JP5301218B2 - Surface treatment agent for copper or copper alloy and use thereof - Google Patents

Surface treatment agent for copper or copper alloy and use thereof Download PDF

Info

Publication number
JP5301218B2
JP5301218B2 JP2008215733A JP2008215733A JP5301218B2 JP 5301218 B2 JP5301218 B2 JP 5301218B2 JP 2008215733 A JP2008215733 A JP 2008215733A JP 2008215733 A JP2008215733 A JP 2008215733A JP 5301218 B2 JP5301218 B2 JP 5301218B2
Authority
JP
Japan
Prior art keywords
copper
imidazole
solder
surface treatment
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008215733A
Other languages
Japanese (ja)
Other versions
JP2010047824A (en
Inventor
浩彦 平尾
範明 山地
孝行 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Original Assignee
Shikoku Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Chemicals Corp filed Critical Shikoku Chemicals Corp
Priority to JP2008215733A priority Critical patent/JP5301218B2/en
Priority to CN200980133513.7A priority patent/CN102131959B/en
Priority to KR1020117004587A priority patent/KR101540144B1/en
Priority to PCT/JP2009/065133 priority patent/WO2010024421A1/en
Priority to TW098128469A priority patent/TWI464299B/en
Publication of JP2010047824A publication Critical patent/JP2010047824A/en
Application granted granted Critical
Publication of JP5301218B2 publication Critical patent/JP5301218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/52Treatment of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/282Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/122Organic non-polymeric compounds, e.g. oil, wax, thiol
    • H05K2203/124Heterocyclic organic compounds, e.g. azole, furan

Abstract

An object is to provide a surface treating agent, which in mounting electronic parts or the like to a printed wiring board using a lead-free solder, forms a chemical layer having excellent heat resistance on the surface of copper or a copper alloy constituting a circuit part of a printed wiring board or the like and at the same time, improves the wettability to the solder and makes the solderability good, and a surface treatment method. Also, another object is to provide a printed wiring board resulting from bringing the surface of copper or a copper alloy constituting a copper circuit part into contact with the foregoing surface treating agent and to provide a soldering method by bringing the surface of copper or a copper alloy into contact with the foregoing surface treating agent and then performing soldering using a lead-free solder. A surface treating agent for copper or a copper alloy, which contains an imidazole compound represented by the formula (I): (I) wherein Ar1 and Ar2 are different and represent the following formula (II) or formula (III); R represents a hydrogen atom or an alkyl group: (II) (III) wherein X1 and X2 are the same or different and represent a hydrogen atom or a chlorine atom.

Description

本発明は、電子部品などをプリント配線板の銅または銅合金に半田付けする際に使用し得る表面処理剤及びその利用に関するものである。   The present invention relates to a surface treatment agent that can be used when soldering an electronic component or the like to copper or a copper alloy of a printed wiring board, and the use thereof.

近時プリント配線板の実装方法として、実装密度を向上させた表面実装が広く採用されている。このような表面実装方法は、チップ部品をクリーム半田で接合する両面表面実装、チップ部品のクリーム半田による表面実装とディスクリート部品のスルホール実装を組み合わせた混載実装等に分けられる。いずれの実装方法においても、プリント配線板は複数回の半田付けが行われるので、その度に高温に曝されて厳しい熱履歴を受ける。
その結果、プリント配線板の回路部を構成する銅または銅合金(以下、単に銅と云うことがある)の表面は、加熱されることにより酸化皮膜の形成が促進されるので、該回路部表面の半田付け性を良好に保つことができない。
Recently, surface mounting with improved mounting density has been widely adopted as a method for mounting printed wiring boards. Such surface mounting methods can be classified into double-sided surface mounting in which chip components are joined by cream solder, mixed mounting in which surface mounting by chip solder cream soldering and through-hole mounting of discrete components are combined. In any mounting method, since the printed wiring board is soldered a plurality of times, it is exposed to a high temperature each time and receives a severe thermal history.
As a result, the surface of the copper or copper alloy (hereinafter sometimes simply referred to as copper) constituting the circuit part of the printed wiring board is heated to promote the formation of an oxide film. It is not possible to maintain good solderability.

このようなプリント配線板の銅回路部を空気酸化から保護するために、表面処理剤を使用して該回路部表面に化成皮膜を形成させる処理が広く行われているが、銅回路部が複数回の熱履歴を受けた後も化成皮膜が変成(劣化)することなく銅回路部を保護し、これによって半田付け性を良好なものに保つことが要求されている。   In order to protect the copper circuit portion of such a printed wiring board from air oxidation, a treatment for forming a chemical conversion film on the surface of the circuit portion using a surface treatment agent is widely performed. It is required to protect the copper circuit portion without changing (deteriorating) the chemical film even after receiving the heat history of the times, thereby maintaining good solderability.

従来から電子部品をプリント配線板などに接合する際には、錫−鉛合金の共晶半田が広く使用されていたが、近年その半田合金中に含まれる鉛による人体への有害性が懸念され、鉛を含まない半田を使用することが求められている。
そのために種々の無鉛半田が検討されているが、例えば錫をベース金属として、銀、亜鉛、ビスマス、インジウム、アンチモンや銅などの金属を添加した無鉛半田が提案されている。
Conventionally, tin-lead alloy eutectic solder has been widely used for joining electronic components to printed wiring boards, etc., but in recent years there is concern about the harmfulness of the lead contained in the solder alloy to the human body. There is a need to use solder that does not contain lead.
For this purpose, various lead-free solders have been studied. For example, lead-free solders having a metal such as silver, zinc, bismuth, indium, antimony and copper as a base metal have been proposed.

ところで、従来の錫−鉛系共晶半田は、接合母材に使用される金属、特に銅の表面に対する濡れ性に優れ銅に対して強固に接合するので、銅部材間の接合性については高い信頼性が得られている。
これに対して、無鉛半田は従来の錫−鉛半田に比べると、銅の表面に対する濡れ性が劣っているので、半田付け性が悪く、ボイド発生などの接合不良が生じ、接合強度も低いものであった。
そのため無鉛半田を使用するに当たっては、より半田付け性の良好な半田合金および無鉛半田に適したフラックスの選定が求められているが、銅または銅合金表面の酸化防止のために使用される表面処理剤に対しても、無鉛半田の濡れ性を改善し半田付け性を良好なものとする機能が求められている。
また、無鉛半田の多くは融点が高く、半田付け温度が従来の錫−鉛系共晶半田に比べて20〜50℃程高くなるため、当該表面処理剤に対しては、優れた耐熱性を有する化成皮膜を形成させることも望まれている。
By the way, the conventional tin-lead eutectic solder has excellent wettability with respect to the metal used for the bonding base material, particularly copper, and is firmly bonded to copper, so that the bonding property between the copper members is high. Reliability is obtained.
In contrast, lead-free solder is inferior in wettability to the copper surface compared to conventional tin-lead solder, so solderability is poor, bonding defects such as voids occur, and bonding strength is low Met.
Therefore, when using lead-free solder, selection of a solder alloy with better solderability and a flux suitable for lead-free solder is required, but surface treatment used to prevent oxidation of copper or copper alloy surfaces Also for the agent, a function of improving the wettability of the lead-free solder and improving the solderability is required.
In addition, most lead-free solders have a high melting point, and the soldering temperature is about 20 to 50 ° C. higher than that of conventional tin-lead eutectic solder. Therefore, the surface treatment agent has excellent heat resistance. It is also desired to form a chemical conversion film.

このような表面処理剤の有効成分として、種々のイミダゾール化合物が提案されている。例えば、特許文献1には、2−ウンデシルイミダゾールの如き2−アルキルイミダゾール化合物が、特許文献2には、2−フェニルイミダゾールや2−フェニル−4−メチルイミダゾールの如き2−アリールイミダゾール化合物が、特許文献3には、2−ノニルベンズイミダゾールの如き2−アルキルベンズイミダゾール化合物が、特許文献4には、2−(4−クロロフェニルメチル)ベンズイミダゾールの如き2−アラルキルベンズイミダゾール化合物が、特許文献5には、2−(4−クロロフェニルメチル)イミダゾールや2−(2,4−ジクロロフェニルメチル)4,5−ジフェニルイミダゾールの如き2−アラルキルイミダゾール化合物が開示されている。   Various imidazole compounds have been proposed as active ingredients of such surface treatment agents. For example, Patent Document 1 includes 2-alkylimidazole compounds such as 2-undecylimidazole, and Patent Document 2 includes 2-arylimidazole compounds such as 2-phenylimidazole and 2-phenyl-4-methylimidazole. Patent Document 3 discloses a 2-alkylbenzimidazole compound such as 2-nonylbenzimidazole, and Patent Document 4 discloses a 2-aralkylbenzimidazole compound such as 2- (4-chlorophenylmethyl) benzimidazole. Discloses 2-aralkylimidazole compounds such as 2- (4-chlorophenylmethyl) imidazole and 2- (2,4-dichlorophenylmethyl) 4,5-diphenylimidazole.

