JP5010112B2 - Manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board - Google Patents

Manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board Download PDF

Info

Publication number
JP5010112B2
JP5010112B2 JP2005167622A JP2005167622A JP5010112B2 JP 5010112 B2 JP5010112 B2 JP 5010112B2 JP 2005167622 A JP2005167622 A JP 2005167622A JP 2005167622 A JP2005167622 A JP 2005167622A JP 5010112 B2 JP5010112 B2 JP 5010112B2
Authority
JP
Japan
Prior art keywords
epoxy resin
prepreg
parts
volume
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005167622A
Other languages
Japanese (ja)
Other versions
JP2006063315A (en
Inventor
玄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2005167622A priority Critical patent/JP5010112B2/en
Priority to PCT/JP2005/013476 priority patent/WO2006011421A1/en
Priority to TW094125302A priority patent/TW200611927A/en
Publication of JP2006063315A publication Critical patent/JP2006063315A/en
Application granted granted Critical
Publication of JP5010112B2 publication Critical patent/JP5010112B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Description

本発明は、熱伝導率が高いエポキシ樹脂と熱伝導率の高い無機充填材とを混合した組成物を適用したプリプレグの製造法、当該方法により製造したプリプレグを用いた積層板ないしはプリント配線板の製造法に関する。 The present invention has a high thermal conductivity epoxy resins with a high thermal conductivity inorganic fillers and preparation of prepreg obtained by applying the mixed composition, laminate or printed wiring board using a prepreg produced by the method Relates to the manufacturing method .

メソゲン構造を有するエポキシ樹脂を用いたエポキシ樹脂組成物は、機械的・熱的性質に優れている。
例えば、特許文献1には、ビフェノール型エポキシ樹脂と多価フェノール樹脂硬化剤を必須成分としたエポキシ樹脂組成物の開示がある。このエポキシ樹脂組成物は、高温下での安定性と強度に優れた硬化物を提供でき、接着、注型、封止、成型、積層等の広い分野で使用できる。
また、特許文献2には、屈曲鎖で連結された二つのメソゲン構造を分子内に有するエポキシ樹脂モノマの開示がある。このモノマから製造したエポキシ樹脂はスメクチック構造を持つことが知られている。
さらに、特許文献3には、メソゲン基を有するエポキシ樹脂モノマを含む樹脂組成物の開示がある。このエポキシ樹脂は、熱伝導性に優れ、放熱性が求められる積層板用の樹脂として好ましい。
An epoxy resin composition using an epoxy resin having a mesogenic structure is excellent in mechanical and thermal properties.
For example, Patent Document 1 discloses an epoxy resin composition containing a biphenol type epoxy resin and a polyhydric phenol resin curing agent as essential components. This epoxy resin composition can provide a cured product excellent in stability and strength at high temperatures, and can be used in a wide range of fields such as adhesion, casting, sealing, molding and lamination.
Further, Patent Document 2 discloses an epoxy resin monomer having in its molecule two mesogen structures connected by a bent chain. Epoxy resins made from this monomer are known to have a smectic structure.
Furthermore, Patent Document 3 discloses a resin composition containing an epoxy resin monomer having a mesogenic group. This epoxy resin is preferable as a resin for laminates that are excellent in thermal conductivity and require heat dissipation.

しかし、このようなメソゲン構造を有するエポキシ樹脂は融点が高く、有機溶剤に非常に溶けにくいという特徴を有する。そのため、このようなエポキシ樹脂を使用したワニスを調製するときには、有機溶剤をより多く使用しなければならず、ワニスの粘度が低下する。従って、プリプレグ製造に当って、このようなワニスをシート状の繊維基材に含浸し保持させようとすると、付着樹脂量を多くできないという問題があった。そして、その欠点を補うために増粘性の第3成分をワニスに添加すると、樹脂の自己配列が乱されて、その硬化物の熱伝導率が低下するという問題が生じた。   However, an epoxy resin having such a mesogenic structure has a high melting point and is extremely insoluble in an organic solvent. Therefore, when preparing a varnish using such an epoxy resin, more organic solvent must be used, and the viscosity of the varnish decreases. Therefore, in the production of the prepreg, there is a problem that when the sheet-like fiber base material is impregnated and held in such a manner, the amount of the adhered resin cannot be increased. When a thickening third component is added to the varnish to compensate for the drawback, the self-alignment of the resin is disturbed, resulting in a problem that the thermal conductivity of the cured product is lowered.

特開平07−090052号公報Japanese Patent Application Laid-Open No. 07-090052 特開平09−118673号公報JP 09-118673 A 特開平11−323162号公報JP-A-11-323162

本発明が解決しようとする課題は、熱伝導率が高いエポキシ樹脂と熱伝導率の高い無機充填材とを混合した組成物を適用したプリプレグ、当該プリプレグを用いた積層板ないしはプリント配線板を製造し、エポキシ樹脂硬化物の熱伝導率を高くすることである。 An object of the present invention is to provide a manufacturing prepreg, a laminated board or the printed wiring board using the prepreg of applying the composition obtained by mixing a high inorganic filler having a high thermal conductivity epoxy resins with thermal conductivity And increasing the thermal conductivity of the cured epoxy resin.

