JP4694251B2 - Copper or copper alloy surface treatment agent for lead-free soldering and use thereof - Google Patents

Copper or copper alloy surface treatment agent for lead-free soldering and use thereof Download PDF

Info

Publication number
JP4694251B2
JP4694251B2 JP2005128938A JP2005128938A JP4694251B2 JP 4694251 B2 JP4694251 B2 JP 4694251B2 JP 2005128938 A JP2005128938 A JP 2005128938A JP 2005128938 A JP2005128938 A JP 2005128938A JP 4694251 B2 JP4694251 B2 JP 4694251B2
Authority
JP
Japan
Prior art keywords
copper
solder
lead
surface treatment
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005128938A
Other languages
Japanese (ja)
Other versions
JP2006022400A (en
Inventor
浩彦 平尾
芳昌 菊川
孝行 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Original Assignee
Shikoku Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005128938A priority Critical patent/JP4694251B2/en
Application filed by Shikoku Chemicals Corp filed Critical Shikoku Chemicals Corp
Priority to CN200910151813XA priority patent/CN101624374B/en
Priority to PCT/JP2005/010898 priority patent/WO2005121101A1/en
Priority to BRPI0511916-2A priority patent/BRPI0511916B1/en
Priority to CN2005800191116A priority patent/CN1964949B/en
Priority to US11/629,179 priority patent/US8183386B2/en
Priority to KR1020067025957A priority patent/KR101074640B1/en
Priority to EP05751220A priority patent/EP1753728B1/en
Priority to MYPI20052614A priority patent/MY149388A/en
Priority to TW094119281A priority patent/TWI431157B/en
Publication of JP2006022400A publication Critical patent/JP2006022400A/en
Priority to HK10104015.1A priority patent/HK1138577A1/en
Application granted granted Critical
Publication of JP4694251B2 publication Critical patent/JP4694251B2/en
Priority to US13/449,006 priority patent/US8378116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、電子部品などをプリント配線板の銅または銅合金に半田付けする際に使用する表面処理剤、銅または銅合金の表面処理方法、プリント配線板及び半田付け方法に関するものである。   The present invention relates to a surface treating agent, a surface treatment method for copper or a copper alloy, a printed wiring board, and a soldering method used when soldering an electronic component or the like to copper or a copper alloy of a printed wiring board.

近時プリント配線板の実装方法として、実装密度を向上させた表面実装が広く採用されている。このような表面実装方法は、チップ部品をクリーム半田で接合する両面表面実装、チップ部品のクリーム半田による表面実装とディスクリート部品のスルホール実装を組み合わせた混載実装等に分けられる。いずれの実装方法においても、プリント配線板は複数回の半田付けが行われるので、その度に高温に曝されて厳しい熱履歴を受ける。
その結果、プリント配線板の回路部を構成する銅または銅合金の表面は、加熱されることにより酸化皮膜の形成が促進されるので、該回路部表面の半田付け性を良好に保つことができない。
Recently, surface mounting with improved mounting density has been widely adopted as a method for mounting printed wiring boards. Such surface mounting methods can be classified into double-sided surface mounting in which chip components are joined by cream solder, mixed mounting in which surface mounting by chip solder cream soldering and through-hole mounting of discrete components are combined. In any mounting method, since the printed wiring board is soldered a plurality of times, it is exposed to a high temperature each time and receives a severe thermal history.
As a result, the surface of the copper or copper alloy constituting the circuit portion of the printed wiring board is heated to promote the formation of an oxide film, so that the solderability of the surface of the circuit portion cannot be kept good. .

このようなプリント配線板の銅回路部を空気酸化から保護するために、表面処理剤を使用して該回路部表面に化成被膜を形成させる処理が広く行われているが、銅回路部が複数回の熱履歴を受けた後も化成被膜が変成(劣化)することなく銅回路部を保護し、これによって半田付け性を良好なものに保つことが要求されている。   In order to protect the copper circuit portion of such a printed wiring board from air oxidation, a treatment for forming a chemical conversion film on the surface of the circuit portion using a surface treatment agent is widely performed. It is required to protect the copper circuit portion without changing (deteriorating) the chemical conversion film even after receiving the heat history of the times, thereby maintaining good solderability.

従来から電子部品をプリント配線板などに接合する際には、錫−鉛合金の共晶半田が広く使用されていたが、近年その半田合金中に含まれる鉛による人体への有害性が懸念され、鉛を含まない半田を使用することが求められている。
そのために種々の無鉛半田が検討されているが、例えば錫をベース金属として、銀、亜鉛、ビスマス、インジウム、アンチモンや銅などの金属を添加した無鉛半田が提案されている。
Conventionally, tin-lead alloy eutectic solder has been widely used for joining electronic components to printed wiring boards, etc., but in recent years there is concern about the harmfulness of the lead contained in the solder alloy to the human body. There is a need to use solder that does not contain lead.
For this purpose, various lead-free solders have been studied. For example, lead-free solders having a metal such as silver, zinc, bismuth, indium, antimony and copper as a base metal have been proposed.

ところで、従来の錫−鉛系共晶半田は、接合母材、特に銅の表面に対する濡れ性に優れており、銅に対して強固に接合するので、高い信頼性が得られている。
これに対して、無鉛半田は従来の錫−鉛半田に比べると、銅の表面に対する濡れ性が劣っているので、半田付け性が悪く、ボイド発生などの接合不良が生じ、接合強度も低いものであった。
そのため無鉛半田を使用するに当たっては、より半田付け性の良好な半田合金および無鉛半田に適したフラックスの選定が求められているが、銅または銅合金表面の酸化防止のために使用される表面処理剤に対しても、無鉛半田の濡れ性を改善し半田付け性を良好なものとする機能が求められている。
また、無鉛半田の多くは融点が高く、半田付け温度が従来の錫−鉛系共晶半田に比べて20〜50℃程高くなるため、当該表面処理剤に対しは、優れた耐熱性を有する化成被膜を形成させることも望まれている。
By the way, the conventional tin-lead eutectic solder is excellent in the wettability with respect to the joining base material, especially copper surface, and since it joins firmly with respect to copper, high reliability is acquired.
In contrast, lead-free solder is inferior in wettability to the copper surface compared to conventional tin-lead solder, so solderability is poor, bonding defects such as voids occur, and bonding strength is low Met.
Therefore, when using lead-free solder, selection of a solder alloy with better solderability and a flux suitable for lead-free solder is required, but surface treatment used to prevent oxidation of copper or copper alloy surfaces Also for the agent, a function of improving the wettability of the lead-free solder and improving the solderability is required.
In addition, many lead-free solders have a high melting point, and the soldering temperature is about 20 to 50 ° C. higher than that of conventional tin-lead eutectic solders. Therefore, the surface treatment agent has excellent heat resistance. It is also desired to form a conversion coating.

