JPS5946311B2 - Method for preventing oxidation of heat-treated copper coatings - Google Patents

Method for preventing oxidation of heat-treated copper coatings

Info

Publication number
JPS5946311B2
JPS5946311B2 JP54110781A JP11078179A JPS5946311B2 JP S5946311 B2 JPS5946311 B2 JP S5946311B2 JP 54110781 A JP54110781 A JP 54110781A JP 11078179 A JP11078179 A JP 11078179A JP S5946311 B2 JPS5946311 B2 JP S5946311B2
Authority
JP
Japan
Prior art keywords
heat
copper
copper coating
preventing oxidation
ceramic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54110781A
Other languages
Japanese (ja)
Other versions
JPS5635781A (en
Inventor
厚生 千田
徹 笠次
卓二 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP54110781A priority Critical patent/JPS5946311B2/en
Publication of JPS5635781A publication Critical patent/JPS5635781A/en
Publication of JPS5946311B2 publication Critical patent/JPS5946311B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Ceramic Capacitors (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】 この発明は誘導体、絶縁体、抵抗体、半導体などのセラ
ミック素体に無電解メッキ法、真空蒸着法、スパッタリ
ング法、イオンブレーティング法などにより形成され、
その後熱処理された銅被膜の酸化防止法に関するもので
ある。
[Detailed Description of the Invention] This invention provides a method for forming ceramic bodies such as dielectrics, insulators, resistors, and semiconductors by electroless plating, vacuum evaporation, sputtering, ion blating, etc.
The present invention relates to a method for preventing oxidation of a copper coating that has been subsequently heat-treated.

一般に、セラミック素体などの非導電体の表面に銅被膜
を形成する方法としては、無電解メッキ法、真空蒸着法
、スパッタリング法、イオンブレーティング法などがあ
り、回路基板上の導電部、あるいはセラミックコンデン
サの電極部分を構成する場合などに用途があることは知
られている。
In general, methods for forming a copper film on the surface of a non-conductive material such as a ceramic body include electroless plating, vacuum evaporation, sputtering, and ion blating. It is known that it has uses such as when forming the electrode part of a ceramic capacitor.

そして上記した方法により形成された銅被膜は、緻密化
、金属化、密着性向上および安定化を図るため、膜を形
成した後熱処理に付されるのが通常である。この熱処理
は一般に銅被膜が酸素と反応しないように不活性雰囲気
中で行われている。このように熱処理の工程に付するこ
とによつて、はじめて無電解メッキ法、真空蒸着法、ス
パッタリング法、イオンブレーティング法などによつて
形成した銅被膜は純銅に近い電気特性を有する銅被膜と
なり、高信頼性の電子部品を構成することになる。しか
しながら、無電解メッキ法、真空蒸着法、スパッタリン
グ法などにより形成された銅被膜は熱処理工程に付すと
、熱処理を行わない銅被膜にくらべて酸化されやすく、
経時変化も受けやすくなる。
The copper film formed by the above-described method is usually subjected to heat treatment after the film is formed in order to achieve densification, metallization, improvement of adhesion, and stabilization. This heat treatment is generally performed in an inert atmosphere to prevent the copper coating from reacting with oxygen. By subjecting it to this heat treatment process, the copper coating formed by electroless plating, vacuum evaporation, sputtering, ion blating, etc. becomes a copper coating with electrical properties close to those of pure copper. , constitutes a highly reliable electronic component. However, when copper coatings formed by electroless plating, vacuum evaporation, sputtering, etc. are subjected to a heat treatment process, they are more likely to oxidize than copper coatings that are not heat-treated.
It also becomes more susceptible to changes over time.

これは銅被膜そのものが、もともと酸化されやすい金属
である上に、高温の熱処理を履歴することによつて、銅
被膜表面に触媒活性が付与され、一層、酸化されやすい
状況が形成されることによる。
This is because the copper coating itself is a metal that is easily oxidized, and the high temperature heat treatment imparts catalytic activity to the surface of the copper coating, making it even more susceptible to oxidation. .

このため、熱処理を行つた銅被膜を、たとえばコンデン
サの電極としてそのまま用いると、酸化膜の形成により
導電率の低下を来たし、また熱処理後しばらく放置する
だけで、半田付け性も低下するという好ましくない現象
がみられた。
For this reason, if a heat-treated copper film is used as it is, for example, as an electrode for a capacitor, the conductivity will decrease due to the formation of an oxide film, and if it is left for a while after heat treatment, the solderability will also deteriorate, which is undesirable. A phenomenon was observed.

