JPS5946310B2 - Method for preventing oxidation of heat-treated copper coatings - Google Patents

Method for preventing oxidation of heat-treated copper coatings

Info

Publication number
JPS5946310B2
JPS5946310B2 JP54110780A JP11078079A JPS5946310B2 JP S5946310 B2 JPS5946310 B2 JP S5946310B2 JP 54110780 A JP54110780 A JP 54110780A JP 11078079 A JP11078079 A JP 11078079A JP S5946310 B2 JPS5946310 B2 JP S5946310B2
Authority
JP
Japan
Prior art keywords
heat
copper coating
copper
ceramic body
treated copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54110780A
Other languages
Japanese (ja)
Other versions
JPS5635780A (en
Inventor
厚生 千田
徹 笠次
卓二 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP54110780A priority Critical patent/JPS5946310B2/en
Publication of JPS5635780A publication Critical patent/JPS5635780A/en
Publication of JPS5946310B2 publication Critical patent/JPS5946310B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Ceramic Capacitors (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】 この発明は誘電体、絶縁体、抵抗体、半導体などのセラ
ミック素体に無電解メッキ法、真空蒸着法、スパッタリ
ング法、イオンブレーティング法などにより形成され、
その後熱処理された銅被膜の酸化防止法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION This invention provides a method for forming ceramic bodies such as dielectrics, insulators, resistors, and semiconductors by electroless plating, vacuum evaporation, sputtering, ion blating, etc.
The present invention relates to a method for preventing oxidation of a copper coating that has been subsequently heat-treated.

一般に、セラミック素体などの非導電体の表面に銅被膜
を形成する方法としては、無電解メッキ法、真空蒸着法
、スパッタリング法、イオンブレーティング法などがあ
り、回路基板上の導電部、あるいはセラミックコンデン
サの電極部分を構成する場合などに用途があることは知
られている。
In general, methods for forming a copper film on the surface of a non-conductive material such as a ceramic body include electroless plating, vacuum evaporation, sputtering, and ion blating. It is known that it has uses such as when forming the electrode part of a ceramic capacitor.

そして上記した方法により形成された銅被膜は、緻密化
、金属化、密着性向上および安定化を図るため、膜を形
成した後熱処理に付されるのが通常である。この熱処理
は一般に銅被膜が酸素と反応しないように不活性雰囲気
中で行われている。このように熱処理の工程に付するこ
とによつてはじめて無電解メッキ法、真空蒸着法、スパ
ッタリング法、イオンブレーティング法などによつて形
成した銅被膜は純銅に近い電気特性を有する銅被膜とな
り、高信頼性の電子部品を構成することになる。しかし
ながら、無電解メッキ法、真空蒸着法、スパッタリング
法などにより形成された銅被膜は熱処理工程に付すと、
熱処理を行わない銅被膜にくらべて酸化されやすく、経
時変化も受けやすくなる。
The copper film formed by the above-described method is usually subjected to heat treatment after the film is formed in order to achieve densification, metallization, improvement of adhesion, and stabilization. This heat treatment is generally performed in an inert atmosphere to prevent the copper coating from reacting with oxygen. Only by subjecting it to this heat treatment process will the copper coating formed by electroless plating, vacuum evaporation, sputtering, ion blating, etc. become a copper coating with electrical properties close to those of pure copper. This constitutes a highly reliable electronic component. However, when copper coatings formed by electroless plating, vacuum evaporation, sputtering, etc. are subjected to a heat treatment process,
Compared to a copper coating that is not heat-treated, it is more easily oxidized and more susceptible to changes over time.

これは銅被膜そのものがもともと酸化されやすい金属で
ある上に、高温の熱処理を履歴することによつて、銅被
膜表面に触媒活性が付与され、一層、酸化されやすい状
況が形成されることによる。
This is because the copper coating itself is a metal that is inherently susceptible to oxidation, and the high temperature heat treatment imparts catalytic activity to the surface of the copper coating, creating conditions that make it even more susceptible to oxidation.

このため、熱処理を行つた銅被膜を、たとえばコンデン
サの電極としてそのまま用いると、酸化膜の形成により
導電率の低下を来たし、また熱処理後しばらく放置する
だけで、半田付け性も低下するという好ましくない現象
がみられる。したがつて、この発明の主たる目的は、熱
処理を行つた銅被膜表面の酸化を防止し、安定化させる
ことにより、銅被膜の長期保存、ひいては銅被膜を形成
したセラミツク素体よりなる電子部品の高信頼化を可能
にすることにある。
For this reason, if a heat-treated copper film is used as it is, for example, as an electrode for a capacitor, the conductivity will decrease due to the formation of an oxide film, and if it is left for a while after heat treatment, the solderability will also deteriorate, which is undesirable. A phenomenon is observed. Therefore, the main purpose of the present invention is to prevent oxidation and stabilize the surface of a heat-treated copper film, thereby improving the long-term preservation of the copper film and, ultimately, the preservation of electronic components made of ceramic bodies on which the copper film is formed. The purpose is to enable high reliability.

すなわち、この発明の要旨とするところは、表面に銅被
膜を形成したセラミック素体を熱処理後、セラミック素
体の表面を揮発性一叩ゲン化炭化水素化合物に接触させ
ることを特徴とするものである。
That is, the gist of the present invention is characterized in that after heat-treating a ceramic body having a copper coating formed on its surface, the surface of the ceramic body is brought into contact with a volatile single-strike hydrogenated hydrocarbon compound. be.

ここで、揮発性・・ロゲン化炭化水素化合物としては、
たとえばトリクレン、パークレン、フレオン、クロルベ
ンゼンなどがあり、これらはいずれも沸点が−29.8
℃〜132℃の低沸点の既存物質である。
Here, the volatile logenated hydrocarbon compounds are:
Examples include trichrene, perchrene, freon, and chlorobenzene, all of which have a boiling point of -29.8.
It is an existing substance with a low boiling point of ℃~132℃.

この発明方法の実施概要を説明すると、まず誘電体、絶
縁体、抵抗体、半導体などのセラミック素体表面に、無
電解メッキ法、真空蒸着法、スパツタリング法、イオン
プレーテイング法などの薄膜形成技術により銅被膜を形
成する。
To explain the implementation outline of the method of this invention, first, thin film formation techniques such as electroless plating, vacuum evaporation, sputtering, and ion plating are applied to the surfaces of ceramic bodies such as dielectrics, insulators, resistors, and semiconductors. to form a copper coating.

たとえば、セラミック素体として誘電体セラミックを用
い、表面に銅被膜を形成することによりコンデンサが構
成でき、またセラミツク素体としてアルミナ、ジルコニ
ア、ホルステライトなどのセラミツク基板を用い、表面
に銅被膜の回路パターンを形成すれば、回路用基板を構
成することができる。
For example, a capacitor can be constructed by using dielectric ceramic as the ceramic body and forming a copper coating on the surface, and a circuit can be constructed by using a ceramic substrate made of alumina, zirconia, holsterite, etc. as the ceramic body and having a copper coating on the surface. By forming a pattern, a circuit board can be constructed.

そのほか、抵抗体、半導体などのセラミック素体表面に
銅被膜を形成することにより種々の電子部品が構成でき
る。このようにセラミツク素体表面に各種方法により銅
被膜が形成された種々の電子部品は、その後窒素などの
不活性雰囲気中、たとえば約700℃の温度で熱処理が
行われる。
In addition, various electronic components can be constructed by forming a copper coating on the surface of a ceramic element such as a resistor or a semiconductor. Various electronic components having copper coatings formed on the surfaces of ceramic bodies by various methods are then heat-treated at a temperature of, for example, about 700° C. in an inert atmosphere such as nitrogen.

熱処理された銅被膜はこのとき金属化され、密着性も強
固になり、さらに電気特性なども向上して非常に好まし
い特性が付与される。
The heat-treated copper film is metallized at this time, and its adhesion becomes strong, and its electrical properties are also improved, giving it very favorable properties.

しかし、熱処理により高温度の熱履歴を経るため、銅被
膜は触媒活性も付与され、ラネ一銅と同様の触媒能を有
した非常に活性な銅被膜となる。このような触媒活性は
熱処理後、できるだけ早く、トリクレン、パークレン、
フレオン、クロルベンゼンなどの揮発性・・ロゲン化炭
化水素化合物と接触させれば、これらの揮発性一・ロゲ
ン化炭化水素化合物の被毒作用によつて、銅被膜の活性
点が消滅して触媒活性はなくなり、銅被膜は安定になり
、酸化されにくくなる。
However, because the copper coating undergoes a high-temperature thermal history through heat treatment, it is also given catalytic activity, resulting in a very active copper coating that has the same catalytic ability as Raney copper. Such catalytic activity increases as soon as possible after heat treatment, such as trichlene, perchrene,
If it comes into contact with volatile halogenated hydrocarbon compounds such as freon and chlorobenzene, the active sites in the copper coating will disappear due to the poisoning effect of these volatile halogenated hydrocarbon compounds, and the catalyst will be destroyed. The activity disappears, and the copper coating becomes stable and less susceptible to oxidation.

熱処理後揮発性・・口ゲン化炭化水素化合物と接触させ
るまでの時間は短いほど好ましい、できれば熱処理後3
0分以内に接触させることが好ましい。熱処理された銅
被膜と揮発性一・ロゲン化炭化水素化合物との接触方法
としては、この・・ロゲン化炭化水素化合物を塗布、吹
き付け、浸漬するか、あるいは・・ロゲン化炭化水素化
合物の蒸気に曝す方法などがあるが、いずれの方法を用
いてもよい。
Volatile after heat treatment...The shorter the time until contact with the stogenated hydrocarbon compound, the better, preferably after heat treatment 3
It is preferable to contact within 0 minutes. The method of contacting the heat-treated copper coating with the volatile halogenated hydrocarbon compound is to apply, spray, or immerse the halogenated hydrocarbon compound, or to immerse it in the vapor of the halogenated hydrocarbon compound. There are several methods of exposing the skin, and any method may be used.

以下にこの発明を無電解銅メツキ析出被膜からなる実施
例について説明する。実施例 1 直径6.5mm、厚み0.5mmの酸化チタン系誘電体
セラミツク素体を無電解銅メツキ液に浸漬し、このセラ
ミック素体の全面に銅メツキ被膜を形成した。
The present invention will be described below with reference to embodiments comprising electroless copper plating deposited coatings. Example 1 A titanium oxide dielectric ceramic body having a diameter of 6.5 mm and a thickness of 0.5 mm was immersed in an electroless copper plating solution to form a copper plating film on the entire surface of the ceramic body.

次いで、このセラミック素体を窒素雰囲気中、700℃
の温度の熱処理に付し、冷却後、ステンレス製網かごの
容器に入れて、トリクレンの蒸気に1分間曝した。この
あと銅被膜表面を自然乾燥させた。このようにして得ら
れたセラミック誘電体について、トリクレン蒸気に曝し
たセラミック誘電体とトリクレン蒸気に曝していないセ
ラミツク誘電体について、それぞれ24時間自然雰囲気
中に放置し、銅被膜表面を観察したところ、この発明方
法による処理を行つていないものについては、褐色を呈
しはじめ半田付け性も低下した。
Next, this ceramic body was heated at 700°C in a nitrogen atmosphere.
After cooling, the sample was placed in a stainless steel mesh basket container and exposed to trichlene vapor for 1 minute. After that, the surface of the copper coating was naturally dried. Regarding the ceramic dielectrics obtained in this way, the ceramic dielectrics exposed to trichlene vapor and the ceramic dielectrics not exposed to trichlene vapor were each left in a natural atmosphere for 24 hours, and the surface of the copper coating was observed. Those that were not treated according to the method of this invention began to take on a brown color and their solderability decreased.

しかしながらこの発明方法によるものは一カ月後放置し
たものについても、何らの変化も見られず、半田付け性
も良好であつた。実施例 2 チタン酸ストロンチウム系の粒界絶縁型半導体磁器とし
て、直径10.0mTn、厚み0.3m11nのものを
用意し、無電解銅メッキ液に浸漬し、半導体磁器の全面
に銅メッキ被膜を形成した。
However, in the case of the method according to the present invention, no change was observed even when left for one month, and the solderability was also good. Example 2 Strontium titanate-based grain boundary insulated semiconductor porcelain with a diameter of 10.0mTn and a thickness of 0.3m11n was prepared and immersed in an electroless copper plating solution to form a copper plating film on the entire surface of the semiconductor porcelain. did.

次いでこの半導体磁器を窒素よりなる不活性雰囲気中、
700℃で熱処理した。
Next, this semiconductor porcelain was placed in an inert atmosphere consisting of nitrogen.
Heat treatment was performed at 700°C.

引き続き、フレオン溶液中に銅メッキ被膜を形成した半
導体磁器を約1分間浸漬した。この溶液から半導体磁器
を引き上げ、自然乾燥させて銅メツキ被膜を安定化させ
た。
Subsequently, the semiconductor porcelain on which the copper plating film was formed was immersed in the Freon solution for about 1 minute. The semiconductor porcelain was pulled out of this solution and air-dried to stabilize the copper plating film.

さらにこの半導体磁気を湿度95%、温度40℃の条件
下で強制的に酸化したところ、5000hr後において
も銅被膜表面の色調変化は全くなく、また半田付け性も
良好であつた。
Furthermore, when this semiconductor magnetic material was forcibly oxidized under conditions of humidity of 95% and temperature of 40° C., there was no change in color tone of the surface of the copper coating even after 5000 hours, and the solderability was also good.

以上の各実施例から明らかなようにこの発明によれば、
無電解メツキ法により表面に銅被膜を形成したセラミッ
ク素体の該銅被膜表面を熱処理後、トリクレンやフレオ
ン等の揮発性ハロゲン化炭化水素化合物に接触させると
、銅被膜表面の酸化現象は見られず、半田付け性も良好
であるなど、熱処理後の銅被膜の酸化防止法としてきわ
めて有用なものである。
As is clear from the above embodiments, according to the present invention,
When the surface of a ceramic body with a copper coating formed on its surface by electroless plating is heat-treated and then brought into contact with a volatile halogenated hydrocarbon compound such as trichlene or freon, no oxidation phenomenon is observed on the surface of the copper coating. First, it has good solderability, making it extremely useful as a method for preventing oxidation of copper coatings after heat treatment.

なめ、上記した実施例では無電解メツキ法により形成し
た銅被膜の例について説明したが、そのほか真空蒸着法
、スパッタリング法、イオンプレーテイング法による銅
被膜についてこの発明を適用しても同様な効果が得られ
ることはもちろんである。
Namely, in the above-mentioned embodiment, an example of a copper coating formed by an electroless plating method was explained, but the same effect can be obtained even if the present invention is applied to a copper coating formed by a vacuum evaporation method, a sputtering method, or an ion plating method. Of course you can get it.

また、セラミツク素体については誘電体セラミック素体
、粒界絶縁型半導体磁器について説明したが、そのほか
誘電体、絶縁体、半導体、抵抗体よりなるものに銅被膜
を形成したものにこの発明を適用しても同様な効果が得
られる。
Regarding ceramic bodies, we have described dielectric ceramic bodies and grain-boundary insulated semiconductor porcelain, but this invention can also be applied to other materials made of dielectrics, insulators, semiconductors, and resistors on which copper coatings are formed. A similar effect can be obtained.

Claims (1)

【特許請求の範囲】 1 表面に銅被膜を形成したセラミック素体を熱処理後
、セラミック素体の表面を揮発性ハロゲン化炭化水素化
合物に接触させることを特徴とする熱処理された銅被膜
の酸化防止法。 2 銅被膜は、無電解メッキ法、真空蒸着法、スパッタ
リング法、イオンプレーティング法のいずれか1種によ
り形成されたものであることを特徴とする特許請求の範
囲第1項記載の熱処理された銅被膜の酸化防止法。 3 セラミック素体は、誘電体、絶縁体、抵抗体、半導
体のうちいずれか1種であることを特徴とする特許請求
の範囲第1項記載の熱処理された銅被膜の酸化防止法。 4 セラミック素体は誘電体であり、銅被膜は容量取り
出し用の電極であることを特徴とする特許請求の範囲第
1項記載の熱処理された銅被膜の酸化防止法。 5 セラミック素体の熱処理は不活性雰囲気中で行われ
ることを特徴とする特許請求の範囲第1項記載の熱処理
された銅被膜の酸化防止法。
[Scope of Claims] 1. Oxidation prevention of a heat-treated copper coating, which is characterized by bringing the surface of the ceramic body into contact with a volatile halogenated hydrocarbon compound after heat-treating the ceramic body with a copper coating formed on its surface. Law. 2. The heat-treated copper film according to claim 1, wherein the copper coating is formed by any one of electroless plating, vacuum evaporation, sputtering, and ion plating. Method for preventing oxidation of copper coatings. 3. The method for preventing oxidation of a heat-treated copper coating according to claim 1, wherein the ceramic body is any one of a dielectric, an insulator, a resistor, and a semiconductor. 4. The method for preventing oxidation of a heat-treated copper coating according to claim 1, wherein the ceramic body is a dielectric and the copper coating is an electrode for taking out a capacitance. 5. The method for preventing oxidation of a heat-treated copper coating according to claim 1, wherein the heat treatment of the ceramic body is performed in an inert atmosphere.
JP54110780A 1979-08-29 1979-08-29 Method for preventing oxidation of heat-treated copper coatings Expired JPS5946310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54110780A JPS5946310B2 (en) 1979-08-29 1979-08-29 Method for preventing oxidation of heat-treated copper coatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54110780A JPS5946310B2 (en) 1979-08-29 1979-08-29 Method for preventing oxidation of heat-treated copper coatings