このような表面処理剤の有効成分として、種々のイミダゾール化合物が提案されている。例えば、特許文献1には、2−ウンデシルイミダゾールの如き2−アルキルイミダゾール化合物が、特許文献2には、2−フェニルイミダゾールや2−フェニル−4−メチルイミダゾールの如き2−アリールイミダゾール化合物が、特許文献3には、2−ノニルベンズイミダゾールの如き2−アルキルベンズイミダゾール化合物が、特許文献4には、2−(4−クロロフェニルメチル)ベンズイミダゾールの如き2−アラルキルベンズイミダゾール化合物が開示されている。   Various imidazole compounds have been proposed as active ingredients of such surface treatment agents. For example, Patent Document 1 includes 2-alkylimidazole compounds such as 2-undecylimidazole, and Patent Document 2 includes 2-arylimidazole compounds such as 2-phenylimidazole and 2-phenyl-4-methylimidazole. Patent Document 3 discloses a 2-alkylbenzimidazole compound such as 2-nonylbenzimidazole, and Patent Document 4 discloses a 2-aralkylbenzimidazole compound such as 2- (4-chlorophenylmethyl) benzimidazole. .

しかしながら、これらのイミダゾール化合物を含有する表面処理剤を使用した場合には、銅表面に形成される化成被膜の耐熱性が未だ満足すべきものではなかった。また、半田付けを行う際にも、半田の濡れ性が不十分であり、良好な半田付け性を得ることができない。特に共晶半田に代えて、無鉛半田を使用して半田付けを行う場合には、前記の表面処理剤は実用に供し難いものであった。   However, when the surface treatment agent containing these imidazole compounds is used, the heat resistance of the chemical conversion film formed on the copper surface has not yet been satisfactory. Also, when soldering, the solder wettability is insufficient, and good solderability cannot be obtained. In particular, in the case where soldering is performed using lead-free solder instead of eutectic solder, the surface treatment agent is difficult to be practically used.

特公昭46−17046号公報Japanese Patent Publication No.46-17046 特開平4−206681号公報JP-A-4-206681 特開平5−25407号公報Japanese Patent Laid-Open No. 5-25407 特開平5−186888号公報Japanese Patent Laid-Open No. 5-186888

本発明は斯かる事情に鑑みてなされたものであって、共晶半田または無鉛半田を使用して電子部品等をプリント配線板に接合する際に、プリント配線板の回路部等を構成する銅または銅合金の表面に耐熱性に優れた化成被膜を形成させ、且つ半田との濡れ性が向上し、半田付け性を良好なものとする表面処理剤および表面処理方法を提供することを目的とする。
また、前記の表面処理剤を銅回路部を構成する銅または銅合金の表面に接触させたプリント配線板および、銅または銅合金の表面を前記の表面処理剤で接触させた後に、共晶半田または無鉛半田を使用して半田付けを行う半田付け方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and copper that constitutes a circuit portion or the like of a printed wiring board when an electronic component or the like is joined to the printed wiring board using eutectic solder or lead-free solder. Another object is to provide a surface treatment agent and a surface treatment method for forming a chemical conversion film having excellent heat resistance on the surface of a copper alloy, improving wettability with solder, and improving solderability. To do.
Further, the printed wiring board in which the surface treatment agent is brought into contact with the surface of copper or copper alloy constituting the copper circuit portion, and the surface of copper or copper alloy in contact with the surface treatment agent, then eutectic solder Another object is to provide a soldering method for performing soldering using lead-free solder.

本発明者らは、前記の課題を解決するために鋭意検討を重ねた結果、化1の一般式で示される2−フェニル−4−ナフチルイミダゾール化合物を有効成分として含有する表面処理剤によって、銅回路部を有するプリント配線板を処理することにより、銅回路部の表面に耐熱性に優れた、即ち共晶半田および無鉛半田の半田付け温度に耐え得る化成被膜を形成させることができ、且つ共晶半田または無鉛半田を使用して半田付けを行うに際して、銅または銅合金の表面に対する半田の濡れ性を向上させることにより、良好な半田付け性が得られることを認め本発明を完成するに至ったものである。 As a result of intensive studies in order to solve the above problems, the present inventors have obtained a surface treatment agent containing a 2-phenyl-4-naphthylimidazole compound represented by the general formula of Chemical Formula 1 as an active ingredient, By treating the printed wiring board having a copper circuit portion, a chemical conversion film having excellent heat resistance, that is, capable of withstanding the soldering temperature of eutectic solder and lead-free solder, can be formed on the surface of the copper circuit portion, and When soldering using eutectic solder or lead-free solder, it is recognized that good solderability can be obtained by improving the wettability of the solder to the surface of copper or copper alloy. It has come.

Figure 0004694251
(式中、Rは水素原子又はメチル基を表す。)
Figure 0004694251
(In the formula, R represents a hydrogen atom or a methyl group.)

本発明の表面処理剤は、プリント配線板の回路部等を構成する銅または銅合金の表面に、耐熱性に優れた化成被膜を形成させることができると共に、該表面に対する共晶半田および無鉛半田の濡れ性を飛躍的に向上させ、半田付け性を良好なものとすることができる。
また、本発明の半田付け方法は、有害金属である鉛を含まない半田の使用を可能とするので、環境保護の観点において有用なものである。
The surface treatment agent of the present invention can form a chemical conversion film having excellent heat resistance on the surface of copper or copper alloy constituting the circuit portion or the like of a printed wiring board, and eutectic solder and lead-free solder on the surface. Can be improved drastically and solderability can be improved.
In addition, the soldering method of the present invention is useful from the viewpoint of environmental protection because it enables the use of solder that does not contain lead, which is a harmful metal.

以下、本発明について詳細に説明する。
本発明の実施に適する化1の一般式で示される2−フェニル−4−ナフチルイミダゾール化合物は、
2−フェニル−4−(1−ナフチル)イミダゾール、
2−フェニル−4−(2−ナフチル)イミダゾール、
2−フェニル−4−(1−ナフチル)−5−メチルイミダゾール及び、
2−フェニル−4−(2−ナフチル)−5−メチルイミダゾールである。
Hereinafter, the present invention will be described in detail.
A 2-phenyl-4-naphthylimidazole compound represented by the general formula of Formula 1 suitable for the practice of the present invention is:
2-phenyl-4- (1-naphthyl) imidazole,
2-phenyl-4- (2-naphthyl) imidazole,
2-phenyl-4- (1-naphthyl) -5-methylimidazole and
2-phenyl-4- (2-naphthyl) -5-methylimidazole.

