMC-12、平均粒子径5μm、熱伝導率10W/m・K、新モース硬度9)
(5)窒化ホウ素(昭和電工社製、商品名:UHP-1、平均粒子径8μm、熱伝導率60W/m・K、新モース硬度2)
(6)窒化アルミニウム(東洋アルミニウム社製、商品名:TOYALNITE-FLX、平均粒子径14μm、熱伝導率200W/m・K、新モース硬度11)
(7)炭化ケイ素(信濃電気製錬社製、商品名:シナノランダムGP#700、平均粒子径17μm、熱伝導率125W/m・K、新モース硬度13) [Inorganic filler (D)]
(1) Crushed alumina 1 (manufactured by Nippon Light Metal Co., Ltd., trade name: LS-242C,average particle size 2 μm, purity 99.9% by X-ray fluorescence analysis, thermal conductivity 36 W / m · K, new Mohs hardness 12)
(2) Crushed Alumina 2 (Kinsei Matec Co., Ltd., trade name: Seraph 02050,average particle size 2 μm, purity 98.2% by X-ray fluorescence analysis, thermal conductivity 36 W / m · K, new Mohs hardness 12)
(3) Spherical alumina (Denka Co., Ltd., trade name: DAM-10, average particle size 10 μm, purity 99.9% by X-ray fluorescence analysis, thermal conductivity 36 W / m · K, new Mohs hardness 12)
(4) Crystalline silica (manufactured by Tatsumori Co., Ltd., trade name: Crystallite CMC-12, average particle size 5 μm, thermal conductivity 10 W / m · K, new Mohs hardness 9)
(5) Boron nitride (manufactured by Showa Denko KK, trade name: UHP-1, average particle size 8 μm, thermal conductivity 60 W / m · K, new Mohs hardness 2)
(6) Aluminum nitride (manufactured by Toyo Aluminum Co., Ltd., trade name: TOYALNITE-FLX, average particle size 14 μm, thermal conductivity 200 W / m · K, new Mohs hardness 11)
(7) Silicon carbide (manufactured by Shinano Electric Smelting Co., Ltd., trade name: Shinano Random GP # 700, average particle diameter 17 μm, thermal conductivity 125 W / m · K, new Mohs hardness 13)
(1)破砕アルミナ1(日本軽金属社製、商品名:LS-242C、平均粒子径2μm、蛍光X線分析による純度99.9%、熱伝導率36W/m・K、新モース硬度12)
(2)破砕アルミナ2(キンセイマテック社製、商品名:セラフ02050、平均粒子径2μm、蛍光X線分析による純度98.2%、熱伝導率36W/m・K、新モース硬度12)
(3)球状アルミナ(デンカ社製、商品名:DAM-10、平均粒子径10μm、蛍光X線分析による純度99.9%、熱伝導率36W/m・K、新モース硬度12)
(4)結晶性シリカ(龍森社製、商品名:クリスタライトCMC-12、平均粒子径5μm、熱伝導率10W/m・K、新モース硬度9)
(5)窒化ホウ素(昭和電工社製、商品名:UHP-1、平均粒子径8μm、熱伝導率60W/m・K、新モース硬度2)
(6)窒化アルミニウム(東洋アルミニウム社製、商品名:TOYALNITE-FLX、平均粒子径14μm、熱伝導率200W/m・K、新モース硬度11)
(7)炭化ケイ素(信濃電気製錬社製、商品名:シナノランダムGP#700、平均粒子径17μm、熱伝導率125W/m・K、新モース硬度13) [Inorganic filler (D)]
(1) Crushed alumina 1 (manufactured by Nippon Light Metal Co., Ltd., trade name: LS-242C,
(2) Crushed Alumina 2 (Kinsei Matec Co., Ltd., trade name: Seraph 02050,
(3) Spherical alumina (Denka Co., Ltd., trade name: DAM-10, average particle size 10 μm, purity 99.9% by X-ray fluorescence analysis, thermal conductivity 36 W / m · K, new Mohs hardness 12)
(4) Crystalline silica (manufactured by Tatsumori Co., Ltd., trade name: Crystallite CMC-12, average particle size 5 μm, thermal conductivity 10 W / m · K, new Mohs hardness 9)
(5) Boron nitride (manufactured by Showa Denko KK, trade name: UHP-1, average particle size 8 μm, thermal conductivity 60 W / m · K, new Mohs hardness 2)
(6) Aluminum nitride (manufactured by Toyo Aluminum Co., Ltd., trade name: TOYALNITE-FLX, average particle size 14 μm, thermal conductivity 200 W / m · K, new Mohs hardness 11)
(7) Silicon carbide (manufactured by Shinano Electric Smelting Co., Ltd., trade name: Shinano Random GP # 700, average particle diameter 17 μm, thermal conductivity 125 W / m · K, new Mohs hardness 13)
[ポリ(メタ)アクリル酸エステルであるエラストマー(E)]
(1)MMA/BMAエラストマー(三菱レイヨン社製、商品名:KW4426、メチルメタクリレートにより形成されたシェルと、n-ブチルメタアクリレートにより形成されたコアとを有するゴム微粒子、平均粒径5μm)
(2)BMAエラストマー(n-ブチルメタクリレートを用いた重合体、根上工業社製、商品名:ハイパールM-6003)
(3)アクリルポリマー(ブチルアクリレート/エチルアクリレート/アクリロニトリル三元共重合体、ナガセケムテック社製、商品名:WS-023) [Elastomer (E) which is a poly (meth) acrylic ester]
(1) MMA / BMA elastomer (manufactured by Mitsubishi Rayon Co., Ltd., trade name: KW4426, rubber fine particles having a shell formed of methyl methacrylate and a core formed of n-butyl methacrylate, average particle size of 5 μm)
(2) BMA elastomer (a polymer using n-butyl methacrylate, manufactured by Negami Kogyo Co., Ltd., trade name: Hyperl M-6003)
(3) Acrylic polymer (butyl acrylate / ethyl acrylate / acrylonitrile terpolymer, manufactured by Nagase Chemtech Co., Ltd., trade name: WS-023)
(1)MMA/BMAエラストマー(三菱レイヨン社製、商品名:KW4426、メチルメタクリレートにより形成されたシェルと、n-ブチルメタアクリレートにより形成されたコアとを有するゴム微粒子、平均粒径5μm)
(2)BMAエラストマー(n-ブチルメタクリレートを用いた重合体、根上工業社製、商品名:ハイパールM-6003)
(3)アクリルポリマー(ブチルアクリレート/エチルアクリレート/アクリロニトリル三元共重合体、ナガセケムテック社製、商品名:WS-023) [Elastomer (E) which is a poly (meth) acrylic ester]
(1) MMA / BMA elastomer (manufactured by Mitsubishi Rayon Co., Ltd., trade name: KW4426, rubber fine particles having a shell formed of methyl methacrylate and a core formed of n-butyl methacrylate, average particle size of 5 μm)