上記課題を達成するための、本発明の要旨は以下のとおりである。
本発明が対象とするプリプレグは、エポキシ樹脂と硬化剤を含むエポキシ樹脂組成物をシート状の繊維基材に保持し半硬化状態としてなるプリプレグであって、当該エポキシ樹脂は、(式1)で示す分子構造を有するエポキシ化合物であり、熱伝導率20W/m・K以上の無機充填材を樹脂固形分100体積部に対し10〜900体積部となるようにエポキシ樹脂に含有する。前記樹脂固形分とは、エポキシ樹脂成分とその硬化剤成分を合せたものをいう。
The gist of the present invention for achieving the above-mentioned problems is as follows.
The prepreg targeted by the present invention is a prepreg in which an epoxy resin composition containing an epoxy resin and a curing agent is held in a sheet-like fiber base material to be in a semi-cured state , and the epoxy resin is represented by (Formula 1) an epoxy compound having a molecular structure shown, the thermal conductivity of 20W / m · K or more inorganic fillers to the resin solids 100 parts by volume of you-containing epoxy resin so as to be 10 to 900 parts by volume. The said resin solid content means what combined the epoxy resin component and its hardening | curing agent component.

Figure 0005010112
Figure 0005010112

上記プリプレグは、エポキシ樹脂と硬化剤と熱伝導率20W/m・K以上の無機充填材を含むエポキシ樹脂組成物をシート状の繊維基材に保持し半硬化状態として製造する。本発明に係るプリプレグの製造法は、前記無機充填材を樹脂固形分100体積部に対し100体積部より多く配合したエポキシ樹脂組成物の溶剤系ワニスをシート状の繊維基材に保持するために、当該エポキシ樹脂と硬化剤と無機充填材とを含むエポキシ樹脂組成物の溶剤系ワニスを、ボールミル、ビーズミル、複数本のロールで構成されるロールミルから選ばれる混練手段により混練してシート状の繊維基材に保持し半硬化状態とすることを特徴とする。 The prepreg is produced in a semi-cured state by holding an epoxy resin composition containing an epoxy resin, a curing agent, and an inorganic filler having a thermal conductivity of 20 W / m · K or more on a sheet-like fiber base material. The method for producing a prepreg according to the present invention is for holding a solvent-based varnish of an epoxy resin composition in which the inorganic filler is blended in an amount of more than 100 parts by volume with respect to 100 parts by volume of resin solids on a sheet-like fiber substrate. the solvent-based varnish of epoxy resin composition comprising an the epoxy resin and the curing agent and an inorganic filler, a ball mill, a bead mill, sheet and more kneading in kneading hand stage selected from the consisting roll mill by a plurality of rolls The fiber base material is held in a semi-cured state.

本発明に係る積層板の製造法は、上述の方法により製造したプリプレグを、一体に積層成形するプリプレグ層の全層ないしは一部の層として加熱加圧成形することを特徴とする。また、本発明に係るプリント配線板の製造法は、上述の方法により製造したプリプレグの層を加熱加圧成形して絶縁層を形成することを特徴とする Preparation of a laminated plate according to the present invention, a prepreg prepared by the method described above, characterized by all layers or hot pressing as part of the layer of the prepreg layer laminated molded integrally. The method for producing a printed wiring board according to the present invention is characterized in that an insulating layer is formed by heat-pressing a prepreg layer produced by the above-described method .

本発明が対象とするプリプレグは、熱伝導率が20W/m・K以上の無機充填材を樹脂固形分100体積部に対し10〜900体積部となるようにエポキシ樹脂に含有させることで、その取り扱いが容易となるエポキシ樹脂組成物を適用してプリプレグを構成したものである。
本発明が対象とするプリプレグにおいては、エポキシ樹脂に対する無機充填材の添加量は、エポキシ樹脂固形分100体積部に対し、10〜900体積部であることが必須である。10体積部未満では無機充填材は沈降し、樹脂組成物中の無機充填材含有量を一定にすることができないため、外観の均一なプリプレグを製造することはできない。また、900体積部を越えると樹脂組成物ワニスの粘性が増大しすぎるため、プリプレグの製造に供することができなくなる。無機充填材の添加量が100体積部までであれば、攪拌羽を使用する通常の撹拌手段で樹脂組成物ワニスの均一な撹拌が可能である。しかし、本発明に係るプリプレグの製造法においては、無機充填材の添加量100体積部より多くするために、ボールミル、ビーズミル、複数本のロールで構成されるロールミルから選ばれる混練手段、又は前記混練手段と同等手段により大きなせん断力を働かせて樹脂組成物の混練をすることにより、均一な撹拌が可能になる。また、無機充填材の熱伝導率が20W/m・K未満であれば、積層板の熱伝導率が向上しない。
本発明に適用するエポキシ樹脂組成物は、通常のメソゲン構造を有するエポキシ樹脂に硬化剤を配合したエポキシ樹脂組成物に比べると、無機充填材を添加することによりワニスの粘度が向上し、ワニスが均一に分散されるので、取り扱いが容易になる。このため、積層用の材料として好適である。無機充填材は、樹脂成分との反応性がないから、熱伝導に有効な樹脂の自己配列を乱すことはなく、樹脂硬化物の熱伝導率を小さくする原因にはならない。
The prepreg targeted by the present invention includes an inorganic filler having a thermal conductivity of 20 W / m · K or more in an epoxy resin so as to be 10 to 900 parts by volume with respect to 100 parts by volume of the resin solid content. A prepreg is configured by applying an epoxy resin composition that is easy to handle.
In the prepreg targeted by the present invention, it is essential that the amount of the inorganic filler added to the epoxy resin is 10 to 900 parts by volume with respect to 100 parts by volume of the epoxy resin solid content. If the amount is less than 10 parts by volume, the inorganic filler settles and the inorganic filler content in the resin composition cannot be made constant, so that a prepreg having a uniform appearance cannot be produced. Moreover, since the viscosity of a resin composition varnish will increase too much when it exceeds 900 volume part, it becomes impossible to use for manufacture of a prepreg. If the addition amount of the inorganic filler is up to 100 parts by volume, the resin composition varnish can be uniformly stirred by a normal stirring means using stirring blades. However, in the method for producing a prepreg according to the present invention, the amount of the inorganic filler to multi Ku than 100 parts by volume, a ball mill, a bead mill, mixing means selected from consisting roll mill by a plurality of rolls, or Uniform stirring is possible by kneading the resin composition by applying a large shearing force by means equivalent to the kneading means. Moreover, if the heat conductivity of an inorganic filler is less than 20 W / m * K, the heat conductivity of a laminated board will not improve.
The epoxy resin composition applied to the present invention improves the viscosity of the varnish by adding an inorganic filler, compared to an epoxy resin composition in which a curing agent is added to an epoxy resin having a normal mesogenic structure, and the varnish is Since it is uniformly dispersed, handling becomes easy. For this reason, it is suitable as a material for lamination. Since the inorganic filler is not reactive with the resin component, it does not disturb the self-alignment of the resin effective for heat conduction, and does not cause a decrease in the thermal conductivity of the cured resin.