これらイミダゾール化合物は、表面処理剤中に、0.01〜10重量%の割合、好ましくは0.1〜5重量%の割合で含有される。イミダゾール化合物の含有割合が0.01重量%より少ないと、銅表面に形成される化成被膜の膜厚が薄くなり、銅表面の酸化を防止することができない。また、10重量%より多い場合には表面処理剤中のイミダゾール化合物が溶け残り、均一な水溶液とすることができない。   These imidazole compounds are contained in the surface treatment agent in a proportion of 0.01 to 10% by weight, preferably in a proportion of 0.1 to 5% by weight. When the content ratio of the imidazole compound is less than 0.01% by weight, the film thickness of the chemical conversion film formed on the copper surface becomes thin, and oxidation of the copper surface cannot be prevented. On the other hand, when the amount is more than 10% by weight, the imidazole compound in the surface treatment agent remains undissolved and a uniform aqueous solution cannot be obtained.

本発明の実施において、イミダゾール化合物を水溶液化するに当たっては、酸として有機酸または無機酸を使用するが、少量の有機溶媒を併用しても良い。この際に使用される代表的な有機酸としては、ギ酸、酢酸、プロピオン酸、酪酸、グリオキシル酸、ピルビン酸、アセト酢酸、レブリン酸、ヘプタン酸、カプリル酸、カプリン酸、ラウリル酸、グリコール酸、グリセリン酸、乳酸、アクリル酸、メトキシ酢酸、エトキシ酢酸、プロポキシ酢酸、ブトキシ酢酸、2−(2−メトキシエトキシ)酢酸、2−[2−(2−エトキシエトキシ)エトキシ]酢酸、2−{2−[2−(2−エトキシエトキシ)エトキシ]エトキシ}酢酸、メトキシプロピオン酸、エトキシプロピオン酸、プロポキシプロピオン酸、ブトキシプロピオン酸、安息香酸、パラニトロ安息香酸、パラトルエンスルホン酸、サリチル酸、ピクリン酸、シュウ酸、コハク酸、マレイン酸、フマール酸、酒石酸、アジピン酸等が挙げられ、無機酸としては、塩酸、リン酸、硫酸、硝酸等が挙げられる。これらの酸は、水溶液に対し0.1〜50重量%の割合、好ましくは1〜30重量%の割合で添加すれば良い。   In practicing the present invention, an organic acid or an inorganic acid is used as an acid for making an imidazole compound into an aqueous solution, but a small amount of an organic solvent may be used in combination. Typical organic acids used in this case include formic acid, acetic acid, propionic acid, butyric acid, glyoxylic acid, pyruvic acid, acetoacetic acid, levulinic acid, heptanoic acid, caprylic acid, capric acid, lauric acid, glycolic acid, Glyceric acid, lactic acid, acrylic acid, methoxyacetic acid, ethoxyacetic acid, propoxyacetic acid, butoxyacetic acid, 2- (2-methoxyethoxy) acetic acid, 2- [2- (2-ethoxyethoxy) ethoxy] acetic acid, 2- {2- [2- (2-Ethoxyethoxy) ethoxy] ethoxy} acetic acid, methoxypropionic acid, ethoxypropionic acid, propoxypropionic acid, butoxypropionic acid, benzoic acid, paranitrobenzoic acid, paratoluenesulfonic acid, salicylic acid, picric acid, oxalic acid Succinic acid, maleic acid, fumaric acid, tartaric acid, adipic acid, etc. It is, as the inorganic acid, hydrochloric acid, phosphoric acid, sulfuric acid, and nitric acid. These acids may be added in a proportion of 0.1 to 50% by weight, preferably 1 to 30% by weight, based on the aqueous solution.

また、有機溶媒としては、メタノール、エタノール、イソプロピルアルコールなどの低級アルコールあるいはアセトン、N,N−ジメチルホルムアミド、エチレングリコール等の水と自由に混和するものが適している。   As the organic solvent, those which are freely miscible with water such as lower alcohols such as methanol, ethanol and isopropyl alcohol or water such as acetone, N, N-dimethylformamide and ethylene glycol are suitable.

本発明の表面処理剤には、銅または銅合金の表面における化成被膜の形成速度を速めるために銅化合物を添加することができ、また形成された化成被膜の耐熱性を更に向上させるために亜鉛化合物を添加しても良い。
前記銅化合物の代表的なものとしては、酢酸銅、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、ヨウ化銅、水酸化銅、リン酸銅、硫酸銅、硝酸銅等であり、また前記亜鉛化合物の代表的なものとしては、酸化亜鉛、蟻酸亜鉛、酢酸亜鉛、蓚酸亜鉛、乳酸亜鉛、クエン酸亜鉛、硫酸亜鉛、硝酸亜鉛、リン酸亜鉛等が挙げられ、何れも表面処理剤に対して0.01〜10重量%の割合、好ましくは0.02〜5重量%の割合で添加すれば良い。
To the surface treatment agent of the present invention, a copper compound can be added in order to increase the rate of formation of the chemical conversion film on the surface of copper or copper alloy, and zinc can be added to further improve the heat resistance of the formed chemical conversion film. A compound may be added.
Representative examples of the copper compound include copper acetate, cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, copper iodide, copper hydroxide, copper phosphate, copper sulfate. Typical examples of the zinc compound include zinc oxide, zinc formate, zinc acetate, zinc oxalate, zinc lactate, zinc citrate, zinc sulfate, zinc nitrate, zinc phosphate and the like. Any of these may be added in a proportion of 0.01 to 10% by weight, preferably 0.02 to 5% by weight, based on the surface treatment agent.

これらの銅化合物や亜鉛化合物を用いる場合には、有機酸または無機酸の他に、アンモニアあるいはモノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類等の緩衝作用を有する物質を添加して溶液のpHを安定にすることが望ましい。   When these copper compounds and zinc compounds are used, in addition to organic or inorganic acids, substances having a buffering action such as ammonia or amines such as monoethanolamine, diethanolamine and triethanolamine are added to the solution. It is desirable to stabilize the pH.