しかしながら、これらのイミダゾール化合物を含有する表面処理剤を使用した場合には、銅表面に形成される化成皮膜の耐熱性が未だ満足すべきものではなかった。また、半田付けを行う際にも、半田の濡れ性が不十分であり、良好な半田付け性を得ることができない。特に共晶半田に代えて、無鉛半田を使用して半田付けを行う場合には、前記の表面処理剤は実用に供し難いものであった。   However, when the surface treatment agent containing these imidazole compounds is used, the heat resistance of the chemical conversion film formed on the copper surface has not yet been satisfactory. Also, when soldering, the solder wettability is insufficient, and good solderability cannot be obtained. In particular, in the case where soldering is performed using lead-free solder instead of eutectic solder, the surface treatment agent is difficult to be practically used.

特公昭46−17046号公報Japanese Patent Publication No.46-17046 特開平4−206681号公報JP-A-4-206681 特開平5−25407号公報Japanese Patent Laid-Open No. 5-25407 特開平5−186888号公報Japanese Patent Laid-Open No. 5-186888 特開平7−243054号公報Japanese Patent Laid-Open No. 7-243054

本発明は斯かる事情に鑑みてなされたものであって、無鉛半田を使用して電子部品等をプリント配線板に接合する際に、プリント配線板の回路部等を構成する銅または銅合金の表面に耐熱性に優れた化成皮膜を形成させ、且つ半田との濡れ性が向上し、半田付け性を良好なものとする表面処理剤および表面処理方法を提供することを目的とする。
また、前記の表面処理剤を回路部を構成する銅または銅合金の表面に接触させたプリント配線板および、銅または銅合金の表面を前記の表面処理剤で接触させた後に、無鉛半田を使用して半田付けを行う半田付け方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and when bonding electronic components or the like to a printed wiring board using lead-free solder, the copper or copper alloy of the circuit portion or the like of the printed wiring board is formed. An object of the present invention is to provide a surface treatment agent and a surface treatment method for forming a chemical conversion film having excellent heat resistance on the surface, improving wettability with solder, and improving solderability.
Also, a printed wiring board in which the surface treatment agent is brought into contact with the surface of copper or a copper alloy constituting the circuit part, and a lead-free solder is used after the surface of the copper or copper alloy is brought into contact with the surface treatment agent. An object of the present invention is to provide a soldering method for performing soldering.

本発明者らは、前記の課題を解決するために鋭意検討を重ねた結果、化1の一般式(I)で示されるイミダゾール化合物を含有する表面処理剤によって、銅回路部を有するプリント配線板を処理することにより、銅回路部の表面に耐熱性に優れた、即ち無鉛半田の半田付け温度に耐え得る化成皮膜を形成させることができ、且つ無鉛半田を使用して半田付けを行うに際して、銅または銅合金の表面に対する半田の濡れ性を向上させることにより、良好な半田付け性が得られることを認め本発明を完成するに至ったものである。
即ち、第1の発明は、一般式(I)で示されるイミダゾール化合物を含有することを特徴とする銅または銅合金の表面処理剤である。第2の発明は、銅または銅合金の表面に、第1の発明の表面処理剤を接触させることを特徴とする銅または銅合金の表面処理方法である。第3の発明は、銅回路部の銅または銅合金の表面に、第1の発明の表面処理剤を接触させたことを特徴とするプリント配線板である。第4の発明は、銅または銅合金の表面を、第1の発明の表面処理剤で接触させた後に無鉛半田を使用して半田付けを行うことを特徴とする半田付け方法である。
As a result of intensive studies in order to solve the above-mentioned problems, the present inventors have obtained a printed wiring board having a copper circuit portion by a surface treatment agent containing an imidazole compound represented by the general formula (I) of Chemical Formula 1 Can be formed on the surface of the copper circuit portion with excellent heat resistance, that is, a chemical conversion film that can withstand the soldering temperature of lead-free solder, and when soldering using lead-free solder, The present invention has been completed by recognizing that good solderability can be obtained by improving the wettability of solder to the surface of copper or copper alloy.
That is, the first invention is a copper or copper alloy surface treatment agent characterized by containing an imidazole compound represented by the general formula (I). 2nd invention is the surface treatment method of copper or copper alloy characterized by making the surface treating agent of 1st invention contact the surface of copper or copper alloy. 3rd invention is the printed wiring board characterized by making the surface treatment agent of 1st invention contact the surface of the copper or copper alloy of a copper circuit part. A fourth invention is a soldering method, wherein the surface of copper or a copper alloy is brought into contact with the surface treatment agent of the first invention, and then soldering is performed using lead-free solder.

Figure 0005301218
Figure 0005301218

本発明の表面処理剤は、プリント配線板の回路部等を構成する銅または銅合金の表面に、耐熱性に優れた化成皮膜を形成させることができると共に、該表面に対する無鉛半田の濡れ性を飛躍的に向上させ、半田付け性を良好なものとすることができる。
また、本発明の半田付け方法は、有害金属である鉛を含まない半田の使用を可能とするので、環境保護の観点において有用なものである。
The surface treatment agent of the present invention can form a chemical conversion film having excellent heat resistance on the surface of copper or copper alloy constituting the circuit portion of the printed wiring board, etc., and also has the wettability of lead-free solder on the surface. It is possible to dramatically improve the solderability.
In addition, the soldering method of the present invention is useful from the viewpoint of environmental protection because it enables the use of solder that does not contain lead, which is a harmful metal.

以下、本発明について詳細に説明する。
本発明の実施において使用するイミダゾール化合物は、化2の一般式(I)で示されるものであり、イミダゾール環の2位に塩素原子で置換されてもよいベンジル基が結合し、イミダゾール環の4位にナフチル基が結合したイミダゾール化合物、またはイミダゾール環の2位にナフチルメチル基が結合し、イミダゾール環の4位に塩素原子で置換されてもよいフェニル基が結合したイミダゾール化合物である。なお、前記のベンジル基またはフェニル基が塩素原子で置換されてもよい場合の塩素原子の数は、1つまたは2つであることが好ましい。
Hereinafter, the present invention will be described in detail.
The imidazole compound used in the practice of the present invention is represented by the general formula (I) of Chemical Formula 2, and a benzyl group which may be substituted with a chlorine atom is bonded to the 2-position of the imidazole ring, whereby 4 of the imidazole ring is bonded. An imidazole compound having a naphthyl group bonded to the position, or an imidazole compound having a naphthylmethyl group bonded to the 2-position of the imidazole ring and a phenyl group optionally substituted with a chlorine atom bonded to the 4-position of the imidazole ring. The number of chlorine atoms in the case where the benzyl group or phenyl group may be substituted with a chlorine atom is preferably 1 or 2.

Figure 0005301218
Figure 0005301218

前記一般式(I)におけるRは、水素原子またはアルキル基であるが、該アルキル基とは、炭素数が1〜8であって直鎖状または分岐状の飽和脂肪族基である。このようなアルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等が挙げられる。   R in the general formula (I) is a hydrogen atom or an alkyl group, and the alkyl group is a linear or branched saturated aliphatic group having 1 to 8 carbon atoms. Examples of such alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, etc. Is mentioned.

本願発明の実施において使用するイミダゾール化合物は、例えば、化3の反応スキームで示される合成法を採用することにより合成することができる。   The imidazole compound used in the practice of the present invention can be synthesized, for example, by employing the synthesis method shown in the reaction scheme of Chemical Formula 3.

Figure 0005301218
(但し、式中のAr、ArおよびRは前記と同様であり、Xは塩素原子、臭素原子または沃素原子を表す。)
Figure 0005301218
(However, Ar 1 , Ar 2 and R in the formula are the same as above, and X 3 represents a chlorine atom, a bromine atom or an iodine atom.)