上記の方法により製造したプリプレグを加熱加圧成形した硬化物は熱伝導率が高く、熱伝導性のよい積層板ないしはプリント配線板を製造することに寄与する。 A cured product obtained by heating and pressing the prepreg produced by the above method has a high thermal conductivity and contributes to the production of a laminated board or a printed wiring board having a good thermal conductivity.

本発明においては、熱伝導率の高い無機充填材を用いることが重要である。エポキシ化合物は、ビフェニル骨格あるいはビフェニル誘導体の骨格をもち、1分子中に2個以上のエポキシ基をもつエポキシ化合物全般である。エポキシ化合物は、好ましくは、(式2)で示される分子構造式のものを選択する。ビフェニル基がより配列しやすいため、熱伝導率をより高くすることができる。また、ビフェニル骨格あるいはビフェニル誘導体の骨格は同一分子内に2つ以上あってもよい。   In the present invention, it is important to use an inorganic filler having a high thermal conductivity. Epoxy compounds are general epoxy compounds having a biphenyl skeleton or a biphenyl derivative skeleton and having two or more epoxy groups in one molecule. The epoxy compound is preferably selected from those having the molecular structure represented by (Formula 2). Since the biphenyl group is more easily arranged, the thermal conductivity can be further increased. Further, two or more biphenyl skeletons or biphenyl derivative skeletons may be present in the same molecule.

Figure 0005010112
Figure 0005010112

本発明に係るプリプレグの製造法において、無機充填材は、20W/m・K以上の熱伝導率を有するものであり、樹脂固形分100体積部に対し100体積部を超え900体積部以下となるように添加する。無機充填材は、20W/m・K以上の熱伝導率を有していれば、金属酸化物又は水酸化物あるいは無機セラミックス、その他の充填材を含むことができる。例えば、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、アルミナ、酸化マグネシウム等の無機粉末充填材、合成繊維、セラミックス繊維等の繊維質充填材、着色剤等であり、これらをエポキシ化合物と共に用いることで積層板の熱伝導率が向上する。無機充填材の熱伝導率が30W/m・K以上であれば積層板の熱伝導率がさらに向上するので好ましい。 Oite to the preparation of the prepreg according to the present invention, the inorganic filler are those with 20W / m · K thermal conductivity of at least 900 parts by volume or less than 100 parts by volume of the resin solid content: 100 parts by volume of It is added in such a way that. As long as the inorganic filler has a thermal conductivity of 20 W / m · K or more, it can contain a metal oxide, hydroxide, inorganic ceramics, or other filler. For example, inorganic powder fillers such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, alumina, magnesium oxide, fibrous fillers such as synthetic fibers and ceramic fibers, colorants, etc. Yes, the thermal conductivity of the laminate is improved by using these together with the epoxy compound. A thermal conductivity of the inorganic filler of 30 W / m · K or more is preferable because the thermal conductivity of the laminated plate is further improved.

さらに、充填材の形状は、粉末(塊状、球状)、単繊維、長繊維等いずれであってもよいが、特に、平板状のものであれば、無機充填材自身の積層効果によって硬化物の熱伝導性はさらに高くなり、これを適用した積層板の放熱性がさらに向上するので好ましい。これら無機充填材は2種類以上を併用してもよい。   Further, the shape of the filler may be any of powder (bulk shape, spherical shape), single fiber, long fiber, etc. In particular, in the case of a flat plate shape, the cured product is cured by the lamination effect of the inorganic filler itself. The thermal conductivity is further increased, which is preferable because the heat dissipation of the laminated board to which the thermal conductivity is applied is further improved. Two or more of these inorganic fillers may be used in combination.

エポキシ樹脂組成物の無機充填材配合量を増やしていくと、そのチクソ性および凝集性のために、エポキシ樹脂組成物ワニスの粘度が増大する。そのため、攪拌羽を使用するタイプの攪拌機では、樹脂固形分100体積部に対して100体積部を越える無機充填材を配合すると、攪拌しにくくなり樹脂組成物の均一な分散をし難くなる。そこで、強力なせん断力を発生するボールミル、ビーズミル、複数本のロールで構成されるロールミルから選ばれる混練手段、又は前記混練手段と同等手段により混練することにより、樹脂組成物の分散性がよくなり粘度も低下する。これによって、無機充填材を900体積部まで配合することが可能となる。 As the inorganic filler content of the epoxy resin composition is increased, the viscosity of the epoxy resin composition varnish increases due to its thixotropy and cohesiveness. For this reason, in an agitator using a stirring blade, if an inorganic filler exceeding 100 parts by volume is added to 100 parts by volume of the resin solid content, stirring becomes difficult and uniform dispersion of the resin composition becomes difficult. Therefore, the dispersibility of the resin composition is improved by kneading by a kneading means selected from a ball mill, a bead mill, a roll mill composed of a plurality of rolls, or a means equivalent to the kneading means, which generates a strong shear force. Viscosity also decreases. Thereby, it is possible to blend an inorganic filler to 900 parts by volume and that Do.

