JP2618019B2 - Conductive paint for plating base and plating method using the same - Google Patents

Conductive paint for plating base and plating method using the same

Info

Publication number
JP2618019B2
JP2618019B2 JP63236345A JP23634588A JP2618019B2 JP 2618019 B2 JP2618019 B2 JP 2618019B2 JP 63236345 A JP63236345 A JP 63236345A JP 23634588 A JP23634588 A JP 23634588A JP 2618019 B2 JP2618019 B2 JP 2618019B2
Authority
JP
Japan
Prior art keywords
plating
weight
powder
conductive paint
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63236345A
Other languages
Japanese (ja)
Other versions
JPH0286665A (en
Inventor
登 國峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP63236345A priority Critical patent/JP2618019B2/en
Publication of JPH0286665A publication Critical patent/JPH0286665A/en
Application granted granted Critical
Publication of JP2618019B2 publication Critical patent/JP2618019B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低温焼結型積層チップコンデンサたとえば鉛
ペロブスカイト系積層チップコンデンサの端子電極の形
成に有用なメッキ下地用導電性塗料に関する。さらにそ
れを用いて得られた電極表面に有機絶縁性樹脂塗料を含
浸させて行うメッキ方法に関するものである。
Description: BACKGROUND OF THE INVENTION The present invention relates to a conductive paint for plating undercoat useful for forming terminal electrodes of low-temperature sintering type multilayer chip capacitors, for example, lead perovskite multilayer chip capacitors. Further, the present invention relates to a plating method in which an electrode surface obtained by using the same is impregnated with an organic insulating resin paint.

〔従来の技術〕[Conventional technology]

現在の主流であるチタン酸バリウム系等の強誘電体材
料を応用する積層チップコンデンサは1300〜1400℃の高
温度で焼結される。この高温焼結型積層チップコンデン
サの端子電極用導電性塗料にはAg−Pd系導電物を850℃
で厚さ80〜100μmに焼結して電極を形成し、その電極
上に1〜3μmのNiメッキおよび3〜5μmの半田メッ
キ層を形成して、その後噴流半田法で基板に実装固定す
るのが一般的である。
Multilayer chip capacitors using ferroelectric materials such as barium titanate, which are currently the mainstream, are sintered at a high temperature of 1300 to 1400 ° C. Ag-Pd-based conductive material is used at 850 ° C for the conductive paint for terminal electrodes of this high-temperature sintering type multilayer chip capacitor.
The electrode is formed by sintering to a thickness of 80 to 100 μm, and a Ni plating of 1 to 3 μm and a solder plating layer of 3 to 5 μm are formed on the electrode, and then mounted and fixed on a substrate by a jet soldering method. Is common.

Niメッキ層はコンデンサ端子に焼結された導電性塗料
の溶融半田による半田喰われを防止する役割を持ってい
る。
The Ni plating layer has a role of preventing solder erosion due to molten solder of the conductive paint sintered on the capacitor terminal.

しかし最近、誘電率が大きい、高容量化ができ、耐電
圧性が高い、誘電損失が少ない、高周波特性に優れてい
る等の特徴をもつ鉛ペロブスカイト系に代表されるよう
な誘電体材料の低温焼結化が開発され1000℃以下にまで
焼結温度が下がっている。
However, recently, low-temperature dielectric materials such as lead perovskite, which have characteristics such as high dielectric constant, high capacity, high withstand voltage, low dielectric loss, and excellent high-frequency characteristics, have been developed. Sintering has been developed and the sintering temperature has dropped to below 1000 ° C.