本発明の表面処理剤には、化成被膜の形成速度および該被膜の耐熱性を更に向上させるために、ハロゲン化合物を0.001〜1重量%、好ましくは0.01〜0.1重量%の割合で添加することが望ましい。ハロゲン化合物としては、例えばフッ化ナトリウム、フッ化カリウム、フッ化アンモニウム、塩化ナトリム、塩化カリウム、塩化アンモニウム、臭化ナトリウム、臭化カリウム、臭化アンモニウム、ヨウ化ナトリム、ヨウ化カリウム、ヨウ化アンモニウム等が挙げられる。   The surface treatment agent of the present invention contains 0.001 to 1% by weight of a halogen compound, preferably 0.01 to 0.1% by weight, in order to further improve the formation rate of the conversion coating and the heat resistance of the coating. It is desirable to add in proportions. Examples of the halogen compound include sodium fluoride, potassium fluoride, ammonium fluoride, sodium chloride, potassium chloride, ammonium chloride, sodium bromide, potassium bromide, ammonium bromide, sodium iodide, potassium iodide, and ammonium iodide. Etc.

本発明の表面処理剤を用いて銅または銅合金の表面を処理する際の条件としては、表面処理剤の液温を10〜70℃、接触時間を1秒〜10分とすることが適当である。接触方法としては、浸漬、噴霧、塗布等の方法が挙げられる。   As conditions for treating the surface of copper or copper alloy using the surface treating agent of the present invention, it is appropriate that the liquid temperature of the surface treating agent is 10 to 70 ° C. and the contact time is 1 second to 10 minutes. is there. Examples of the contact method include dipping, spraying, and application methods.

また本発明の表面処理を行った後、化成被膜上に熱可塑性樹脂により二重構造を形成し、更に耐熱性を高めることも可能である。
即ち、銅または銅合金の表面上に化成被膜を生成させた後、ロジン、ロジンエステル等のロジン誘導体、テルペン樹脂、テルペンフェノール樹脂等のテルペン樹脂誘導体、芳香族炭化水素樹脂、脂肪族炭化水素樹脂等の炭化水素樹脂やこれらの混合物からなる耐熱性に優れた熱可塑性樹脂を、トルエン、酢酸エチル、イソプロピルアルコール等の溶媒に溶解し、ロールコーター等により化成被膜上に膜厚1〜30μmの厚みになるように均一に塗布して、化成被膜と熱可塑性樹脂の二重構造を形成させれば良い。
Moreover, after performing the surface treatment of this invention, it is also possible to form a double structure with a thermoplastic resin on a chemical conversion film, and to improve heat resistance further.
That is, after forming a chemical conversion film on the surface of copper or copper alloy, rosin derivatives such as rosin and rosin ester, terpene resin derivatives such as terpene resin and terpene phenol resin, aromatic hydrocarbon resin and aliphatic hydrocarbon resin A thermoplastic resin having excellent heat resistance, such as a hydrocarbon resin such as a mixture thereof, is dissolved in a solvent such as toluene, ethyl acetate, isopropyl alcohol, etc., and a thickness of 1 to 30 μm is formed on the chemical conversion film by a roll coater or the like. It may be applied uniformly so as to form a double structure of the chemical conversion film and the thermoplastic resin.

本発明の実施に適する半田としては、一般的に使用されている錫−鉛合金の共晶半田の他、Sn−Ag−Cu系、Sn−Ag−Bi系、Sn−Bi系、Sn−Ag−Bi−In系、Sn−Zn系、Sn−Cu系等の無鉛半田が挙げられる。   As solder suitable for the practice of the present invention, Sn-Ag-Cu-based, Sn-Ag-Bi-based, Sn-Bi-based, Sn-Ag in addition to commonly used eutectic solders of tin-lead alloys. Examples include lead-free solders such as -Bi-In, Sn-Zn, and Sn-Cu.

また本発明の半田付け方法は、加熱溶融した液体状の半田が入っている半田槽の上を、プリント配線板を流し、電子部品とプリント配線板の接合部に半田付けを行なうフロー法または、予めプリント配線板にペースト状のクリーム半田を回路パターンに合わせて印刷し、そこに電子部品を実装し、プリント配線板を加熱して半田を溶融させ、半田付けを行うリフロー法等に適応し得るものである。   In addition, the soldering method of the present invention is a flow method in which a printed wiring board is flowed over a solder bath containing heated and melted liquid solder, and soldering is performed on the joint between the electronic component and the printed wiring board, or It can be applied to the reflow method, etc., in which paste-like cream solder is printed on the printed wiring board according to the circuit pattern in advance, electronic components are mounted on the printed wiring board, the printed wiring board is heated to melt the solder, and soldering is performed. Is.

以下、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。
なお、実施例及び比較例で使用したイミダゾール化合物ならびに評価試験方法は次のとおりである。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these.
In addition, the imidazole compound used in the Example and the comparative example and the evaluation test method are as follows.

[イミダゾール化合物]
実施例1〜8及び参考例9〜14に使用したイミダゾール化合物を、参考例1〜8に示す。
〔参考例1〕
<2−(1−ナフチル)−4−フェニルイミダゾール>
2−アセトキシアセトフェノンと等モルの1−ナフトアルデヒドをイソプロピルアルコールに溶解させた溶液に、2.2倍モルの酢酸銅(II)一水和物を20倍モルの25%アンモニア水に溶解させた溶液を水冷下で少量ずつ加え、次いで60℃まで1時間、更に78℃まで3時間かけて昇温した。冷却後、析出物を濾取して水洗後乾燥して得られた暗緑色粉末状物をメタノールに懸濁させ、0.6倍モルの70%水硫化ナトリウムを加え1時間加熱還流後、冷却、黒色不溶物を濾去した。濾液を減圧乾固し、乾固物をクロロホルムに溶解し、水で洗浄後、クロロホルムを減圧留去し、得られた乾固物をアセトニトリルから再結晶して、乳白色粉末状の2−(1−ナフチル)−4−フェニルイミダゾールを得た。
[Imidazole compound]
The imidazole compounds used in Examples 1-8 and Reference Examples 9-14 are shown in Reference Examples 1-8.
[Reference Example 1]
<2- (1-naphthyl) -4-phenylimidazole>
In a solution of 2-acetoxyacetophenone and equimolar 1-naphthaldehyde dissolved in isopropyl alcohol, 2.2-fold mol of copper (II) acetate monohydrate was dissolved in 20-fold mol of 25% aqueous ammonia. The solution was added in small portions under water cooling, then heated to 60 ° C. for 1 hour and further to 78 ° C. over 3 hours. After cooling, the precipitate was collected by filtration, washed with water and dried. The resulting dark green powder was suspended in methanol, added with 0.6 times mole of 70% sodium hydrosulfide, heated to reflux for 1 hour, cooled. The black insoluble material was removed by filtration. The filtrate was dried under reduced pressure, the dried product was dissolved in chloroform, washed with water, chloroform was distilled off under reduced pressure, and the resulting dried product was recrystallized from acetonitrile to give milky white powder 2- (1 -Naphthyl) -4-phenylimidazole was obtained.