(2) BMA elastomer (a polymer using n-butyl methacrylate, manufactured by Negami Kogyo Co., Ltd., trade name: Hyperl M-6003)
(3) Acrylic polymer (butyl acrylate / ethyl acrylate / acrylonitrile terpolymer, manufactured by Nagase Chemtech Co., Ltd., trade name: WS-023)
[添加剤]
(1)エポキシシランカップリング剤(信越化学工業社製、商品名:KBE403) [Additive]
(1) Epoxysilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBE403)
(1)エポキシシランカップリング剤(信越化学工業社製、商品名:KBE403) [Additive]
(1) Epoxysilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBE403)
[溶剤]
(1)メチルエチルケトン [solvent]
(1) Methyl ethyl ketone
(1)メチルエチルケトン [solvent]
(1) Methyl ethyl ketone
(実施例1~22及び比較例1~5)
ホモディスパー型攪拌機を用いて、下記の表1~2に示す割合(配合単位は重量部)で各原料を配合し、混練し、絶縁材料を調製した。
厚み50μmの離型PETシートに、上記絶縁材料を100μmの厚みになるように塗工し、90℃のオーブン内で30分乾燥して、PETシート上に絶縁シートを作製した。 (Examples 1 to 22 and Comparative Examples 1 to 5)
Using a homodisper type stirrer, each raw material was blended in the proportions shown in Tables 1 and 2 below (blending unit is parts by weight) and kneaded to prepare an insulating material.
The insulating material was applied to a release PET sheet having a thickness of 50 μm so as to have a thickness of 100 μm, and dried in an oven at 90 ° C. for 30 minutes to produce an insulating sheet on the PET sheet.
ホモディスパー型攪拌機を用いて、下記の表1~2に示す割合(配合単位は重量部)で各原料を配合し、混練し、絶縁材料を調製した。
厚み50μmの離型PETシートに、上記絶縁材料を100μmの厚みになるように塗工し、90℃のオーブン内で30分乾燥して、PETシート上に絶縁シートを作製した。 (Examples 1 to 22 and Comparative Examples 1 to 5)
Using a homodisper type stirrer, each raw material was blended in the proportions shown in Tables 1 and 2 below (blending unit is parts by weight) and kneaded to prepare an insulating material.
The insulating material was applied to a release PET sheet having a thickness of 50 μm so as to have a thickness of 100 μm, and dried in an oven at 90 ° C. for 30 minutes to produce an insulating sheet on the PET sheet.
(評価)
(1)窒素原子の含有量
ジェイ・サイエンス・ラボ製のマイクロコーダJM-10型を用いて、未硬化状態の絶縁シートを試料炉温度950℃で加熱分解させ、絶縁シート100重量%中、絶縁シート中の無機フィラーを除く成分に含まれている窒素原子の含有量(重量%)を測定した。 (Evaluation)
(1) Nitrogen atom content An uncured insulation sheet was thermally decomposed at a sample furnace temperature of 950 ° C. using a micro coder JM-10 manufactured by J Science Lab. The content (% by weight) of nitrogen atoms contained in the components excluding the inorganic filler in the sheet was measured.
(1)窒素原子の含有量
ジェイ・サイエンス・ラボ製のマイクロコーダJM-10型を用いて、未硬化状態の絶縁シートを試料炉温度950℃で加熱分解させ、絶縁シート100重量%中、絶縁シート中の無機フィラーを除く成分に含まれている窒素原子の含有量(重量%)を測定した。 (Evaluation)
(1) Nitrogen atom content An uncured insulation sheet was thermally decomposed at a sample furnace temperature of 950 ° C. using a micro coder JM-10 manufactured by J Science Lab. The content (% by weight) of nitrogen atoms contained in the components excluding the inorganic filler in the sheet was measured.
(2)ハンドリング性
PETシートと、該PETシート上に形成された絶縁シートとを有する積層シートを460mm×610mmの大きさに切り出して、テストサンプルを得た。得られたテストサンプルを用いて、室温(23℃)でPETシートから未硬化状態での絶縁シートを剥離したときのハンドリング性を下記の基準で評価した。 (2) Handling property A laminate sheet having a PET sheet and an insulating sheet formed on the PET sheet was cut into a size of 460 mm x 610 mm to obtain a test sample. Using the obtained test sample, the handling property when the uncured insulating sheet was peeled from the PET sheet at room temperature (23 ° C.) was evaluated according to the following criteria.
PETシートと、該PETシート上に形成された絶縁シートとを有する積層シートを460mm×610mmの大きさに切り出して、テストサンプルを得た。得られたテストサンプルを用いて、室温(23℃)でPETシートから未硬化状態での絶縁シートを剥離したときのハンドリング性を下記の基準で評価した。 (2) Handling property A laminate sheet having a PET sheet and an insulating sheet formed on the PET sheet was cut into a size of 460 mm x 610 mm to obtain a test sample. Using the obtained test sample, the handling property when the uncured insulating sheet was peeled from the PET sheet at room temperature (23 ° C.) was evaluated according to the following criteria.
[ハンドリング性の判定基準]
〇:絶縁シートの変形がなく、容易に剥離可能
△:絶縁シートを剥離できるものの、シート伸び又は破断が発生する
×:絶縁シートを剥離できない [Handling criteria]
○: The insulating sheet is not deformed and can be easily peeled. Δ: The insulating sheet can be peeled, but the sheet is stretched or broken. ×: The insulating sheet cannot be peeled.
〇:絶縁シートの変形がなく、容易に剥離可能
△:絶縁シートを剥離できるものの、シート伸び又は破断が発生する
×:絶縁シートを剥離できない [Handling criteria]
○: The insulating sheet is not deformed and can be easily peeled. Δ: The insulating sheet can be peeled, but the sheet is stretched or broken. ×: The insulating sheet cannot be peeled.