この低温焼結型積層チップコンデンサの端子電極用塗
料の焼結温度も誘電体材料の分解を防ぐために、低温化
する必要があり、550〜700℃で焼結される。ところが、
今まで使われてきた端子電極用導電性塗料の焼結温度を
従来温度の850℃から550℃〜700℃に低下させると、焼
結構造が極めて多孔質になり、メッキ処理時に焼結膜中
へメッキ液の浸みこみが起きて誘電体材料を還元し、絶
縁抵抗値の低下を招く問題が起きる。
The sintering temperature of the paint for terminal electrodes of this low-temperature sintering type multilayer chip capacitor also needs to be lowered in order to prevent the decomposition of the dielectric material. However,
If the sintering temperature of the conductive paint for terminal electrodes, which has been used so far, is lowered from the conventional temperature of 850 ° C to 550 ° C to 700 ° C, the sintered structure becomes extremely porous and enters the sintered film during plating. There is a problem that the plating solution infiltrates, reduces the dielectric material, and lowers the insulation resistance.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は上記のような欠点を解消し、噴流半田付けに
耐え、しかも半田濡れが良好で、電気的絶縁特性の優れ
た鉛ペロブスカイト系材料に代表される低温焼結型積層
チップコンデンサを製造するのに好適なメッキ下地用導
電性塗料およびそれを用いるメッキ方法を提供するもの
である。
The present invention solves the above-mentioned disadvantages, and manufactures a low-temperature sintering type multilayer chip capacitor represented by a lead perovskite-based material that is resistant to jet soldering, has good solder wetting, and has excellent electrical insulation properties. And a plating method using the same.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために本発明の第1の発明は、銀
粉あるいは銀粉に対して1〜10重量%のパラジウム粉を
含有する金属粉末50〜80重量%と、軟化点500〜700℃の
耐酸性ガラス粉末および軟化点350〜500℃のPbO−ZnO−
B2O3−SiO2系ガラス粉末2〜10重量%と、有機質ビヒク
ル10〜48重量%とを含有し、550〜700℃で焼結してなる
メッキ下地用導電性塗料を特徴とするものである。
In order to achieve the above object, a first invention of the present invention is to provide silver powder or 50 to 80% by weight of a metal powder containing 1 to 10% by weight of palladium powder with respect to silver powder, and acid-resistant having a softening point of 500 to 700 ° C. Glass powder and PbO-ZnO- having a softening point of 350 to 500 ° C
Those B 2 O 3 containing -SiO 2 based glass powder 2-10 wt%, and an organic vehicle 10 to 48 wt%, and wherein the sintering plating base for the conductive coating material comprising at 550 to 700 ° C. It is.

さらに第2の発明は、前記したメッキ下地用導電性塗
料を塗布した低温焼結型積層チップコンデンサに有機絶
縁性樹脂塗料を含浸させ、熱硬化し、研磨した後洗浄
し、メッキするメッキ方法を特徴とするものである。
Further, a second invention provides a plating method of impregnating an organic insulating resin paint in a low-temperature sintering type multilayer chip capacitor coated with the above-mentioned conductive paint for undercoat plating, thermally curing, polishing, washing, and plating. It is a feature.

〔作用〕[Action]

第1の発明は焼結温度が550〜700℃と低いPb(Ni1/3N
b2/3)O3、Pb(Mg1/3Nb2/3)O3、Pb(Fe2/31/3)O3
Pb(Fe1/2Nb1/2)O3等の鉛ペロブスカイト系低温焼結型
積層チップコンデンサ用端子電極に好適に用いられる。
In the first invention, Pb (Ni 1/3 N) having a low sintering temperature of 550 to 700 ° C.
b 2/3 ) O 3 , Pb (Mg 1/3 Nb 2/3 ) O 3 , Pb (Fe 2/3 W 1/3 ) O 3 ,
Pb (Fe 1/2 Nb 1/2 ) O 3 is suitable for use as a terminal electrode for lead perovskite-based low-temperature sintering type multilayer chip capacitors.

該銀粉の粒径は平均粒径0.5〜3.0μmが好ましい。銀
粉あるいは銀粉に対して1〜10重量%、好ましくは3〜
5重量%のパラジウム粉を添加することにより、導電性
塗料の焼結密度は向上し、その焼結膜と誘電体材料との
接着強度は改善される。
The average particle size of the silver powder is preferably 0.5 to 3.0 μm. 1 to 10% by weight, preferably 3 to 10% by weight of silver powder or silver powder
By adding 5% by weight of palladium powder, the sintering density of the conductive paint is improved, and the adhesive strength between the sintered film and the dielectric material is improved.

またパラジウム粉末については細かいほど銀粉との合
金化効率が良くなるので、平均粒径0.3μm以下が好ま
しい。
Further, the finer the palladium powder, the better the alloying efficiency with the silver powder becomes.