〔参考例2〕
<2−(2−ナフチル)−4−フェニルイミダゾール>
参考例1の1−ナフトアルデヒドを2−ナフトアルデヒドに代えて、参考例1の方法に準拠して合成した。
[Reference Example 2]
<2- (2-naphthyl) -4-phenylimidazole>
The 1-naphthaldehyde of Reference Example 1 was replaced with 2-naphthaldehyde and synthesized according to the method of Reference Example 1.

〔参考例3〕
<2−フェニル−4−(1−ナフチル)イミダゾール>
ベンズアミジン塩酸塩と等モルのソジウムメチラートをテトラヒドロフラン中で1時間加熱還流し、冷却後、等モルのω−ブロモ−1−アセトナフトンのテトラヒドロフラン溶液を30℃を超えないように滴下し、さらに等モルのソジウムメチラートを加えて1時間加熱還流した。溶媒を減圧留去後、残渣を水洗後、アセトニトリルより再結晶して、灰青色結晶の2−フェニル−4−(1−ナフチル)イミダゾールを得た。
[Reference Example 3]
<2-Phenyl-4- (1-naphthyl) imidazole>
Benzamidine hydrochloride and equimolar sodium methylate were heated to reflux in tetrahydrofuran for 1 hour, and after cooling, an equimolar solution of ω-bromo-1-acetonaphthone in tetrahydrofuran was added dropwise so as not to exceed 30 ° C. Mole of sodium methylate was added and heated to reflux for 1 hour. After distilling off the solvent under reduced pressure, the residue was washed with water and recrystallized from acetonitrile to obtain gray-blue crystals of 2-phenyl-4- (1-naphthyl) imidazole.

〔参考例4〕
<2−フェニル−4−(2−ナフチル)イミダゾール>
参考例3のω−ブロモ−1−アセトナフトンをω−ブロモ−2−アセトナフトンに代えて、参考例3の方法に準拠して合成した。
[Reference Example 4]
<2-Phenyl-4- (2-naphthyl) imidazole>
The ω-bromo-1-acetonaphthone of Reference Example 3 was synthesized according to the method of Reference Example 3 in place of ω-bromo-2-acetonaphthone.

〔参考例5〕
<2−(1−ナフチル)−4−フェニル−5−メチルイミダゾール>
1−フェニル−1,2−プロパンジオン、等モルの1−ナフトアルデヒド及び6倍モルの酢酸アンモニウムを、酢酸中で3時間加熱還流した。反応終了後、減圧濃縮物を大量の希アンモニア水に注ぎ、析出した固形物を濾取し水洗後乾燥して、褐色固形物を得た。この固体をメタノール次いでヘキサンで洗浄し、淡黄色粉末状の2−(1−ナフチル)−4−フェニル−5−メチルイミダゾールを得た。
[Reference Example 5]
<2- (1-naphthyl) -4-phenyl-5-methylimidazole>
1-phenyl-1,2-propanedione, equimolar 1-naphthaldehyde and 6-fold molar ammonium acetate were heated to reflux in acetic acid for 3 hours. After completion of the reaction, the vacuum concentrate was poured into a large amount of dilute aqueous ammonia, and the precipitated solid was collected by filtration, washed with water and dried to give a brown solid. This solid was washed with methanol and then with hexane to obtain 2- (1-naphthyl) -4-phenyl-5-methylimidazole as a pale yellow powder.

〔参考例6〕
<2−(2−ナフチル)−4−フェニル−5−メチルイミダゾール>
参考例5の1−ナフトアルデヒドを2−ナフトアルデヒドに代えて、参考例5の方法に準拠して合成した。
[Reference Example 6]
<2- (2-naphthyl) -4-phenyl-5-methylimidazole>
The 1-naphthaldehyde of Reference Example 5 was replaced with 2-naphthaldehyde and synthesized according to the method of Reference Example 5.

〔参考例7〕
<2−フェニル−4−(1−ナフチル)−5−メチルイミダゾール>
参考例3のω−ブロモ−1−アセトナフトンを2−ブロモ−1’−プロピオナフトンに代えて、参考例3の方法に準拠して合成した。
[Reference Example 7]
<2-Phenyl-4- (1-naphthyl) -5-methylimidazole>
The ω-bromo-1-acetonaphthone of Reference Example 3 was synthesized according to the method of Reference Example 3 in place of 2-bromo-1′-propionnaphthone.

〔参考例8〕
<2−フェニル−4−(2−ナフチル)−5−メチルイミダゾール>
参考例3のω−ブロモ−1−アセトナフトンを2−ブロモ−2’−プロピオナフトンに代えて、参考例3の方法に準拠して合成した。
[Reference Example 8]
<2-Phenyl-4- (2-naphthyl) -5-methylimidazole>
The ω-bromo-1-acetonaphthone of Reference Example 3 was synthesized according to the method of Reference Example 3 in place of 2-bromo-2′-propionnaphthone.

比較例に使用したイミダゾール化合物は、以下のとおりである。
・2−ウンデシルイミダゾール(四国化成工業社製、商品名「C11Z」)
・2−フェニルイミダゾール(四国化成工業社製、商品名「2PZ」)
・2−フェニル−4−メチルイミダゾール(四国化成工業社製、商品名「2P4MZ」)
・2−ノニルベンズイミダゾール(SIGMA-ALDRICH社製、試薬)
・2−(4−クロロフェニルメチル)ベンズイミダゾール(「Science of Synthesis,12,529(2002)」に記載の方法に準拠して合成した。)
The imidazole compounds used in the comparative examples are as follows.
・ 2-Undecylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name “C11Z”)
・ 2-Phenylimidazole (product name “2PZ”, manufactured by Shikoku Kasei Kogyo Co., Ltd.)
・ 2-Phenyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name “2P4MZ”)
・ 2-nonylbenzimidazole (manufactured by SIGMA-ALDRICH, reagent)
2- (4-Chlorophenylmethyl) benzimidazole (synthesized according to the method described in “Science of Synthesis, 12 , 529 (2002)”)