本発明の実施において使用する一般式(I)で示されるイミダゾール化合物としては、Rが水素原子の場合を例示すると、
2−(1−ナフチルメチル)−4−フェニルイミダゾール、
4−(2−クロロフェニル)−2−(1−ナフチルメチル)イミダゾール、
4−(3−クロロフェニル)−2−(1−ナフチルメチル)イミダゾール、
4−(4−クロロフェニル)−2−(1−ナフチルメチル)イミダゾール、
4−(2,3−ジクロロフェニル)−2−(1−ナフチルメチル)イミダゾール、
4−(2,4−ジクロロフェニル)−2−(1−ナフチルメチル)イミダゾール、
4−(2,5−ジクロロフェニル)−2−(1−ナフチルメチル)イミダゾール、
4−(2,6−ジクロロフェニル)−2−(1−ナフチルメチル)イミダゾール、
4−(3,4−ジクロロフェニル)−2−(1−ナフチルメチル)イミダゾール、
4−(3,5−ジクロロフェニル)−2−(1−ナフチルメチル)イミダゾール、
2−(2−ナフチルメチル)−4−フェニルイミダゾール、
4−(2−クロロフェニル)−2−(2−ナフチルメチル)イミダゾール、
4−(3−クロロフェニル)−2−(2−ナフチルメチル)イミダゾール、
4−(4−クロロフェニル)−2−(2−ナフチルメチル)イミダゾール、
4−(2,3−ジクロロフェニル)−2−(2−ナフチルメチル)イミダゾール、
4−(2,4−ジクロロフェニル)−2−(2−ナフチルメチル)イミダゾール、
4−(2,5−ジクロロフェニル)−2−(2−ナフチルメチル)イミダゾール、
4−(2,6−ジクロロフェニル)−2−(2−ナフチルメチル)イミダゾール、
4−(3,4−ジクロロフェニル)−2−(2−ナフチルメチル)イミダゾール、
4−(3,5−ジクロロフェニル)−2−(2−ナフチルメチル)イミダゾール、
2−ベンジル−4−(1−ナフチル)イミダゾール、
2−(2−クロロベンジル)−4−(1−ナフチル)イミダゾール、
2−(3−クロロベンジル)−4−(1−ナフチル)イミダゾール、
2−(4−クロロベンジル)−4−(1−ナフチル)イミダゾール、
2−(2,3−ジクロロベンジル)−4−(1−ナフチル)イミダゾール、
2−(2,4−ジクロロベンジル)−4−(1−ナフチル)イミダゾール、
2−(2,5−ジクロロベンジル)−4−(1−ナフチル)イミダゾール、
2−(2,6−ジクロロベンジル)−4−(1−ナフチル)イミダゾール、
2−(3,4−ジクロロベンジル)−4−(1−ナフチル)イミダゾール、
2−(3,5−ジクロロベンジル)−4−(1−ナフチル)イミダゾール、
2−ベンジル−4−(2−ナフチル)イミダゾール、
2−(2−クロロベンジル)−4−(2−ナフチル)イミダゾール、
2−(3−クロロベンジル)−4−(2−ナフチル)イミダゾール、
2−(4−クロロベンジル)−4−(2−ナフチル)イミダゾール、
2−(2,3−ジクロロベンジル)−4−(2−ナフチル)イミダゾール、
2−(2,4−ジクロロベンジル)−4−(2−ナフチル)イミダゾール、
2−(2,5−ジクロロベンジル)−4−(2−ナフチル)イミダゾール、
2−(2,6−ジクロロベンジル)−4−(2−ナフチル)イミダゾール、
2−(3,4−ジクロロベンジル)−4−(2−ナフチル)イミダゾール、
2−(3,5−ジクロロベンジル)−4−(2−ナフチル)イミダゾール
が挙げられる。
As an imidazole compound represented by the general formula (I) used in the practice of the present invention, when R is a hydrogen atom,
2- (1-naphthylmethyl) -4-phenylimidazole,
4- (2-chlorophenyl) -2- (1-naphthylmethyl) imidazole,
4- (3-chlorophenyl) -2- (1-naphthylmethyl) imidazole,
4- (4-chlorophenyl) -2- (1-naphthylmethyl) imidazole,
4- (2,3-dichlorophenyl) -2- (1-naphthylmethyl) imidazole,
4- (2,4-dichlorophenyl) -2- (1-naphthylmethyl) imidazole,
4- (2,5-dichlorophenyl) -2- (1-naphthylmethyl) imidazole,
4- (2,6-dichlorophenyl) -2- (1-naphthylmethyl) imidazole,
4- (3,4-dichlorophenyl) -2- (1-naphthylmethyl) imidazole,
4- (3,5-dichlorophenyl) -2- (1-naphthylmethyl) imidazole,
2- (2-naphthylmethyl) -4-phenylimidazole,
4- (2-chlorophenyl) -2- (2-naphthylmethyl) imidazole,
4- (3-chlorophenyl) -2- (2-naphthylmethyl) imidazole,
4- (4-chlorophenyl) -2- (2-naphthylmethyl) imidazole,
4- (2,3-dichlorophenyl) -2- (2-naphthylmethyl) imidazole,
4- (2,4-dichlorophenyl) -2- (2-naphthylmethyl) imidazole,
4- (2,5-dichlorophenyl) -2- (2-naphthylmethyl) imidazole,
4- (2,6-dichlorophenyl) -2- (2-naphthylmethyl) imidazole,
4- (3,4-dichlorophenyl) -2- (2-naphthylmethyl) imidazole,
4- (3,5-dichlorophenyl) -2- (2-naphthylmethyl) imidazole,
2-benzyl-4- (1-naphthyl) imidazole,
2- (2-chlorobenzyl) -4- (1-naphthyl) imidazole,
2- (3-chlorobenzyl) -4- (1-naphthyl) imidazole,
2- (4-chlorobenzyl) -4- (1-naphthyl) imidazole,
2- (2,3-dichlorobenzyl) -4- (1-naphthyl) imidazole,
2- (2,4-dichlorobenzyl) -4- (1-naphthyl) imidazole,
2- (2,5-dichlorobenzyl) -4- (1-naphthyl) imidazole,
2- (2,6-dichlorobenzyl) -4- (1-naphthyl) imidazole,
2- (3,4-dichlorobenzyl) -4- (1-naphthyl) imidazole,
2- (3,5-dichlorobenzyl) -4- (1-naphthyl) imidazole,
2-benzyl-4- (2-naphthyl) imidazole,
2- (2-chlorobenzyl) -4- (2-naphthyl) imidazole,
2- (3-chlorobenzyl) -4- (2-naphthyl) imidazole,
2- (4-chlorobenzyl) -4- (2-naphthyl) imidazole,
2- (2,3-dichlorobenzyl) -4- (2-naphthyl) imidazole,
2- (2,4-dichlorobenzyl) -4- (2-naphthyl) imidazole,
2- (2,5-dichlorobenzyl) -4- (2-naphthyl) imidazole,
2- (2,6-dichlorobenzyl) -4- (2-naphthyl) imidazole,
2- (3,4-dichlorobenzyl) -4- (2-naphthyl) imidazole,
2- (3,5-dichlorobenzyl) -4- (2-naphthyl) imidazole is mentioned.