該金属粉末は導電性塗料中50〜80重量%の範囲で用い
られ、50重量%未満では、電子電極の厚みが不足し、ま
た80重量%を超える場合はガラス粉末の添加を含めて、
均一な塗料特性を確保できない。
The metal powder is used in the conductive coating in the range of 50 to 80% by weight, and if it is less than 50% by weight, the thickness of the electronic electrode is insufficient, and if it exceeds 80% by weight, including addition of glass powder,
Uniform paint properties cannot be ensured.

該耐酸性ガラス粉末としてはSiO2−B2O3−TiO2−RO系
(ROはMgO、CaO、ZnO、BaO、SrO)があり、その流動温
度を降下させる必要上、ガラス粉末の粒径を平均粒径1
μm以下と微細にすると好適である。
As the acid-resistant glass powder, there is an SiO 2 —B 2 O 3 —TiO 2 —RO system (RO is MgO, CaO, ZnO, BaO, SrO). The average particle size 1
It is preferable that the thickness be as fine as not more than μm.

該耐酸性ガラスの軟化点が750℃を超えると端子電極
用導電性塗料の焼結温度域550〜700℃で導電性塗料の焼
結性が著しく悪くなる。また、該耐酸性ガラスは軟化点
が500℃未満ではガラス成分中のSiO2、TiO2含有率が低
くなり耐酸性が劣る。
If the softening point of the acid-resistant glass exceeds 750 ° C., the sintering property of the conductive paint is significantly deteriorated in the sintering temperature range of 550 to 700 ° C. for the terminal electrode conductive paint. If the softening point of the acid-resistant glass is less than 500 ° C., the content of SiO 2 and TiO 2 in the glass component is low, and the acid resistance is poor.

該PbO−ZnO−B2O3−SiO2系ガラスにおいては、軟化点
が500℃を超えると該耐酸性ガラスの流動温度を降下さ
せる降下がない。また軟化点が350℃未満ではこの組成
系を作ることができない。
The in PbO-ZnO-B 2 O 3 -SiO 2 based glass, there is no drop to lower the flow temperature of the resistant acidic glass exceeds 500 ° C. softening point. If the softening point is lower than 350 ° C., this composition cannot be produced.

上記ガラス粉末混合物の耐酸性ガラス粉末とPbO−ZnO
−B2O3−SiO2系ガラス粉末との配合割合は、該ガラス粉
末混合物10部に対し耐酸性ガラス粉末とPbO−ZnO−B2O3
−SiO2系ガラス粉末のそれぞれが1〜5部とすることが
望ましい。
Acid-resistant glass powder of the above glass powder mixture and PbO-ZnO
-B 2 O 3 -SiO 2 -based glass powder is mixed in an acid-resistant glass powder and PbO-ZnO-B 2 O 3 with respect to 10 parts of the glass powder mixture.
It is desirable that each -SiO 2 based glass powder is 1 to 5 parts.

また、該ガラス粉末混合物の含有量は2〜10重量%に
する必要があり、2重量%未満ではメッキ液の焼結導電
性塗料膜への浸みこみが多くなり、端子電極の接着強度
および絶縁抵抗値の低下となる。また10重量%を超える
場合は焼結された端子電極表面に表出するガラスが増す
ため、ニッケルメッキの濡れが阻害される。
Further, the content of the glass powder mixture needs to be 2 to 10% by weight, and if it is less than 2% by weight, the plating solution is more likely to penetrate into the sintered conductive paint film, and the adhesive strength of the terminal electrode and the insulating property are increased. The resistance value decreases. On the other hand, if the content exceeds 10% by weight, the amount of glass exposed on the surface of the sintered terminal electrode increases, so that wetting of nickel plating is hindered.

2〜10重量%の組成範囲に限定されたガラス粉末混合
物を用いると、550〜700℃の低温焼結温度でも効果的に
溶融し、誘電体材料へ拡散し、端子電極層中に均質に分
散して焼結される。
When a glass powder mixture limited to a composition range of 2 to 10% by weight is used, it melts effectively even at a low sintering temperature of 550 to 700 ° C, diffuses into a dielectric material, and is uniformly dispersed in a terminal electrode layer. And sintered.