エポキシ樹脂に配合する硬化剤は、エポキシ樹脂モノマの硬化反応を進行させるために従来用いられている硬化剤を使用することができる。例えば、フェノール類又はその化合物、アミン化合物やその誘導体、酸無水物、イミダゾールやその誘導体などが挙げられる。また、硬化促進剤は、エポキシ樹脂モノマとフェノール類又はその化合物、アミン類又はその化合物との重縮合反応を進行させるために従来用いられている硬化促進剤を使用することができる。例えば、トリフェニルホスフィン、イミダゾールやその誘導体、三級アミン化合物やその誘導体などが挙げられる。   As the curing agent to be blended with the epoxy resin, a curing agent conventionally used for advancing the curing reaction of the epoxy resin monomer can be used. Examples thereof include phenols or compounds thereof, amine compounds and derivatives thereof, acid anhydrides, imidazoles and derivatives thereof, and the like. Moreover, the hardening accelerator conventionally used in order to advance the polycondensation reaction with an epoxy resin monomer, phenols or its compound, amines, or its compound can be used for a hardening accelerator. Examples thereof include triphenylphosphine, imidazole and derivatives thereof, tertiary amine compounds and derivatives thereof.

エポキシ樹脂と硬化剤、無機充填材、硬化促進剤を配合したエポキシ樹脂組成物には、必要に応じて難燃剤や希釈剤、可塑剤、カップリング剤等を含むことができる。また、このエポキシ樹脂組成物をシート状繊維基材に含浸し乾燥してプリプレグを製造する際、溶剤を使用する。これらの使用が、硬化物の熱伝導性に影響を与えることはない。 The epoxy resin composition containing an epoxy resin, a curing agent, an inorganic filler, and a curing accelerator may contain a flame retardant, a diluent, a plasticizer, a coupling agent, and the like as necessary. Further, when manufacturing the prepreg of this epoxy resin composition was impregnated and dried into a sheet-like fiber base material, that use SOLVENTS. These uses do not affect the thermal conductivity of the cured product.

本発明に係るプリプレグの製造法は、上記のエポキシ樹脂組成物を、ガラス繊維や有機繊維で構成されたシート状繊維基材(織布や不織布)に含浸し加熱乾燥して、エポキシ樹脂を半硬化状態とする。そして、積層板の製造法は、前記プリプレグを、プリプレグ層の全層ないしは一部の層として加熱加圧成形することを特徴とし、必要に応じて前記加熱加圧成形により片面あるいは両面に銅箔等の金属箔を一体に貼り合せる。さらに、プリント配線板の製造法は、前記のプリプレグ層を加熱加圧成形して絶縁層を形成することを特徴とし、その対象は、片面プリント配線板、両面プリント配線板、さらには、内層と表面層にプリント配線を有する多層プリント配線板である。 The method for producing a prepreg according to the present invention comprises impregnating the above-mentioned epoxy resin composition into a sheet-like fiber base material (woven fabric or non-woven fabric) made of glass fiber or organic fiber, followed by drying by heating, and the epoxy resin is semi-finished. Set to a cured state . And the manufacturing method of a laminated board WHEREIN: The said prepreg is heat-press-molded as the whole layer or one part layer of a prepreg layer, and it is copper foil on one side or both surfaces by the said heat-press molding as needed. A metal foil such as is bonded together. Furthermore, the method for producing a printed wiring board is characterized in that the prepreg layer is heated and pressure-molded to form an insulating layer , and the object is a single-sided printed wiring board, a double-sided printed wiring board, and an inner layer. A multilayer printed wiring board having printed wiring on a surface layer.

以上のように製造されたプリント配線板は、絶縁層の熱伝導性が良好で優れた放熱性を有する。自動車機器用のプリント配線板、パソコン等の高密度実装プリント配線板に好適である。 The printed wiring board manufactured as described above has excellent heat dissipation due to good thermal conductivity of the insulating layer. It is suitable for printed wiring boards for automobile equipment and high-density mounting printed wiring boards such as personal computers.

以下、本発明に係る実施例を示し、本発明について詳細に説明する。尚、以下の実施例、参考例および比較例において、「部」とは「質量部」を意味する。また、本発明は、その要旨を逸脱しない限り、本実施例に限定されるものではない。 Examples of the present invention will be described below, and the present invention will be described in detail. In the following examples , reference examples, and comparative examples, “part” means “part by mass”. Moreover, this invention is not limited to a present Example, unless it deviates from the summary.