同様に、Rがメチル基の場合を例示すると、
5−メチル−2−(1−ナフチルメチル)−4−フェニルイミダゾール、
4−(2−クロロフェニル)−5−メチル−2−(1−ナフチルメチル)イミダゾール、
4−(3−クロロフェニル)−5−メチル−2−(1−ナフチルメチル)イミダゾール、
4−(4−クロロフェニル)−5−メチル−2−(1−ナフチルメチル)イミダゾール、
4−(2,3−ジクロロフェニル)−5−メチル−2−(1−ナフチルメチル)イミダゾール、
4−(2,4−ジクロロフェニル)−5−メチル−2−(1−ナフチルメチル)イミダゾール、
4−(2,5−ジクロロフェニル)−5−メチル−2−(1−ナフチルメチル)イミダゾール、
4−(2,6−ジクロロフェニル)−5−メチル−2−(1−ナフチルメチル)イミダゾール、
4−(3,4−ジクロロフェニル)−5−メチル−2−(1−ナフチルメチル)イミダゾール、
4−(3,5−ジクロロフェニル)−5−メチル−2−(1−ナフチルメチル)イミダゾール、
5−メチル−2−(2−ナフチルメチル)−4−フェニルイミダゾール、
4−(2−クロロフェニル)−5−メチル−2−(2−ナフチルメチル)イミダゾール、
4−(3−クロロフェニル)−5−メチル−2−(2−ナフチルメチル)イミダゾール、
4−(4−クロロフェニル)−5−メチル−2−(2−ナフチルメチル)イミダゾール、
4−(2,3−ジクロロフェニル)−5−メチル−2−(2−ナフチルメチル)イミダゾール、
4−(2,4−ジクロロフェニル)−5−メチル−2−(2−ナフチルメチル)イミダゾール、
4−(2,5−ジクロロフェニル)−5−メチル−2−(2−ナフチルメチル)イミダゾール、
4−(2,6−ジクロロフェニル)−5−メチル−2−(2−ナフチルメチル)イミダゾール、
4−(3,4−ジクロロフェニル)−5−メチル−2−(2−ナフチルメチル)イミダゾール、
4−(3,5−ジクロロフェニル)−5−メチル−2−(2−ナフチルメチル)イミダゾール、
2−ベンジル−5−メチル−4−(1−ナフチル)イミダゾール、
2−(2−クロロベンジル)−5−メチル−4−(1−ナフチル)イミダゾール、
2−(3−クロロベンジル)−5−メチル−4−(1−ナフチル)イミダゾール、
2−(4−クロロベンジル)−5−メチル−4−(1−ナフチル)イミダゾール、
2−(2,3−ジクロロベンジル)−5−メチル−4−(1−ナフチル)イミダゾール、
2−(2,4−ジクロロベンジル)−5−メチル−4−(1−ナフチル)イミダゾール、
2−(2,5−ジクロロベンジル)−5−メチル−4−(1−ナフチル)イミダゾール、
2−(2,6−ジクロロベンジル)−5−メチル−4−(1−ナフチル)イミダゾール、
2−(3,4−ジクロロベンジル)−5−メチル−4−(1−ナフチル)イミダゾール、
2−(3,5−ジクロロベンジル)−5−メチル−4−(1−ナフチル)イミダゾール、
2−ベンジル−5−メチル−4−(2−ナフチル)イミダゾール、
2−(2−クロロベンジル)−5−メチル−4−(2−ナフチル)イミダゾール、
2−(3−クロロベンジル)−5−メチル−4−(2−ナフチル)イミダゾール、
2−(4−クロロベンジル)−5−メチル−4−(2−ナフチル)イミダゾール、
2−(2,3−ジクロロベンジル)−5−メチル−4−(2−ナフチル)イミダゾール、
2−(2,4−ジクロロベンジル)−5−メチル−4−(2−ナフチル)イミダゾール、
2−(2,5−ジクロロベンジル)−5−メチル−4−(2−ナフチル)イミダゾール、
2−(2,6−ジクロロベンジル)−5−メチル−4−(2−ナフチル)イミダゾール、
2−(3,4−ジクロロベンジル)−5−メチル−4−(2−ナフチル)イミダゾール、
2−(3,5−ジクロロベンジル)−5−メチル−4−(2−ナフチル)イミダゾール
が挙げられる。
Similarly, when R is a methyl group,
5-methyl-2- (1-naphthylmethyl) -4-phenylimidazole,
4- (2-chlorophenyl) -5-methyl-2- (1-naphthylmethyl) imidazole,
4- (3-chlorophenyl) -5-methyl-2- (1-naphthylmethyl) imidazole,
4- (4-chlorophenyl) -5-methyl-2- (1-naphthylmethyl) imidazole,
4- (2,3-dichlorophenyl) -5-methyl-2- (1-naphthylmethyl) imidazole,
4- (2,4-dichlorophenyl) -5-methyl-2- (1-naphthylmethyl) imidazole,
4- (2,5-dichlorophenyl) -5-methyl-2- (1-naphthylmethyl) imidazole,
4- (2,6-dichlorophenyl) -5-methyl-2- (1-naphthylmethyl) imidazole,
4- (3,4-dichlorophenyl) -5-methyl-2- (1-naphthylmethyl) imidazole,
4- (3,5-dichlorophenyl) -5-methyl-2- (1-naphthylmethyl) imidazole,
5-methyl-2- (2-naphthylmethyl) -4-phenylimidazole,
4- (2-chlorophenyl) -5-methyl-2- (2-naphthylmethyl) imidazole,
4- (3-chlorophenyl) -5-methyl-2- (2-naphthylmethyl) imidazole,
4- (4-chlorophenyl) -5-methyl-2- (2-naphthylmethyl) imidazole,
4- (2,3-dichlorophenyl) -5-methyl-2- (2-naphthylmethyl) imidazole,
4- (2,4-dichlorophenyl) -5-methyl-2- (2-naphthylmethyl) imidazole,
4- (2,5-dichlorophenyl) -5-methyl-2- (2-naphthylmethyl) imidazole,
4- (2,6-dichlorophenyl) -5-methyl-2- (2-naphthylmethyl) imidazole,
4- (3,4-dichlorophenyl) -5-methyl-2- (2-naphthylmethyl) imidazole,
4- (3,5-dichlorophenyl) -5-methyl-2- (2-naphthylmethyl) imidazole,
2-benzyl-5-methyl-4- (1-naphthyl) imidazole,
2- (2-chlorobenzyl) -5-methyl-4- (1-naphthyl) imidazole,
2- (3-chlorobenzyl) -5-methyl-4- (1-naphthyl) imidazole,
2- (4-chlorobenzyl) -5-methyl-4- (1-naphthyl) imidazole,
2- (2,3-dichlorobenzyl) -5-methyl-4- (1-naphthyl) imidazole,
2- (2,4-dichlorobenzyl) -5-methyl-4- (1-naphthyl) imidazole,
2- (2,5-dichlorobenzyl) -5-methyl-4- (1-naphthyl) imidazole,
2- (2,6-dichlorobenzyl) -5-methyl-4- (1-naphthyl) imidazole,
2- (3,4-dichlorobenzyl) -5-methyl-4- (1-naphthyl) imidazole,
2- (3,5-dichlorobenzyl) -5-methyl-4- (1-naphthyl) imidazole,
2-benzyl-5-methyl-4- (2-naphthyl) imidazole,
2- (2-chlorobenzyl) -5-methyl-4- (2-naphthyl) imidazole,
2- (3-chlorobenzyl) -5-methyl-4- (2-naphthyl) imidazole,
2- (4-chlorobenzyl) -5-methyl-4- (2-naphthyl) imidazole,
2- (2,3-dichlorobenzyl) -5-methyl-4- (2-naphthyl) imidazole,
2- (2,4-dichlorobenzyl) -5-methyl-4- (2-naphthyl) imidazole,
2- (2,5-dichlorobenzyl) -5-methyl-4- (2-naphthyl) imidazole,
2- (2,6-dichlorobenzyl) -5-methyl-4- (2-naphthyl) imidazole,
2- (3,4-dichlorobenzyl) -5-methyl-4- (2-naphthyl) imidazole,
2- (3,5-dichlorobenzyl) -5-methyl-4- (2-naphthyl) imidazole.

これらのイミダゾール化合物は、水に溶解させて調製した表面処理剤の有効成分として使用される。これらのイミダゾール化合物は表面処理剤中に、0.01〜10重量%の割合、好ましくは0.1〜5重量%の割合で含有される。イミダゾール化合物の含有割合が0.01重量%より少ないと、銅表面に形成される化成皮膜の膜厚が薄くなり、銅表面の酸化を十分に防止することができない。また、10重量%より多い場合には表面処理剤中にイミダゾール化合物が溶け残ったり、あるいは完溶したとしても再析出する虞があり好ましくない。
なお、本願発明の実施においては、一般式(I)で示されるイミダゾール化合物のうち、適宜の1種類のみを使用する他、種類の異なるイミダゾール化合物を組み合わせて使用することも可能である。
These imidazole compounds are used as an active ingredient of a surface treatment agent prepared by dissolving in water. These imidazole compounds are contained in the surface treatment agent in a proportion of 0.01 to 10% by weight, preferably in a proportion of 0.1 to 5% by weight. When the content ratio of the imidazole compound is less than 0.01% by weight, the film thickness of the chemical conversion film formed on the copper surface becomes thin, and oxidation of the copper surface cannot be sufficiently prevented. On the other hand, when the amount is more than 10% by weight, the imidazole compound remains undissolved in the surface treatment agent or may be re-precipitated even if it is completely dissolved.
In the practice of the present invention, in addition to using only one appropriate imidazole compound represented by the general formula (I), it is possible to use a combination of different imidazole compounds.

本発明の実施において、イミダゾール化合物を水に溶解(水溶液化)するに当たっては、一般的には、酸として有機酸または無機酸を使用するが、少量の有機溶媒を併用しても良い。この際に使用される代表的な有機酸としては、ギ酸、酢酸、プロピオン酸、酪酸、グリオキシル酸、ピルビン酸、アセト酢酸、レブリン酸、ヘプタン酸、カプリル酸、カプリン酸、ラウリン酸、グリコール酸、グリセリン酸、乳酸、アクリル酸、メトキシ酢酸、エトキシ酢酸、プロポキシ酢酸、ブトキシ酢酸、2−(2−メトキシエトキシ)酢酸、2−[2−(2−エトキシエトキシ)エトキシ]酢酸、2−{2−[2−(2−エトキシエトキシ)エトキシ]エトキシ}酢酸、3−メトキシプロピオン酸、3−エトキシプロピオン酸、3−プロポキシプロピオン酸、3−ブトキシプロピオン酸、安息香酸、パラニトロ安息香酸、パラトルエンスルホン酸、サリチル酸、ピクリン酸、シュウ酸、コハク酸、マレイン酸、フマール酸、酒石酸、アジピン酸等が挙げられ、無機酸としては、塩酸、リン酸、硫酸、硝酸等が挙げられる。これらの酸は、表面処理剤中に0.1〜50重量%の割合、好ましくは1〜30重量%の割合で含有される。   In the practice of the present invention, an organic acid or an inorganic acid is generally used as an acid for dissolving (making an aqueous solution) an imidazole compound in water, but a small amount of an organic solvent may be used in combination. Typical organic acids used in this case include formic acid, acetic acid, propionic acid, butyric acid, glyoxylic acid, pyruvic acid, acetoacetic acid, levulinic acid, heptanoic acid, caprylic acid, capric acid, lauric acid, glycolic acid, Glyceric acid, lactic acid, acrylic acid, methoxyacetic acid, ethoxyacetic acid, propoxyacetic acid, butoxyacetic acid, 2- (2-methoxyethoxy) acetic acid, 2- [2- (2-ethoxyethoxy) ethoxy] acetic acid, 2- {2- [2- (2-Ethoxyethoxy) ethoxy] ethoxy} acetic acid, 3-methoxypropionic acid, 3-ethoxypropionic acid, 3-propoxypropionic acid, 3-butoxypropionic acid, benzoic acid, paranitrobenzoic acid, paratoluenesulfonic acid , Salicylic acid, picric acid, oxalic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, Such as pin acid. Examples of the inorganic acids, hydrochloric acid, phosphoric acid, sulfuric acid, and nitric acid. These acids are contained in the surface treatment agent in a proportion of 0.1 to 50% by weight, preferably 1 to 30% by weight.