本発明の塗料成分の一つである該有機ビヒクルとして
エチルセルローズ、ブチルカルビトール、ブチルカルビ
トールアセテート、ターピネオール、石油ナフサ、アル
キッド樹脂、可塑剤および分散剤等から構成される。該
導電性塗料を得る製法は常法に従って行えばよい。すな
わち上記で述べた所定量の金属粉末、ガラス粉末および
有機質ビヒクルをスリーロールミルで常温で均一に混練
して得られる。該有機質ビヒクルの含有量は10〜48重量
%がよい。
The organic vehicle which is one of the coating components of the present invention comprises ethyl cellulose, butyl carbitol, butyl carbitol acetate, terpineol, petroleum naphtha, an alkyd resin, a plasticizer, a dispersant, and the like. The method for obtaining the conductive paint may be a conventional method. That is, it is obtained by uniformly kneading the above-mentioned predetermined amounts of the metal powder, glass powder and organic vehicle at room temperature with a three-roll mill. The content of the organic vehicle is preferably 10 to 48% by weight.

10重量%未満では塗料の粘性が高くなり過ぎ、48重量
%を超える場合は逆に粘性が低くなり過ぎてチップコン
デンサ端部への均一な塗布膜形成に不都合が生じる。
If it is less than 10% by weight, the viscosity of the paint becomes too high, and if it exceeds 48% by weight, on the contrary, the viscosity becomes too low, and there is a problem in forming a uniform coating film on the end portion of the chip capacitor.

またチップコンデンサ端部への導電性塗料の塗布に
は、パロマー方式等の方法によって行えばよい。
The application of the conductive paint to the end portion of the chip capacitor may be performed by a method such as a Palomar method.

さらに第2の発明において、該低温焼結型積層チップ
コンデンサの絶縁性を高めるためにメッキ処理を行う必
要がある。そのためにはまず該有機絶縁性樹脂塗料を減
圧下で繰り返し導電性塗料焼結膜の空孔部へ含浸させ
る。該有機絶縁性樹脂塗料としてはシリコン樹脂、アク
リル樹脂等のような電気的に安定な熱硬化性のものが良
く、特にシリコン樹脂が優れている。
Further, in the second invention, it is necessary to perform a plating process in order to enhance the insulating properties of the low-temperature sintered type multilayer chip capacitor. For this purpose, the organic insulating resin paint is repeatedly impregnated into the pores of the conductive paint sintered film under reduced pressure. As the organic insulating resin paint, an electrically stable thermosetting material such as a silicone resin or an acrylic resin is preferable, and a silicone resin is particularly excellent.

該有機絶縁性樹脂塗料の含浸方法としては、真空ポン
プを使って約1トールに減圧したセラミックコンデンサ
の入ったチャンバー内に該樹脂塗料を注いで、導電性塗
料焼結膜の空孔部を該樹脂塗料で埋める。次に遠心脱液
してセラミックコンデンサに付着している過剰の該樹脂
塗料を除き、これをメッシュ網の上に置いて熱硬化させ
る。
As a method of impregnating the organic insulating resin paint, the resin paint is poured into a chamber containing a ceramic capacitor depressurized to about 1 Torr using a vacuum pump, and the pores of the conductive paint sintered film are filled with the resin. Fill with paint. Next, the mixture is centrifuged to remove excess resin paint adhering to the ceramic capacitor, and placed on a mesh net to be thermally cured.

硬化温度、硬化時間は樹脂によって異なるが150〜300
℃、10〜40分で処理され、望ましくは200℃、30分の条
件である。
Curing temperature and curing time vary depending on the resin, but 150 to 300
The treatment is performed at 10 ° C. for 10 to 40 minutes, preferably at 200 ° C. for 30 minutes.

熱硬化処理後、該導電性塗料焼結膜上に残っている該
有機絶縁性樹脂塗料を除去するため、研磨材を満たした
容器内でバレル研磨を約1時間ほど行う。研磨材として
はSiC100メッシュ粉末が好適に使用される。
After the thermosetting treatment, barrel polishing is performed for about one hour in a container filled with an abrasive to remove the organic insulating resin paint remaining on the conductive paint sintered film. As the abrasive, SiC100 mesh powder is preferably used.

更にまた該導電性樹脂塗料焼結膜の研磨表面を清浄に
するために、鉱酸5〜10%水溶液で10〜60秒間超音波洗
浄処理し、その後超音波水洗してメッキの濡れの良好な
面を形成する。メッキ方法としては、ハロゲンイオンを
含まないメッキ浴内でバレルメッキをするのが好適であ
る。
Furthermore, in order to clean the polished surface of the conductive resin paint sintered film, the surface is subjected to ultrasonic cleaning with a 5 to 10% aqueous solution of a mineral acid for 10 to 60 seconds, and then ultrasonically washed to obtain a surface having good plating wetness. To form As a plating method, it is preferable to perform barrel plating in a plating bath containing no halogen ions.