参考例1
エポキシ樹脂モノマ成分としてビフェニル骨格をもつエポキシ樹脂モノマ(ジャパンエポキシレジン製「YL6121H」,エポキシ当量175)100部を用意し、これをメチルイソブチルケトン(和光純薬製)100部に100℃で溶解し、室温に戻した。
硬化剤として1,5−ジアミノナフタレン(和光純薬製「1,5−DAN」,アミン当量40)22部を用意し、これをメチルイソブチルケトン(和光純薬製)100部に100℃で溶解し、室温に戻した。
尚、「YL6121H」は、既述の分子構造式(式1)において、R=−CH,n=0.1であるエポキシ樹脂モノマと分子構造式(式2)において、n=0.1であるエポキシ樹脂モノマを等モルで含有するエポキシ樹脂モノマである。
上記のエポキシ樹脂モノマ溶液と硬化剤溶液を、撹拌羽タイプのホモミキサで混合・撹拌して均一なワニスにし、さらに無機充填材として窒化ホウ素(電気化学工業製「GP」,平均粒子径:8μm,熱伝導率60W/m・K,粒子形状:平板状)107部(樹脂固形分100体積部に対し50体積部)、およびメチルイソブチルケトン(和光純薬製)を67部加えて混合・撹拌し、エポキシ樹脂ワニスを調製した。
このエポキシ樹脂組成物のワニスを、厚さ0.2mmのガラス繊維織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグ4枚とその両側に銅箔を重ね、温度175℃、圧力4MPaの条件で90分間加熱加圧形成して一体化し、厚さ0.8mmの積層板を得た。
Reference example 1
As an epoxy resin monomer component, prepare 100 parts of an epoxy resin monomer having a biphenyl skeleton (Japan Epoxy Resin “YL6121H”, epoxy equivalent 175), and dissolve it at 100 ° C. in 100 parts of methyl isobutyl ketone (Wako Pure Chemical Industries, Ltd.). , Returned to room temperature.
As a curing agent, 22 parts of 1,5-diaminonaphthalene (“1,5-DAN” manufactured by Wako Pure Chemical Industries, Ltd., amine equivalent 40) is prepared and dissolved in 100 parts of methyl isobutyl ketone (manufactured by Wako Pure Chemical Industries) at 100 ° C. And returned to room temperature.
“YL6121H” is an epoxy resin monomer in which R = —CH 3 and n = 0.1 in the molecular structural formula (formula 1) described above and n = 0.1 in the molecular structural formula (formula 2). This is an epoxy resin monomer containing an equimolar amount of the epoxy resin monomer.
The epoxy resin monomer solution and the curing agent solution are mixed and stirred with a stirring blade type homomixer to form a uniform varnish, and boron nitride (“GP” manufactured by Denki Kagaku Kogyo, average particle size: 8 μm, as an inorganic filler) Heat conductivity 60W / m · K, particle shape: flat plate) 107 parts (50 parts by volume with respect to 100 parts by volume of resin solids) and 67 parts of methyl isobutyl ketone (Wako Pure Chemical Industries) were added and mixed and stirred. An epoxy resin varnish was prepared.
The epoxy resin composition varnish was impregnated into a 0.2 mm thick glass fiber woven fabric and dried by heating to obtain a prepreg. Four prepregs and copper foils were stacked on both sides thereof and integrated by heating and pressurizing for 90 minutes under conditions of a temperature of 175 ° C. and a pressure of 4 MPa to obtain a laminate having a thickness of 0.8 mm.

参考例1で得た積層板について熱伝導率を測定した結果を、エポキシ樹脂組成物の配合組成と共に表1にまとめて示す。
熱伝導率:積層板から、50mm×120mmの板状試料を切り出し、プローブ法に準拠して室温で測定した。
The results of measuring the thermal conductivity of the laminate obtained in Reference Example 1 are shown in Table 1 together with the composition of the epoxy resin composition.
Thermal conductivity: A plate-like sample of 50 mm × 120 mm was cut out from the laminate and measured at room temperature in accordance with the probe method.

比較例1
「YL6121H」を用いず、代わりに、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン製「EP828」,エポキシ当量185)を用いる以外は参考例1と同様にしてプリプレグおよび積層板を得た。この積層板の熱伝導率は、0.5W/m・Kであり、参考例1より著しく小さくなった。
Comparative Example 1
Instead of using “YL6121H”, a prepreg and a laminate were obtained in the same manner as in Reference Example 1 except that a bisphenol A type epoxy resin (“EP828” manufactured by Japan Epoxy Resin, epoxy equivalent 185) was used. The thermal conductivity of this laminate was 0.5 W / m · K, which was significantly smaller than that of Reference Example 1.

比較例2(製造法の発明に対して)
エポキシ樹脂モノマと硬化剤を合せた樹脂固形分100体積部に対する無機充填材の配合体積部を120体積部に変えた以外は参考例1と同様にして、エポキシ樹脂組成物のワニスを調製しようとした。しかし、ホモミキサによる攪拌では、エポキシ樹脂組成物のワニスの粘度が高くなりすぎて、プリプレグを製造するためのワニスを得られなかった。
Comparative Example 2 (for the invention of the production method)
The varnish of the epoxy resin composition was prepared in the same manner as in Reference Example 1 except that the blended volume of the inorganic filler with respect to 100 parts by volume of the resin solid content combining the epoxy resin monomer and the curing agent was changed to 120 parts by volume. did. However, in the stirring with a homomixer, the viscosity of the varnish of the epoxy resin composition became too high, and a varnish for producing a prepreg could not be obtained.

参考例2〜3、実施例1〜3
エポキシ樹脂モノマと硬化剤を合せた樹脂固形分100体積部に対する窒化ホウ素の配合体積部を表1に示すように変えたエポキシ樹脂組成物のワニスを用い、それ以外は、参考例1と同様にしてプリプレグおよび積層板を得た。ワニスを調製するに当り、窒化ホウ素の体積部が100体積部まではホモミキサで撹拌(参考例2〜3)し、それを越える配合ではボールミルを用いて混練(実施例1〜3)を行なった。
この積層板から50mm×120mmの板状試料を切り出し、熱伝導率を測定した結果、樹脂固形分に対する窒化ホウ素の体積部が10〜900体積部の範囲(参考例1〜3、実施例1〜)では、添加量が増加すると熱伝導率も増加する。ボールミルによる混練を行なうと、100体積部を越え900体積部の範囲まで、プリプレグと積層板を作製することができ、高い熱伝導率が得られた。
Reference Examples 2-3 and Examples 1-3
In the same manner as in Reference Example 1, except that the varnish of the epoxy resin composition in which the compounding volume part of boron nitride with respect to 100 parts by volume of the resin solid content including the epoxy resin monomer and the curing agent is changed as shown in Table 1 is used. Thus, a prepreg and a laminate were obtained. In preparing the varnish, the mixture was stirred with a homomixer until the volume part of boron nitride was 100 parts by volume (Reference Examples 2 to 3) . .
As a result of cutting out a plate sample of 50 mm × 120 mm from this laminate and measuring the thermal conductivity, the volume part of boron nitride relative to the resin solid content is in the range of 10 to 900 parts by volume ( Reference Examples 1 to 3, Examples 1 to 3) . In 3 ), the thermal conductivity increases as the added amount increases. When kneading with a ball mill, a prepreg and a laminate were produced in a range exceeding 100 parts by volume and 900 parts by volume, and high thermal conductivity was obtained.