[半田上がり性の評価試験]
試験片として、内径0.80mmの銅スルホールを300穴有する120mm(縦)×150mm(横)×1.6mm(厚み)のガラスエポキシ樹脂製のプリント配線板を使用した。この試験片を脱脂、ソフトエッチング及び水洗を行った後、所定の液温に保持した表面処理剤に所定時間浸漬し、次いで水洗、乾燥して銅表面上に厚さ約0.10〜0.50μmの化成被膜を形成させた。
この表面処理を行った試験片について、赤外線リフロー装置(製品名:MULTI−PRO−306、ヴィトロニクス社製)を用いて、ピーク温度が240℃であるリフロー加熱を3回行い、次いで、フロー半田付け装置(コンベア速度:1.0m/分)を用いて半田付けを行った。
なお、使用した半田は、63錫-37鉛(重量%)の組成を有する錫−鉛系共晶半田(商品名:H63A、千住金属工業製)であり、半田付けに際して使用したフラックスはJS−64MSS(弘輝製)である。また、半田温度は240℃とした。
また、前記の表面処理を行った試験片について、錫−鉛系共晶半田の場合と同様にして無鉛半田を使用して半田付けを行った。なお、使用した半田は、96.5錫-3.0銀-0.5銅(重量%)の組成を有する無鉛半田(商品名:H705「エコソルダー」、千住金属工業製)であり、半田付けに際して使用したフラックスはJS−E−09(弘輝製)である。また、リフロー加熱のピーク温度は245℃であり、半田温度も245℃とした。
半田付けを行った試験片について、銅スルーホールの上部ランド部分まで半田が上がった(半田付けされた)スルーホール数を計測し、全スルーホール数(300穴)に対する割合(%)を算出した。
銅の表面に対して半田の濡れ性が大きい程、溶融した半田が銅スルーホール内を浸透し該スルーホールの上部ランド部分まで上がり易くなる。即ち、全スルーホール数に対する上部ランド部分まで半田が上がったスルーホール数の割合が大きい程、銅に対する半田濡れ性が優れ、半田付け性が良好なものと判定される。
[Evaluation test of solderability]
As a test piece, a printed wiring board made of glass epoxy resin of 120 mm (vertical) × 150 mm (horizontal) × 1.6 mm (thickness) having 300 copper through holes with an inner diameter of 0.80 mm was used. The test piece was degreased, soft-etched and washed with water, then immersed in a surface treatment agent maintained at a predetermined liquid temperature for a predetermined time, then washed with water and dried to a thickness of about 0.10 to 0.00 on the copper surface. A 50 μm conversion coating was formed.
About the test piece which performed this surface treatment, the reflow heating whose peak temperature is 240 degreeC was performed 3 times using the infrared reflow apparatus (product name: MULTI-PRO-306, Vitronics company make), then, flow solder Soldering was performed using an attaching device (conveyor speed: 1.0 m / min).
The solder used was tin-lead eutectic solder (trade name: H63A, manufactured by Senju Metal Industry Co., Ltd.) having a composition of 63 tin-37 lead (weight%), and the flux used for soldering was JS- 64MSS (manufactured by Hiroki). The solder temperature was 240 ° C.
Further, the test piece subjected to the surface treatment was soldered using lead-free solder in the same manner as in the case of tin-lead eutectic solder. The solder used is a lead-free solder (trade name: H705 “Eco Solder”, manufactured by Senju Metal Industry Co., Ltd.) having a composition of 96.5 tin-3.0 silver-0.5 copper (% by weight). The flux used for attaching is JS-E-09 (manufactured by Hiroki). The peak temperature of reflow heating was 245 ° C., and the solder temperature was 245 ° C.
For the soldered test piece, the number of through holes in which the solder went up to the upper land portion of the copper through hole (soldered) was measured, and the ratio (%) to the total number of through holes (300 holes) was calculated. .
The higher the solder wettability with respect to the copper surface, the more easily the molten solder penetrates into the copper through hole and rises to the upper land portion of the through hole. That is, it is determined that the higher the ratio of the number of through holes in which the solder has reached the upper land portion with respect to the total number of through holes, the better the solder wettability with respect to copper and the better the solderability.

[半田広がり性の評価試験]
試験片として、50mm(縦)×50mm(横)×1.2mm(厚み)のガラスエポキシ樹脂製のプリント配線板(回路パターンとして、銅箔からなる導体幅0.80mm、長さ20mmの回路部を、1.0mmの間隔にて幅方向に10本形成させたもの)を使用した。この試験片を脱脂、ソフトエッチング及び水洗を行った後、所定の液温に保持した表面処理剤に所定時間浸漬し、次いで水洗、乾燥して銅表面上に厚さ約0.10〜0.50μmの化成被膜を形成させた。
この表面処理を行った試験片について、赤外線リフロー装置(製品名:MULTI−PRO−306、ヴィトロニクス社製)を用いて、ピーク温度が240℃であるリフロー加熱を1回行った。その後、開口径1.2mm、厚み150μmのメタルマスクを使用して銅回路部の中央に錫−鉛系クリーム半田を印刷し、前期条件でリフロー加熱を行い、半田付けを行った。なお、使用した錫−鉛系クリーム半田は63錫-37鉛(重量%)からなる組成の共晶半田(商品名:OZ−63−330F−40−10、千住金属工業製)である。
また、前記の表面処理を行った試験片について、錫−鉛系クリーム半田の場合と同様にして無鉛系クリーム半田を使用して半田付けを行った。なお、使用した無鉛系クリーム半田は、96.5錫-3.0銀-0.5銅(重量%)からなる組成の無鉛半田(商品名:M705−221BM5−42−11、千住金属工業製)である。また、クリーム半田の印刷前および印刷後に行うリフロー加熱は、ピーク温度が245℃になるように設定した。
得られた試験片について、銅回路部上に濡れ広がった半田の長さ(mm)を測定した。
この長さが大きい程、半田濡れ性が優れ、半田付け性が良好なものと判定される。
[Evaluation test of solder spreadability]
As a test piece, a printed wiring board made of glass epoxy resin of 50 mm (vertical) × 50 mm (horizontal) × 1.2 mm (thickness) (as a circuit pattern, a circuit part having a conductor width of 0.80 mm and a length of 20 mm made of copper foil) 10 were formed in the width direction at intervals of 1.0 mm). The test piece was degreased, soft-etched and washed with water, then immersed in a surface treatment agent maintained at a predetermined liquid temperature for a predetermined time, then washed with water and dried to a thickness of about 0.10 to 0.00 on the copper surface. A 50 μm conversion coating was formed.
About the test piece which performed this surface treatment, the reflow heating whose peak temperature is 240 degreeC was performed once using the infrared reflow apparatus (Product name: MULTI-PRO-306, Vitronics company make). After that, using a metal mask having an opening diameter of 1.2 mm and a thickness of 150 μm, tin-lead cream solder was printed at the center of the copper circuit portion, and reflow heating was performed under the previous conditions to perform soldering. The tin-lead cream solder used is a eutectic solder (trade name: OZ-63-330F-40-10, manufactured by Senju Metal Industry Co., Ltd.) composed of 63 tin-37 lead (% by weight).
Moreover, about the test piece which performed the said surface treatment, it soldered using the lead-free cream solder similarly to the case of a tin-lead cream solder. The lead-free cream solder used was a lead-free solder (commercial name: M705-221BM5-42-11, manufactured by Senju Metal Industry Co., Ltd.) composed of 96.5 tin-3.0 silver-0.5 copper (% by weight). ). The reflow heating performed before and after the cream solder printing was set so that the peak temperature was 245 ° C.
About the obtained test piece, the length (mm) of the solder which wet-spreaded on the copper circuit part was measured.
The larger this length, the better the solder wettability and the better the solderability.