また、有機溶媒としては、メタノール、エタノール、イソプロピルアルコールなどの低級アルコールあるいはアセトン、N,N−ジメチルホルムアミド、エチレングリコール等の水と自由に混和するものが適している。   As the organic solvent, those which are freely miscible with water such as lower alcohols such as methanol, ethanol and isopropyl alcohol or water such as acetone, N, N-dimethylformamide and ethylene glycol are suitable.

本発明の表面処理剤には、銅または銅合金の表面における化成皮膜の形成速度を速めるために銅化合物を添加することができ、また形成された化成皮膜の耐熱性を更に向上させるために亜鉛化合物を添加しても良い。
前記銅化合物の代表的なものとしては、酢酸銅、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、ヨウ化銅、水酸化銅、リン酸銅、硫酸銅、硝酸銅等であり、また前記亜鉛化合物の代表的なものとしては、酸化亜鉛、蟻酸亜鉛、酢酸亜鉛、蓚酸亜鉛、乳酸亜鉛、クエン酸亜鉛、硫酸亜鉛、硝酸亜鉛、リン酸亜鉛等が挙げられ、何れも表面処理剤中に0.01〜10重量%の割合、好ましくは0.02〜5重量%の割合で含有させれば良い。
A copper compound can be added to the surface treatment agent of the present invention in order to increase the formation rate of the chemical conversion film on the surface of copper or copper alloy, and zinc can be added to further improve the heat resistance of the formed chemical conversion film. A compound may be added.
Representative examples of the copper compound include copper acetate, cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, copper iodide, copper hydroxide, copper phosphate, copper sulfate. Typical examples of the zinc compound include zinc oxide, zinc formate, zinc acetate, zinc oxalate, zinc lactate, zinc citrate, zinc sulfate, zinc nitrate, zinc phosphate and the like. In any case, the surface treatment agent may contain 0.01 to 10% by weight, preferably 0.02 to 5% by weight.

これらの銅化合物や亜鉛化合物を用いる場合には、有機酸または無機酸の他に、アンモニアあるいはモノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類等の緩衝作用を有する物質を添加して溶液のpHを安定にすることが好ましい。   When these copper compounds and zinc compounds are used, in addition to organic or inorganic acids, substances having a buffering action such as ammonia or amines such as monoethanolamine, diethanolamine and triethanolamine are added to the solution. It is preferable to stabilize the pH.

本発明の表面処理剤には、化成皮膜の形成速度および該皮膜の耐熱性を更に向上させるために、ハロゲン化合物を表面処理剤中に0.001〜1重量%、好ましくは0.01〜0.1重量%の含有割合となるように添加することができる。ハロゲン化合物としては、例えばフッ化ナトリウム、フッ化カリウム、フッ化アンモニウム、塩化ナトリム、塩化カリウム、塩化アンモニウム、臭化ナトリウム、臭化カリウム、臭化アンモニウム、ヨウ化ナトリム、ヨウ化カリウム、ヨウ化アンモニウム等が挙げられる。   In the surface treatment agent of the present invention, a halogen compound is added in an amount of 0.001 to 1% by weight, preferably 0.01 to 0% in the surface treatment agent in order to further improve the formation rate of the chemical conversion film and the heat resistance of the film. .1% by weight can be added. Examples of the halogen compound include sodium fluoride, potassium fluoride, ammonium fluoride, sodium chloride, potassium chloride, ammonium chloride, sodium bromide, potassium bromide, ammonium bromide, sodium iodide, potassium iodide, and ammonium iodide. Etc.

本発明の表面処理剤を用いて銅または銅合金の表面を処理する際の条件としては、表面処理剤の液温を10〜70℃、接触時間を1秒〜10分とすることが好ましい。接触方法としては、浸漬、噴霧、塗布等の方法が挙げられる。   As conditions for treating the surface of copper or a copper alloy using the surface treatment agent of the present invention, it is preferable that the liquid temperature of the surface treatment agent is 10 to 70 ° C. and the contact time is 1 second to 10 minutes. Examples of the contact method include dipping, spraying, and application methods.

また本発明の表面処理を行った後、化成皮膜上に熱可塑性樹脂により二重構造を形成し、更に耐熱性を高めることも可能である。
即ち、銅または銅合金の表面上に化成皮膜を生成させた後、ロジン、ロジンエステル等のロジン誘導体、テルペン樹脂、テルペンフェノール樹脂等のテルペン樹脂誘導体、芳香族炭化水素樹脂、脂肪族炭化水素樹脂等の炭化水素樹脂やこれらの混合物からなる耐熱性に優れた熱可塑性樹脂を、トルエン、酢酸エチル、イソプロピルアルコール等の溶媒に溶解し、ロールコーター等により化成皮膜上に膜厚1〜30μmの厚みになるように均一に塗布して、化成皮膜と熱可塑性樹脂の二重構造を形成させれば良い。
Moreover, after performing the surface treatment of this invention, it is also possible to form a double structure with a thermoplastic resin on a chemical conversion film, and to further improve heat resistance.
That is, after forming a chemical conversion film on the surface of copper or copper alloy, rosin derivatives such as rosin and rosin ester, terpene resin derivatives such as terpene resin and terpene phenol resin, aromatic hydrocarbon resin and aliphatic hydrocarbon resin A thermoplastic resin excellent in heat resistance composed of a hydrocarbon resin such as the above or a mixture thereof is dissolved in a solvent such as toluene, ethyl acetate, isopropyl alcohol, and the thickness of 1 to 30 μm on the chemical conversion film by a roll coater or the like. It is sufficient to apply uniformly to form a double structure of the chemical conversion film and the thermoplastic resin.

本発明の実施に適する無鉛半田としては、Sn−Ag−Cu系、Sn−Ag−Bi系、Sn−Bi系、Sn−Ag−Bi−In系、Sn−Zn系、Sn−Cu系等の無鉛半田が挙げられる。   Lead-free solders suitable for the practice of the present invention include Sn—Ag—Cu, Sn—Ag—Bi, Sn—Bi, Sn—Ag—Bi—In, Sn—Zn, Sn—Cu, etc. Lead-free solder is mentioned.

また本発明の半田付け方法は、加熱溶融した液体状の半田が入っている半田槽の上を、プリント配線板を流し、電子部品とプリント配線板の接合部に半田付けを行なうフロー法または、予めプリント配線板にペースト状のクリーム半田を回路パターンに合わせて印刷し、そこに電子部品を実装し、プリント配線板を加熱して半田を溶融させ、半田付けを行うリフロー法等に適応し得るものである。   In addition, the soldering method of the present invention is a flow method in which a printed wiring board is flowed over a solder bath containing heated and melted liquid solder, and soldering is performed on the joint between the electronic component and the printed wiring board, or It can be applied to the reflow method, etc., in which paste-like cream solder is printed on the printed wiring board according to the circuit pattern in advance, electronic components are mounted on the printed wiring board, the printed wiring board is heated to melt the solder, and soldering is performed. Is.

以下、本発明を実施例および比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。
なお、実施例および比較例で使用したイミダゾール化合物ならびに評価試験方法は次のとおりである。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these.
In addition, the imidazole compounds and evaluation test methods used in Examples and Comparative Examples are as follows.