したがつて、この発明の主たる目的は、熱処理を行つた
銅被膜表面の酸化を防止し、安定化させることにより、
銅被膜の長期保存、ひいては銅被膜を形成したセラミッ
ク素体よりなる電子部品の高信頼化を可能にすることに
ある。
Therefore, the main purpose of this invention is to prevent oxidation and stabilize the surface of a heat-treated copper film, thereby
The object of the present invention is to enable long-term preservation of copper coatings and, in turn, increase the reliability of electronic components made of ceramic bodies on which copper coatings are formed.

すなわち、この発明の要旨とするところは、表面に銅被
膜を形成したセラミツク素体を熱処理後、セラミック素
体の表面を界面活性剤を溶解したトリクレン、パークレ
ン、フレオン、クロルベンゼンなどの揮発性一カゲン化
炭化水素化合物溶液に接触させることを特徴とするもの
である。
That is, the gist of this invention is that after heat-treating a ceramic body with a copper coating formed on its surface, the surface of the ceramic body is treated with a volatile solvent such as trichlene, perchlorene, freon, or chlorobenzene in which a surfactant is dissolved. This method is characterized by contacting with a chargenated hydrocarbon compound solution.

ここで、揮発性・一ロゲン化炭化水素化合物としては、
たとえばトリクレン、パークレン、フレオン、クロルベ
ンゼンなどがあり、これらはいずれも沸点が−29.8
℃〜132℃の低沸点の既存物質である。
Here, as volatile monologenated hydrocarbon compounds,
Examples include trichrene, perchrene, freon, and chlorobenzene, all of which have a boiling point of -29.8.
It is an existing substance with a low boiling point of ℃~132℃.

この発明方法の実施概要を説明すると、まず誘電体、絶
縁体、抵抗体、半導体などのセラミック素体表面に、無
電解メツキ法、真空蒸着法、スパツタリング法、イオン
プレーテイング法などの薄膜形成技術により銅被膜を形
成する。
To explain the implementation outline of the method of this invention, first, thin film formation techniques such as electroless plating method, vacuum evaporation method, sputtering method, ion plating method, etc. to form a copper coating.

たとえばセラミック素体として誘電体セラミックを用い
、表面に銅被膜を形成することによりコンデンサが構成
でき、またセラミツク素体としてアルミナ、ジルコン、
ホルステライトなどのセラミック基板を用い、表面に銅
被膜の回路パターンを形成すれば回路用基板を構成する
ことができる。
For example, a capacitor can be constructed by using dielectric ceramic as the ceramic body and forming a copper film on the surface, and alumina, zircon,
A circuit board can be constructed by using a ceramic substrate such as holsterite and forming a copper-coated circuit pattern on the surface.

そのほか、抵抗体、半導体などのセラミック素体表面に
銅被膜を形成することにより種々の電子部品が構成でき
る。このようにセラミツク素体表面に各種方法により銅
被膜が形成された種々の電子部品は、その後窒素などの
不活性雰囲気中、たとえば約700℃の温度で熱処理が
行われる。
In addition, various electronic components can be constructed by forming a copper coating on the surface of a ceramic element such as a resistor or a semiconductor. Various electronic components having copper coatings formed on the surfaces of ceramic bodies by various methods are then heat-treated at a temperature of, for example, about 700° C. in an inert atmosphere such as nitrogen.

熱処理された銅被膜はこのとき金属化され、密着性も強
固になり、さらに電気特性なども向上して非常に好まし
い特性が付与される。
The heat-treated copper film is metallized at this time, and its adhesion becomes strong, and its electrical properties are also improved, giving it very favorable properties.

しかし、熱処理により高温度の熱履歴を経るため、銅被
膜は触媒活性も付与され、ラネ一銅と同様の触媒能を有
した非常に活性な銅被膜となる。このような触媒活性は
熱処理後、できるだけ早く、界面活性剤を溶解したトリ
クレン、パークレン、フレオン、クロルベンゼンなどの
揮発性ハロゲン化炭化水素化合物溶液に接触させれば、
これら揮発性・・ロゲン化炭化水素化合物溶液の被毒作
用によつて、銅被膜の活性点が消滅して触媒活性はなく
なり、銅被膜は安定になり、酸化されにくくなる。
However, because the copper coating undergoes a high-temperature thermal history through heat treatment, it is also given catalytic activity, resulting in a very active copper coating that has the same catalytic ability as Raney copper. Such catalytic activity can be obtained by contacting a solution of a volatile halogenated hydrocarbon compound such as tricrene, perchlorene, freon, or chlorobenzene in which a surfactant is dissolved as soon as possible after heat treatment.
Due to the poisoning effect of these volatile halogenated hydrocarbon compound solutions, the active sites in the copper coating disappear, catalytic activity disappears, and the copper coating becomes stable and less likely to be oxidized.