(3)貯蔵安定性
PETシートと、該PETシート上に形成された絶縁シートとを有する積層シートを460mm×610mmの大きさに切り出して、テストサンプルを得た。得られたテストサンプルを50℃のオーブンに24時間放置した。24時間放置後のテストサンプルを用いて、室温(23℃)でPETシートから未硬化状態での絶縁シートを剥離したときのハンドリング性を評価し、貯蔵安定性を下記の基準で判定した。 (3) Storage stability A laminate sheet having a PET sheet and an insulating sheet formed on the PET sheet was cut into a size of 460 mm × 610 mm to obtain a test sample. The obtained test sample was left in an oven at 50 ° C. for 24 hours. Using the test sample after being left for 24 hours, the handling property when the uncured insulating sheet was peeled from the PET sheet at room temperature (23 ° C.) was evaluated, and the storage stability was determined according to the following criteria.
PETシートと、該PETシート上に形成された絶縁シートとを有する積層シートを460mm×610mmの大きさに切り出して、テストサンプルを得た。得られたテストサンプルを50℃のオーブンに24時間放置した。24時間放置後のテストサンプルを用いて、室温(23℃)でPETシートから未硬化状態での絶縁シートを剥離したときのハンドリング性を評価し、貯蔵安定性を下記の基準で判定した。 (3) Storage stability A laminate sheet having a PET sheet and an insulating sheet formed on the PET sheet was cut into a size of 460 mm × 610 mm to obtain a test sample. The obtained test sample was left in an oven at 50 ° C. for 24 hours. Using the test sample after being left for 24 hours, the handling property when the uncured insulating sheet was peeled from the PET sheet at room temperature (23 ° C.) was evaluated, and the storage stability was determined according to the following criteria.
[貯蔵安定性の判定基準]
〇:絶縁シートの変形がなく、容易に剥離可能
△:絶縁シートを剥離できるものの、剥離時に欠け又は割れが発生する
×:剥離時に欠け又は割れが発生し、絶縁シートを剥離できない [Criteria for storage stability]
◯: Insulation sheet is not deformed and can be easily peeled △: Insulation sheet can be peeled off, but chipping or cracking occurs during peeling ×: Chipping or cracking occurs during peeling and the insulating sheet cannot be peeled off
〇:絶縁シートの変形がなく、容易に剥離可能
△:絶縁シートを剥離できるものの、剥離時に欠け又は割れが発生する
×:剥離時に欠け又は割れが発生し、絶縁シートを剥離できない [Criteria for storage stability]
◯: Insulation sheet is not deformed and can be easily peeled △: Insulation sheet can be peeled off, but chipping or cracking occurs during peeling ×: Chipping or cracking occurs during peeling and the insulating sheet cannot be peeled off
(4)ガラス転移温度
示差走査熱量測定装置「DSC220C」(セイコーインスツルメンツ社製)を用いて、3℃/分の昇温速度で未硬化状態での絶縁シートのガラス転移温度を測定した。
(5)熱伝導率
京都電子工業社製熱伝導率計「迅速熱伝導率計QTM-500」を用いて、絶縁シートの熱伝導率を測定した。 (4) Glass transition temperature Using a differential scanning calorimeter “DSC220C” (manufactured by Seiko Instruments Inc.), the glass transition temperature of the insulating sheet in an uncured state was measured at a temperature rising rate of 3 ° C./min.
(5) Thermal conductivity The thermal conductivity of the insulating sheet was measured using a thermal conductivity meter “Quick Thermal Conductivity Meter QTM-500” manufactured by Kyoto Electronics Industry Co., Ltd.
示差走査熱量測定装置「DSC220C」(セイコーインスツルメンツ社製)を用いて、3℃/分の昇温速度で未硬化状態での絶縁シートのガラス転移温度を測定した。
(5)熱伝導率
京都電子工業社製熱伝導率計「迅速熱伝導率計QTM-500」を用いて、絶縁シートの熱伝導率を測定した。 (4) Glass transition temperature Using a differential scanning calorimeter “DSC220C” (manufactured by Seiko Instruments Inc.), the glass transition temperature of the insulating sheet in an uncured state was measured at a temperature rising rate of 3 ° C./min.
(5) Thermal conductivity The thermal conductivity of the insulating sheet was measured using a thermal conductivity meter “Quick Thermal Conductivity Meter QTM-500” manufactured by Kyoto Electronics Industry Co., Ltd.
(6)引き剥がし強さA(接着性)
厚み1mmのアルミニウム板と厚み35μmのミドルプロファイル電解銅箔との間に絶縁シートを挟み、真空プレス機で4MPaの圧力を保持しながら120℃で1時間、更に200℃で1時間、絶縁シートをプレス硬化し、銅張り積層板を形成した。得られた銅張り積層板の銅箔をエッチングして、幅10mmの銅箔の帯を形成した。銅箔を基板に対して90℃の角度で50mm/分の引っ張り速度で剥離して、引き剥がし強さAを測定した。 (6) Peel strength A (adhesiveness)
An insulating sheet is sandwiched between an aluminum plate having a thickness of 1 mm and a middle profile electrolytic copper foil having a thickness of 35 μm, and the insulating sheet is held at 120 ° C. for 1 hour and further at 200 ° C. for 1 hour while maintaining a pressure of 4 MPa with a vacuum press. Press-cured to form a copper-clad laminate. The copper foil of the obtained copper-clad laminate was etched to form a copper foil strip having a width of 10 mm. The copper foil was peeled from the substrate at an angle of 90 ° C. at a pulling rate of 50 mm / min, and the peel strength A was measured.
厚み1mmのアルミニウム板と厚み35μmのミドルプロファイル電解銅箔との間に絶縁シートを挟み、真空プレス機で4MPaの圧力を保持しながら120℃で1時間、更に200℃で1時間、絶縁シートをプレス硬化し、銅張り積層板を形成した。得られた銅張り積層板の銅箔をエッチングして、幅10mmの銅箔の帯を形成した。銅箔を基板に対して90℃の角度で50mm/分の引っ張り速度で剥離して、引き剥がし強さAを測定した。 (6) Peel strength A (adhesiveness)
An insulating sheet is sandwiched between an aluminum plate having a thickness of 1 mm and a middle profile electrolytic copper foil having a thickness of 35 μm, and the insulating sheet is held at 120 ° C. for 1 hour and further at 200 ° C. for 1 hour while maintaining a pressure of 4 MPa with a vacuum press. Press-cured to form a copper-clad laminate. The copper foil of the obtained copper-clad laminate was etched to form a copper foil strip having a width of 10 mm. The copper foil was peeled from the substrate at an angle of 90 ° C. at a pulling rate of 50 mm / min, and the peel strength A was measured.