〔実施例1〕 鉛ペロブスカイト系誘電体材料Pb1-xSrx(Mg,W)O3
調整し、Ag85/Pb15組成の内部電極ペーストを用いてコ
ンデンサグリーンチップを作り、これを最高温度990℃
で焼成して3.2×1.6mmタイプZ5Uの積層チップコンデン
サを得た。このチップコンデンサ端子に、下記のメッキ
下地用導電性塗料を塗布し、乾燥後650℃で焼結を行っ
た。
Example 1 A lead green perovskite-based dielectric material Pb 1-x Sr x (Mg, W) O 3 was prepared, and a capacitor green chip was prepared using an internal electrode paste of Ag85 / Pb15 composition. ° C
To obtain a 3.2 × 1.6 mm type Z5U multilayer chip capacitor. The following conductive paint for plating base was applied to the chip capacitor terminals, dried, and then sintered at 650 ° C.

低温焼結用メッキ下地導電性塗料組成 銀粉(平均粒径2μm) 35重量% 銀粉(平均粒径1μm) 32重量% パラジウム粉(平均粒径0.1μm) 3重量% 耐酸性ガラス粉末(軟化点580℃)* 4重量% PbO−ZnO−B2O3−SiO2系ガラス粉末(軟化点360℃) 3
重量% 有機ビヒクル 23重量% *SiO2−TiO2−B2O3−MgO−CaO−Na2O−K2O (SiO2=30wt%,TiO2=20wt%) このチップコンデンサにシリコン樹脂10%キシレン溶
液(信越シリコーンKR−282)を3回繰り返して真空含
浸し、100℃で乾燥し、最後に200℃で30分間熱硬化させ
た。次に、電極表面をSiC粉を使って乾式研磨し、10%
硝酸溶液の処理によりその電極表面を活性化させ、以下
の条件でニッケル、スズの順でメッキが行われた。
Plating base conductive paint composition for low-temperature sintering Silver powder (average particle size 2 μm) 35% by weight Silver powder (average particle size 1 μm) 32% by weight Palladium powder (average particle size 0.1 μm) 3% by weight Acid-resistant glass powder (softening point 580) ° C.) * 4 wt% PbO-ZnO-B 2 O 3 -SiO 2 based glass powder (softening point 360 ° C.) 3
Wt% organic vehicle 23 wt% * SiO 2 -TiO 2 -B 2 O 3 -MgO-CaO-Na 2 O-K 2 O (SiO 2 = 30wt%, TiO 2 = 20wt%) silicone resin to the chip capacitor 10 % Xylene solution (Shin-Etsu Silicone KR-282) was repeatedly vacuum impregnated three times, dried at 100 ° C, and finally thermally cured at 200 ° C for 30 minutes. Next, dry polishing the electrode surface using SiC powder,
The surface of the electrode was activated by treatment with a nitric acid solution, and plating was performed in the order of nickel and tin under the following conditions.

ニッケル ……ワット浴(pH=4.5) カルボンスズ浴 ……pH=5.5(キザイ株式会社製) 得られたメッキ品の断面は高温焼成タイプの端子と変
わらない三層構造を示した。メッキ前後の初期的電気特
性は第1表に示す通りであり、メッキによる劣化は排除
されたことを示している。
Nickel: Watt bath (pH = 4.5) Carboxy tin bath: pH = 5.5 (manufactured by Kizai Co., Ltd.) The cross section of the obtained plated product showed a three-layer structure that was not different from that of a high-temperature firing type terminal. The initial electrical characteristics before and after plating are as shown in Table 1, indicating that the deterioration due to plating was eliminated.

〔実施例2〕 下記記載のメッキ下地用端子電極塗料を用い、BaTiO3
で安定化した鉛ペロブスカイト系材料を用いて、実施例
1と同様にして得たメッキタイプ積層チップコンデンサ
を測定したところ第2表に示すごとく満足すべき電気特
性が得られた。
[Example 2] BaTiO 3 was prepared using the terminal electrode paint for plating base described below.
Using the lead perovskite-based material stabilized in the above, a plating type multilayer chip capacitor obtained in the same manner as in Example 1 was measured. As shown in Table 2, satisfactory electric characteristics were obtained.