参考例9
イミダゾール化合物として2−(1−ナフチル)−4−フェニルイミダゾール、酸として酢酸及びn−ヘプタン酸、金属塩として酢酸銅及び、ハロゲン化合物として塩化アンモニウムを、表1に記載した組成になるようにイオン交換水に溶解させた後、アンモニア水でpH3.1に調整して表面処理剤を調製した。
次いで、プリント配線板の試験片を40℃に温調した表面処理剤に60秒間浸漬したのち、水洗、乾燥し、半田上がり性及び半田広がり性を測定した。これらの試験結果は表1に示したとおりであった。
[ Reference Example 9 ]
2- (1-naphthyl) -4-phenylimidazole as the imidazole compound, acetic acid and n-heptanoic acid as the acid, copper acetate as the metal salt, and ammonium chloride as the halogen compound so that the composition described in Table 1 is obtained. After dissolving in exchange water, the surface treatment agent was prepared by adjusting to pH 3.1 with aqueous ammonia.
Next, the test piece of the printed wiring board was immersed in a surface treatment agent adjusted to 40 ° C. for 60 seconds, washed with water and dried, and the solder finish and solder spreadability were measured. These test results were as shown in Table 1.

実施例1〜8、参考例10〜14
参考例9と同様にして、表1記載のフェニルナフチルイミダゾール化合物、酸、金属塩およびハロゲン化合物を使用して、表1記載の組成を有する表面処理剤を調製し、表1に記載の処理条件にて表面処理を行った。得られた試験片について、半田上がり性及び半田広がり性を測定した。これらの試験結果は表1に示したとおりであった。
なお、酸として使用した2−(2−メトキシエトキシ)酢酸は、SIGMA-ALDRICH社製の試薬である。また、2−[2−(2−エトキシエトキシ)エトキシ]酢酸および2−{2−[2−(2−エトキシエトキシ)エトキシ]エトキシ}酢酸については、「油化学,32,118(1983)」に記載の合成方法に準拠して合成したものを使用した。
[ Examples 1-8, Reference Examples 10-14 ]
In the same manner as in Reference Example 9 , a surface treatment agent having the composition described in Table 1 was prepared using the phenylnaphthylimidazole compound, acid, metal salt and halogen compound described in Table 1, and the processing conditions described in Table 1 The surface treatment was performed. About the obtained test piece, solder rising property and solder spreading property were measured. These test results were as shown in Table 1.
In addition, 2- (2-methoxyethoxy) acetic acid used as an acid is a reagent manufactured by SIGMA-ALDRICH. Further, regarding 2- [2- (2-ethoxyethoxy) ethoxy] acetic acid and 2- {2- [2- (2-ethoxyethoxy) ethoxy] ethoxy} acetic acid, “Oil Chemical, 32 , 118 (1983)” Those synthesized in accordance with the synthesis method described in 1. were used.

〔比較例1〜7〕
参考例9と同様にして、表2記載のイミダゾール化合物、酸、金属塩およびハロゲン化合物を使用して、表2記載の組成を有する表面処理剤を調製し、表2に記載の処理条件にて表面処理を行った。得られた試験片について、半田上がり性及び半田広がり性を測定した。これらの試験結果は表2に示したとおりであった。
[Comparative Examples 1-7]
In the same manner as in Reference Example 9 , a surface treatment agent having the composition described in Table 2 was prepared using the imidazole compound, acid, metal salt and halogen compound described in Table 2, and the treatment conditions described in Table 2 were used. Surface treatment was performed. About the obtained test piece, solder rising property and solder spreading property were measured. These test results were as shown in Table 2.

Figure 0004694251
Figure 0004694251

Figure 0004694251
Figure 0004694251

表1および表2に示される試験結果によれば、銅の表面に本願発明の表面処理剤を接触させて化成被膜を形成し、共晶半田または無鉛半田を使用して、半田付けを行った場合の半田上がり性および半田広がり性は著しく向上し、共晶半田、無鉛半田共にそれらの半田濡れ性は飛躍的に改善されたものと認められる。

According to the test results shown in Tables 1 and 2, a chemical conversion film was formed by bringing the surface treatment agent of the present invention into contact with the copper surface, and soldering was performed using eutectic solder or lead-free solder. In this case, it is recognized that the solder wettability and the solder spreadability are remarkably improved, and the solder wettability of both eutectic solder and lead-free solder is remarkably improved.

Claims (4)