[イミダゾール化合物]
実施例に使用したイミダゾール化合物は以下のとおりであり、合成例を参考例1〜6に示す。
・2−(1−ナフチルメチル)−4−フェニルイミダゾール(「IMZ−A」と略記する)
・4−(3,4−ジクロロフェニル)−5−メチル−2−(1−ナフチルメチル)イミダゾール(「IMZ−B」と略記する)
・2−(2−ナフチルメチル)−4−フェニルイミダゾール(「IMZ−C」と略記する)
・2−(4−クロロベンジル)−4−(1−ナフチル)イミダゾール(「IMZ−D」と略記する)
・2−ベンジル−4−(2−ナフチル)イミダゾール(「IMZ−E」と略記する)
・2−ベンジル−5−メチル−4−(2−ナフチル)イミダゾール(「IMZ−F」と略記する)
[Imidazole compound]
The imidazole compounds used in the examples are as follows, and synthesis examples are shown in Reference Examples 1 to 6.
2- (1-naphthylmethyl) -4-phenylimidazole (abbreviated as “IMZ-A”)
4- (3,4-dichlorophenyl) -5-methyl-2- (1-naphthylmethyl) imidazole (abbreviated as “IMZ-B”)
2- (2-naphthylmethyl) -4-phenylimidazole (abbreviated as “IMZ-C”)
2- (4-chlorobenzyl) -4- (1-naphthyl) imidazole (abbreviated as “IMZ-D”)
2-Benzyl-4- (2-naphthyl) imidazole (abbreviated as “IMZ-E”)
2-Benzyl-5-methyl-4- (2-naphthyl) imidazole (abbreviated as “IMZ-F”)

〔参考例1〕
<IMZ−Aの合成>
1−ナフチルアセトアミジン塩酸塩33.7g(0.15mol)、炭酸カリウム53g(0.38mol)及びN,N−ジメチルホルムアミド180mlからなる懸濁液を50℃にて30分撹拌後、同温度にて、2−ブロモアセトフェノン30.0g(0.15mol)を少しずつ加え、さらに同温度で3時間撹拌した。次いで、反応懸濁液を水600mlに注ぎ加え、トルエンで抽出(100ml×2回)し、トルエン層を水で洗浄した後、減圧下に濃縮し、析出した結晶をろ取、少量のトルエンで洗浄後乾燥して暗桃色粉末を得た。該結晶をアセトニトリルより再結晶して、微桃色粉末の2−(1−ナフチルメチル)−4−フェニルイミダゾール19.3g(0.068mol、収率45%)を得た。
[Reference Example 1]
<Synthesis of IMZ-A>
A suspension consisting of 33.7 g (0.15 mol) of 1-naphthylacetamidine hydrochloride, 53 g (0.38 mol) of potassium carbonate and 180 ml of N, N-dimethylformamide was stirred at 50 ° C. for 30 minutes, and then at the same temperature. Then, 30.0 g (0.15 mol) of 2-bromoacetophenone was added little by little, and the mixture was further stirred at the same temperature for 3 hours. Next, the reaction suspension was poured into 600 ml of water, extracted with toluene (100 ml × 2 times), and the toluene layer was washed with water and then concentrated under reduced pressure. The precipitated crystals were collected by filtration and filtered with a small amount of toluene. After washing and drying, a dark pink powder was obtained. The crystals were recrystallized from acetonitrile to obtain 19.3 g (0.068 mol, yield 45%) of 2- (1-naphthylmethyl) -4-phenylimidazole as a slightly pink powder.

〔参考例2〕
<IMZ−Bの合成>
参考例1の2−ブロモアセトフェノンを2−ブロモ−3′,4′−ジクロロプロピオフェノンに代えて、参考例1の方法に準拠して4−(3,4−ジクロロフェニル)−5−メチル−2−(1−ナフチルメチル)イミダゾールを合成した。
[Reference Example 2]
<Synthesis of IMZ-B>
4- (3,4-Dichlorophenyl) -5-methyl- according to the method of Reference Example 1 except that 2-bromoacetophenone of Reference Example 1 is replaced with 2-bromo-3 ′, 4′-dichloropropiophenone. 2- (1-naphthylmethyl) imidazole was synthesized.

〔参考例3〕
<IMZ−Cの合成>
参考例1の1−ナフチルアセトアミジン塩酸塩を2−ナフチルアセトアミジン塩酸塩に代えて、参考例1の方法に準拠して2−(2−ナフチルメチル)−4−フェニルイミダゾールを合成した。
[Reference Example 3]
<Synthesis of IMZ-C>
2- (2-naphthylmethyl) -4-phenylimidazole was synthesized according to the method of Reference Example 1 by replacing 1-naphthylacetamidine hydrochloride of Reference Example 1 with 2-naphthylacetamidine hydrochloride.

〔参考例4〕
<IMZ−Dの合成>
参考例1の1−ナフチルアセトアミジン塩酸塩を(4−クロロフェニル)アセトアミジン塩酸塩に、2−ブロモアセトフェノンを2−ブロモ−1′−アセトナフトンに代えて、参考例1の方法に準拠して2−(4−クロロベンジル)−4−(1−ナフチル)イミダゾールを合成した。
[Reference Example 4]
<Synthesis of IMZ-D>
1-naphthylacetamidine hydrochloride of Reference Example 1 was replaced with (4-chlorophenyl) acetamidine hydrochloride and 2-bromoacetophenone was replaced with 2-bromo-1′-acetonaphthone, and 2 according to the method of Reference Example 1. -(4-Chlorobenzyl) -4- (1-naphthyl) imidazole was synthesized.

〔参考例5〕
<IMZ−Eの合成>
参考例1の1−ナフチルアセトアミジン塩酸塩をフェニルアセトアミジン塩酸塩に、2−ブロモアセトフェノンを2−ブロモ−2′−アセトナフトンに代えて、参考例1の方法に準拠して2−ベンジル−4−(2−ナフチル)イミダゾールを合成した。
[Reference Example 5]
<Synthesis of IMZ-E>
1-naphthylacetamidine hydrochloride of Reference Example 1 was replaced with phenylacetamidine hydrochloride and 2-bromoacetophenone was replaced with 2-bromo-2'-acetonaphthone, and 2-benzyl-4 was prepared according to the method of Reference Example 1. -(2-Naphtyl) imidazole was synthesized.

〔参考例6〕
<IMZ−Fの合成>
参考例1の1−ナフチルアセトアミジン塩酸塩をフェニルアセトアミジン塩酸塩に、2−ブロモアセトフェノンを2−ブロモ−2′−プロピオナフトンに代えて、参考例1の方法に準拠して2−ベンジル−5−メチル−4−(2−ナフチル)イミダゾールを合成した。
[Reference Example 6]
<Synthesis of IMZ-F>
1-naphthylacetamidine hydrochloride of Reference Example 1 was replaced with phenylacetamidine hydrochloride and 2-bromoacetophenone was replaced with 2-bromo-2′-propionnaphthone, and 2-benzyl-5 according to the method of Reference Example 1. -Methyl-4- (2-naphthyl) imidazole was synthesized.

比較例に使用したイミダゾール化合物は、以下のとおりである。
・2−ウンデシルイミダゾール(「IMZ−G」と略記する。四国化成工業社製、商品名「キュアゾール C11Z」)
・2−フェニルイミダゾール(「IMZ−H」と略記する。四国化成工業社製、商品名「キュアゾール 2PZ」)
・2−フェニル−4−メチルイミダゾール(「IMZ−I」と略記する。四国化成工業社製、商品名「キュアゾール 2P4MZ」
・2−ノニルベンズイミダゾール(「IMZ−J」と略記する。SIGMA-ALDRICH社製試薬)
・2−(4−クロロベンジル)ベンズイミダゾール(「IMZ−K」と略記する。和光純薬工業社製試薬)
The imidazole compounds used in the comparative examples are as follows.
2-Undecylimidazole (abbreviated as “IMZ-G”, manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name “Cureazole C11Z”)
・ 2-Phenylimidazole (abbreviated as “IMZ-H”, manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name “Cureazole 2PZ”)
・ 2-Phenyl-4-methylimidazole (abbreviated as “IMZ-I”, manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name “Curazole 2P4MZ”)
2-Nonylbenzimidazole (abbreviated as “IMZ-J”; reagent manufactured by SIGMA-ALDRICH)
2- (4-Chlorobenzyl) benzimidazole (abbreviated as “IMZ-K”; reagent manufactured by Wako Pure Chemical Industries, Ltd.)

実施例に使用したイミダゾール化合物(IMZ−A〜IMZ−F)と、比較例に使用したイミダゾール化合物(IMZ−G〜IMZ−K)の化学式を、各々化4および化5に示す。   Chemical formulas of the imidazole compounds (IMZ-A to IMZ-F) used in the examples and the imidazole compounds (IMZ-G to IMZ-K) used in the comparative examples are shown in Chemical Formula 4 and Chemical Formula 5, respectively.

Figure 0005301218
Figure 0005301218

Figure 0005301218
Figure 0005301218

実施例および比較例で採用した評価試験方法は、以下のとおりである。   The evaluation test methods employed in the examples and comparative examples are as follows.