(7)半田耐熱試験(耐熱性)
上記(6)引き剥がし強さAの評価で得られた銅張り積層板を50mm×60mmの大きさに切り出し、テストサンプルを得た。得られたテストサンプルを288℃の半田浴に銅箔側を下に向けて浮かべ、銅箔の膨れ又は剥がれが発生するまでの時間を測定し、以下の基準で判定した。 (7) Solder heat resistance test (heat resistance)
The copper-clad laminate obtained by the evaluation of (6) peeling strength A was cut out to a size of 50 mm × 60 mm to obtain a test sample. The obtained test sample was floated in a solder bath at 288 ° C. with the copper foil side facing down, and the time until the copper foil swelled or peeled off was measured and judged according to the following criteria.
上記(6)引き剥がし強さAの評価で得られた銅張り積層板を50mm×60mmの大きさに切り出し、テストサンプルを得た。得られたテストサンプルを288℃の半田浴に銅箔側を下に向けて浮かべ、銅箔の膨れ又は剥がれが発生するまでの時間を測定し、以下の基準で判定した。 (7) Solder heat resistance test (heat resistance)
The copper-clad laminate obtained by the evaluation of (6) peeling strength A was cut out to a size of 50 mm × 60 mm to obtain a test sample. The obtained test sample was floated in a solder bath at 288 ° C. with the copper foil side facing down, and the time until the copper foil swelled or peeled off was measured and judged according to the following criteria.
[半田耐熱試験の判定基準]
〇:3分経過しても膨れ及び剥離の発生なし
△:1分経過後、かつ3分経過する前に膨れ又は剥離が発生
×:1分経過する前に膨れ又は剥離が発生 [Criteria for solder heat resistance test]
○: No swelling or peeling even after 3 minutes △: Swelling or peeling occurs after 1 minute and before 3 minutes ×: Swelling or peeling occurs before 1 minute
〇:3分経過しても膨れ及び剥離の発生なし
△:1分経過後、かつ3分経過する前に膨れ又は剥離が発生
×:1分経過する前に膨れ又は剥離が発生 [Criteria for solder heat resistance test]
○: No swelling or peeling even after 3 minutes △: Swelling or peeling occurs after 1 minute and before 3 minutes ×: Swelling or peeling occurs before 1 minute
(8)耐湿性
上記(6)引き剥がし強さAの評価で得られた銅張り積層板を100mm×100mmの大きさに切り出し、銅箔を剥がし、テストサンプルを得た。得られたテストサンプルを121℃、2気圧及び相対湿度100%のオートクレーブ内に24時間放置した後、アルミニウム板からの硬化物の膨れ又は剥がれの発生の有無により、耐湿性を評価した。耐湿性を下記の基準で判定した。 (8) Moisture resistance The copper-clad laminate obtained by the evaluation of the above (6) peel strength A was cut into a size of 100 mm × 100 mm, and the copper foil was peeled off to obtain a test sample. The obtained test sample was left in an autoclave at 121 ° C., 2 atm and 100% relative humidity for 24 hours, and then the moisture resistance was evaluated by the presence or absence of occurrence of swelling or peeling of the cured product from the aluminum plate. The moisture resistance was determined according to the following criteria.
上記(6)引き剥がし強さAの評価で得られた銅張り積層板を100mm×100mmの大きさに切り出し、銅箔を剥がし、テストサンプルを得た。得られたテストサンプルを121℃、2気圧及び相対湿度100%のオートクレーブ内に24時間放置した後、アルミニウム板からの硬化物の膨れ又は剥がれの発生の有無により、耐湿性を評価した。耐湿性を下記の基準で判定した。 (8) Moisture resistance The copper-clad laminate obtained by the evaluation of the above (6) peel strength A was cut into a size of 100 mm × 100 mm, and the copper foil was peeled off to obtain a test sample. The obtained test sample was left in an autoclave at 121 ° C., 2 atm and 100% relative humidity for 24 hours, and then the moisture resistance was evaluated by the presence or absence of occurrence of swelling or peeling of the cured product from the aluminum plate. The moisture resistance was determined according to the following criteria.
[耐湿性の判定基準]
○:24時間後、変化なし
△:24時間後、1個の膨れあり
×:24時間後、2個以上の膨れ、もしくは剥離あり [Criteria for moisture resistance]
○: After 24 hours, no change Δ: After 24 hours, there is one bulge ×: After 24 hours, there are two or more bulges or peeling
○:24時間後、変化なし
△:24時間後、1個の膨れあり
×:24時間後、2個以上の膨れ、もしくは剥離あり [Criteria for moisture resistance]
○: After 24 hours, no change Δ: After 24 hours, there is one bulge ×: After 24 hours, there are two or more bulges or peeling
(9)絶縁破壊電圧(耐電圧性)
絶縁シートを100mm×100mmの大きさに切り出して、テストサンプルを得た。得られたテストサンプルを120℃のオーブン内で1時間、更に200℃のオーブン内で1時間硬化させ、絶縁シートの硬化物を得た。耐電圧試験器(MODEL7473、EXTECH Electronics社製)を用いて、絶縁シートの硬化物間に1kV/秒の速度で電圧が上昇するように、交流電圧を印加した。絶縁シートの硬化物が破壊した電圧を、絶縁破壊電圧とした。 (9) Dielectric breakdown voltage (withstand voltage)
The insulating sheet was cut into a size of 100 mm × 100 mm to obtain a test sample. The obtained test sample was cured in an oven at 120 ° C. for 1 hour and further in an oven at 200 ° C. for 1 hour to obtain a cured product of an insulating sheet. An AC voltage was applied using a withstand voltage tester (MODEL7473, manufactured by EXTECH Electronics) so that the voltage increased at a rate of 1 kV / second between the cured products of the insulating sheet. The voltage at which the cured product of the insulating sheet was broken was defined as the dielectric breakdown voltage.
絶縁シートを100mm×100mmの大きさに切り出して、テストサンプルを得た。得られたテストサンプルを120℃のオーブン内で1時間、更に200℃のオーブン内で1時間硬化させ、絶縁シートの硬化物を得た。耐電圧試験器(MODEL7473、EXTECH Electronics社製)を用いて、絶縁シートの硬化物間に1kV/秒の速度で電圧が上昇するように、交流電圧を印加した。絶縁シートの硬化物が破壊した電圧を、絶縁破壊電圧とした。 (9) Dielectric breakdown voltage (withstand voltage)
The insulating sheet was cut into a size of 100 mm × 100 mm to obtain a test sample. The obtained test sample was cured in an oven at 120 ° C. for 1 hour and further in an oven at 200 ° C. for 1 hour to obtain a cured product of an insulating sheet. An AC voltage was applied using a withstand voltage tester (MODEL7473, manufactured by EXTECH Electronics) so that the voltage increased at a rate of 1 kV / second between the cured products of the insulating sheet. The voltage at which the cured product of the insulating sheet was broken was defined as the dielectric breakdown voltage.
(10)加工性
上記(6)引き剥がし強さAの評価で得られた銅張り積層板を直径2.0mmのドリル(ユニオンツール社製、RA series)を用いて、回転数30000及びテーブル送り速度0.5m/分の条件でルーター加工した。ばりが発生するまでの加工距離を測定し、加工性を以下の基準で評価した。 (10) Workability (6) Using a drill with a diameter of 2.0 mm (RA series), a copper-clad laminate obtained by the evaluation of the peel strength A, the rotational speed of 30000 and table feed Router processing was performed at a speed of 0.5 m / min. The processing distance until the flash was generated was measured, and the workability was evaluated according to the following criteria.
上記(6)引き剥がし強さAの評価で得られた銅張り積層板を直径2.0mmのドリル(ユニオンツール社製、RA series)を用いて、回転数30000及びテーブル送り速度0.5m/分の条件でルーター加工した。ばりが発生するまでの加工距離を測定し、加工性を以下の基準で評価した。 (10) Workability (6) Using a drill with a diameter of 2.0 mm (RA series), a copper-clad laminate obtained by the evaluation of the peel strength A, the rotational speed of 30000 and table feed Router processing was performed at a speed of 0.5 m / min. The processing distance until the flash was generated was measured, and the workability was evaluated according to the following criteria.
[加工性の判定基準]
A:ばりが発生することなく20m以上加工可能
B:ばりが発生することなく10m以上、20m未満加工可能
C:ばりが発生することなく5m以上、10m未満加工可能
D:ばりが発生することなく1m以上、5m未満加工可能
E:1m未満の加工によりばりが発生 [Criteria for workability]
A: Processing is possible for 20 m or more without generating burr B: Processing is possible for 10 m or more and less than 20 m without generating burr C: Processing is possible for 5 m or more and less than 10 m without generating burr D: Without generating burr 1m or more and less than 5m can be processed. E: Burrs are generated by processing less than 1m.
A:ばりが発生することなく20m以上加工可能
B:ばりが発生することなく10m以上、20m未満加工可能
C:ばりが発生することなく5m以上、10m未満加工可能
D:ばりが発生することなく1m以上、5m未満加工可能
E:1m未満の加工によりばりが発生 [Criteria for workability]
A: Processing is possible for 20 m or more without generating burr B: Processing is possible for 10 m or more and less than 20 m without generating burr C: Processing is possible for 5 m or more and less than 10 m without generating burr D: Without generating burr 1m or more and less than 5m can be processed. E: Burrs are generated by processing less than 1m.
(11)冷熱サイクル試験
上記(6)引き剥がし強さAの評価で得られた銅張り積層板を100mm×100mmの大きさに切り出し銅箔を剥がしてテストサンプルを得た。
テストサンプルを用いて、1チャンバー式冷熱サイクル試験機(WINTECH NT510、ETACH社製)にて、-40℃、20分及び125℃20分を1サイクルとする冷熱サイクル試験を500サイクル又は1000サイクル行った。試験後の絶縁シートにより形成された絶縁層の表面のクラックの有無を、光学顕微鏡(TRANSFORMER-XN、Nikon社製)にて観察した。さらに、試験後の絶縁層の剥離の有無を、超音波探傷装置(mi-scope hyper、日立建機ファインテック社製)にて観察した。テストサンプル10検体中のクラック又は剥離が発生したテストサンプルの数を数え、下記の基準で判定した。 (11) Cooling cycle test The copper-clad laminate obtained by the evaluation of the above (6) peel strength A was cut into a size of 100 mm × 100 mm and the copper foil was peeled off to obtain a test sample.
Using the test sample, a 500-cycle or 1000-cycle thermal cycle test is performed using a one-chamber type thermal cycle tester (WINTECH NT510, manufactured by ETACH) at -40 ° C, 20 minutes, and 125 ° C for 20 minutes. It was. The presence or absence of cracks on the surface of the insulating layer formed by the insulating sheet after the test was observed with an optical microscope (TRANSFORMER-XN, manufactured by Nikon). Further, the presence or absence of peeling of the insulating layer after the test was observed with an ultrasonic flaw detector (mi-scope hyper, manufactured by Hitachi Construction Machinery Finetech). The number of test samples in which cracks or peeling occurred in 10 test samples was counted and judged according to the following criteria.
上記(6)引き剥がし強さAの評価で得られた銅張り積層板を100mm×100mmの大きさに切り出し銅箔を剥がしてテストサンプルを得た。
テストサンプルを用いて、1チャンバー式冷熱サイクル試験機(WINTECH NT510、ETACH社製)にて、-40℃、20分及び125℃20分を1サイクルとする冷熱サイクル試験を500サイクル又は1000サイクル行った。試験後の絶縁シートにより形成された絶縁層の表面のクラックの有無を、光学顕微鏡(TRANSFORMER-XN、Nikon社製)にて観察した。さらに、試験後の絶縁層の剥離の有無を、超音波探傷装置(mi-scope hyper、日立建機ファインテック社製)にて観察した。テストサンプル10検体中のクラック又は剥離が発生したテストサンプルの数を数え、下記の基準で判定した。 (11) Cooling cycle test The copper-clad laminate obtained by the evaluation of the above (6) peel strength A was cut into a size of 100 mm × 100 mm and the copper foil was peeled off to obtain a test sample.
Using the test sample, a 500-cycle or 1000-cycle thermal cycle test is performed using a one-chamber type thermal cycle tester (WINTECH NT510, manufactured by ETACH) at -40 ° C, 20 minutes, and 125 ° C for 20 minutes. It was. The presence or absence of cracks on the surface of the insulating layer formed by the insulating sheet after the test was observed with an optical microscope (TRANSFORMER-XN, manufactured by Nikon). Further, the presence or absence of peeling of the insulating layer after the test was observed with an ultrasonic flaw detector (mi-scope hyper, manufactured by Hitachi Construction Machinery Finetech). The number of test samples in which cracks or peeling occurred in 10 test samples was counted and judged according to the following criteria.
[冷熱サイクル試験後のクラック又は剥離の有無の評価基準]
○○:クラック又は剥離の発生したテストサンプルが10検体中、0検体
〇:クラック又は剥離の発生したテストサンプルが10検体中、1~2検体
△:クラック又は剥離が発生したテストサンプルが10検体中、3~4検体
×:クラック又は剥離が発生したテストサンプルが10検体中、5検体以上 [Evaluation criteria for presence or absence of cracks or peeling after cooling cycle test]
○○: Test specimens with cracks or peeling out of 10 specimens, 0 specimens ○: Test specimens with cracking or peeling out of 10 specimens, 1 to 2 specimens Δ: Test specimens with cracks or peeling off in 10 specimens Medium, 3 to 4 specimens ×: 5 or more specimens out of 10 specimens where cracks or peeling occurred
○○:クラック又は剥離の発生したテストサンプルが10検体中、0検体
〇:クラック又は剥離の発生したテストサンプルが10検体中、1~2検体
△:クラック又は剥離が発生したテストサンプルが10検体中、3~4検体
×:クラック又は剥離が発生したテストサンプルが10検体中、5検体以上 [Evaluation criteria for presence or absence of cracks or peeling after cooling cycle test]
○○: Test specimens with cracks or peeling out of 10 specimens, 0 specimens ○: Test specimens with cracking or peeling out of 10 specimens, 1 to 2 specimens Δ: Test specimens with cracks or peeling off in 10 specimens Medium, 3 to 4 specimens ×: 5 or more specimens out of 10 specimens where cracks or peeling occurred
絶縁シートを形成するための絶縁材料の組成及び評価結果を、下記の表1~2に示す。*1は、全樹脂成分Xの合計100重量%中の含有量(重量%)を示す。*2は、絶縁シート100重量%中、絶縁シート中の無機フィラーを除く成分に含まれている窒素原子の含有量(重量%)を示す。「-」は評価していないことを示す。
Tables 1 and 2 below show the composition and evaluation results of the insulating material for forming the insulating sheet. * 1 indicates the content (% by weight) of the total resin component X in a total of 100% by weight. * 2 indicates the content (% by weight) of nitrogen atoms contained in the component excluding the inorganic filler in the insulating sheet in 100% by weight of the insulating sheet. “-” Indicates that evaluation is not performed.
実施例1,11,12で得られた絶縁シートについて、下記の引き剥がし強さB(接着性)も評価した。なお、上記引き剥がし強さAと比較して、下記の引き剥がし強さBの評価では、微細な配線パターンが形成されているため、接着性が発現しにくい。
For the insulating sheets obtained in Examples 1, 11, and 12, the following peel strength B (adhesiveness) was also evaluated. In addition, as compared with the above-described peeling strength A, in the evaluation of the following peeling strength B, since a fine wiring pattern is formed, the adhesiveness is hardly exhibited.
(6-2)引き剥がし強さB(接着性)
厚み1mmのアルミニウム板と厚み18μmのロープロファイル電解銅箔との間に絶縁シートを挟み、真空プレス機で4MPaの圧力を保持しながら120℃で1時間、更に200℃で1時間、絶縁シートをプレス硬化し、銅張り積層板を形成した。得られた銅張り積層板の銅箔をエッチングして、幅10mmの銅箔の帯を形成した。銅箔を基板に対して90℃の角度で50mm/分の引っ張り速度で剥離して、引き剥がし強さBを測定した。
結果を下記の表3に示す。 (6-2) Peel strength B (adhesiveness)
An insulating sheet is sandwiched between an aluminum plate having a thickness of 1 mm and a low profile electrolytic copper foil having a thickness of 18 μm, and the insulating sheet is held at 120 ° C. for 1 hour and further at 200 ° C. for 1 hour while maintaining a pressure of 4 MPa with a vacuum press. Press-cured to form a copper-clad laminate. The copper foil of the obtained copper-clad laminate was etched to form a copper foil strip having a width of 10 mm. The copper foil was peeled from the substrate at an angle of 90 ° C. at a pulling rate of 50 mm / min, and the peel strength B was measured.
The results are shown in Table 3 below.
厚み1mmのアルミニウム板と厚み18μmのロープロファイル電解銅箔との間に絶縁シートを挟み、真空プレス機で4MPaの圧力を保持しながら120℃で1時間、更に200℃で1時間、絶縁シートをプレス硬化し、銅張り積層板を形成した。得られた銅張り積層板の銅箔をエッチングして、幅10mmの銅箔の帯を形成した。銅箔を基板に対して90℃の角度で50mm/分の引っ張り速度で剥離して、引き剥がし強さBを測定した。
結果を下記の表3に示す。 (6-2) Peel strength B (adhesiveness)
An insulating sheet is sandwiched between an aluminum plate having a thickness of 1 mm and a low profile electrolytic copper foil having a thickness of 18 μm, and the insulating sheet is held at 120 ° C. for 1 hour and further at 200 ° C. for 1 hour while maintaining a pressure of 4 MPa with a vacuum press. Press-cured to form a copper-clad laminate. The copper foil of the obtained copper-clad laminate was etched to form a copper foil strip having a width of 10 mm. The copper foil was peeled from the substrate at an angle of 90 ° C. at a pulling rate of 50 mm / min, and the peel strength B was measured.
The results are shown in Table 3 below.
表3に示す結果から、球状アルミナを用いた場合に、破砕アルミナを用いた場合と比べて、微細な配線パターンが設けられた接着対象部材に対する硬化物の接着性が高くなることがわかる。
From the results shown in Table 3, it can be seen that when spherical alumina is used, the adhesion of the cured product to the bonding target member provided with a fine wiring pattern is higher than when crushed alumina is used.
1…積層構造体
2…熱伝導体
2a…第1の表面
2b…第2の表面
3…絶縁層
4…導電層 DESCRIPTION OF SYMBOLS 1 ...Laminated structure 2 ... Thermal conductor 2a ... 1st surface 2b ... 2nd surface 3 ... Insulating layer 4 ... Conductive layer
2…熱伝導体
2a…第1の表面
2b…第2の表面
3…絶縁層
4…導電層 DESCRIPTION OF SYMBOLS 1 ...
Claims (18)
- 熱伝導率が10W/m・K以上である熱伝導体を導電層に接着するために用いられる絶縁シートであって、
重量平均分子量が10000以上であるポリマーと、
分子量が1200以下であり、かつエポキシ基又はオキセタニル基を有する硬化性化合物と、
硬化剤と、
無機フィラーとを含み、
絶縁シート100重量%中、前記無機フィラーの含有量が60重量%以上、95重量%以下であり、
絶縁シート100重量%中、絶縁シート中の前記無機フィラーを除く成分に含まれている窒素原子の含有量が0.3重量%以上、3.0重量%未満である、絶縁シート。 An insulating sheet used for bonding a thermal conductor having a thermal conductivity of 10 W / m · K or more to a conductive layer,
A polymer having a weight average molecular weight of 10,000 or more;
A curable compound having a molecular weight of 1200 or less and having an epoxy group or an oxetanyl group;
A curing agent;
An inorganic filler,
In 100% by weight of the insulating sheet, the content of the inorganic filler is 60% by weight or more and 95% by weight or less,
The insulating sheet whose content of the nitrogen atom contained in the component except the said inorganic filler in an insulating sheet is 0.3 weight% or more and less than 3.0 weight% in 100 weight% of insulating sheets. - 前記ポリマー、前記硬化性化合物及び前記硬化剤の内の少なくとも1種が、窒素原子を含む、請求項1に記載の絶縁シート。 The insulating sheet according to claim 1, wherein at least one of the polymer, the curable compound, and the curing agent contains a nitrogen atom.
- 前記硬化剤が窒素原子を含む、請求項1に記載の絶縁シート。 The insulating sheet according to claim 1, wherein the curing agent contains a nitrogen atom.
- 前記ポリマーが芳香族骨格を有する、請求項1~3のいずれか1項に記載の絶縁シート。 The insulating sheet according to any one of claims 1 to 3, wherein the polymer has an aromatic skeleton.
- 前記硬化性化合物が芳香族骨格を有する、請求項1~4のいずれか1項に記載の絶縁シート。 The insulating sheet according to any one of claims 1 to 4, wherein the curable compound has an aromatic skeleton.
- 前記ポリマーが、フェノキシ樹脂又はエポキシ樹脂である、請求項1~5のいずれか1項に記載の絶縁シート。 The insulating sheet according to any one of claims 1 to 5, wherein the polymer is a phenoxy resin or an epoxy resin.
- 前記硬化性化合物の水酸基当量が6000以上である、請求項1~6のいずれか1項に記載の絶縁シート。 The insulating sheet according to any one of claims 1 to 6, wherein the curable compound has a hydroxyl group equivalent of 6000 or more.
- 前記無機フィラーが、アルミナ、合成マグネサイト、結晶性シリカ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛、炭酸マグネシウム及び酸化マグネシウムからなる群から選択された少なくとも1種である、請求項1~7のいずれか1項に記載の絶縁シート。 The inorganic filler is at least one selected from the group consisting of alumina, synthetic magnesite, crystalline silica, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide, magnesium carbonate, and magnesium oxide. The insulating sheet according to any one of 1 to 7.
- 前記無機フィラーが球状アルミナを含む、請求項1~8のいずれか1項に記載の絶縁シート。 The insulating sheet according to any one of claims 1 to 8, wherein the inorganic filler contains spherical alumina.
- 前記無機フィラーが、蛍光X線分析による純度が90.0%以上、99.0%以下であるアルミナを含む、請求項1~9のいずれか1項に記載の絶縁シート。 The insulating sheet according to any one of claims 1 to 9, wherein the inorganic filler contains alumina having a purity by fluorescent X-ray analysis of 90.0% or more and 99.0% or less.
- 前記無機フィラーが球状アルミナ、又は蛍光X線分析による純度が90.0%以上、99.0%以下である破砕アルミナを含む、請求項1~10のいずれか1項に記載の絶縁シート。 The insulating sheet according to any one of claims 1 to 10, wherein the inorganic filler includes spherical alumina or crushed alumina having a purity by fluorescent X-ray analysis of 90.0% or more and 99.0% or less.
- ポリ(メタ)アクリル酸エステルであるエラストマーをさらに含む、請求項1~11のいずれか1項に記載の絶縁シート。 The insulating sheet according to any one of claims 1 to 11, further comprising an elastomer which is a poly (meth) acrylic ester.
- 前記エラストマーがブチル(メタ)クリレートを用いた重合体である、請求項12に記載の絶縁シート。 The insulating sheet according to claim 12, wherein the elastomer is a polymer using butyl (meth) acrylate.
- 前記硬化剤が、ジシアンジアミド及びイミダゾール化合物の内の少なくとも1種を含む、請求項1~13のいずれか1項に記載の絶縁シート。 The insulating sheet according to any one of claims 1 to 13, wherein the curing agent contains at least one of dicyandiamide and an imidazole compound.
- 前記硬化剤がジシアンジアミンドを含む、請求項1~14のいずれか1項に記載の絶縁シート。 The insulating sheet according to any one of claims 1 to 14, wherein the curing agent contains dicyandiamine.
- 前記硬化剤がイミダゾール化合物を含む、請求項1~15のいずれか1項に記載の絶縁シート。 The insulating sheet according to any one of claims 1 to 15, wherein the curing agent contains an imidazole compound.
- 熱伝導率が10W/m・K以上である熱伝導体と、
前記熱伝導体の少なくとも一方の表面に積層された絶縁層と、
前記絶縁層の前記熱伝導体が積層された表面とは反対側の表面に積層された導電層とを備え、
前記絶縁層が、請求項1~16のいずれか1項に記載の絶縁シートを硬化させることにより形成されている、積層構造体。 A thermal conductor having a thermal conductivity of 10 W / m · K or more;
An insulating layer laminated on at least one surface of the thermal conductor;
A conductive layer laminated on a surface opposite to the surface on which the thermal conductor of the insulating layer is laminated,
A laminated structure in which the insulating layer is formed by curing the insulating sheet according to any one of claims 1 to 16. - 前記熱伝導体が金属である、請求項17に記載の積層構造体。 The laminated structure according to claim 17, wherein the heat conductor is a metal.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/071540 WO2012073360A1 (en) | 2010-12-02 | 2010-12-02 | Insulating sheet and laminated structure |
JP2010547778A JPWO2012073360A1 (en) | 2010-12-02 | 2010-12-02 | Insulating sheet and laminated structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/071540 WO2012073360A1 (en) | 2010-12-02 | 2010-12-02 | Insulating sheet and laminated structure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012073360A1 true WO2012073360A1 (en) | 2012-06-07 |
Family
ID=46171345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/071540 WO2012073360A1 (en) | 2010-12-02 | 2010-12-02 | Insulating sheet and laminated structure |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2012073360A1 (en) |
WO (1) | WO2012073360A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014156531A (en) * | 2013-02-15 | 2014-08-28 | Hitachi Chemical Co Ltd | Epoxy resin composition, adhesive sheet and semiconductor element |
JP2014232854A (en) * | 2013-05-30 | 2014-12-11 | 住友ベークライト株式会社 | Semiconductor device |
EP3069868A1 (en) * | 2015-03-17 | 2016-09-21 | ABB Technology Ltd | Inorganic electrical insulation material |
WO2017038619A1 (en) * | 2015-08-31 | 2017-03-09 | 日本ゼオン株式会社 | Resin composition |
JP2019116625A (en) * | 2014-03-31 | 2019-07-18 | ナミックス株式会社 | Resin composition, adhesive film and semiconductor device |
JP2019199588A (en) * | 2018-05-16 | 2019-11-21 | 山栄化学株式会社 | Soluble and insoluble particle-containing curable resin composition |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016102200A (en) * | 2014-11-17 | 2016-06-02 | ナガセケムテックス株式会社 | (meth)acrylic acid ester copolymer, resin composition and cured article |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010070653A (en) * | 2008-09-18 | 2010-04-02 | Sekisui Chem Co Ltd | Insulating sheet and laminated structure |
JP4469416B2 (en) * | 2008-08-07 | 2010-05-26 | 積水化学工業株式会社 | Insulating sheet and laminated structure |
JP2010212209A (en) * | 2009-03-12 | 2010-09-24 | Sekisui Chem Co Ltd | Insulating sheet, laminated plate, and multilayer laminated plate |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06150755A (en) * | 1992-09-17 | 1994-05-31 | Shinko Kagaku Kogyo Kk | Insulating tape for electric apparatus |
JP2002100238A (en) * | 2000-09-26 | 2002-04-05 | Asahi Glass Co Ltd | Sheet-like molding and laminate |
JP2002212337A (en) * | 2001-01-17 | 2002-07-31 | Matsushita Electric Works Ltd | Reinforcing fiber substrate, composite dielectric substance and method for producing the same |
JP2009144072A (en) * | 2007-12-14 | 2009-07-02 | Sekisui Chem Co Ltd | Insulation sheet and laminated structure |
-
2010
- 2010-12-02 JP JP2010547778A patent/JPWO2012073360A1/en active Pending
- 2010-12-02 WO PCT/JP2010/071540 patent/WO2012073360A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4469416B2 (en) * | 2008-08-07 | 2010-05-26 | 積水化学工業株式会社 | Insulating sheet and laminated structure |
JP2010070653A (en) * | 2008-09-18 | 2010-04-02 | Sekisui Chem Co Ltd | Insulating sheet and laminated structure |
JP2010212209A (en) * | 2009-03-12 | 2010-09-24 | Sekisui Chem Co Ltd | Insulating sheet, laminated plate, and multilayer laminated plate |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014156531A (en) * | 2013-02-15 | 2014-08-28 | Hitachi Chemical Co Ltd | Epoxy resin composition, adhesive sheet and semiconductor element |
JP2014232854A (en) * | 2013-05-30 | 2014-12-11 | 住友ベークライト株式会社 | Semiconductor device |
JP2019116625A (en) * | 2014-03-31 | 2019-07-18 | ナミックス株式会社 | Resin composition, adhesive film and semiconductor device |
EP3069868A1 (en) * | 2015-03-17 | 2016-09-21 | ABB Technology Ltd | Inorganic electrical insulation material |
WO2016146796A1 (en) * | 2015-03-17 | 2016-09-22 | Abb Technology Ltd | Inorganic electrical insulation material |
CN107466269A (en) * | 2015-03-17 | 2017-12-12 | Abb瑞士股份有限公司 | inorganic electrically insulating material |
WO2017038619A1 (en) * | 2015-08-31 | 2017-03-09 | 日本ゼオン株式会社 | Resin composition |
CN107922742A (en) * | 2015-08-31 | 2018-04-17 | 日本瑞翁株式会社 | Resin combination |
US10233325B2 (en) | 2015-08-31 | 2019-03-19 | Zeon Corporation | Resin composition |
JP2019199588A (en) * | 2018-05-16 | 2019-11-21 | 山栄化学株式会社 | Soluble and insoluble particle-containing curable resin composition |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012073360A1 (en) | 2014-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4495768B2 (en) | Insulating sheet and laminated structure | |
JP4922220B2 (en) | Insulating sheet and laminated structure | |
JP4495772B1 (en) | Insulating sheet and laminated structure | |
JP2009144072A (en) | Insulation sheet and laminated structure | |
JP6134089B2 (en) | Insulating material and laminated structure | |
WO2012073360A1 (en) | Insulating sheet and laminated structure | |
JP2011168672A (en) | Insulation sheet | |
WO2013061981A1 (en) | Laminate and method for producing component for power semiconductor modules | |
JP2012067220A (en) | Insulating sheet and laminated structure | |
JP2013143440A (en) | Metal base substrate | |
JP2013098217A (en) | Method for manufacturing component for power semiconductor module | |
JP4987161B1 (en) | Insulation material | |
JP2011124075A (en) | Insulating sheet, laminated structure, and manufacturing method of laminated structure | |
JP5520183B2 (en) | Resin composition, resin sheet and laminated structure | |
JP2012116146A (en) | Insulating sheet and multilayer structure | |
JP5670136B2 (en) | Insulating sheet and laminated structure | |
JP5346363B2 (en) | Laminated body | |
JP5092050B1 (en) | Laminated body | |
JP6235733B2 (en) | Laminate | |
JP2012229319A (en) | Insulating material and laminated structure body | |
JP4495771B1 (en) | Insulating sheet and laminated structure | |
JP2012188632A (en) | Insulating material, and layered structure | |
JP2013107353A (en) | Laminated structure | |
JP5837839B2 (en) | Laminated structure | |
JP5787562B2 (en) | Insulating material and laminated structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2010547778 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10860156 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10860156 Country of ref document: EP Kind code of ref document: A1 |