そして、さらに銅被膜表面に界面活性剤の単分子膜を形
成することによつて、銅被膜の酸化と経時変化が防止で
きる。熱処理後、界面活性剤を溶解した揮発性一ロゲン
化炭化水素化合物溶液に接触させるまでの時間は短かい
ほど好ましく、できれば熱処理後30分以内に接触させ
ることが好ましい。使用される界面活性剤としては、た
とえばナフテン酸石鹸のようなアニオン活性剤、アルキ
ルオキサゾリンのようなカチオン活性剤、ポリエチレン
グリコールエステルのような非イオン活性剤、またはタ
ウリン縮合コハク酸エステルのよぅな両性活性剤など、
揮発性・・ロゲン化炭化水素化合物溶液に溶解するもの
であれば、如何なるものでもよく、上記したものは界面
活性剤の種類を限定するものではない。
Furthermore, by forming a monomolecular film of a surfactant on the surface of the copper coating, oxidation and aging of the copper coating can be prevented. After the heat treatment, the time required for contacting the solution of a volatile monologenated hydrocarbon compound in which a surfactant is dissolved is preferably as short as possible, preferably within 30 minutes after the heat treatment. The surfactants used include, for example, anionic surfactants such as naphthenic soaps, cationic surfactants such as alkyloxazolines, nonionic surfactants such as polyethylene glycol esters, or amphoteric surfactants such as taurine fused succinates. activators, etc.
Any type of surfactant may be used as long as it dissolves in the volatile...logenated hydrocarbon compound solution, and the above-mentioned surfactants are not limited to the type.

熱処理された銅被膜と、界面活性剤を溶解した揮発性・
・ロゲン化炭化水素化合物溶液との接触方法としては、
この溶液を塗布、吹き付け、浸漬するなどの方法がある
が、いずれの方法を用いてもよい。
Heat-treated copper coating and volatile surfactant
・The contact method with the logenated hydrocarbon compound solution is as follows:
There are methods such as applying, spraying, and dipping this solution, and any method may be used.

以下にこの発明を無電解銅メツキ析出被膜からなる実施
例について説明する。
The present invention will be described below with reference to embodiments comprising electroless copper plating deposited coatings.

実施例 1 直径6.51m1、厚み0.5nの酸化チタン系誘電体
セラミック素体を無電解銅メツキ液に浸漬し、このセラ
ミツク素体の全面に銅メツキ被膜を形成した。
Example 1 A titanium oxide dielectric ceramic body having a diameter of 6.51 m1 and a thickness of 0.5 nm was immersed in an electroless copper plating solution to form a copper plating film on the entire surface of the ceramic body.

次いで、このセラミック素体を窒素雰囲気中、700℃
の温度の熱処理に付し、冷却後、ステンレス製網かごの
容器に入れて、分子量5000のポリエチレングリコー
ルエステルを5%溶解したトリクレンを吹きつけた。こ
のあと銅被膜表面を自然乾燥させた。
Next, this ceramic body was heated at 700°C in a nitrogen atmosphere.
After cooling, it was placed in a stainless steel net basket container and sprayed with trichlene in which 5% of polyethylene glycol ester having a molecular weight of 5,000 was dissolved. After that, the surface of the copper coating was naturally dried.

このようにして得られたセラミック誘電体について、界
面活性剤を溶解したトリクレンを吹き付けたセラミック
誘電体とこのような処理をしていないセラミツク誘電体
について、それぞれ24時間自然雰囲気中に放置し、銅
被膜表面を観察したところ、この発明方法による処理を
行つていないものについては、褐色を呈しはじめ、半田
付け性も低下した。
The ceramic dielectrics obtained in this way were left in a natural atmosphere for 24 hours, and the ceramic dielectrics were sprayed with trichloride in which a surfactant was dissolved and the ceramic dielectrics were not treated in this way. When the surface of the coating was observed, it was found that the coating that had not been treated by the method of the present invention began to take on a brown color and its solderability decreased.

しかしながらこの発明方法によるものは一カ月放置した
ものについても、何らの変化も見られず、半田付け性も
良好であつた。実施例 2 チタン酸ストロンチウム系の粒界絶縁型半導体磁器とし
て、直径10.0m1L1厚み0.3mmのものを用意
し、無電解銅メッキ液に浸漬し、半導体磁器の全面に銅
メツキ被膜を形成した。
However, with the method of this invention, no change was observed even after leaving it for one month, and the solderability was good. Example 2 Strontium titanate-based grain boundary insulated semiconductor porcelain with a diameter of 10.0 m, L, and thickness of 0.3 mm was prepared and immersed in an electroless copper plating solution to form a copper plating film on the entire surface of the semiconductor porcelain. .

次いでこの半導体磁器を窒素よりなる不活性雰囲気中、
700℃で熱処理した。
Next, this semiconductor porcelain was placed in an inert atmosphere consisting of nitrogen.
Heat treatment was performed at 700°C.

引き続き、分子量5000のナフテン酸石鹸を5%溶解
したフレオン溶液中に銅メッキ被膜を形成した半導体磁
器を約1分間浸漬した。この溶液から半導体磁器を引き
上げ、自然乾燥させて銅メッキ被膜を安定化させた。
Subsequently, the semiconductor porcelain on which the copper plating film was formed was immersed for about 1 minute in a Freon solution containing 5% naphthenic acid soap having a molecular weight of 5,000. The semiconductor porcelain was pulled out of this solution and air-dried to stabilize the copper plating film.

さらに、この半導体磁器を湿度95%、温度40℃の条
件で強制的に酸化したところ、5000hr後において
も銅被膜表面の色調変化は全くなく、また半田付け性も
良好であつた。
Furthermore, when this semiconductor porcelain was forcibly oxidized under the conditions of 95% humidity and 40° C., there was no change in color tone of the surface of the copper coating even after 5000 hours, and the solderability was also good.

以上の各実施例から明らかなように、この発明によれば
、無電解メッキ法により表面に銅被膜を形成したセラミ
ック素体の該銅被膜表面を熱処理後、界面活性剤を溶解
したトリクレンやフレオン等の揮発性・・ロゲン化炭化
水素化合物溶液に接触させると、銅被膜表面の酸化現象
は見られず、半田付け性も良好であるなど、熱処理後の
銅被膜の酸化防止法としてきわめて有用なものである。
As is clear from the above embodiments, according to the present invention, after heat-treating the surface of the copper coating of a ceramic body on which a copper coating is formed by electroless plating, trichlene or freon in which a surfactant is dissolved is applied. When brought into contact with a solution of a volatile halogenated hydrocarbon compound such as It is something.

なお、上記した実施例では無電解メツキ法により形成し
た銅被膜の例について説明したが、そのほか真空蒸着法
、スパツタリング法、イオンプレーテイング法による銅
被膜についてこの発明を適用しても同様な効果が得られ
ることはもちろんである。また、セラミック素体につい
ては誘電体セラミック素体、粒界絶縁型半導体磁器につ
いて説明したが、そのほか誘導体、絶縁体、半導体、抵
抗体よりなるものに銅被膜を形成したものにこの発明を
適用しても同様な効果が得られる。
In addition, in the above-described embodiment, an example of a copper coating formed by an electroless plating method was explained, but the same effect can be obtained even if the present invention is applied to a copper coating formed by a vacuum evaporation method, a sputtering method, or an ion plating method. Of course you can get it. Regarding ceramic bodies, we have explained dielectric ceramic bodies and grain-boundary insulated semiconductor porcelain, but this invention can also be applied to other materials made of dielectrics, insulators, semiconductors, and resistors with copper coatings formed on them. A similar effect can be obtained.

Claims (1)

【特許請求の範囲】 1 表面に銅被膜を形成したセラミック素体を熱処理後
、セラミック素体の表面を界面活性剤を溶解した揮発性
ハロゲン化炭化水素化合物溶液に接触させることを特徴
とする熱処理された銅被膜の酸化防止法。 2 銅被膜は、無電解メッキ法、真空蒸着法、スパッタ
リング法、イオンプレーティング法のいずれか1種によ
り形成されたものであることを特徴とする特許請求の範
囲第1項記載の熱処理された銅被膜の酸化防止法。 3 セラミック素体は、誘電体、絶縁体、抵抗体、半導
体のうちいずれか1種であることを特徴とする特許請求
の範囲第1項記載の熱処理された銅被膜の酸化防止法。 4 セラミック素体は誘電体であり、銅被膜は容量取り
出し用の電極であることを特徴とする特許請求の範囲第
1項記載の熱処理された銅被膜の酸化防止法。 5 セラミック素体の熱処理は不活性雰囲気中で行われ
ることを特徴とする特許請求の範囲第1項記載の熱処理
された銅被膜の酸化防止法。
[Scope of Claims] 1. A heat treatment characterized in that after heat-treating a ceramic body on which a copper coating is formed, the surface of the ceramic body is brought into contact with a volatile halogenated hydrocarbon compound solution in which a surfactant is dissolved. A method for preventing oxidation of copper coatings. 2. The heat-treated copper film according to claim 1, wherein the copper coating is formed by any one of electroless plating, vacuum evaporation, sputtering, and ion plating. Method for preventing oxidation of copper coatings. 3. The method for preventing oxidation of a heat-treated copper coating according to claim 1, wherein the ceramic body is any one of a dielectric, an insulator, a resistor, and a semiconductor. 4. The method for preventing oxidation of a heat-treated copper coating according to claim 1, wherein the ceramic body is a dielectric and the copper coating is an electrode for taking out a capacitance. 5. The method for preventing oxidation of a heat-treated copper coating according to claim 1, wherein the heat treatment of the ceramic body is performed in an inert atmosphere.
JP54110781A 1979-08-29 1979-08-29 Method for preventing oxidation of heat-treated copper coatings Expired JPS5946311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54110781A JPS5946311B2 (en) 1979-08-29 1979-08-29 Method for preventing oxidation of heat-treated copper coatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54110781A JPS5946311B2 (en) 1979-08-29 1979-08-29 Method for preventing oxidation of heat-treated copper coatings

Publications (2)

Publication Number Publication Date
JPS5635781A JPS5635781A (en) 1981-04-08
JPS5946311B2 true JPS5946311B2 (en) 1984-11-12

Family

ID=14544444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54110781A Expired JPS5946311B2 (en) 1979-08-29 1979-08-29 Method for preventing oxidation of heat-treated copper coatings

Country Status (1)

Country Link
JP (1) JPS5946311B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312742A (en) * 1988-06-13 1989-12-18 Olympus Optical Co Ltd Actuator for optical pickup
US5671903A (en) * 1993-12-29 1997-09-30 Tokyo Electron Tohoku Kabushiki Kaisha Heat treatment apparatus and valve device for use in the same

Also Published As

Publication number Publication date
JPS5635781A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
EP1030325B1 (en) Solid electrolytic capacitor and method of manufacturing the same
US4328048A (en) Method of forming copper conductor
TW200811891A (en) Thin film dielectrics with co-fired electrodes for capacitors and methods of making thereof
US4508756A (en) Method for inhibiting oxidation of a copper film on ceramic body
JPS62293608A (en) Manufacture of solid electrolytic capacitor
JPS5946310B2 (en) Method for preventing oxidation of heat-treated copper coatings
JPS5946312B2 (en) Method for preventing oxidation of heat-treated copper coatings
JPS5946311B2 (en) Method for preventing oxidation of heat-treated copper coatings
JP2633387B2 (en) Manufacturing method of dielectric resonator
JPH09241862A (en) Copper powder, copper paste and ceramic electronic part
JPS609591B2 (en) Method for preventing oxidation of heat-treated copper coatings
JPH037130B2 (en)
US4833004A (en) Structure of copper conductor and method of forming same
JP2618019B2 (en) Conductive paint for plating base and plating method using the same
US4464422A (en) Process for preventing oxidation of copper film on ceramic body
JP3230261B2 (en) Antioxidant method for copper powder
JPS607026B2 (en) Heat treatment method for copper coating
US3935516A (en) Capacitor with glass metal conductive layer
RU2083064C1 (en) Process of manufacturing current conductive silver coats
US20040090303A1 (en) Electrical component and method for producing the same
JPH0358404A (en) Manufacture of solid electrolytic capacitor
JPH02301113A (en) Laminated ceramic electronic component and manufacture thereof
DE3038977C2 (en) Method for preventing the oxidation of a copper surface and its application
JPS6248365B2 (en)
JPS5934157B2 (en) Method for preventing oxidation of copper coating on ceramic body