[半田上がり性の評価試験]
試験片として、内径0.80mmの銅スルホールを300穴有する120mm(縦)×150mm(横)×1.6mm(厚み)のガラスエポキシ樹脂製のプリント配線板を使用した。この試験片を脱脂、ソフトエッチング及び水洗を行った後、所定の液温に保持した表面処理剤に所定時間浸漬し、次いで水洗、乾燥して銅表面上に厚さ約0.10〜0.50μmの化成皮膜を形成させた。
この表面処理を行った試験片について、赤外線リフロー装置(製品名:MULTI−PRO−306、ヴィトロニクス社製)を用いて、ピーク温度が240℃であるリフロー加熱を2回行い、次いで、フロー半田付け装置(コンベア速度:1.0m/分)を用いて半田付けを行った。
なお、使用した半田は、63錫-37鉛(重量%)の組成を有する錫−鉛系共晶半田(商品名:H63A、千住金属工業製)であり、半田付けに際して使用したフラックスはJS−64MSS(弘輝製)である。また、半田温度は240℃とした。
また、前記の表面処理を行った試験片について、錫−鉛系共晶半田の場合と同様にして無鉛半田を使用して半田付けを行った。なお、使用した半田は、96.5錫-3.0銀-0.5銅(重量%)の組成を有する無鉛半田(商品名:H705「エコソルダー」、千住金属工業製)であり、半田付けに際して使用したフラックスはJS−E−09(弘輝製)である。また、リフロー加熱のピーク温度は245℃であり、半田温度も245℃とした。
半田付けを行った試験片について、銅スルーホールの上部ランド部分まで半田が上がった(半田付けされた)スルーホール数を計測し、全スルーホール数(300穴)に対する割合(%)を算出した。
銅の表面に対して半田の濡れ性が大きい程、溶融した半田が銅スルーホール内を浸透し該スルーホールの上部ランド部分まで上がり易くなる。即ち、全スルーホール数に対する上部ランド部分まで半田が上がったスルーホール数の割合が大きい程、銅に対する半田濡れ性が優れ、半田付け性が良好なものと判定される。
[Evaluation test of solderability]
As a test piece, a printed wiring board made of glass epoxy resin of 120 mm (vertical) × 150 mm (horizontal) × 1.6 mm (thickness) having 300 copper through holes with an inner diameter of 0.80 mm was used. The test piece was degreased, soft-etched and washed with water, then immersed in a surface treatment agent maintained at a predetermined liquid temperature for a predetermined time, then washed with water and dried to a thickness of about 0.10 to 0.00 on the copper surface. A 50 μm chemical conversion film was formed.
About the test piece which performed this surface treatment, the reflow heating whose peak temperature is 240 degreeC was performed twice using the infrared reflow apparatus (Product name: MULTI-PRO-306, Vitronics company make), then, flow solder Soldering was performed using an attaching device (conveyor speed: 1.0 m / min).
The solder used was tin-lead eutectic solder (trade name: H63A, manufactured by Senju Metal Industry Co., Ltd.) having a composition of 63 tin-37 lead (weight%), and the flux used for soldering was JS- 64MSS (manufactured by Hiroki). The solder temperature was 240 ° C.
Further, the test piece subjected to the surface treatment was soldered using lead-free solder in the same manner as in the case of tin-lead eutectic solder. The solder used is a lead-free solder (trade name: H705 “Eco Solder”, manufactured by Senju Metal Industry Co., Ltd.) having a composition of 96.5 tin-3.0 silver-0.5 copper (% by weight). The flux used for attaching is JS-E-09 (manufactured by Hiroki). The peak temperature of reflow heating was 245 ° C., and the solder temperature was 245 ° C.
For the soldered test piece, the number of through holes in which the solder went up to the upper land portion of the copper through hole (soldered) was measured, and the ratio (%) to the total number of through holes (300 holes) was calculated. .
The higher the solder wettability with respect to the copper surface, the more easily the molten solder penetrates into the copper through hole and rises to the upper land portion of the through hole. That is, it is determined that the higher the ratio of the number of through holes in which the solder has reached the upper land portion with respect to the total number of through holes, the better the solder wettability with respect to copper and the better the solderability.

[半田広がり性の評価試験]
試験片として、50mm(縦)×50mm(横)×1.2mm(厚み)のガラスエポキシ樹脂製のプリント配線板(回路パターンとして、銅箔からなる導体幅0.80mm、長さ20mmの回路部を、1.0mmの間隔にて幅方向に10本形成させたもの)を使用した。この試験片を脱脂、ソフトエッチング及び水洗を行った後、所定の液温に保持した表面処理剤に所定時間浸漬し、次いで水洗、乾燥して銅表面上に厚さ約0.10〜0.50μmの化成皮膜を形成させた。
この表面処理を行った試験片について、赤外線リフロー装置(製品名:MULTI−PRO−306、ヴィトロニクス社製)を用いて、ピーク温度が240℃であるリフロー加熱を1回行った。その後、開口径1.2mm、厚み150μmのメタルマスクを使用して銅回路部の中央に錫−鉛系クリーム半田を印刷し、前期条件でリフロー加熱を行い、半田付けを行った。なお、使用した錫−鉛系クリーム半田は63錫-37鉛(重量%)からなる組成の共晶半田(商品名:OZ−63−330F−40−10、千住金属工業製)である。
また、前記の表面処理を行った試験片について、錫−鉛系クリーム半田の場合と同様にして無鉛系クリーム半田を使用して半田付けを行った。なお、使用した無鉛系クリーム半田は、96.5錫-3.0銀-0.5銅(重量%)からなる組成の無鉛半田(商品名:M705−221BM5−42−11、千住金属工業製)である。また、クリーム半田の印刷前および印刷後に行うリフロー加熱は、ピーク温度が245℃になるように設定した。
得られた試験片について、銅回路部上に濡れ広がった半田の長さ(mm)を測定した。
この長さが大きい程、半田濡れ性が優れ、半田付け性が良好なものと判定される。
[Evaluation test of solder spreadability]
As a test piece, a printed wiring board made of glass epoxy resin of 50 mm (vertical) × 50 mm (horizontal) × 1.2 mm (thickness) (as a circuit pattern, a circuit part having a conductor width of 0.80 mm and a length of 20 mm made of copper foil) 10 were formed in the width direction at intervals of 1.0 mm). The test piece was degreased, soft-etched and washed with water, then immersed in a surface treatment agent maintained at a predetermined liquid temperature for a predetermined time, then washed with water and dried to a thickness of about 0.10 to 0.00 on the copper surface. A 50 μm chemical conversion film was formed.
About the test piece which performed this surface treatment, the reflow heating whose peak temperature is 240 degreeC was performed once using the infrared reflow apparatus (Product name: MULTI-PRO-306, Vitronics company make). After that, using a metal mask having an opening diameter of 1.2 mm and a thickness of 150 μm, tin-lead cream solder was printed at the center of the copper circuit portion, and reflow heating was performed under the previous conditions to perform soldering. The tin-lead cream solder used is a eutectic solder (trade name: OZ-63-330F-40-10, manufactured by Senju Metal Industry Co., Ltd.) composed of 63 tin-37 lead (% by weight).
Moreover, about the test piece which performed the said surface treatment, it soldered using the lead-free cream solder similarly to the case of a tin-lead cream solder. The lead-free cream solder used was a lead-free solder (commercial name: M705-221BM5-42-11, manufactured by Senju Metal Industry Co., Ltd.) composed of 96.5 tin-3.0 silver-0.5 copper (% by weight). ). The reflow heating performed before and after the cream solder printing was set so that the peak temperature was 245 ° C.
About the obtained test piece, the length (mm) of the solder which wet-spreaded on the copper circuit part was measured.
The larger this length, the better the solder wettability and the better the solderability.

〔実施例1〕
イミダゾール化合物として2−(1−ナフチルメチル)−4−フェニルイミダゾール、酸として酢酸、金属塩として酢酸銅およびハロゲン化合物としてヨウ化アンモニウムを、表1記載の組成になるようにイオン交換水に溶解させた後、アンモニア水でpH2.8に調整して表面処理剤を調製した。
次いで、プリント配線板の試験片を40℃に温調した表面処理剤に20秒間浸漬したのち、水洗、乾燥し、半田上がり性および半田広がり性を測定した。これらの試験結果は表1に示したとおりであった。
[Example 1]
2- (1-naphthylmethyl) -4-phenylimidazole as an imidazole compound, acetic acid as an acid, copper acetate as a metal salt, and ammonium iodide as a halogen compound are dissolved in ion-exchanged water so as to have the composition shown in Table 1. Thereafter, the surface treatment agent was prepared by adjusting the pH to 2.8 with aqueous ammonia.
Next, the test piece of the printed wiring board was immersed in a surface treatment agent adjusted to 40 ° C. for 20 seconds, then washed with water and dried, and the solderability and solder spreadability were measured. These test results were as shown in Table 1.