低温焼結用メッキ下地導電性塗料組成 銀粉(平均粒径1.5μm) 37重量% 銀粉(平均粒径1.0μm) 35重量% 耐酸性ガラス粉末(軟化点580℃) 5重量% ZnO−B2O3−SiO2−Li2O系ガラス粉末(軟化点430℃)2
重量% 有機ビヒクル 21重量% 〔比較例〕 下記組成で示す酸化ビスマス粉末を含む端子電極塗料
を用いて、実施例1と同様にして650℃で焼成して端子
電極を形成した後、ニッケルメッキ、スズメッキを施し
た。
Low-temperature sintering plating conductive coating composition Silver powder (average particle size 1.5 μm) 37% by weight Silver powder (average particle size 1.0 μm) 35% by weight Acid-resistant glass powder (softening point 580 ° C) 5% by weight ZnO-B 2 O 3 -SiO 2 -Li 2 O system glass powder (softening point 430 ° C.) 2
Wt% organic vehicle 21 wt% Comparative Example A terminal electrode was formed by baking at 650 ° C. in the same manner as in Example 1 using a terminal electrode paint containing bismuth oxide powder having the following composition, and then nickel plating and tin plating were performed.

メッキ下地導電性塗料組成 銀粉(平均粒径1.5μm) 65.0重量% パラジウム粉(平均粒径0.1μm) 5.0重量% PbO−B2O3−SiO2系ガラス粉末 1.0重量% 酸化ビスマス 3.0重量% 有機ビヒクル 26.0重量% 結果は第3表に要約されるがメッキによる特性劣化、
特に絶縁抵抗不良は顕著であり、導通品は半数を占め
た。
Plating base conductive paint composition Silver powder (average particle size 1.5 μm) 65.0% by weight Palladium powder (average particle size 0.1 μm) 5.0% by weight PbO-B 2 O 3 —SiO 2 glass powder 1.0% by weight Bismuth oxide 3.0% by weight Organic Vehicle 26.0% by weight The results are summarized in Table 3.
In particular, insulation resistance failure was remarkable, and conductive products accounted for half.

〔発明の効果〕 本発明により、鉛ペロブスカイト系である低温焼結型
積層コンデンサ端子電極のメッキ化が達成された。メッ
キ処理を施した端子電極は半田喰われに極めて強く、メ
ッキによる電気特性の劣化は見られなかった。従って、
噴流半田処理が可能となり、鉛ペロブスカイト系積層チ
ップコンデンサの用途を拡大し、その効果は極めて大き
い。
[Effects of the Invention] According to the present invention, plating of a terminal electrode of a low-temperature sintering type multilayer capacitor which is a lead perovskite system has been achieved. The plated terminal electrode was extremely resistant to solder erosion, and no deterioration in electrical characteristics due to plating was observed. Therefore,
Jet soldering becomes possible, and the applications of lead perovskite multilayer chip capacitors are expanded, and the effect is extremely large.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】銀粉あるいは銀粉に対して1〜10重量%の
パラジウム粉を含有する金属粉末50〜80重量%と、軟化
点500〜700℃の耐酸性ガラス粉末および軟化点350〜500
℃のPbO−ZnO−B2O3−SiO2系ガラス粉末2〜10重量%
と、有機質ビヒクル10〜48重量%とを含有し、550〜700
℃で焼結してなるメッキ下地用導電性塗料。
1. A silver powder or 50 to 80% by weight of a metal powder containing 1 to 10% by weight of palladium powder based on silver powder, an acid-resistant glass powder having a softening point of 500 to 700 ° C. and a softening point of 350 to 500
℃ of PbO-ZnO-B 2 O 3 -SiO 2 based glass powder 2-10 wt%
And 10 to 48% by weight of an organic vehicle, and 550 to 700%.
Conductive paint for plating underlayer sintered at ℃.
【請求項2】特許請求の範囲1項のメッキ下地用導電性
塗料を塗布した低温焼結型積層チップコンデンサに有機
絶縁性樹脂塗料を含浸させ、熱硬化し、研磨した後洗浄
し、メッキすることを特徴とするメッキ方法。
2. A low-temperature sintering type multilayer chip capacitor coated with the conductive coating for undercoat plating according to claim 1 is impregnated with an organic insulating resin coating, thermally cured, polished, washed, and plated. A plating method characterized in that:
JP63236345A 1988-09-22 1988-09-22 Conductive paint for plating base and plating method using the same Expired - Lifetime JP2618019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63236345A JP2618019B2 (en) 1988-09-22 1988-09-22 Conductive paint for plating base and plating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63236345A JP2618019B2 (en) 1988-09-22 1988-09-22 Conductive paint for plating base and plating method using the same