参考
窒化ホウ素「GP」を使用せず、その代わりに、球形の無機充填材である窒化アルミニウム(東洋アルミニウム製「R15S」,平均粒径15μm,熱伝導率100W/m・K,粒子形状:球形)154部(樹脂固形分100体積部に対し50体積部)を用いる以外は、参考例1と同様にしてプリプレグおよび積層板を得た。この積層板の熱伝導率は1.6W/m・Kであり、参考例1よりは多少低いものの、熱伝導率の高い積層板が得られた。
Reference example 4
Instead of using boron nitride “GP”, instead of aluminum nitride, which is a spherical inorganic filler (“R15S” manufactured by Toyo Aluminum, average particle size 15 μm, thermal conductivity 100 W / m · K, particle shape: spherical) A prepreg and a laminate were obtained in the same manner as in Reference Example 1 except that 154 parts (50 parts by volume with respect to 100 parts by volume of the resin solid content) were used. The laminated board had a thermal conductivity of 1.6 W / m · K, which was slightly lower than that of Reference Example 1, but a laminated board having a high thermal conductivity was obtained.

参考
窒化ホウ素「GP」を使用せず、その代わりに、球形の無機充填材である酸化マグネシウム(協和化学製「5301」,平均粒径5μm,熱伝導率30W/m・K,粒子形状:球形)166部(樹脂固形分100体積部に対し50体積部)を用いる以外は、参考例1と同様にしてプリプレグおよび積層板を得た。この積層板の熱伝導率は1.3W/m・Kであり、参考例1より多少低いものの、熱伝導率の高い積層板が得られた。
Reference Example 5
Instead of using boron nitride “GP”, instead of magnesium oxide, which is a spherical inorganic filler (“5301” manufactured by Kyowa Chemical, average particle size 5 μm, thermal conductivity 30 W / m · K, particle shape: spherical) A prepreg and a laminate were obtained in the same manner as in Reference Example 1 except that 166 parts (50 parts by volume with respect to 100 parts by volume of the resin solid content) were used. The laminated board had a thermal conductivity of 1.3 W / m · K, which was slightly lower than that of Reference Example 1, but a laminated board having a high thermal conductivity was obtained.

比較例3
参考例1において、無機充填材として窒化ホウ素を使用せず、その代わりに、熱伝導率が低く、粒子が球形の水酸化アルミニウム(住友化学製「C−302A」,平均粒径2.0μm,熱伝導率3.0W/m・K,粒子形状:球形)115部(樹脂固形分100体積部に対し50体積部)を用いる以外は、参考例1と同様にしてプリプレグおよび積層板を得た。この積層板の熱伝導率は、0.7W/m・Kであり、参考例1より大きく減少した。
Comparative Example 3
In Reference Example 1, boron nitride is not used as the inorganic filler, but instead, aluminum hydroxide having a low thermal conductivity and spherical particles (“C-302A” manufactured by Sumitomo Chemical Co., Ltd., average particle diameter of 2.0 μm, A prepreg and a laminate were obtained in the same manner as in Reference Example 1, except that 115 parts (50 parts by volume with respect to 100 parts by volume of the resin solid content) of 115 parts (thermal conductivity: 3.0 W / m · K, particle shape: spherical) was used. . The thermal conductivity of this laminated board was 0.7 W / m · K, which was greatly reduced from Reference Example 1.

比較例4、5
エポキシ樹脂モノマと硬化剤を合せた樹脂固形分100体積部に対する無機充填材の配合体積部を表1に示すように変えたエポキシ樹脂組成物のワニスを用い、それ以外は、参考例1と同様にしてプリプレグおよび積層板を得た。樹脂固形分100体積部に対する充填材の体積部を5体積部にすると、比較例1と同様にプリプレグに含浸ムラが確認でき熱伝導率は低下した(比較例4)。910体積部にすると、粘性が高くなりすぎて、ボールミルによる混練も困難になり、シート状の繊維基材に均一に含浸できず、プリプレグと積層板の製作は不可であった(比較例5)。
Comparative Examples 4 and 5
Using the varnish of the epoxy resin composition in which the blending volume part of the inorganic filler with respect to 100 parts by volume of the resin solid content combining the epoxy resin monomer and the curing agent is changed as shown in Table 1, and otherwise, the same as in Reference Example 1 Thus, a prepreg and a laminate were obtained. When the volume part of the filler relative to 100 parts by volume of the resin solid content was 5 parts by volume, the impregnation unevenness was confirmed in the prepreg as in Comparative Example 1, and the thermal conductivity was lowered (Comparative Example 4). If the volume is 910 parts by volume, the viscosity becomes too high and kneading by a ball mill becomes difficult, and the sheet-like fiber base material cannot be uniformly impregnated, making it impossible to produce a prepreg and a laminate (Comparative Example 5). .