〔実施例2〜6〕
実施例1と同様にして、表1記載のイミダゾール化合物、酸、金属塩およびハロゲン化合物を使用して、表1記載の組成を有する表面処理剤を調製し、表1に記載の処理条件にて表面処理を行った。得られた試験片について、半田上がり性および半田広がり性を測定した。これらの試験結果は表1に示したとおりであった。
[Examples 2 to 6]
In the same manner as in Example 1, using the imidazole compound, acid, metal salt, and halogen compound described in Table 1, a surface treatment agent having the composition described in Table 1 was prepared. Surface treatment was performed. About the obtained test piece, the solder rising property and the solder spreading property were measured. These test results were as shown in Table 1.

〔比較例1〜5〕
実施例1と同様にして、表1記載のイミダゾール化合物、酸、金属塩およびハロゲン化合物を使用して、表1記載の組成を有する表面処理剤を調製し、表1に記載の処理条件にて表面処理を行った。得られた試験片について、半田上がり性および半田広がり性を測定した。これらの試験結果は表1に示したとおりであった。
[Comparative Examples 1-5]
In the same manner as in Example 1, using the imidazole compound, acid, metal salt, and halogen compound described in Table 1, a surface treatment agent having the composition described in Table 1 was prepared. Surface treatment was performed. About the obtained test piece, the solder rising property and the solder spreading property were measured. These test results were as shown in Table 1.

Figure 0005301218
Figure 0005301218

表1に示した試験結果によれば、本願発明の表面処理剤をプリント配線板の銅表面に接触させて、銅表面に化成皮膜を形成させることにより、銅表面に対する共晶半田および無鉛半田の濡れ性が向上したものと認められ、銅表面に対する共晶半田および無鉛半田の半田付け性(半田上がり性、半田広がり性)が飛躍的に向上した。本願発明の表面処理剤は、共晶半田を用いた半田付け時に有用であることは云うまでもないが、銅や銅合金に対する半田の濡れ性の点において、共晶半田に比べて濡れ性が劣る無鉛半田を用いる半田付け時においても、十分に実用可能なものである。
According to the test results shown in Table 1, the surface treatment agent of the present invention is brought into contact with the copper surface of the printed wiring board to form a chemical conversion film on the copper surface, so that eutectic solder and lead-free solder on the copper surface are formed. It was recognized that the wettability was improved, and the solderability of eutectic solder and lead-free solder on the copper surface (solderability, solder spreadability) was dramatically improved. It goes without saying that the surface treatment agent of the present invention is useful when soldering using eutectic solder, but it has better wettability than eutectic solder in terms of solder wettability to copper and copper alloys. Even when soldering using inferior lead-free solder, it is sufficiently practical.

Claims (4)

化1の一般式(I)で示されるイミダゾール化合物を含有することを特徴とする銅または銅合金の表面処理剤。
Figure 0005301218
A surface treatment agent for copper or copper alloy, which contains an imidazole compound represented by the general formula (I) of Chemical Formula 1.
Figure 0005301218
銅または銅合金の表面に、請求項1記載の表面処理剤を接触させることを特徴とする銅または銅合金の表面処理方法。 A surface treatment method for copper or copper alloy, wherein the surface treatment agent according to claim 1 is brought into contact with the surface of copper or copper alloy. 銅回路部の銅または銅合金の表面に、請求項1記載の表面処理剤を接触させたことを特徴とするプリント配線板。 A printed wiring board, wherein the surface treatment agent according to claim 1 is brought into contact with the surface of copper or copper alloy of the copper circuit portion. 銅または銅合金の表面を、請求項1記載の表面処理剤で接触させた後に無鉛半田を使用して半田付けを行うことを特徴とする半田付け方法。
A soldering method, wherein the surface of copper or a copper alloy is brought into contact with the surface treatment agent according to claim 1 and then soldered using lead-free solder.
JP2008215733A 2008-08-25 2008-08-25 Surface treatment agent for copper or copper alloy and use thereof Active JP5301218B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008215733A JP5301218B2 (en) 2008-08-25 2008-08-25 Surface treatment agent for copper or copper alloy and use thereof
CN200980133513.7A CN102131959B (en) 2008-08-25 2009-08-24 Surface treating agent for copper or copper alloy and use thereof
KR1020117004587A KR101540144B1 (en) 2008-08-25 2009-08-24 Surface treating agent for copper or copper alloy and use thereof
PCT/JP2009/065133 WO2010024421A1 (en) 2008-08-25 2009-08-24 Surface treating agent for copper or copper alloy and use thereof
TW098128469A TWI464299B (en) 2008-08-25 2009-08-25 Surface treating agent for copper or copper alloy and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008215733A JP5301218B2 (en) 2008-08-25 2008-08-25 Surface treatment agent for copper or copper alloy and use thereof

Publications (2)

Publication Number Publication Date
JP2010047824A JP2010047824A (en) 2010-03-04
JP5301218B2 true JP5301218B2 (en) 2013-09-25

Family

ID=41278749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215733A Active JP5301218B2 (en) 2008-08-25 2008-08-25 Surface treatment agent for copper or copper alloy and use thereof

Country Status (5)

Country Link
JP (1) JP5301218B2 (en)
KR (1) KR101540144B1 (en)
CN (1) CN102131959B (en)
TW (1) TWI464299B (en)
WO (1) WO2010024421A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090105A (en) * 2008-09-11 2010-04-22 Shikoku Chem Corp 2-benzyl-4-naphthylimidazole compound
JP5615227B2 (en) * 2011-05-23 2014-10-29 四国化成工業株式会社 Surface treatment agent for copper or copper alloy and use thereof
JP5615233B2 (en) * 2011-06-20 2014-10-29 四国化成工業株式会社 Surface treatment agent for copper or copper alloy and use thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW270944B (en) * 1993-05-10 1996-02-21 Shikoku Kakoki Co Ltd
JP3277025B2 (en) * 1993-05-10 2002-04-22 四国化成工業株式会社 Copper and copper alloy surface treatment agent
JP3311858B2 (en) * 1994-03-08 2002-08-05 四国化成工業株式会社 Copper and copper alloy surface treatment agent
JPH07330738A (en) * 1994-06-01 1995-12-19 Hideaki Yamaguchi Protecting agent for metal surface and production using the same
JPH08183776A (en) * 1994-12-28 1996-07-16 Hideaki Yamaguchi Surface-protecting agent of metal and production using the same
JP3398296B2 (en) * 1997-03-07 2003-04-21 四国化成工業株式会社 Copper and copper alloy surface treatment agent
JPH10280162A (en) * 1997-04-07 1998-10-20 Hideaki Yamaguchi Surface protective agent for printed wiring board and formation of surface protective film
AR024077A1 (en) * 1999-05-25 2002-09-04 Smithkline Beecham Corp ANTIBACTERIAL COMPOUNDS
US8183386B2 (en) * 2004-06-10 2012-05-22 Shikoku Chemicals Corporation Phenylnaphthylimidazole compound and usage of the same
JP4694251B2 (en) * 2004-06-10 2011-06-08 四国化成工業株式会社 Copper or copper alloy surface treatment agent for lead-free soldering and use thereof
JP4883996B2 (en) * 2005-05-24 2012-02-22 四国化成工業株式会社 Water-soluble preflux and its use
JP2007297685A (en) * 2006-05-01 2007-11-15 Shikoku Chem Corp Surface treatment agent for metal, and its utilization
JP5313044B2 (en) * 2008-08-08 2013-10-09 四国化成工業株式会社 Surface treatment agent for copper or copper alloy and use thereof

Also Published As

Publication number Publication date
KR101540144B1 (en) 2015-07-28
TWI464299B (en) 2014-12-11
TW201009118A (en) 2010-03-01
WO2010024421A1 (en) 2010-03-04
JP2010047824A (en) 2010-03-04
CN102131959B (en) 2013-07-17
CN102131959A (en) 2011-07-20
KR20110055579A (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP5036216B2 (en) Metal surface treatment agent and use thereof
US7754105B2 (en) Water-soluble preflux and usage of the same
JP5313044B2 (en) Surface treatment agent for copper or copper alloy and use thereof
JP5615227B2 (en) Surface treatment agent for copper or copper alloy and use thereof
JP5615233B2 (en) Surface treatment agent for copper or copper alloy and use thereof
JP4694251B2 (en) Copper or copper alloy surface treatment agent for lead-free soldering and use thereof
EP1753728B1 (en) Phenylnaphthylimidazoles for use on copper surfaces during soldering
JP2007297685A (en) Surface treatment agent for metal, and its utilization
JP4546163B2 (en) Copper or copper alloy surface treatment agent and soldering method
JP5301218B2 (en) Surface treatment agent for copper or copper alloy and use thereof
JP5321878B2 (en) Surface treatment agent for copper or copper alloy and use thereof
JP5985367B2 (en) Method for surface treatment of copper or copper alloy and use thereof
JP4287299B2 (en) Copper or copper alloy surface treatment agent and soldering method
JP2014101554A (en) Surface treatment liquid of copper or copper alloy and its utilization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Ref document number: 5301218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350