Publications (2)

Publication Number Publication Date
JPH0286665A JPH0286665A (en) 1990-03-27
JP2618019B2 true JP2618019B2 (en) 1997-06-11

Family

ID=16999435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63236345A Expired - Lifetime JP2618019B2 (en) 1988-09-22 1988-09-22 Conductive paint for plating base and plating method using the same

Country Status (1)

Country Link
JP (1) JP2618019B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101742033B1 (en) 2016-04-18 2017-06-15 (주)창성 Pressure-resistant electrode paste for chip component using UV hardening and manufacturing method therewith

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3571957B2 (en) * 1999-03-30 2004-09-29 松下電器産業株式会社 Conductive paste and method of manufacturing ceramic multilayer substrate
JP2001307947A (en) * 2000-04-25 2001-11-02 Tdk Corp Laminated chip component and its manufacturing method
CN103021511B (en) * 2011-09-22 2016-05-11 比亚迪股份有限公司 A kind of crystal silicon solar energy battery front electrode silver slurry and preparation method thereof
CN115466057B (en) * 2021-06-11 2023-11-21 厦门市敬微精密科技有限公司 Composite glass slurry and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254194A (en) * 1975-10-29 1977-05-02 Murata Manufacturing Co Conductive paste
JPS5630718A (en) * 1979-08-22 1981-03-27 Kck Co Ltd Method of manufacturing porcelain condenser
JPS5968101A (en) * 1982-10-12 1984-04-18 株式会社村田製作所 Conductive paste
JPS59200792A (en) * 1983-04-28 1984-11-14 K C K Kk Electrically conductive paint for base for plating
JPS6220571A (en) * 1985-07-18 1987-01-29 Copal Co Ltd Electrically-conductive composition
JPH0740521B2 (en) * 1986-11-07 1995-05-01 旭硝子株式会社 Method for forming glass layer for resistor protection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101742033B1 (en) 2016-04-18 2017-06-15 (주)창성 Pressure-resistant electrode paste for chip component using UV hardening and manufacturing method therewith

Also Published As

Publication number Publication date
JPH0286665A (en) 1990-03-27

Similar Documents

Publication Publication Date Title
JPH10284343A (en) Chip type electronic component
KR100498682B1 (en) Chip electronic component
US4130854A (en) Borate treated nickel pigment for metallizing ceramics
CN115036135B (en) Ceramic electronic component
JP4506066B2 (en) Chip-type electronic component and method for manufacturing chip-type electronic component
JP4501143B2 (en) Electronic device and manufacturing method thereof
JP2618019B2 (en) Conductive paint for plating base and plating method using the same
JPS6310887B2 (en)
JPH09190950A (en) Outer electrode of electronic part
JP2020072263A (en) Multilayer ceramic electronic component and manufacturing method thereof
JP3831537B2 (en) Electronic device and manufacturing method thereof
JP3331566B2 (en) Method for forming terminal electrodes of chip-type electronic components
US4168519A (en) Capacitor with tin-zinc electrodes
JPH04293214A (en) Conductive paste for chip type electronic component
US11228080B2 (en) Dielectric filter and method for manufacturing the same
JPH03296205A (en) Ceramic capacitor
JPH10163067A (en) External electrode of chip electronic component
JPS6127003A (en) Conductive paste composition
JPH09115772A (en) External electrode for chip electronic component
JPH09266129A (en) External electrode of chip type electronic parts
JPS634327B2 (en)
JPH0878279A (en) Formation of outer electrode on electronic chip device
WO2024135396A1 (en) Multilayer ceramic electronic component and method for producing same
JPH05129152A (en) Laminated porcelain capacitor and its manufacture
JP2002298643A (en) Conductive paste for outer electrode and laminated ceramic capacitor