Publications (2)

Publication Number Publication Date
JPS5635780A JPS5635780A (en) 1981-04-08
JPS5946310B2 true JPS5946310B2 (en) 1984-11-12

Family

ID=14544415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54110780A Expired JPS5946310B2 (en) 1979-08-29 1979-08-29 Method for preventing oxidation of heat-treated copper coatings

Country Status (1)

Country Link
JP (1) JPS5946310B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188954U (en) * 1983-05-31 1984-12-14 石野ガスケツト工業株式会社 cylinder head gasket
JPS59188350U (en) * 1983-06-02 1984-12-13 石川ガスケツト株式会社 Local high density gasket
JPS6010693A (en) * 1983-06-30 1985-01-19 石井 銀弥 Printed circuit board
JPS6026728U (en) * 1983-07-30 1985-02-23 松下電工株式会社 waterproof packing
JPS6075791U (en) * 1983-10-31 1985-05-27 ジヤパンゴアテツクス株式会社 Piping seal forming material
JP2719844B2 (en) * 1990-07-26 1998-02-25 日本ピラー工業株式会社 Gasket and manufacturing method thereof
JP2921830B2 (en) * 1996-02-13 1999-07-19 日本ピラー工業株式会社 gasket
GB0703172D0 (en) * 2007-02-19 2007-03-28 Pa Knowledge Ltd Printed circuit boards

Also Published As

Publication number Publication date
JPS5635780A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
EP1030325B1 (en) Solid electrolytic capacitor and method of manufacturing the same
JPS5810880B2 (en) How to improve adhesion of copper coating
EP1335392A1 (en) Ceramic electronic device and method of manufacturing the device
JPS5946310B2 (en) Method for preventing oxidation of heat-treated copper coatings
SE7513853L (en) PROCEDURE FOR MANUFACTURE OF ELECTRICAL CONDUCTORS ON AN INSULATING SUBSTRATE
US4508756A (en) Method for inhibiting oxidation of a copper film on ceramic body
JPS5946312B2 (en) Method for preventing oxidation of heat-treated copper coatings
KR100203728B1 (en) Thin film capacitor
JPH09241862A (en) Copper powder, copper paste and ceramic electronic part
JPS5946311B2 (en) Method for preventing oxidation of heat-treated copper coatings
JPS609591B2 (en) Method for preventing oxidation of heat-treated copper coatings
US4833004A (en) Structure of copper conductor and method of forming same
US4464422A (en) Process for preventing oxidation of copper film on ceramic body
JPS607026B2 (en) Heat treatment method for copper coating
RU2815518C1 (en) Method for galvanic gold coating of semiconductor device housings
JP3230261B2 (en) Antioxidant method for copper powder
RU2083064C1 (en) Process of manufacturing current conductive silver coats
US20040090303A1 (en) Electrical component and method for producing the same
JPS634338B2 (en)
JPH0358404A (en) Manufacture of solid electrolytic capacitor
US3170218A (en) Method of producing tablets of semiconductor material, particularly selenium
JPH07153644A (en) Thin-film capacitor and manufacture thereof
JPH02283010A (en) Solid electrolytic capacitor
JPS6248365B2 (en)
JPS5934157B2 (en) Method for preventing oxidation of copper coating on ceramic body