Figure 0005010112
Figure 0005010112

Figure 0005010112
Figure 0005010112

Claims (5)

エポキシ樹脂と硬化剤と熱伝導率20W/m・K以上の無機充填材とを含むエポキシ樹脂組成物の溶剤系ワニスを、シート状の繊維基材に保持し半硬化状態とするプリプレグの製造法であって、
当該エポキシ樹脂は、(式1)で示す分子構造を有するエポキシ化合物であり、
前記無機充填材を、樹脂固形分100体積部に対し100体積部を超え900体積部以下となるように配合したエポキシ樹脂組成物とし、
当該エポキシ樹脂と硬化剤と無機充填材とを含むエポキシ樹脂組成物の溶剤系ワニスを、ボールミル、ビーズミル、複数本のロールで構成されるロールミルから選ばれる混練手段により混練してシート状の繊維基材に保持し半硬化状態とすることを特徴とするプリプレグの製造法。
Figure 0005010112
A method for producing a prepreg in which a solvent-based varnish of an epoxy resin composition containing an epoxy resin, a curing agent, and an inorganic filler having a thermal conductivity of 20 W / m · K or more is held in a sheet-like fiber base material to be in a semi-cured state Because
The epoxy resin is an epoxy compound having a molecular structure represented by (Formula 1),
The inorganic filler is an epoxy resin composition that is blended so as to exceed 100 parts by volume and not more than 900 parts by volume with respect to 100 parts by volume of the resin solid content,
The solvent-based varnish of epoxy resin composition comprising an the epoxy resin and the curing agent and an inorganic filler, a ball mill, a bead mill, sheet-like and more kneading in kneading hand stage selected from the consisting roll mill by a plurality of rolls A method for producing a prepreg characterized by being held on a fiber base material to be in a semi-cured state.
Figure 0005010112
無機充填材の形状が球形でないことを特徴とする請求項1記載のプリプレグの製造法。   2. The method for producing a prepreg according to claim 1, wherein the shape of the inorganic filler is not spherical. エポキシ樹脂が、(式2)で示す分子構造を有するエポキシ化合物であることを特徴とする請求項1又は2記載のプリプレグの製造法。
Figure 0005010112
The method for producing a prepreg according to claim 1 or 2, wherein the epoxy resin is an epoxy compound having a molecular structure represented by (Formula 2).
Figure 0005010112
請求項1〜3のいずれかの方法により製造したプリプレグを、プリプレグ層の全層ないしは一部の層として加熱加圧成形することを特徴とする積層板の製造法。   A method for producing a laminated board, wherein the prepreg produced by the method according to any one of claims 1 to 3 is subjected to heat and pressure molding as a whole layer or a part of a prepreg layer. 請求項1〜3のいずれかの方法により製造したプリプレグの層を加熱加圧成形して絶縁層を形成することを特徴とするプリント配線板の製造法。   A method for producing a printed wiring board, comprising forming an insulating layer by heating and pressing a prepreg layer produced by the method according to claim 1.
JP2005167622A 2004-07-26 2005-06-08 Manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board Expired - Fee Related JP5010112B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005167622A JP5010112B2 (en) 2004-07-26 2005-06-08 Manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board
PCT/JP2005/013476 WO2006011421A1 (en) 2004-07-26 2005-07-22 Prepreg, process for producing the same, laminated sheet, and printed wiring board
TW094125302A TW200611927A (en) 2004-07-26 2005-07-26 Prepreg, method for producing the same, laminated sheet and printed circuit board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004216750 2004-07-26
JP2004216750 2004-07-26
JP2005167622A JP5010112B2 (en) 2004-07-26 2005-06-08 Manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board

Publications (2)

Publication Number Publication Date
JP2006063315A JP2006063315A (en) 2006-03-09
JP5010112B2 true JP5010112B2 (en) 2012-08-29

Family

ID=35786170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005167622A Expired - Fee Related JP5010112B2 (en) 2004-07-26 2005-06-08 Manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board

Country Status (3)