化1の一般式で示される2−フェニル−4−ナフチルイミダゾール化合物を有効成分として含有することを特徴とする無鉛半田付け用の銅または銅合金の表面処理剤。
Figure 0004694251
(式中、Rは水素原子又はメチル基を表す。)
A surface treatment agent for copper or copper alloy for lead-free soldering, comprising a 2-phenyl-4-naphthylimidazole compound represented by the general formula of Chemical Formula 1 as an active ingredient.
Figure 0004694251
(In the formula, R represents a hydrogen atom or a methyl group.)
銅または銅合金の表面に、請求項1記載の表面処理剤を接触させることを特徴とする無鉛半田付け用の銅または銅合金の表面処理方法。 A surface treatment method for copper or copper alloy for lead-free soldering, wherein the surface treatment agent according to claim 1 is brought into contact with the surface of copper or copper alloy. 銅回路部の銅または銅合金の表面に、請求項1記載の表面処理剤を接触させたことを特徴とするプリント配線板。   A printed wiring board, wherein the surface treatment agent according to claim 1 is brought into contact with the surface of copper or copper alloy of the copper circuit portion. 銅または銅合金の表面を、化1の一般式で示される2−フェニル−4−ナフチルイミダゾール化合物を有効成分として含有する表面処理剤で接触させた後に、無鉛半田を使用して半田付けを行うことを特徴とする半田付け方法。 After contacting the surface of copper or a copper alloy with a surface treatment agent containing a 2-phenyl-4-naphthylimidazole compound represented by the general formula of Chemical Formula 1 as an active ingredient , soldering is performed using a lead-free solder. A soldering method characterized by that.
JP2005128938A 2004-06-10 2005-04-27 Copper or copper alloy surface treatment agent for lead-free soldering and use thereof Expired - Fee Related JP4694251B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2005128938A JP4694251B2 (en) 2004-06-10 2005-04-27 Copper or copper alloy surface treatment agent for lead-free soldering and use thereof
EP05751220A EP1753728B1 (en) 2004-06-10 2005-06-08 Phenylnaphthylimidazoles for use on copper surfaces during soldering
BRPI0511916-2A BRPI0511916B1 (en) 2004-06-10 2005-06-08 Phenylnaphthylimidazoles for use on copper surfaces during welding
CN2005800191116A CN1964949B (en) 2004-06-10 2005-06-08 Phenylnaphthylimidazoles for use on copper surfaces during soldering
US11/629,179 US8183386B2 (en) 2004-06-10 2005-06-08 Phenylnaphthylimidazole compound and usage of the same
KR1020067025957A KR101074640B1 (en) 2004-06-10 2005-06-08 Phenylnaphthylimidazoles for use on copper surfaces during soldering
CN200910151813XA CN101624374B (en) 2004-06-10 2005-06-08 Phenylnaphthylimidazoles for use on copper surfaces during soldering
PCT/JP2005/010898 WO2005121101A1 (en) 2004-06-10 2005-06-08 Phenylnaphthylimidazoles for use on copper surfaces during soldering
MYPI20052614A MY149388A (en) 2004-06-10 2005-06-09 Phenylnaphthylimidazoles for use on copper surfaces during soldering
TW094119281A TWI431157B (en) 2004-06-10 2005-06-10 Phenylnaphthylimidazole compound and usage of the same
HK10104015.1A HK1138577A1 (en) 2004-06-10 2010-04-23 Phenylnaphthylimidazoles for use on copper surfaces during soldering
US13/449,006 US8378116B2 (en) 2004-06-10 2012-04-17 Phenylnaphthylimidazole compound and usage of the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004173150 2004-06-10
JP2004173150 2004-06-10
JP2005128938A JP4694251B2 (en) 2004-06-10 2005-04-27 Copper or copper alloy surface treatment agent for lead-free soldering and use thereof

Publications (2)

Publication Number Publication Date
JP2006022400A JP2006022400A (en) 2006-01-26
JP4694251B2 true JP4694251B2 (en) 2011-06-08

Family

ID=35795886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005128938A Expired - Fee Related JP4694251B2 (en) 2004-06-10 2005-04-27 Copper or copper alloy surface treatment agent for lead-free soldering and use thereof

Country Status (1)

Country Link
JP (1) JP4694251B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070221503A1 (en) * 2006-03-22 2007-09-27 Brian Larson Precoat composition for organic solderability preservative
GB0703172D0 (en) * 2007-02-19 2007-03-28 Pa Knowledge Ltd Printed circuit boards
JP2009057596A (en) * 2007-08-31 2009-03-19 Shikoku Chem Corp Sealing agent for gold-plated film, and its use
KR101574374B1 (en) 2008-08-18 2015-12-03 셈블란트 리미티드 Halo-hydrocarbon polymer coating
JP5301218B2 (en) * 2008-08-25 2013-09-25 四国化成工業株式会社 Surface treatment agent for copper or copper alloy and use thereof
JP2010090105A (en) * 2008-09-11 2010-04-22 Shikoku Chem Corp 2-benzyl-4-naphthylimidazole compound
JP5260357B2 (en) * 2008-09-17 2013-08-14 四国化成工業株式会社 2- (2,4-dichlorobenzyl) -4-phenyl-5-alkylimidazole compound
US8995146B2 (en) 2010-02-23 2015-03-31 Semblant Limited Electrical assembly and method
GB201621177D0 (en) 2016-12-13 2017-01-25 Semblant Ltd Protective coating
JP7053247B2 (en) * 2017-12-21 2022-04-12 東京応化工業株式会社 Surface treatment liquid, surface treatment method, and pattern collapse suppression method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04194856A (en) * 1990-09-05 1992-07-14 Konica Corp Processing method for silver halid color photosensitive material
JPH10280162A (en) * 1997-04-07 1998-10-20 Hideaki Yamaguchi Surface protective agent for printed wiring board and formation of surface protective film
JP2002515400A (en) * 1997-07-03 2002-05-28 ニューロジェン・コーポレーション Certain diarylimidazole derivatives; a new class of NPY-specific ligands
JP2005068530A (en) * 2003-08-28 2005-03-17 Tamura Kaken Co Ltd Surface-treating agent, printed circuit board, and method for surface-treating metal on printed circuit board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04194856A (en) * 1990-09-05 1992-07-14 Konica Corp Processing method for silver halid color photosensitive material
JPH10280162A (en) * 1997-04-07 1998-10-20 Hideaki Yamaguchi Surface protective agent for printed wiring board and formation of surface protective film
JP2002515400A (en) * 1997-07-03 2002-05-28 ニューロジェン・コーポレーション Certain diarylimidazole derivatives; a new class of NPY-specific ligands
JP2005068530A (en) * 2003-08-28 2005-03-17 Tamura Kaken Co Ltd Surface-treating agent, printed circuit board, and method for surface-treating metal on printed circuit board

Also Published As

Publication number Publication date
JP2006022400A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4694251B2 (en) Copper or copper alloy surface treatment agent for lead-free soldering and use thereof
JP4883996B2 (en) Water-soluble preflux and its use
JP5036216B2 (en) Metal surface treatment agent and use thereof
JP5615233B2 (en) Surface treatment agent for copper or copper alloy and use thereof
JP5615227B2 (en) Surface treatment agent for copper or copper alloy and use thereof
JP5313044B2 (en) Surface treatment agent for copper or copper alloy and use thereof
EP1753728B1 (en) Phenylnaphthylimidazoles for use on copper surfaces during soldering
JP4546163B2 (en) Copper or copper alloy surface treatment agent and soldering method
JP5301218B2 (en) Surface treatment agent for copper or copper alloy and use thereof
JP5321878B2 (en) Surface treatment agent for copper or copper alloy and use thereof
JP4287299B2 (en) Copper or copper alloy surface treatment agent and soldering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees