JP2010229368A - Epoxy resin composition and prepreg, laminated board, and wiring board - Google Patents

Epoxy resin composition and prepreg, laminated board, and wiring board Download PDF

Info

Publication number
JP2010229368A
JP2010229368A JP2009080946A JP2009080946A JP2010229368A JP 2010229368 A JP2010229368 A JP 2010229368A JP 2009080946 A JP2009080946 A JP 2009080946A JP 2009080946 A JP2009080946 A JP 2009080946A JP 2010229368 A JP2010229368 A JP 2010229368A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
amino group
mass
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009080946A
Other languages
Japanese (ja)
Inventor
Masahito Tsuji
雅仁 辻
Hiroyuki Yamanaka
浩之 山仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2009080946A priority Critical patent/JP2010229368A/en
Publication of JP2010229368A publication Critical patent/JP2010229368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition that has sufficient thermal conductivity and improved moisture-resistant characteristics. <P>SOLUTION: The epoxy resin composition includes an epoxy resin (A), a phenolic novolac resin (B), an inorganic filler (C), and a silane coupling agent (D) having an amino group, the an inorganic filler (C) being 150-950 pts.mass based on 100 pts.mass of the resin solid component, the silane coupling agent (D) having an amino group being 0.3-1.5 pts.mass based on 100 pts.mass of the resin solid component. The amino group in the silane coupling agent (D) having an amino group is preferably an amino group in a ureido group. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、エポキシ樹脂組成物に関する。また、このエポキシ樹脂組成物を用いたプリプレグ、積層板ないしは配線板に関する。この樹脂組成物は、充分な熱伝導性を有し、かつ、耐湿特性に優れ、発熱部品を実装する配線板の絶縁層として好適である。   The present invention relates to an epoxy resin composition. Further, the present invention relates to a prepreg, a laminated board or a wiring board using this epoxy resin composition. This resin composition has sufficient heat conductivity and excellent moisture resistance, and is suitable as an insulating layer for a wiring board on which a heat-generating component is mounted.

電子機器に搭載する配線板は、電子機器の軽薄短小化に伴う微細配線・高密度実装の技術が求められる一方で、発熱に対応する高放熱の技術も求められている。特に、各種制御・操作に大電流を使用する自動車などにおける電子回路では、導電回路の抵抗に起因する発熱やパワー素子からの発熱が非常に多く、配線板の放熱特性は高レベルであることが必須となってきている。   A wiring board mounted on an electronic device is required to have a technology for fine wiring and high-density mounting in accordance with a reduction in the thickness and size of the electronic device, and a technology for high heat dissipation corresponding to heat generation is also required. In particular, in electronic circuits such as automobiles that use a large current for various controls and operations, heat generation due to the resistance of the conductive circuit and heat generation from the power element are very large, and the heat dissipation characteristics of the wiring board may be high. It has become essential.

そのような現状において、配線板の絶縁層の熱伝導性を向上させるために、熱硬化性樹脂に無機充填材を添加することは広く行われている。例えば、熱硬化性樹脂に鱗片状無機充填材と粒子状無機充填材との混合充填材を添加した熱伝導性樹脂シートが特許文献1に記載されている。この熱伝導性樹脂シートは、鱗片状無機充填材と粒子状無機充填材とを混合し、鱗片状無機充填材を厚さ方向に配向させることにより、樹脂シートの厚さ方向の熱伝導性を向上させるものである。   Under such circumstances, adding an inorganic filler to a thermosetting resin is widely performed in order to improve the thermal conductivity of the insulating layer of the wiring board. For example, Patent Document 1 discloses a thermally conductive resin sheet in which a mixed filler of a scaly inorganic filler and a particulate inorganic filler is added to a thermosetting resin. This heat conductive resin sheet mixes the scale-like inorganic filler and the particulate inorganic filler, and orients the scale-like inorganic filler in the thickness direction, thereby increasing the heat conductivity in the thickness direction of the resin sheet. It is to improve.

しかし、エポキシ樹脂などの熱硬化性樹脂自体は熱伝導率が低く、樹脂組成物の熱伝導率を向上させるためには、熱硬化性樹脂に無機充填材を高充填する必要がある。これにともない、樹脂組成物の加工性が悪くなる、脆くなる、高価になるなどの問題がある。加えて、熱硬化性樹脂の体積比率が少なくなり、樹脂と無機充填材の間にクラックやボイドが発生しやすくなるため、耐湿特性(特に、吸湿処理後のはんだ耐熱性)が低下するという問題がある。さらに、樹脂と無機充填材の密着性が不充分となり、銅はく引きはがし強さが低下するという問題がある。   However, thermosetting resins such as epoxy resins themselves have low thermal conductivity, and in order to improve the thermal conductivity of the resin composition, it is necessary to highly fill the thermosetting resin with an inorganic filler. In connection with this, there exists a problem that the workability of a resin composition worsens, becomes brittle, becomes expensive. In addition, the volume ratio of the thermosetting resin is reduced, and cracks and voids are likely to occur between the resin and the inorganic filler, resulting in reduced moisture resistance (particularly solder heat resistance after moisture absorption treatment). There is. Furthermore, there is a problem that the adhesiveness between the resin and the inorganic filler becomes insufficient, and the copper peel strength is lowered.

一方、シランカップリング剤については、無機充填材の分散性等の向上を目的とし、無機充填材の表面を改質させるために使用されていることは周知であり、代表的には、ビニル基、エポキシ基、メタクリル基、アミノ基、メルカプト基を有するシランカップリング剤などがあり、シランカップリング剤のシラノール基は、表面に水酸基を持つ素材と、特に、強い親和性及び反応性を示すため、有機物−無機物の結合に効果があることが知られている。   On the other hand, it is well known that silane coupling agents are used for the purpose of improving the dispersibility of inorganic fillers, and are used to modify the surface of inorganic fillers. There are silane coupling agents having epoxy groups, methacryl groups, amino groups, mercapto groups, etc., and the silanol groups of silane coupling agents are particularly strong in affinity and reactivity with materials having hydroxyl groups on the surface. It is known that the organic-inorganic bond is effective.

特開2005−232313号公報JP 2005-232313 A

上述のように、絶縁層をエポキシ樹脂で構成した配線板は、エポキシ樹脂に無機充填材を高充填することにより熱伝導性を向上できたとしても、耐湿特性(特に、吸湿処理後のはんだ耐熱性)や銅はく引きはがし強さを維持することは容易ではない。
本発明が解決しようとする課題は、充分な熱伝導性を有し、かつ、耐湿特性を向上したエポキシ樹脂組成物を提供することである。また、このエポキシ樹脂組成物を使用したプリプレグを提供することである。さらには、前記プリプレグによる積層板ないしは絶縁層を備えた配線板を提供することである。
As described above, the wiring board in which the insulating layer is made of epoxy resin has moisture resistance (particularly, solder heat resistance after moisture absorption treatment) even if the thermal conductivity can be improved by highly filling the epoxy resin with an inorganic filler. Property) and copper peeling strength are not easy to maintain.
The problem to be solved by the present invention is to provide an epoxy resin composition having sufficient thermal conductivity and improved moisture resistance. Moreover, it is providing the prepreg using this epoxy resin composition. Furthermore, it is providing the wiring board provided with the laminated board or insulating layer by the said prepreg.

本発明は、高熱伝導性の無機充填材を使用した場合においても、特定の官能基を有するシランカップリング剤を併用することにより、耐湿特性を向上することができるという新しい知見に基づくものである。   The present invention is based on a new finding that moisture resistance can be improved by using a silane coupling agent having a specific functional group in combination even when an inorganic filler with high thermal conductivity is used. .

上記課題を達成するために、本発明に係るエポキシ樹脂組成物は、エポキシ樹脂(A)と、フェノール類ノボラック樹脂(B)と、無機充填材(C)と、アミノ基を有するシランカップリング剤(D)とを含む。そして、無機充填材(C)が、樹脂固形分100質量部に対して、150〜950質量部である。さらに、アミノ基を有するシランカップリング剤(D)が、樹脂固形分100質量部に対して、0.3〜1.5質量部であることを特徴とする(請求項1)。
本発明において、樹脂固形分とは、エポキシ樹脂(A)及びフェノール類ノボラック樹脂(B)に加えて、硬化促進剤や難燃剤、希釈剤、可塑剤等を含んだ樹脂固形分をいう。
To achieve the above object, an epoxy resin composition according to the present invention comprises an epoxy resin (A), a phenol novolak resin (B), an inorganic filler (C), and an amino group-containing silane coupling agent. (D). And an inorganic filler (C) is 150-950 mass parts with respect to 100 mass parts of resin solid content. Furthermore, the silane coupling agent (D) having an amino group is 0.3 to 1.5 parts by mass with respect to 100 parts by mass of the resin solid content (claim 1).
In the present invention, the resin solid content means a resin solid content containing a curing accelerator, a flame retardant, a diluent, a plasticizer and the like in addition to the epoxy resin (A) and the phenol novolac resin (B).

好ましくは、アミノ基を有するシランカップリング剤(D)のアミノ基が、ウレイド基中のアミノ基である(請求項2)。また、無機充填材(C)が、窒化ホウ素、窒化アルミニウム、窒化ケイ素およびアルミナからなる群より選ばれた1種以上を含有する(請求項3)。   Preferably, the amino group of the silane coupling agent (D) having an amino group is an amino group in the ureido group (Claim 2). The inorganic filler (C) contains one or more selected from the group consisting of boron nitride, aluminum nitride, silicon nitride, and alumina.

また、好ましくは、エポキシ樹脂(A)が、(式1)で示す分子構造のエポキシ樹脂モノマを含有する(請求項4)。   Preferably, the epoxy resin (A) contains an epoxy resin monomer having a molecular structure represented by (Formula 1) (Claim 4).

Figure 2010229368
Figure 2010229368

さらに好ましくは、エポキシ樹脂(A)が、(式2)で示す分子構造のエポキシ樹脂モノマを含有する(請求項5)。   More preferably, the epoxy resin (A) contains an epoxy resin monomer having a molecular structure represented by (Formula 2) (Claim 5).

Figure 2010229368
Figure 2010229368

本発明に係るプリプレグは、上記エポキシ樹脂組成物をシート状繊維基材に含浸し乾燥してなるものである(請求項6)。
本発明に係る積層板は、上記プリプレグをプリプレグ層の一部ないし全部の層として、これを加熱加圧成形してなるものである(請求項7)。
本発明に係る配線板は、上記プリプレグの層を加熱加圧成形してなる絶縁層を備えたものである(請求項8)。
The prepreg according to the present invention is obtained by impregnating the epoxy resin composition into a sheet-like fiber base material and drying it (Claim 6).
The laminate according to the present invention is formed by heating and press-molding the prepreg as a part or all of the prepreg layer (claim 7).
The wiring board according to the present invention includes an insulating layer formed by heating and pressing the prepreg layer.

本発明に係るエポキシ樹脂組成物は、エポキシ樹脂(A)を主剤とし、耐熱性を付与するために、硬化剤としてフェノール類ノボラック樹脂(B)を使用する。また、充分な熱伝導性を確保するために、無機充填材(C)を含有させる。   The epoxy resin composition according to the present invention uses an epoxy resin (A) as a main ingredient and a phenol novolac resin (B) as a curing agent in order to impart heat resistance. Moreover, in order to ensure sufficient heat conductivity, an inorganic filler (C) is contained.

そして、無機充填材(C)を、樹脂固形分100質量部に対して、150〜950質量部とする。無機充填材(C)の配合量が150質量より少ないと充分な熱伝導率を確保することができず、950質量部を超えると、無機充填材同士の隙間を樹脂で充分に埋めることができなくなり、熱伝導率が低下し、また耐熱性も低下する。   And let inorganic filler (C) be 150-950 mass parts with respect to 100 mass parts of resin solid content. If the blending amount of the inorganic filler (C) is less than 150 masses, sufficient thermal conductivity cannot be secured, and if it exceeds 950 parts by mass, the gaps between the inorganic fillers can be sufficiently filled with resin. The heat conductivity is lowered, and the heat resistance is also lowered.

さらに、耐湿特性を向上させるため、アミノ基を有するシランカップリング剤(D)は、樹脂固形分100質量部に対し、0.3〜1.5質量部、好ましくは、0.5〜1質量部とする。アミノ基を有するシランカップリング剤(D)の配合量が0.3質量部より少ないと、無機充填材表面を、充分にシランカップリング剤で被覆できないため、耐湿特性向上の効果が小さい。また、1.5質量部を超えると、無機充填材の配合量に対して過剰となり、余剰なシランカップリング剤のアミノ基がエポキシ樹脂と反応し、エポキシ樹脂−硬化剤の反応を阻害するため、絶縁層自体の耐熱性が悪化し、はんだ耐熱性が劣ることになる。   Furthermore, in order to improve the moisture resistance, the silane coupling agent (D) having an amino group is 0.3 to 1.5 parts by mass, preferably 0.5 to 1 part by mass with respect to 100 parts by mass of the resin solid content. Part. If the amount of the amino group-containing silane coupling agent (D) is less than 0.3 parts by mass, the surface of the inorganic filler cannot be sufficiently covered with the silane coupling agent, so that the effect of improving the moisture resistance is small. On the other hand, when the amount exceeds 1.5 parts by mass, the amount of the inorganic filler becomes excessive, and the excess amino group of the silane coupling agent reacts with the epoxy resin to inhibit the reaction of the epoxy resin-curing agent. As a result, the heat resistance of the insulating layer itself deteriorates and the solder heat resistance deteriorates.

また、シランカップリング剤の反応基は、無機物に対してほとんど選択性はないが、有機物に対して、はっきりとした選択性があり、エポキシ樹脂組成物中に配合されるシランカップリング剤は、有機物と反応する側の末端基の選択が重要である。特に、アミノ基(−NH)を有することで、エポキシ樹脂組成物中の未反応のエポキシ基とシランカップリング剤のアミノ基の窒素原子で、電子求核置換反応し、接着性が高まる。更に、ウレイド基(−NHCONH)には、多くの窒素原子が含まれているため、より一層の接着性が高まることになる。但し、エポキシ樹脂とフェノール類ノボラック樹脂との反応を阻害しない様に、配合量を制約する必要がある。 The reactive group of the silane coupling agent has little selectivity to inorganic substances, but has a clear selectivity to organic substances, and the silane coupling agent compounded in the epoxy resin composition is: The selection of the end group on the side that reacts with the organic matter is important. In particular, by having an amino group (—NH 2 ), an electron nucleophilic substitution reaction occurs between the unreacted epoxy group in the epoxy resin composition and the nitrogen atom of the amino group of the silane coupling agent, thereby improving the adhesion. Furthermore, since many nitrogen atoms are contained in the ureido group (—NHCONH 2 ), the adhesiveness is further improved. However, it is necessary to limit the blending amount so as not to inhibit the reaction between the epoxy resin and the phenol novolac resin.

このように、本発明に係るエポキシ樹脂組成物を用いることにより、充分な熱伝導性を確保でき、かつ、耐湿特性を向上したエポキシ樹脂組成物を提供できる。   Thus, by using the epoxy resin composition according to the present invention, it is possible to provide an epoxy resin composition that can ensure sufficient thermal conductivity and has improved moisture resistance.

本発明に係るエポキシ樹脂組成物において、エポキシ樹脂(A)は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂など一般的なエポキシ樹脂はいずれも使用できる。基本骨格にメソゲン骨格と呼ばれる剛直な構造(例えば、ビフェニル骨格やターフェニル骨格等)を持つエポキシ樹脂は、熱伝導性が向上するため好ましい。   In the epoxy resin composition according to the present invention, the epoxy resin (A) may be any general epoxy resin such as bisphenol A type epoxy resin and bisphenol F type epoxy resin. An epoxy resin having a rigid structure called a mesogenic skeleton (for example, a biphenyl skeleton or a terphenyl skeleton) in the basic skeleton is preferable because thermal conductivity is improved.

特に(式1)で示される分子構造式のビフェニル骨格あるいはビフェニル誘導体の骨格をもつエポキシ樹脂は、熱伝導性が向上するため好ましい。   In particular, an epoxy resin having a biphenyl skeleton or a biphenyl derivative skeleton having a molecular structure represented by (formula 1) is preferable because thermal conductivity is improved.

Figure 2010229368
Figure 2010229368

さらに好ましくは、(式2)で示される分子構造式のエポキシ樹脂を選択する。ビフェニル基がより配列しやすいため、熱伝導性をさらに向上することができる。また、ビフェニル骨格あるいはビフェニル誘導体の骨格は単一分子内に2つ以上あってもよい。   More preferably, an epoxy resin having a molecular structure represented by (Formula 2) is selected. Since the biphenyl group is more easily arranged, the thermal conductivity can be further improved. Two or more biphenyl skeletons or biphenyl derivative skeletons may be present in a single molecule.

Figure 2010229368
Figure 2010229368

上記の一般的なエポキシ樹脂や基本骨格にメソゲン骨格を持つエポキシ樹脂を単独あるいは2種類以上を組み合わせて用いてもよい。基本骨格にメソゲン骨格を持つエポキシ樹脂を主剤の全てあるいは一部に含むと、樹脂硬化物の分子鎖の規則性が高くなり、樹脂硬化物の熱伝導率を向上させる。樹脂と無機充填材の複合体とするとき、樹脂硬化物の熱伝導率の向上は無機充填材による熱伝導率の向上効果をより一層高める効果があり、一般的なエポキシ樹脂と無機充填材の複合体と比較して大きく熱伝導率が向上する。このため、基本骨格にメソゲン骨格を持つエポキシ樹脂の配合量は、主剤のうちエポキシ当量比で40%以上であることが好ましい。   The above general epoxy resins and epoxy resins having a mesogenic skeleton in the basic skeleton may be used alone or in combination of two or more. When an epoxy resin having a mesogenic skeleton as a basic skeleton is included in all or part of the main agent, the regularity of the molecular chain of the cured resin is increased, and the thermal conductivity of the cured resin is improved. When a composite of a resin and an inorganic filler is used, the improvement in the thermal conductivity of the cured resin has the effect of further enhancing the effect of improving the thermal conductivity by the inorganic filler. Compared with the composite, the thermal conductivity is greatly improved. For this reason, it is preferable that the compounding quantity of the epoxy resin which has a mesogen skeleton in a basic skeleton is 40% or more by epoxy equivalent ratio among main agents.

フェノール類ノボラック樹脂(B)は、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂等であり、特に制約するものではない。また、これらを単独あるいは2種類以上を組み合わせて用いてもよい。硬化剤としてフェノール類ノボラック樹脂を使用することにより、酸無水物系やアミン系の硬化剤を使用した場合と比較して、樹脂組成物の耐熱性を向上することができる。   The phenol novolak resin (B) is a phenol novolak resin, a cresol novolak resin, a bisphenol A type novolak resin or the like, and is not particularly limited. Moreover, you may use these individually or in combination of 2 or more types. By using a phenol novolak resin as a curing agent, the heat resistance of the resin composition can be improved as compared with the case where an acid anhydride or amine curing agent is used.

無機充填材(C)は、熱伝導率が20W/m・K以上の無機充填材を使用することにより、樹脂硬化物の熱伝導率がさらに向上するので好ましい。前記熱伝導率が20W/m・K以上の無機充填材としては、例えば、窒化ホウ素、窒化アルミニウム、窒化ケイ素、アルミナ等が挙げられる。これら無機充填材を単独あるいは2種類以上を組み合わせて用いてもよい。なお、無機充填材(C)の配合量は、樹脂固形分100質量部に対して、150〜950質量部とする。   The inorganic filler (C) is preferable because the thermal conductivity of the cured resin is further improved by using an inorganic filler having a thermal conductivity of 20 W / m · K or more. Examples of the inorganic filler having a thermal conductivity of 20 W / m · K or more include boron nitride, aluminum nitride, silicon nitride, and alumina. You may use these inorganic fillers individually or in combination of 2 or more types. In addition, the compounding quantity of an inorganic filler (C) shall be 150-950 mass parts with respect to 100 mass parts of resin solid content.

アミノ基を有するシランカップリング剤(D)は、3−ウレイドプロピルトリエトシキシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−(2−アミノエチル)アミノプロピルトリメトキシシラン、3−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、3−フェニルアミノプロピルトリメトキシシラン等であり、特に制約するものではない。アミノ基を有するシランカップリング剤(D)のアミノ基が、ウレイド基中のアミノ基であると、耐湿特性が向上するため好ましい。これらを単独あるいは2種類以上組み合わせてもよい。但し、耐湿特性向上のため、樹脂固形分100質量部に対し、0.3〜1.5質量部の量で配合する。さらに、耐湿特性を向上させるため、好ましくは、0.5〜1質量部とする。   The silane coupling agent (D) having an amino group is 3-ureidopropyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane. , 3- (2-aminoethyl) aminopropylmethyldimethoxysilane, 3-phenylaminopropyltrimethoxysilane, and the like, which are not particularly limited. It is preferable that the amino group of the silane coupling agent (D) having an amino group is an amino group in the ureido group because moisture resistance is improved. These may be used alone or in combination of two or more. However, in order to improve moisture resistance, it is blended in an amount of 0.3 to 1.5 parts by mass with respect to 100 parts by mass of the resin solid content. Furthermore, in order to improve the moisture resistance, the content is preferably 0.5 to 1 part by mass.

エポキシ樹脂(A)、フェノール類ノボラック樹脂(B)、無機充填材(C)およびアミノ基を有するシランカップリング剤(D)を配合したエポキシ樹脂組成物には、必要に応じて硬化促進剤や難燃剤、希釈剤、可塑剤等を含むことができる。また、このエポキシ樹脂組成物をシート状繊維基材に含浸し乾燥してプリプレグを製造する際、必要に応じて溶剤を使用することができる。   In the epoxy resin composition containing the epoxy resin (A), the phenol novolak resin (B), the inorganic filler (C) and the silane coupling agent (D) having an amino group, a curing accelerator or Flame retardants, diluents, plasticizers and the like can be included. Moreover, when impregnating this epoxy resin composition in a sheet-like fiber base material and drying and manufacturing a prepreg, a solvent can be used as needed.

難燃剤は、例えば、テトラブロモビスフェノールAなどのハロゲン含有難燃剤やリン含有難燃剤、窒素含有難燃剤等はいずれも使用できる。これらの難燃剤は、エポキシ樹脂と硬化剤の反応に関与してもよく、関与しない化合物でもよい。樹脂の硬化反応に関与する化合物の場合、樹脂硬化物の分子鎖の規則性が一般的なエポキシ樹脂より高く保てる範囲でその構造は制約されない。   As the flame retardant, for example, a halogen-containing flame retardant such as tetrabromobisphenol A, a phosphorus-containing flame retardant, a nitrogen-containing flame retardant, or the like can be used. These flame retardants may be involved in the reaction between the epoxy resin and the curing agent, or may be compounds that do not participate. In the case of a compound involved in the curing reaction of the resin, its structure is not limited as long as the regularity of the molecular chain of the cured resin can be kept higher than that of a general epoxy resin.

本発明に係るプリプレグは、前記のエポキシ樹脂組成物のワニスを、ガラス繊維や有機繊維で構成されたシート状繊維基材(織布や不織布)に含浸し加熱乾燥して、エポキシ樹脂を半硬化状態としたものである。   The prepreg according to the present invention is obtained by impregnating the varnish of the epoxy resin composition into a sheet-like fiber base material (woven fabric or non-woven fabric) composed of glass fiber or organic fiber, and drying by heating, so that the epoxy resin is semi-cured. It is a state.

そして、本発明に係る積層板は、前記のプリプレグを、プリプレグ層の一部ないし全部の層として使用し加熱加圧成形してなるものであり、必要に応じて前記加熱加圧成形により片面あるいは両面に銅箔等の金属箔を一体に貼り合せる。
さらに、本発明に係る配線板は、前記のプリプレグの層を加熱加圧成形して絶縁層を形成するものであり、その対象は、片面配線板、両面配線板、さらには、内層と表面層に配線を有する多層配線板である。
And the laminated board which concerns on this invention uses the said prepreg as a one part thru | or all layer of a prepreg layer, and heat-press-molds it. A metal foil such as a copper foil is integrally bonded to both sides.
Furthermore, the wiring board according to the present invention is one in which the prepreg layer is formed by heating and pressing to form an insulating layer. The object is a single-sided wiring board, a double-sided wiring board, and further, an inner layer and a surface layer. Is a multilayer wiring board having wiring.

以下、本発明に係る実施例を示し、本発明について詳細に説明する。尚、以下の実施例および比較例において、「部」とは「質量部」を意味する。また、本発明は、その要旨を逸脱しない限り、本実施例に限定されるものではない。   Examples of the present invention will be described below, and the present invention will be described in detail. In the following examples and comparative examples, “part” means “part by mass”. Moreover, this invention is not limited to a present Example, unless it deviates from the summary.

実施例1〜3、比較例1〜3
ガラス繊維織布(「#1080」旭化成エレクトロニクス製,厚さ:60μm,質量:48g/m)に含浸するエポキシ樹脂組成物として、以下を準備した。
ビフェニル骨格をもつエポキシ樹脂(「YL6121H」ジャパンエポキシレジン製)36部、3官能エポキシ樹脂(「VG3101」プリンテック製)18部、フェノールノボラック樹脂(「LF6161」DIC製)36部、難燃剤として、テトラブロモビスフェノールA(「FR−1524」ブロモ・ケム・ファーイースト製)26部、硬化促進剤として、2−エチル−4−メチルイミダゾール(「キュアゾール2E4MZ」四国化成製)0.2部を、メチルセロソルブとメチルエチルケトンの混合溶媒に溶解し、エポキシ樹脂ワニスを調製した。
尚、「YL6121H」は、既述の分子構造式(式1)において、R=−CH,n=0.1である液晶エポキシ樹脂と分子構造式(式2)において、m=0.1である液晶エポキシ樹脂を等モルで含有するエポキシ樹脂である。
Examples 1-3, Comparative Examples 1-3
The following was prepared as an epoxy resin composition to be impregnated into a glass fiber woven fabric (“# 1080” manufactured by Asahi Kasei Electronics, thickness: 60 μm, mass: 48 g / m 2 ).
36 parts of epoxy resin having a biphenyl skeleton (manufactured by “YL6121H” Japan epoxy resin), 18 parts of trifunctional epoxy resin (manufactured by “VG3101” Printec), 36 parts of phenol novolac resin (manufactured by “LF6161” DIC), as a flame retardant, 26 parts of tetrabromobisphenol A (“FR-1524” manufactured by Bromo Chem Far East), 0.2 parts of 2-ethyl-4-methylimidazole (“Curesol 2E4MZ” manufactured by Shikoku Chemicals) as a curing accelerator, An epoxy resin varnish was prepared by dissolving in a mixed solvent of cellosolve and methyl ethyl ketone.
“YL6121H” is a liquid crystal epoxy resin in which R = —CH 3 , n = 0.1 in the molecular structural formula (formula 1) and m = 0.1 in the molecular structural formula (formula 2). It is an epoxy resin containing a liquid crystal epoxy resin that is an equimolar amount.

次に、このエポキシ樹脂ワニスの一部と、窒化ホウ素(「UHP−2」昭和電工製)、アルミナ(「DAW−03」電気化学工業製,平均粒径:3μm)、3−ウレイドプロピルトリエトキシシラン(「A−1160」モメンティブ製、表中では『ウレイドシラン』と記載)を表1の配合量で、ハイビスディスパーで混練後、残りのエポキシ樹脂ワニスと配合した。最終的なエポキシ樹脂組成物の割合は表1に示す。   Next, a part of this epoxy resin varnish, boron nitride (“UHP-2” manufactured by Showa Denko), alumina (“DAW-03” manufactured by Denki Kagaku Kogyo, average particle size: 3 μm), 3-ureidopropyltriethoxy Silane (manufactured by “A-1160” Momentive, described as “ureidosilane” in the table) was blended with the remaining epoxy resin varnish after kneading with a hibis disperser in the blending amount shown in Table 1. Table 1 shows the final ratio of the epoxy resin composition.

上記エポキシ樹脂ワニスをガラス繊維織布に含浸し、140℃で15分間乾燥して、プリプレグを得た。樹脂(無機充填材を含む)の含有量は、80質量%である。このプリプレグを4枚重ね、その両面に18μmの銅はくを配置し、温度205℃、圧力3.9MPaの条件で、90分間加熱加圧成形し、厚み0.4mmの銅張り積層板を得た。   A glass fiber woven fabric was impregnated with the epoxy resin varnish and dried at 140 ° C. for 15 minutes to obtain a prepreg. The content of the resin (including the inorganic filler) is 80% by mass. Four prepregs are stacked, 18 μm copper foil is placed on both sides of the prepreg, and heat-press molding is performed for 90 minutes under the conditions of a temperature of 205 ° C. and a pressure of 3.9 MPa to obtain a 0.4 mm thick copper-clad laminate. It was.

実施例4
実施例2において、ビフェニル骨格をもつエポキシ樹脂「YL6121H」を使用しないこと以外は、実施例2と同様にして銅張り積層板を得た。
Example 4
In Example 2, a copper-clad laminate was obtained in the same manner as in Example 2 except that the epoxy resin “YL6121H” having a biphenyl skeleton was not used.

比較例4
実施例2において、3−ウレイドプロピルトリエトキシシランの代わりに、3−グリシドキシプロピルトリエトキシシラン(「A−187」モメンティブ製、表中では『エポキシシラン』と記載)を使用する以外は、実施例2と同様にして銅張り積層板を得た。
Comparative Example 4
In Example 2, instead of 3-ureidopropyltriethoxysilane, 3-glycidoxypropyltriethoxysilane (“A-187” manufactured by Momentive, described as “epoxysilane” in the table) was used. A copper-clad laminate was obtained in the same manner as in Example 2.

実施例5〜7、比較例5〜7
ガラス繊維不織布(「EPM−4015」日本バイリーン製,質量:15g/m)に含浸するエポキシ樹脂組成物として、以下を準備した。
ビフェニル骨格をもつエポキシ樹脂(「YL6121H」ジャパンエポキシレジン製)36部、3官能エポキシ樹脂(「VG3101」プリンテック製)18部、フェノールノボラック樹脂(「LF6161」DIC製)36部、難燃剤として、テトラブロモビスフェノールA(「FR−1524」ブロモ・ケム・ファーイースト製)26部、硬化促進剤として、2−エチル−4−メチルイミダゾール(「キュアゾール2E4MZ」四国化成製)0.2部を、メチルセロソルブとメチルエチルケトンの混合溶媒に溶解し、エポキシ樹脂ワニスを調製した。
Examples 5-7, Comparative Examples 5-7
The following was prepared as an epoxy resin composition to be impregnated into a glass fiber nonwoven fabric (“EPM-4015” manufactured by Nippon Vilene, mass: 15 g / m 2 ).
36 parts of epoxy resin having a biphenyl skeleton (manufactured by “YL6121H” Japan epoxy resin), 18 parts of trifunctional epoxy resin (manufactured by “VG3101” Printec), 36 parts of phenol novolac resin (manufactured by “LF6161” DIC), as a flame retardant, 26 parts of tetrabromobisphenol A (“FR-1524” manufactured by Bromo Chem Far East), 0.2 parts of 2-ethyl-4-methylimidazole (“Curesol 2E4MZ” manufactured by Shikoku Chemicals) as a curing accelerator, An epoxy resin varnish was prepared by dissolving in a mixed solvent of cellosolve and methyl ethyl ketone.

次に、このエポキシ樹脂ワニスの一部と、アルミナ混合物、3−ウレイドプロピルトリエトキシシラン(「A−1160」モメンティブ製、表中では『ウレイドシラン』と記載)を表2の配合量で、ハイビスディスパーで混練後、残りのエポキシ樹脂ワニスと配合した。最終的なエポキシ樹脂組成物の割合は表2に示す。
尚、アルミナ混合物は、平均粒径0.4μmのアルミナ(「AA−04」住友化学製)、平均粒径3μmのアルミナ(「DAW−03」電気化学工業製)および平均粒径18μmのアルミナ(「AA−18」住友化学製)を、「AA−04」:「DAW−03」:「AA−18」=12:14:74の比率(質量比)で混合したものである。
Next, a part of this epoxy resin varnish, an alumina mixture, 3-ureidopropyltriethoxysilane ("A-1160" manufactured by Momentive, indicated as "ureidosilane" in the table) in the amount shown in Table 2, and Hibis After kneading with a disper, it was blended with the remaining epoxy resin varnish. The final proportion of the epoxy resin composition is shown in Table 2.
The alumina mixture is composed of alumina having an average particle diameter of 0.4 μm (“AA-04” manufactured by Sumitomo Chemical), alumina having an average particle diameter of 3 μm (“DAW-03” manufactured by Denki Kagaku Kogyo) and alumina having an average particle diameter of 18 μm ( “AA-18” manufactured by Sumitomo Chemical Co., Ltd.) is mixed at a ratio (mass ratio) of “AA-04”: “DAW-03”: “AA-18” = 12: 14: 74.

上記エポキシ樹脂ワニスをガラス繊維不織布に含浸し、140℃で12分間乾燥して、プリプレグを得た。樹脂(無機充填材を含む)の含有量は、96質量%である。このプリプレグを3枚重ね、その両面に18μmの銅はくを配置し、温度205℃、圧力4.9MPaの条件で、90分間加熱加圧成形し、厚み0.4mmの銅張り積層板を得た。   A glass fiber nonwoven fabric was impregnated with the epoxy resin varnish and dried at 140 ° C. for 12 minutes to obtain a prepreg. The content of the resin (including the inorganic filler) is 96% by mass. Three prepregs are stacked, 18 μm copper foil is placed on both sides of the prepreg, and heat-press molding is performed for 90 minutes under the conditions of a temperature of 205 ° C. and a pressure of 4.9 MPa to obtain a 0.4 mm thick copper-clad laminate. It was.

実施例8
実施例6において、ビフェニル骨格をもつエポキシ樹脂「YL6121H」を使用しないこと以外は、実施例2と同様にして銅張り積層板を得た。
Example 8
In Example 6, a copper-clad laminate was obtained in the same manner as in Example 2 except that the epoxy resin “YL6121H” having a biphenyl skeleton was not used.

上記の各実施例と比較例における銅張り積層板について、熱伝導率、はんだ耐熱性、吸湿処理後のはんだ耐熱性および銅はく引きはがし強さを評価した結果を表1〜2に示した。表中に示した各特性は、次のようにして評価した。
熱伝導率:銅はくを全面エッチングにより除去した積層板について、ASTM−E1461に準拠し、測定した。なお、測定装置は、NETZSCH製nanoflash LFA447型を使用した。
はんだ耐熱性:銅張り積層板を25×25mmのサイズにカットした試料を、温度288℃のはんだ槽に浮かべて、ふくれが発生するまでの時間を測定した。5分以上ふくれが発生しないものを「○」、5分未満でふくれが発生したものを「×」とした。
吸湿処理後のはんだ耐熱性:銅張り積層板を50×50mmのサイズにカットし、片面の25×50mmの領域に銅はくを残し、その他の領域はエッチングにより銅はくを除去した試料を準備した。この試料を、121℃/0.2MPaの飽和水蒸気雰囲気下で5時間処理した後、試料表面の水分を充分除去し、温度288℃のはんだ槽に20秒間浸漬した。この試料の銅はく残存領域のふくれの個数を計測した。
銅はく引きはがし強さ:JIS C6481に準拠し、測定した。
Tables 1 and 2 show the results of evaluating the thermal conductivity, solder heat resistance, solder heat resistance after moisture absorption treatment, and copper peeling strength of the copper-clad laminates in the above Examples and Comparative Examples. . Each characteristic shown in the table was evaluated as follows.
Thermal conductivity: Measured in accordance with ASTM-E 1461 for a laminated board from which copper foil was removed by whole surface etching. In addition, the measuring apparatus used nanoflash LFA447 type made from NETZSCH.
Solder heat resistance: A sample obtained by cutting a copper-clad laminate into a size of 25 × 25 mm was floated in a solder bath at a temperature of 288 ° C., and the time until blistering was measured. The case where blisters did not occur for 5 minutes or more was designated as “◯”, and the case where blisters occurred in less than 5 minutes was designated as “x”.
Solder heat resistance after moisture absorption treatment: Cut the copper-clad laminate into 50x50mm size, leave copper foil in the 25x50mm area on one side, and remove the copper foil by etching in the other area Got ready. This sample was treated in a saturated water vapor atmosphere at 121 ° C./0.2 MPa for 5 hours, and then water on the sample surface was sufficiently removed and immersed in a solder bath at a temperature of 288 ° C. for 20 seconds. The number of blisters in the copper foil remaining area of this sample was measured.
Copper peel strength: Measured according to JIS C6481.

Figure 2010229368
Figure 2010229368

Figure 2010229368
Figure 2010229368


表1、表2から明らかなように、樹脂固形分100質量部に対する、ウレイド基を有するシランカップリング剤の配合量が0.3〜1.5質量部で、はんだ耐熱性が良好であることが理解できる。また吸湿処理後のはんだ耐熱性における「ふくれの個数」が少なく、耐湿特性が良好であることが理解できる(実施例1〜3と比較例1〜3、実施例5〜7と比較例5〜7の対照)。比較例2及び比較例6は、ウレイド基を有するシランカップリング剤の配合量が少ないために、吸湿処理後のはんだ耐熱性が低下している。また、比較例3及び比較例7では、ウレイド基を有するシランカップリング剤の配合量が多すぎるために、はんだ耐熱性が低下している。

As is clear from Tables 1 and 2, the blending amount of the silane coupling agent having a ureido group is 0.3 to 1.5 parts by mass with respect to 100 parts by mass of the resin solid content, and the solder heat resistance is good. Can understand. Moreover, it can be understood that “the number of blisters” in the solder heat resistance after the moisture absorption treatment is small and the moisture resistance is good (Examples 1 to 3, Comparative Examples 1 to 3, Examples 5 to 7 and Comparative Examples 5 to 5). 7 controls). In Comparative Example 2 and Comparative Example 6, the solder heat resistance after the moisture absorption treatment is reduced because the amount of the silane coupling agent having a ureido group is small. In Comparative Example 3 and Comparative Example 7, the solder heat resistance is reduced because the amount of the silane coupling agent having a ureido group is too large.

また、アミノ基を有するシランカップリング剤を配合することにより始めて、はんだ耐熱性、吸湿処理後のはんだ耐熱性及び銅はく引きはがし強さの向上に効果があることが理解できる(実施例2と比較例4の対照)。   Further, it can be understood that, by adding a silane coupling agent having an amino group, it is effective in improving solder heat resistance, solder heat resistance after moisture absorption treatment, and copper peeling strength (Example 2). And the control of Comparative Example 4).

Claims (8)

エポキシ樹脂(A)と、フェノール類ノボラック樹脂(B)と、無機充填材(C)と、アミノ基を有するシランカップリング剤(D)とを含み、
前記無機充填材(C)が、樹脂固形分100質量部に対して、150〜950質量部であり、且つ、前記アミノ基を有するシランカップリング剤(D)が、樹脂固形分100質量部に対して、0.3〜1.5質量部であることを特徴とするエポキシ樹脂組成物。
An epoxy resin (A), a phenol novolak resin (B), an inorganic filler (C), and a silane coupling agent (D) having an amino group,
The inorganic filler (C) is 150 to 950 parts by mass with respect to 100 parts by mass of resin solids, and the silane coupling agent (D) having the amino group is 100 parts by mass of resin solids. On the other hand, the epoxy resin composition is 0.3 to 1.5 parts by mass.
アミノ基を有するシランカップリング剤(D)のアミノ基が、ウレイド基中のアミノ基であることを特徴とする請求項1記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, wherein the amino group of the silane coupling agent (D) having an amino group is an amino group in a ureido group. 無機充填材(C)が、窒化ホウ素、窒化アルミニウム、窒化ケイ素およびアルミナからなる群より選ばれた1種以上を含有することを特徴とする請求項1又は2記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1 or 2, wherein the inorganic filler (C) contains one or more selected from the group consisting of boron nitride, aluminum nitride, silicon nitride, and alumina. エポキシ樹脂(A)が、(式1)で示す分子構造のエポキシ樹脂モノマを含有することを特徴とする請求項1〜3のいずれかに記載のエポキシ樹脂組成物。
Figure 2010229368
The epoxy resin composition according to any one of claims 1 to 3, wherein the epoxy resin (A) contains an epoxy resin monomer having a molecular structure represented by (Formula 1).
Figure 2010229368
エポキシ樹脂(A)が、(式2)で示す分子構造のエポキシ樹脂モノマを含有することを特徴とする請求項4記載のエポキシ樹脂組成物。
Figure 2010229368
The epoxy resin composition according to claim 4, wherein the epoxy resin (A) contains an epoxy resin monomer having a molecular structure represented by (Formula 2).
Figure 2010229368
請求項1〜5のいずれかに記載のエポキシ樹脂組成物をシート状繊維基材に含浸し乾燥してなることを特徴とするプリプレグ。   A prepreg obtained by impregnating a sheet-like fiber base material with the epoxy resin composition according to any one of claims 1 to 5 and drying it. 請求項6記載のプリプレグの層を一部ないし全部の層として、これを加熱加圧成形してなることを特徴とする積層板。   A laminate comprising the prepreg layer according to claim 6 as a part or all of the layer and heat-pressed. 請求項6記載のプリプレグの層を加熱加圧成形してなる絶縁層を備えたことを特徴とする配線板。   A wiring board comprising an insulating layer formed by heat-pressing the layer of the prepreg according to claim 6.
JP2009080946A 2009-03-30 2009-03-30 Epoxy resin composition and prepreg, laminated board, and wiring board Pending JP2010229368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080946A JP2010229368A (en) 2009-03-30 2009-03-30 Epoxy resin composition and prepreg, laminated board, and wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080946A JP2010229368A (en) 2009-03-30 2009-03-30 Epoxy resin composition and prepreg, laminated board, and wiring board

Publications (1)

Publication Number Publication Date
JP2010229368A true JP2010229368A (en) 2010-10-14

Family

ID=43045473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080946A Pending JP2010229368A (en) 2009-03-30 2009-03-30 Epoxy resin composition and prepreg, laminated board, and wiring board

Country Status (1)

Country Link
JP (1) JP2010229368A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121224A1 (en) 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 Resin composition, and prepreg and laminated sheet containing same
JP2013129788A (en) * 2011-12-22 2013-07-04 Shin Kobe Electric Mach Co Ltd Thermosetting resin composition, prepreg for heating pressure molding, and laminate
WO2014133991A1 (en) 2013-02-28 2014-09-04 3M Innovative Properties Company High thermal conductivity prepreg, printed wiring board and multilayer printed wiring board using the prepreg, and semiconductor device using the multilayer printed wiring board
JP2015534596A (en) * 2012-09-19 2015-12-03 モーメンティブ・パフォーマンス・マテリアルズ・インク Thermally conductive plastic composition, extrusion apparatus and method for making thermally conductive plastic
CN117736549A (en) * 2024-02-02 2024-03-22 广东博汇新材料科技有限公司 Preparation method of high-heat-conductivity epoxy resin compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665357A (en) * 1992-08-24 1994-03-08 Toshiba Chem Corp Epoxy resin composition and semiconductor device
JPH11116775A (en) * 1997-10-20 1999-04-27 Nitto Denko Corp Epoxy resin composition for semiconductor sealing and production thereof
JP2006063315A (en) * 2004-07-26 2006-03-09 Shin Kobe Electric Mach Co Ltd Prepreg, method for producing the same, laminated sheet and printed circuit board
WO2007007843A1 (en) * 2005-07-13 2007-01-18 Hitachi Chemical Co., Ltd. Epoxy resin composition for encapsulation and electronic part device
JP2007138075A (en) * 2005-11-21 2007-06-07 Mitsubishi Gas Chem Co Inc Prepreg and laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665357A (en) * 1992-08-24 1994-03-08 Toshiba Chem Corp Epoxy resin composition and semiconductor device
JPH11116775A (en) * 1997-10-20 1999-04-27 Nitto Denko Corp Epoxy resin composition for semiconductor sealing and production thereof
JP2006063315A (en) * 2004-07-26 2006-03-09 Shin Kobe Electric Mach Co Ltd Prepreg, method for producing the same, laminated sheet and printed circuit board
WO2007007843A1 (en) * 2005-07-13 2007-01-18 Hitachi Chemical Co., Ltd. Epoxy resin composition for encapsulation and electronic part device
JP2007138075A (en) * 2005-11-21 2007-06-07 Mitsubishi Gas Chem Co Inc Prepreg and laminate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121224A1 (en) 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 Resin composition, and prepreg and laminated sheet containing same
KR20140047581A (en) 2011-03-07 2014-04-22 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, and prepreg and laminated sheet containing same
US9629239B2 (en) 2011-03-07 2017-04-18 Mitsubishi Gas Chemical Company, Inc. Resin composition, and prepreg as well as laminate using the same
JP2013129788A (en) * 2011-12-22 2013-07-04 Shin Kobe Electric Mach Co Ltd Thermosetting resin composition, prepreg for heating pressure molding, and laminate
JP2015534596A (en) * 2012-09-19 2015-12-03 モーメンティブ・パフォーマンス・マテリアルズ・インク Thermally conductive plastic composition, extrusion apparatus and method for making thermally conductive plastic
WO2014133991A1 (en) 2013-02-28 2014-09-04 3M Innovative Properties Company High thermal conductivity prepreg, printed wiring board and multilayer printed wiring board using the prepreg, and semiconductor device using the multilayer printed wiring board
CN117736549A (en) * 2024-02-02 2024-03-22 广东博汇新材料科技有限公司 Preparation method of high-heat-conductivity epoxy resin compound

Similar Documents

Publication Publication Date Title
JP5549183B2 (en) Method for producing epoxy resin composition, method for producing prepreg, method for producing laminated board and wiring board
JP4697144B2 (en) Epoxy resin composition for prepreg, prepreg, multilayer printed wiring board
KR101766552B1 (en) Laminate for circuit boards, metal-based circuit board, and power module
WO2011118584A1 (en) Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
JP2001151991A (en) Epoxy resin composition, prepreg, and multi-layer printed wiring board
JP2013001807A (en) Resin composition for electronic circuit board material, prepreg and laminated plate
JP2007211182A (en) Resin composition, pre-preg, laminated board and metal-plated lamianted board and printed wiring board
JP2007070418A (en) Adhesive sheet, metal foil-clad laminated sheet and built-up type multilayered printed wiring board
JP2010229368A (en) Epoxy resin composition and prepreg, laminated board, and wiring board
JP6604564B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, printed wiring board
JP2012241179A (en) Epoxy resin composition for prepreg, the prepreg, and multilayer printed wiring board
JP4244975B2 (en) Epoxy resin composition for prepreg, prepreg, multilayer printed wiring board
JP2004331783A (en) Flame-retardant adhesive composition, flexible copper-clad laminate, cover lay and adhesive film
JP5217865B2 (en) Flame-retardant epoxy resin composition, prepreg, laminate and wiring board
JP4955856B2 (en) Phosphorus-containing epoxy resin composition, prepreg, resin-coated metal foil, adhesive sheet, laminate, multilayer board, phosphorus-containing epoxy resin varnish for coating, phosphorus-containing epoxy resin sealing material, phosphorus-containing epoxy resin casting material, phosphorus for impregnation Containing epoxy resin varnish
JP2008239675A (en) Flame retardant resin composition, and adhesive sheet, cover lay film and copper-clad laminate using the same
JP2006312751A (en) Resin composition, prepreg and copper-clad laminate using the prepreg
JP6299834B2 (en) Low thermal expansion resin composition, prepreg, laminate and wiring board
JP5428212B2 (en) Resin composition, prepreg and printed wiring board using the same
JP2004059777A (en) Flame-retardant adhesive composition, flexible copper clad laminate and its related product
JP2006036869A (en) Prepreg, laminate and printed wiring board
JP2005154739A (en) Resin composition, and prepreg and laminate using the composition
JP2006082370A (en) Laminate and wiring board
JP2019194345A (en) Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JP6111518B2 (en) Low thermal expansion resin composition, prepreg, laminate and wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120309

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121113

A131 Notification of reasons for refusal

Effective date: 20121218

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130507

Free format text: JAPANESE INTERMEDIATE CODE: A02