Country Link
JP (1) JP5010112B2 (en)
TW (1) TW200611927A (en)
WO (1) WO2006011421A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793277B2 (en) * 2007-02-14 2011-10-12 新神戸電機株式会社 Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and wiring board
GB0703172D0 (en) 2007-02-19 2007-03-28 Pa Knowledge Ltd Printed circuit boards
JP2009021468A (en) * 2007-07-13 2009-01-29 Panasonic Corp Heat conductive printed wiring board, heat conductive prepreg used therefor and method of manufacturing the same, and method of manufacturing the heat conductive printed wiring board
KR101574374B1 (en) 2008-08-18 2015-12-03 셈블란트 리미티드 Halo-hydrocarbon polymer coating
JP2010229368A (en) * 2009-03-30 2010-10-14 Shin Kobe Electric Mach Co Ltd Epoxy resin composition and prepreg, laminated board, and wiring board
JP2011153265A (en) * 2010-01-28 2011-08-11 Mitsubishi Electric Corp Resin composition and resin cured product
DE112011100378T5 (en) 2010-01-29 2012-12-06 Nippon Kayaku Kabushiki Kaisha Phenolic compound, epoxy resin, epoxy resin composition, prepreg, and cured product thereof
US8995146B2 (en) 2010-02-23 2015-03-31 Semblant Limited Electrical assembly and method
JP5447355B2 (en) * 2010-12-02 2014-03-19 新神戸電機株式会社 Method for producing thermosetting resin composition, method for producing prepreg and laminate
JP2012131899A (en) * 2010-12-21 2012-07-12 Sumitomo Bakelite Co Ltd Resin composition, resin sheet, metal-based circuit board, inverter, and power semiconductor device
JP5962514B2 (en) * 2011-01-19 2016-08-03 日立化成株式会社 Liquid crystalline resin composition, heat radiation material precursor, B stage sheet, prepreg, heat radiation material, laminated board, metal substrate, printed wiring board, liquid crystal resin composition production method, heat radiation material precursor production method, and heat radiation material Production method
JP5885330B2 (en) 2011-07-26 2016-03-15 日本化薬株式会社 Epoxy resin, epoxy resin composition, prepreg and cured products thereof
WO2013030998A1 (en) * 2011-08-31 2013-03-07 日立化成工業株式会社 Resin composition, resin sheet, resin sheet with metal foil, hardened resin sheet, structure, and semiconductor device for power or light source
JP2013185145A (en) * 2012-03-12 2013-09-19 Tdk Corp Epoxy resin cured product, and laminate using the same
JP2013185144A (en) * 2012-03-12 2013-09-19 Tdk Corp Resin cured product, resin sheet using the same, and laminate
JP6086182B2 (en) * 2012-03-12 2017-03-01 Tdk株式会社 Resin composition, and resin sheet and laminate using the same
JP5942641B2 (en) * 2012-07-02 2016-06-29 日立化成株式会社 Resin sheet and manufacturing method thereof, cured resin sheet, and member for heat dissipation
JP6081751B2 (en) * 2012-09-13 2017-02-15 三菱化学株式会社 High thermal conductive resin composition
JP6411010B2 (en) * 2013-04-01 2018-10-24 日立化成株式会社 Epoxy resin composition, method for producing epoxy resin composition, heat conductive material precursor, B stage sheet, prepreg, heat conductive material, laminated board, metal substrate, and printed wiring board
WO2015053298A1 (en) 2013-10-09 2015-04-16 日本化薬株式会社 Phenolic resin, epoxy resin, epoxy resin composition, prepreg and cured product of said epoxy resin composition or prepreg
EP3428223B1 (en) 2016-03-10 2021-05-05 Denka Company Limited Ceramic resin composite body
GB201621177D0 (en) 2016-12-13 2017-01-25 Semblant Ltd Protective coating
JP2018021180A (en) * 2017-06-26 2018-02-08 日立化成株式会社 Epoxy resin composition, heat conduction material precursor, b stage sheet, prepreg, heat conduction material, laminate, metal substrate and printed wiring board
US11492299B2 (en) 2017-12-05 2022-11-08 Denka Company Limited Nitride ceramic resin composite body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136298A (en) * 1983-12-23 1985-07-19 松下電工株式会社 Multilayer circuit board
JPS6330520A (en) * 1986-07-25 1988-02-09 Yuka Shell Epoxy Kk Epoxy resin composition for laminated sheet
JPH0388394A (en) * 1989-08-31 1991-04-12 Shin Kobe Electric Mach Co Ltd Multilayer printed wiring board
JPH0621593A (en) * 1992-04-14 1994-01-28 Hitachi Chem Co Ltd Manufacture of printed circuit board
EP1331244A1 (en) * 2000-10-24 2003-07-30 Mitsui Chemicals, Inc. Epoxy resin composition and its use
JP2002249641A (en) * 2001-02-23 2002-09-06 Matsushita Electric Works Ltd Epoxy resin composition, resin film, resin-sticking metal foil, prepreg, and laminated sheet
JP3912302B2 (en) * 2003-03-19 2007-05-09 新神戸電機株式会社 Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board

Also Published As

Publication number Publication date
TW200611927A (en) 2006-04-16
JP2006063315A (en) 2006-03-09
WO2006011421A1 (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP5010112B2 (en) Manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board
JP4735492B2 (en) Prepress and laminate for heat and pressure molding
KR101668855B1 (en) Thermosetting resin composition for semiconductor pakage and Prepreg and Metal Clad laminate using the same
CN109776864B (en) Modified hexagonal boron nitride, prepreg, epoxy resin heat-conducting composite material, copper-clad plate and preparation method and application thereof
JP6221634B2 (en) Resin composition, resin sheet, cured resin and substrate
KR20170084991A (en) Thermosetting resin composition for semiconductor pakage and Prepreg using the same
JP5652307B2 (en) Prepress and laminate for heat and pressure molding
WO2007125979A1 (en) Resin composition, prepreg, laminate, and wiring board
JP5549183B2 (en) Method for producing epoxy resin composition, method for producing prepreg, method for producing laminated board and wiring board
JP3885664B2 (en) Prepreg, laminated board and printed wiring board
JP5547032B2 (en) Thermally conductive resin composition, resin sheet, prepreg, metal laminate and printed wiring board
JP5370129B2 (en) Thermosetting resin composition, prepreg and laminate
JP4793277B2 (en) Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and wiring board
JP5423590B2 (en) Thermosetting resin composition, prepreg and laminate
WO2020161926A1 (en) Resin composition and method for producing same
JP5217865B2 (en) Flame-retardant epoxy resin composition, prepreg, laminate and wiring board
JPH05214129A (en) Solventless high-temperature mixing process for producing thermosetting polyphenylene oxide/epoxy laminate
CN110078898B (en) Heat-conducting resin composition
JP2003137971A (en) Epoxy resin composition, prepreg, laminate and printed wiring board
JP5729336B2 (en) Epoxy compound, resin composition, resin sheet, laminate and printed wiring board
KR101838848B1 (en) Epoxy Resin Compositions for Bulk Mold Compound Dispersed Carbon Nano Tube
JP2006036868A (en) Prepreg, laminate and printed wiring board
CN112004888A (en) Resin composition, resin film, metal foil with resin, prepreg, metal-clad laminate, and printed wiring board
JP2010229368A (en) Epoxy resin composition and prepreg, laminated board, and wiring board
JP3912302B2 (en) Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

R150 Certificate of patent or registration of utility model

Ref document number: 5010112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees