JP2006312751A - Resin composition, prepreg and copper-clad laminate using the prepreg - Google Patents

Resin composition, prepreg and copper-clad laminate using the prepreg Download PDF

Info

Publication number
JP2006312751A
JP2006312751A JP2006217978A JP2006217978A JP2006312751A JP 2006312751 A JP2006312751 A JP 2006312751A JP 2006217978 A JP2006217978 A JP 2006217978A JP 2006217978 A JP2006217978 A JP 2006217978A JP 2006312751 A JP2006312751 A JP 2006312751A
Authority
JP
Japan
Prior art keywords
resin composition
resin
prepreg
inorganic filler
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006217978A
Other languages
Japanese (ja)
Other versions
JP2006312751A5 (en
Inventor
Masako Okanuma
雅子 岡沼
Kentaro Yabuki
健太郎 矢吹
Takayuki Baba
孝幸 馬塲
Takeshi Hozumi
猛 八月朔日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2006217978A priority Critical patent/JP2006312751A/en
Publication of JP2006312751A publication Critical patent/JP2006312751A/en
Publication of JP2006312751A5 publication Critical patent/JP2006312751A5/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition using neither halogenated compound nor phosphorus compound, having excellent flame retardance and capable of expressing properties of high heat resistance and low thermal expansion, to provide a prepreg, and to provide a copper-clad laminate. <P>SOLUTION: The resin composition comprises, as essential ingredients, a heat curable resin giving cured products having 10-80 ppm linear expansion coefficient at temperatures of from -65°C to 220°C, and an inorganic filler. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ハロゲン系およびリン系難燃剤を使用せずとも優れた難燃性を有し、かつ優れた耐熱性、低線膨張係数、高弾性率を発現する樹脂組成物、プリプレグ及びそれを用いた銅張積層板に関するものである。例えば、高密度実装対応のプリント配線板、ICパッケージ用基板として好適に使用されるものである。   The present invention provides a resin composition, a prepreg having excellent flame retardancy without using a halogen-based or phosphorus-based flame retardant, and exhibiting excellent heat resistance, a low linear expansion coefficient, and a high elastic modulus. The present invention relates to the copper clad laminate used. For example, it is suitably used as a printed wiring board compatible with high-density mounting and an IC package substrate.

半導体の分野では高密度実装技術の進歩から従来の面実装からエリア実装に移行していくトレンドが進行し、BGAやCSPなど新しいパッケージが登場、増加しつつある。そのため以前にもましてインターポーザ用リジッド基板が注目されるようになり、高耐熱、低熱膨張基板の要求が高まってきた。   In the field of semiconductors, a trend of shifting from conventional surface mounting to area mounting is progressing due to progress in high-density mounting technology, and new packages such as BGA and CSP are appearing and increasing. Therefore, the rigid substrate for interposer has been attracting more attention than before, and the demand for a high heat resistance and low thermal expansion substrate has increased.

一方、これら半導体に用いられる樹脂部材は難燃性が求められることが多い。従来この難燃性を付与するため、エポキシ樹脂においては臭素化エポキシなどのハロゲン系難燃剤を用いることが一般的であった。しかし、ハロゲン含有化合物からダイオキシンが発生するおそれがあることから、昨今の環境問題の深刻化とともに、ハロゲン系難燃剤を使用することが回避されるようになり、広く産業界にハロゲンフリーの難燃化システムが求められるようになった。このような時代の要求によってリン系難燃剤が脚光を浴び、リン酸エステルや赤リンが検討されたが、これらの従来のリン系難燃剤は加水分解しやすく樹脂との反応に乏しいため、耐半田性が低下するという問題があった。   On the other hand, the resin member used for these semiconductors is often required to have flame retardancy. Conventionally, in order to impart this flame retardancy, it has been common to use halogen flame retardants such as brominated epoxy in epoxy resins. However, since dioxins may be generated from halogen-containing compounds, the use of halogen-based flame retardants has been avoided along with the recent serious environmental problems. A system has been required. Phosphorus flame retardants have been highlighted due to the demands of these times, and phosphoric acid esters and red phosphorus have been studied.However, these conventional phosphorus flame retardants are easily hydrolyzed and have poor reaction with resins, so There was a problem that solderability deteriorated.

また、近年の電子機器の高機能化等の要求に伴い、電子部品の高密度集積化、更には高密度実装化等が進んでおり、これらに使用される高密度実装対応のプリント配線板等は、従来にも増して、小型化かつ高密度化が進んでいる。このプリント配線板等の高密度化への対応としてビルドアップ多層配線板が多く採用されている。しかし、ビルドアップ多層配線板による方法では、微細なビアにより層間接続されるので接続強度が低下するため、高温多湿雰囲気中での機械的、電気的な接続信頼性を保持することが困難といった問題点があった。   In addition, with recent demands for higher functionality of electronic devices, electronic components are being densely integrated and further mounted with high density, etc. The size and density have been increased more than ever. Many build-up multilayer wiring boards have been adopted as a countermeasure for increasing the density of such printed wiring boards. However, in the method using the build-up multilayer wiring board, since the interlayer connection is made by fine vias, the connection strength is lowered, so that it is difficult to maintain the mechanical and electrical connection reliability in a high temperature and high humidity atmosphere. There was a point.

本発明における第一の課題は、ハロゲン化合物およびリン化合物を使用せずに優れた難燃性を有し、かつ高耐熱、低熱膨張の特性を発現しうる樹脂組成物、プリプレグ、及び銅張積層板を提供するものである。また、本発明者らは、高密度実装対応の多層プリント配線板の上記のような問題点を鑑み、これらに用いられる銅張り積層板用プリプレグ、及び銅張り積層板の厚み方向の熱膨張係数が、層間接続の機械的、電気的な信頼性に大きく影響することを見出した。そこで、本発明における第二の課題は、プリプレグ等の厚み方向の熱膨張係数を制御することであり、これによって層間の接続強度を向上し、高温多湿雰囲気中での機械的、電気的な接続信頼性を改善することである。   A first problem in the present invention is a resin composition, a prepreg, and a copper-clad laminate that have excellent flame retardancy without using a halogen compound and a phosphorus compound, and that can exhibit characteristics of high heat resistance and low thermal expansion. A board is provided. Further, in view of the above-described problems of multilayer printed wiring boards for high-density mounting, the present inventors have considered the prepreg for copper-clad laminates used in these and the thermal expansion coefficient in the thickness direction of the copper-clad laminates. However, it has been found that this greatly affects the mechanical and electrical reliability of the interlayer connection. Therefore, the second problem in the present invention is to control the coefficient of thermal expansion in the thickness direction of the prepreg, etc., thereby improving the connection strength between the layers, and mechanical and electrical connection in a high-temperature and high-humidity atmosphere. It is to improve reliability.

本発明は、(1)硬化後の−65〜220℃の線膨張係数が10〜80ppmである熱硬化性樹脂と無機充填材とを必須成分として含有することを特徴とする樹脂組成物、(2)ノボラック型シアネート樹脂及び/またはそのプレポリマーと無機充填材とを必須成分として含有するとことを特徴とする樹脂組成物、(3)ノボラック型シアネート樹脂及び/またはそのプレポリマーが、数平均分子量260〜900のノボラック型シアネート樹脂及び/または数平均分子量260〜600のノボラック型シアネート樹脂のプレポリマーであることを特徴とする第(2)項記載の樹脂組成物、(4)無機充填材が、平均粒径2μm以下の球状溶融シリカであることを特徴とする第(1)乃至(3)項のいずれか記載の樹脂組成物、(5)無機充填材の含有量が、樹脂組成物中30〜80重量%であることを特徴とする第(1)乃至(4)項のいずれか記載の樹脂組成物、(6)フェノールノボラック樹脂を硬化促進剤として含有することを特徴とする第(1)乃至(5)項のいずれか記載の樹脂組成物、(7)エポキシシランカップリング剤、チタネート系カップリング剤、アミノシランカップリング剤及びシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を含有することを特徴とする第(1)乃至(6)項のいずれか記載の樹脂組成物、(8)第(1)乃至(7)項のいずれか記載の樹脂組成物を基材に含浸、乾燥してなることを特徴とするプリプレグ、(9)第(8)項記載のプリプレグを加熱成形してなることを特徴とする銅張積層板、である。   The present invention includes (1) a resin composition comprising a thermosetting resin having a linear expansion coefficient of 10 to 80 ppm after curing and an inorganic filler as essential components, 2) A novolak-type cyanate resin and / or a prepolymer thereof and an inorganic filler as essential components, (3) a novolak-type cyanate resin and / or its prepolymer has a number average molecular weight The resin composition according to item (2), which is a prepolymer of 260 to 900 novolak type cyanate resin and / or novolak type cyanate resin having a number average molecular weight of 260 to 600, and (4) an inorganic filler The resin composition according to any one of items (1) to (3), which is a spherical fused silica having an average particle size of 2 μm or less, and (5) an inorganic filler. Content of material is 30-80 weight% in resin composition, Resin composition in any one of (1) thru | or (4) characterized by the above, (6) Phenol novolak resin is hardening accelerator (7) Epoxy silane coupling agent, titanate coupling agent, amino silane coupling agent, and silicone oil-type cup The resin composition according to any one of (1) to (6), comprising at least one coupling agent selected from ring agents, and (8) (1) to (7) A prepreg obtained by impregnating a substrate with the resin composition according to any one of the items) and drying, and (9) a copper obtained by thermoforming the prepreg according to the item (8) Tension laminate.

本発明における第一の効果は、ハロゲン化合物およびリン化合物を使用せずに優れた難燃性を有し、かつ高耐熱、低熱膨張の特性を発現しうる樹脂組成物、プリプレグ、及び銅張積層板が得られることである。また、本発明における第二の効果は、プリプレグ等の厚み方向の熱膨張係数を制御することができることであり、これによって層間の接続強度を向上し、高温多湿雰囲気中での機械的、電気的な接続信頼性を改善することができることである。   The first effect of the present invention is that a resin composition, a prepreg, and a copper-clad laminate that have excellent flame retardancy and can exhibit high heat resistance and low thermal expansion characteristics without using halogen compounds and phosphorus compounds A board is obtained. The second effect of the present invention is that the coefficient of thermal expansion in the thickness direction of the prepreg and the like can be controlled, thereby improving the connection strength between the layers and mechanical and electrical in a high-temperature and high-humidity atmosphere. Connection reliability can be improved.

本発明は硬化後の−65〜220℃の線膨張係数が10〜80ppmである熱硬化性樹脂を用いるものである。かかる線膨張係数を有する熱硬化性樹脂がビルドアップ多層配線板における層間信頼性向上に有効な為である。ここで、硬化後とは、熱硬化性樹脂の官能基が反応し、一般的な有機溶媒に不溶で且つ、熱分解温度まで不融になった状態をいう。−65〜220℃の膨張率が10ppmより小さいと、樹脂組成物の構成にもよるが、層間を電気的接続する銅の熱膨張係数が17ppmであるため、それらの膨張係数の差から層間接続部のランドが剥がれたり、断線したりする場合がある。80ppmより大きいと、逆に銅張り積層板の膨張係数が大きくなり、層間接続部にクラックが発生したり、断線したりする場合がある。かかる熱硬化性樹脂としては、多官能エポキシ樹脂、ビスフェノールA型シアネート樹脂、ノボラック型シアネート樹脂、クレゾールノボラック型シアネート樹脂等のシアネート樹脂等が挙げられる。   This invention uses the thermosetting resin whose linear expansion coefficient of -65-220 degreeC after hardening is 10-80 ppm. This is because a thermosetting resin having such a linear expansion coefficient is effective for improving interlayer reliability in a build-up multilayer wiring board. Here, “after curing” means a state in which the functional group of the thermosetting resin reacts, becomes insoluble in a general organic solvent, and becomes infusible up to the thermal decomposition temperature. If the expansion coefficient at −65 to 220 ° C. is smaller than 10 ppm, although depending on the composition of the resin composition, the thermal expansion coefficient of copper electrically connecting the layers is 17 ppm. The land of the part may be peeled off or disconnected. On the other hand, if it exceeds 80 ppm, the expansion coefficient of the copper-clad laminate is increased, and cracks may be generated in the interlayer connection portion or the wire may be disconnected. Examples of such thermosetting resins include polyfunctional epoxy resins, bisphenol A type cyanate resins, novolac type cyanate resins, and cresol novolac type cyanate resins.

本発明はノボラック型シアネート樹脂及び/又はそのプレポリマーを用いるものである。かかる樹脂が難燃性、高弾性、低線膨張性に優れるからである。ここでいうノボラック型シアネート樹脂とは任意のノボラック樹脂と、ハロゲン化シアン等のシアネート化試薬とを反応させることで得られるもので、またこの得られた樹脂を加熱することでプレポリマー化することが出来る。本発明におけるノボラック型シアネート樹脂の数平均分子量は、250未満であると、架橋密度が小さく、耐熱性や熱膨張係数に劣る場合があり、900を超えると、架橋密度が上がりすぎて反応が完結できない場合があるため、260〜900であることが望ましく、より好ましくは300〜600である。また、プレポリマーを用いる際には、上記数平均分子量のノボラック型シアネート樹脂をメチルエチルケトン、ジメチルホルムアミド、シクロヘキサノン等の溶媒に可溶な範囲でプレポリマー化して用いることが望ましい。本発明で数平均分子量は、東ソー株式会社製HLC−8120GPC装置(使用カラム:SUPER H4000、SUPER H3000、SUPER H2000×2、溶離液:THF)を用いて、ポリスチレン換算のゲルパーミエーションクロマトグラフィー報で測定した値である。   The present invention uses a novolak cyanate resin and / or a prepolymer thereof. This is because such a resin is excellent in flame retardancy, high elasticity, and low linear expansion. The novolak-type cyanate resin here is obtained by reacting an arbitrary novolak resin with a cyanating reagent such as cyanogen halide, and prepolymerizing by heating the obtained resin. I can do it. When the number average molecular weight of the novolak-type cyanate resin in the present invention is less than 250, the crosslinking density is small and the heat resistance and thermal expansion coefficient may be inferior. When the number average molecular weight exceeds 900, the crosslinking density is excessively increased and the reaction is completed. Since it may be impossible, it is desirable that it is 260-900, More preferably, it is 300-600. Moreover, when using a prepolymer, it is desirable to use the novolak cyanate resin having the above-mentioned number average molecular weight after prepolymerization within a range soluble in a solvent such as methyl ethyl ketone, dimethylformamide, cyclohexanone and the like. In the present invention, the number average molecular weight is determined by gel permeation chromatography in terms of polystyrene using an HLC-8120GPC apparatus (use column: SUPER H4000, SUPER H3000, SUPER H2000 × 2, eluent: THF) manufactured by Tosoh Corporation. It is a measured value.

本発明におけるノボラック型シアネート樹脂及び/又はそのプレポリマーの配合量は樹脂組成物中20〜70重量%が好ましく、更に好ましくは30〜60重量%である。20重量%未満では、樹脂架橋が少なくなり、耐熱性が低下するようになる。70重量%を越えると、無機充填材の割合が低下し、熱膨張、吸水率が増加するようになる。本発明では、上記ノボラックシアネート樹脂及び/又はそのプレポリマーの一部をエポキシ樹脂、フェノール樹脂等の他の熱硬化樹脂、フェノキシ樹脂、溶剤可溶性ポリイミド樹脂、ポリフェニレンオキシド、ポリエーテルスルホン等の熱可塑性樹脂と併用しても良い。併用する量はノボラックシアネート樹脂及び/又はそのプレポリマー中の1〜40重量%が好ましい。1重量%未満であると添加効果が発現されにくく、40重量%を超えるとノボラック型シアネートの耐熱性、熱膨張等の特性が損なわれる場合がある。   The blending amount of the novolak-type cyanate resin and / or prepolymer thereof in the present invention is preferably 20 to 70% by weight, more preferably 30 to 60% by weight in the resin composition. If it is less than 20% by weight, resin cross-linking is reduced and heat resistance is lowered. If it exceeds 70% by weight, the proportion of the inorganic filler decreases, and thermal expansion and water absorption increase. In the present invention, a part of the novolak cyanate resin and / or its prepolymer is a thermoplastic resin such as epoxy resin, other thermosetting resin such as phenol resin, phenoxy resin, solvent-soluble polyimide resin, polyphenylene oxide, polyethersulfone, etc. You may use together. The amount used in combination is preferably 1 to 40% by weight in the novolak cyanate resin and / or its prepolymer. When the amount is less than 1% by weight, the effect of addition is hardly exhibited, and when the amount exceeds 40% by weight, characteristics such as heat resistance and thermal expansion of the novolak cyanate may be impaired.

本発明は無機充填材を用いるものである。無機充填材は弾性率を高め、熱膨張率を低下させ、且つ耐燃性を向上させ、吸水性を低下させるために配合されるものである。無機充填材としては、例えばタルク、アルミナ、ガラス、シリカ、マイカ等が挙げられる。これらの中でも溶融シリカが低膨張性に優れる点で好ましい。その形状は破砕状、球状があるが、ガラス基材への含浸性を確保するなど、樹脂組成物の溶融粘度を下げるためには球状シリカを使うなど、その目的に合わせた使用方法が採用される。本発明は平均粒径2μm以下の球状溶融シリカを用いることが充填性が向上する点で好ましい。平均粒径が2μmを超えるとプリプレグ作成時の基材への含浸性低下、ワニス中の無機充填材の沈降等の現象が起こり、望ましくない。また、平均粒径は粘度制御の点で0.2μm以上が好ましい。本発明で平均粒径は株式会社堀場製作所粒度分布測定装置 LA920を用いて、レーザ回折/散乱法で測定を行った。本発明では無機充填材を樹脂組成物中30重量%以上を占めると熱膨張、吸水率が小さくなるので好ましい。ただし、80重量%を超えると樹脂組成物中の無機充填材の割合が大きすぎて、樹脂ワニスのガラス基材への塗布、含浸などの操作が困難となるので30〜80重量%以下が好ましい。   The present invention uses an inorganic filler. The inorganic filler is blended to increase the elastic modulus, decrease the thermal expansion coefficient, improve the flame resistance, and decrease the water absorption. Examples of the inorganic filler include talc, alumina, glass, silica, mica and the like. Among these, fused silica is preferable in that it has excellent low expansibility. The shape is crushed and spherical, but in order to lower the melt viscosity of the resin composition, such as ensuring impregnation into the glass substrate, use methods that match the purpose such as using spherical silica are adopted. The In the present invention, it is preferable to use spherical fused silica having an average particle size of 2 μm or less in view of improving the filling property. If the average particle size exceeds 2 μm, such phenomena as impregnation of the base material during prepreg preparation and sedimentation of the inorganic filler in the varnish occur, which is not desirable. The average particle size is preferably 0.2 μm or more in terms of viscosity control. In the present invention, the average particle diameter was measured by a laser diffraction / scattering method using a Horiba, Ltd. particle size distribution measuring apparatus LA920. In the present invention, it is preferable to occupy 30% by weight or more of the inorganic filler in the resin composition because thermal expansion and water absorption are reduced. However, if it exceeds 80% by weight, the proportion of the inorganic filler in the resin composition is too large, and it becomes difficult to apply the resin varnish to the glass substrate, impregnation, etc., so 30 to 80% by weight or less is preferable. .

本発明の樹脂組成物では、カップリング剤を用いることが好ましい。カップリング剤は樹脂と無機充填材の界面のぬれ性を向上させることにより、ガラスクロスに対して樹脂および充填材を均一に定着させ、耐熱性、特に吸湿後のはんだ耐熱性を改良する為に配合することができるからである。カップリング剤としては通常用いられるものなら何でも使用できるが、これらの中でもエポキシシランカップリング剤、チタネート系カップリング剤、アミノシランカップリング剤及びシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが無機充填材界面とのぬれ性が高く、耐熱性向上の点で好ましい。本発明でカップリング剤は、無機充填材に対して0.05重量%以上、3重量%以下が望ましい。これより少ないと充填材を十分に被覆できず、またこれより多いと機械特性等が低下するようになるためこの範囲で用いることが望ましい。   In the resin composition of the present invention, it is preferable to use a coupling agent. The coupling agent improves the wettability of the interface between the resin and the inorganic filler, thereby uniformly fixing the resin and the filler to the glass cloth, and improving the heat resistance, particularly the solder heat resistance after moisture absorption. It is because it can mix | blend. Any coupling agent can be used as long as it is usually used. Among these, at least one selected from an epoxy silane coupling agent, a titanate coupling agent, an aminosilane coupling agent, and a silicone oil type coupling agent. Use of a coupling agent is preferable in terms of high wettability with the inorganic filler interface and improved heat resistance. In the present invention, the coupling agent is desirably 0.05% by weight or more and 3% by weight or less with respect to the inorganic filler. If it is less than this, the filler cannot be sufficiently covered, and if it is more than this, the mechanical properties and the like are lowered, so it is desirable to use within this range.

本発明では、硬化促進剤を用いることが好ましい。硬化促進剤として公知のものを用いることが出来る。たとえば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト等の有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタン等の3級アミン類、2−フェニル−4−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール等のイミダゾール類、フェノール、ビスフェノールA、ノニルフェノール、フェノールノボラック樹脂等のフェノール化合物および有機酸等、またはこれらの混合物等が挙げられる。これらの中でもフェノールノボラック樹脂が硬化性、イオン性不純物が少ない等の点で好ましい。本発明で硬化促進剤の配合量は使用条件に応じて適宜変更することが可能であるが、ノボラック型シアネート樹脂および/またはそのプレポリマーを基準として0.05重量%以上、10重量%以下であることが望ましい。0.05重量%未満であると硬化が遅くなる傾向があり、10重量%を超えると硬化が促進されすぎることによる樹脂組成物およびプリプレグライフの低下、硬化促進剤に由来する揮発成分による周囲汚染等の悪影響があるため望ましくない。   In the present invention, it is preferable to use a curing accelerator. A well-known thing can be used as a hardening accelerator. For example, organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, tertiary amines such as triethylamine, tributylamine, diazabicyclo [2,2,2] octane, 2-phenyl-4- Imidazoles such as methylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, phenol, bisphenol A, nonylphenol, phenol Examples thereof include phenolic compounds such as novolak resins and organic acids, or mixtures thereof. Among these, phenol novolac resin is preferable in terms of curability and low ionic impurities. In the present invention, the blending amount of the curing accelerator can be appropriately changed according to the use conditions, but it is 0.05 wt% or more and 10 wt% or less based on the novolac type cyanate resin and / or its prepolymer. It is desirable to be. If it is less than 0.05% by weight, the curing tends to be slow, and if it exceeds 10% by weight, the resin composition and the prepreg life are lowered due to excessive curing, and the surrounding contamination is caused by a volatile component derived from the curing accelerator. It is not desirable because of adverse effects such as

本発明の樹脂組成物には必要に応じて、上記成分以外の添加剤を特性を損なわない範囲で添加することができる。本発明で得られる樹脂組成物を基材に含浸するには、アルコール類、エーテル類、アセタール類、ケトン類、エステル類、アルコールエステル類、ケトンアルコール類、エーテルアルコール類、ケトンエーテル類、ケトンエステル類やエステルエーテル類などの有機溶媒を用いてワニスにし、基材に塗布することによってプリプレグを得ることができる。また、本発明の樹脂組成物を無溶剤にて基材に塗布することでプリプレグを得ることもできる。基材としてはガラス織布、ガラス不織布、その他有機基材などを用いることができる。本発明の樹脂組成物を用いて得られるプリプレグは、厚み方向の膨張率が顕著に低下しており、ビルドアップ多層配線板用に好適に用いられるものである。   If necessary, additives other than the above components can be added to the resin composition of the present invention as long as the characteristics are not impaired. In order to impregnate the substrate with the resin composition obtained in the present invention, alcohols, ethers, acetals, ketones, esters, alcohol esters, ketone alcohols, ether alcohols, ketone ethers, ketone esters A prepreg can be obtained by forming into a varnish using an organic solvent such as an ether or an ester ether and applying it to a substrate. Moreover, a prepreg can also be obtained by apply | coating the resin composition of this invention to a base material without a solvent. As the substrate, glass woven fabric, glass nonwoven fabric, and other organic substrates can be used. The prepreg obtained using the resin composition of the present invention has a significantly reduced expansion coefficient in the thickness direction, and is suitably used for build-up multilayer wiring boards.

本発明の樹脂組成物は繊維基材に含浸、乾燥することによりプリプレグが得られ、このプリプレグの1枚又は複数枚を銅箔とともに加熱成形して銅張積層板が得られる。   A prepreg is obtained by impregnating and drying a fiber base material with the resin composition of the present invention, and one or a plurality of the prepregs are thermoformed together with a copper foil to obtain a copper-clad laminate.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。
[実施例]
(実施例1)
ノボラック型シアネート樹脂(ロンザジャパン株式会社製PT60、数平均分子量800)63.5重量部(以下、部と略す)をメチルエチルケトンに常温で溶解し、球状溶融シリカSO−25R (株式会社アドマテックス製)35部を添加し、高速攪拌機を用いて10分攪拌した。調製したワニスをガラスクロス(厚さ200μm、日東紡績製、WEA−7628)に含浸し、120℃の加熱炉で2分乾燥してワニス固形分(プリプレグ中に樹脂とシリカの占める成分)が約50%のプリプレグを得た。このプリプレグを所定枚数重ね、両面に18μmの銅箔を重ねて、圧力4MPa、温度220℃で1時間加熱加圧成形を行い、250℃の乾燥機で窒素雰囲気下1時間後硬化することによって両面銅張積層板を得た。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to this.
[Example]
Example 1
63.5 parts by weight (hereinafter, abbreviated as “parts”) of novolak-type cyanate resin (PT 60 manufactured by Lonza Japan, Inc., number average molecular weight 800) is dissolved in methyl ethyl ketone at room temperature, and spherical fused silica SO-25R (manufactured by Admatex Co., Ltd.) 35 parts was added and stirred for 10 minutes using a high-speed stirrer. The prepared varnish is impregnated into a glass cloth (thickness 200 μm, manufactured by Nitto Boseki Co., Ltd., WEA-7628), dried in a heating furnace at 120 ° C. for 2 minutes, and the varnish solid content (components of resin and silica in the prepreg) is about A 50% prepreg was obtained. A predetermined number of the prepregs are stacked, 18 μm copper foils are stacked on both sides, heat-pressed for 1 hour at a pressure of 4 MPa and a temperature of 220 ° C., and then post-cured in a nitrogen atmosphere for 1 hour in a 250 ° C. dryer. A copper clad laminate was obtained.

得られた両面銅張積層板の評価方法を(1)〜(4)に示す。
(1)ガラス転移温度
厚さ0.6mmの両面銅張積層板を全面エッチングし、得られた積層板から10mm×60mmのテストピースを切り出し、TAインスツルメント社製動的粘弾性測定装置DMA983を用いて3℃/分で昇温し、tanδのピーク位置をガラス転移温度とした。
The evaluation method of the obtained double-sided copper-clad laminate is shown in (1) to (4).
(1) Glass transition temperature A double-sided copper-clad laminate having a thickness of 0.6 mm is entirely etched, a 10 mm × 60 mm test piece is cut out from the obtained laminate, and a dynamic viscoelasticity measuring device DMA983 manufactured by TA Instruments is used. The temperature was increased at 3 ° C./min using tan δ, and the peak position of tan δ was defined as the glass transition temperature.

(2)線膨張係数
厚さ1.2mmの両面銅張積層板を全面エッチングし、得られた積層板から2mm×2mmのテストピースを切り出し、TMAを用いて厚み方向(Z方向)の線膨張係数を5℃/分で測定した。
(2) Linear expansion coefficient A 1.2 mm thick double-sided copper-clad laminate was etched all over, a 2 mm x 2 mm test piece was cut out from the obtained laminate, and the linear expansion in the thickness direction (Z direction) using TMA The coefficient was measured at 5 ° C./min.

(3)難燃性
UL−94規格に従い、1mm厚のテストピースを垂直法により測定した。
(3) Flame retardance According to UL-94 standard, a 1 mm thick test piece was measured by the vertical method.

(4)吸湿はんだ耐熱性
厚さ0.6mmの両面銅張積層板から50mm×50mmに切り出し、JIS6481に従い半面エッチングを行ってテストピースを作成した。125℃のプレッシャークッカーで処理した後、260℃のはんだ槽に銅箔面を下にして浮かべ、180秒後にフクレが発生する処理時間を計測した。
(4) Moisture-absorbing solder heat resistance A test piece was prepared by cutting a double-sided copper-clad laminate having a thickness of 0.6 mm into 50 mm × 50 mm and performing half-side etching in accordance with JIS6481. After processing with a 125 ° C. pressure cooker, the copper foil surface was floated down in a 260 ° C. solder bath, and the processing time for blistering after 180 seconds was measured.

(実施例2〜7及び比較例1〜4)
表1及び表2に示す配合にて、実施例1と同様の方法で両面銅張積層板を得た。評価方法も前述の通りである。
(Examples 2-7 and Comparative Examples 1-4)
Double-sided copper-clad laminates were obtained in the same manner as in Example 1 with the formulations shown in Tables 1 and 2. The evaluation method is also as described above.

これらの銅張積層板の評価結果を表1及び表2の下欄に示す。各実施例で得られた銅張積層板は、ハロゲン系難燃剤およびリン化合物を使用していないにもかかわらず優れた難燃性を有し、ガラス転移温度が高く、線膨張係数が低く、吸湿はんだ耐熱性にも優れることがわかる。   The evaluation results of these copper clad laminates are shown in the lower columns of Tables 1 and 2. The copper-clad laminate obtained in each example has excellent flame retardancy despite not using a halogen-based flame retardant and a phosphorus compound, has a high glass transition temperature, and a low coefficient of linear expansion, It turns out that it is excellent also in moisture absorption solder heat resistance.

Figure 2006312751
Figure 2006312751

Figure 2006312751
Figure 2006312751

表の注
1)SO−25R:株式会社アドマテックス製
2)SO−32R:株式会社アドマテックス製
3)SFP−10X:電気化学工業株式会社製
4)FB−5SDX:電気化学工業株式会社製
5)MAC−2101:日本ユニカー株式会社製
6)A−187:日本ユニカー株式会社製
7)KR−46B:味の素テクノファイン株式会社製
8)PR−51714:住友デュレズ株式会社製
9)2P4MHZ:四国化成工業株式会社製
10)ナフテン酸コバルト:和光純薬工業株式会社製
11)ノニルフェノール:和光純薬工業株式会社製
12)Primaset PT−15:ロンザジャパン株式会社製
13)Primaset PT−30:ロンザジャパン株式会社製
14)Primaset PT−60:ロンザジャパン株式会社製
15)エピコート4275:ジャパンエポキシレジン株式会社製
16)エピコート5047B75:ジャパンエポキシレジン株式会社製
17)エピコート180S65:ジャパンエポキシレジン株式会社
18)ジシアンジアミド:日本カーバイド工業株式会社製
19)2MZ:四国化成工業株式会社製
20)AroCy B−30:旭化成エポキシ株式会社製
Note 1) SO-25R: Admatechs Co., Ltd. 2) SO-32R: Admatechs Co., Ltd. 3) SFP-10X: Denki Kagaku Kogyo Co., Ltd. 4) FB-5SDX: Denki Kagaku Kogyo Co., Ltd. 5 ) MAC-2101: Nihon Unicar Co., Ltd. 6) A-187: Nihon Unicar Co., Ltd. 7) KR-46B: Ajinomoto Techno Fine Co., Ltd. 8) PR-51714: Sumitomo Durez Co., Ltd. 9) 2P4MHZ: Shikoku Kasei Industrial Co., Ltd. 10) Cobalt naphthenate: Wako Pure Chemical Industries, Ltd. 11) Nonylphenol: Wako Pure Chemical Industries, Ltd. 12) Primaset PT-15: Lonza Japan Co., Ltd. 13) Primaset PT-30: Lonza Japan Co., Ltd. 14) Primeset PT-60: Lonza Japan Co., Ltd. 15) Coat 4275: Japan Epoxy Resin Co., Ltd. 16) Epicoat 5047B75: Japan Epoxy Resin Co., Ltd. 17) Epicoat 180S65: Japan Epoxy Resin Co., Ltd. 18) Dicyandiamide: Nippon Carbide Industries Co., Ltd. 19) 2MZ: Shikoku Kasei Kogyo Co., Ltd. 20) AroCy B-30: Asahi Kasei Epoxy Corporation

Claims (9)

硬化後の−65〜220℃の線膨張係数が10〜80ppmである熱硬化性樹脂と無機充填材とを必須成分として含有することを特徴とする樹脂組成物。   A resin composition comprising a thermosetting resin having a linear expansion coefficient of 10 to 80 ppm after curing and an inorganic filler as essential components. ノボラック型シアネート樹脂及び/またはそのプレポリマーと無機充填材とを必須成分として含有することを特徴とする樹脂組成物。   A resin composition comprising a novolac-type cyanate resin and / or a prepolymer thereof and an inorganic filler as essential components. ノボラック型シアネート樹脂及び/またはそのプレポリマーが、数平均分子量260〜900のノボラック型シアネート樹脂及び/または数平均分子量260〜600のノボラック型シアネート樹脂のプレポリマーであることを特徴とする請求項2記載の樹脂組成物。   The novolac-type cyanate resin and / or its prepolymer is a prepolymer of a novolak-type cyanate resin having a number average molecular weight of 260 to 900 and / or a novolak-type cyanate resin having a number average molecular weight of 260 to 600. The resin composition as described. 無機充填材が、平均粒径2μm以下の球状溶融シリカであることを特徴とする請求項1乃至3のいずれか記載の樹脂組成物。   4. The resin composition according to claim 1, wherein the inorganic filler is spherical fused silica having an average particle size of 2 [mu] m or less. 無機充填材の含有量が、樹脂組成物中30〜80重量%であることを特徴とする請求項1乃至4のいずれか記載の樹脂組成物。   5. The resin composition according to claim 1, wherein the content of the inorganic filler is 30 to 80% by weight in the resin composition. フェノールノボラック樹脂を硬化促進剤として含有することを特徴とする請求項1乃至5のいずれか記載の樹脂組成物。   The resin composition according to any one of claims 1 to 5, comprising a phenol novolac resin as a curing accelerator. エポキシシランカップリング剤、チタネート系カップリング剤、アミノシランカップリング剤及びシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を含有することを特徴とする請求項1乃至6のいずれか記載の樹脂組成物。   7. One or more coupling agents selected from epoxy silane coupling agents, titanate coupling agents, aminosilane coupling agents, and silicone oil type coupling agents are contained. A resin composition as described above. 請求項1乃至7のいずれか記載の樹脂組成物を基材に含浸、乾燥してなることを特徴とするプリプレグ。   A prepreg comprising a base material impregnated with the resin composition according to claim 1 and dried. 請求項8記載のプリプレグを加熱成形してなることを特徴とする銅張積層板。   A copper-clad laminate obtained by heat-molding the prepreg according to claim 8.
JP2006217978A 2006-08-10 2006-08-10 Resin composition, prepreg and copper-clad laminate using the prepreg Pending JP2006312751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006217978A JP2006312751A (en) 2006-08-10 2006-08-10 Resin composition, prepreg and copper-clad laminate using the prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006217978A JP2006312751A (en) 2006-08-10 2006-08-10 Resin composition, prepreg and copper-clad laminate using the prepreg

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001086596A Division JP4132703B2 (en) 2001-03-26 2001-03-26 Prepreg for copper-clad laminate and copper-clad laminate using the same

Publications (2)

Publication Number Publication Date
JP2006312751A true JP2006312751A (en) 2006-11-16
JP2006312751A5 JP2006312751A5 (en) 2008-10-23

Family

ID=37534356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217978A Pending JP2006312751A (en) 2006-08-10 2006-08-10 Resin composition, prepreg and copper-clad laminate using the prepreg

Country Status (1)

Country Link
JP (1) JP2006312751A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130796A (en) * 2006-11-21 2008-06-05 Sumitomo Bakelite Co Ltd Insulating resin composition for multilayer printed circuit boards, insulation sheet with base material, multilayer printed circuit board, and semiconductor device
WO2009028493A1 (en) * 2007-08-28 2009-03-05 Sumitomo Bakelite Company, Ltd. Insulating resin composition for multilayer printed wiring board, insulating resin sheet with base material, multilayer printed wiring board, and semiconductor device
JP2009167268A (en) * 2008-01-15 2009-07-30 Hitachi Chem Co Ltd Low thermal expansion low dielectric loss prepreg and its applied article
JP2012054573A (en) * 2011-10-11 2012-03-15 Sumitomo Bakelite Co Ltd Insulating resin composition for multilayer printed circuit board, insulation sheet with substrate, multilayer printed circuit board, and semiconductor device
JP2014111719A (en) * 2012-11-12 2014-06-19 Panasonic Corp Laminate, metal-clad laminate, printed wiring board, and multilayer printed wiring board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484489A (en) * 1990-07-27 1992-03-17 Mitsubishi Gas Chem Co Inc Laminate lined with metallic foil whose surface is smooth
JPH0786710A (en) * 1993-09-14 1995-03-31 Hitachi Ltd Laminated board and multilayer printed circuit board
JPH10173097A (en) * 1996-10-09 1998-06-26 Matsushita Electric Ind Co Ltd Sheetlike substance for heat conductive substrate, its manufacture, heat conductive substrate using it and its manufacture
JPH11124433A (en) * 1997-10-22 1999-05-11 Mitsubishi Gas Chem Co Inc Phenol novolak-based cyanic acid ester prepolymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484489A (en) * 1990-07-27 1992-03-17 Mitsubishi Gas Chem Co Inc Laminate lined with metallic foil whose surface is smooth
JPH0786710A (en) * 1993-09-14 1995-03-31 Hitachi Ltd Laminated board and multilayer printed circuit board
JPH10173097A (en) * 1996-10-09 1998-06-26 Matsushita Electric Ind Co Ltd Sheetlike substance for heat conductive substrate, its manufacture, heat conductive substrate using it and its manufacture
JPH11124433A (en) * 1997-10-22 1999-05-11 Mitsubishi Gas Chem Co Inc Phenol novolak-based cyanic acid ester prepolymer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130796A (en) * 2006-11-21 2008-06-05 Sumitomo Bakelite Co Ltd Insulating resin composition for multilayer printed circuit boards, insulation sheet with base material, multilayer printed circuit board, and semiconductor device
WO2009028493A1 (en) * 2007-08-28 2009-03-05 Sumitomo Bakelite Company, Ltd. Insulating resin composition for multilayer printed wiring board, insulating resin sheet with base material, multilayer printed wiring board, and semiconductor device
JP2009167268A (en) * 2008-01-15 2009-07-30 Hitachi Chem Co Ltd Low thermal expansion low dielectric loss prepreg and its applied article
JP2012054573A (en) * 2011-10-11 2012-03-15 Sumitomo Bakelite Co Ltd Insulating resin composition for multilayer printed circuit board, insulation sheet with substrate, multilayer printed circuit board, and semiconductor device
JP2014111719A (en) * 2012-11-12 2014-06-19 Panasonic Corp Laminate, metal-clad laminate, printed wiring board, and multilayer printed wiring board
KR20170094111A (en) * 2012-11-12 2017-08-17 파나소닉 아이피 매니지먼트 가부시키가이샤 Laminate, metal-clad laminate, printed wiring board, and multilayer printed wiring board
KR101865286B1 (en) * 2012-11-12 2018-06-07 파나소닉 아이피 매니지먼트 가부시키가이샤 Laminate, metal-clad laminate, printed wiring board, and multilayer printed wiring board

Similar Documents

Publication Publication Date Title
JP4132703B2 (en) Prepreg for copper-clad laminate and copper-clad laminate using the same
KR101502653B1 (en) Laminate, circuit board and semiconductor device
JP3821728B2 (en) Prepreg
JP2007002071A (en) Prepreg, circuit board and semiconductor device
JP5303826B2 (en) Resin composition, prepreg and printed wiring board using the same
JP4322463B2 (en) Copper-clad laminate prepreg and copper-clad laminate
JP2006312751A (en) Resin composition, prepreg and copper-clad laminate using the prepreg
JP4132755B2 (en) Resin composition, prepreg and printed wiring board using the same
WO2015072261A1 (en) Resin-layer-equipped carrier material, laminate, circuit board, and electronic device
JP2004277671A (en) Prepreg and printed circuit board using the same
JP2003213019A (en) Prepreg and printed wiring board using the same
JP2002299834A (en) Insulating sheet with copper foil for multilayered printed wiring board and printed wiring board using it
JP2007043184A (en) Insulating sheet with copper foil for multilayered printed wiring board and printed wiring board using it
JP4714970B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP5428212B2 (en) Resin composition, prepreg and printed wiring board using the same
JP4639439B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP2005209489A (en) Insulation sheet
JP5448414B2 (en) Resin composition, prepreg, laminate, multilayer printed wiring board, and semiconductor device
JP4150178B2 (en) Resin composition, prepreg and printed wiring board using the same
JP5476772B2 (en) Prepreg and laminate
JP2002060468A (en) Epoxy resin composition, prepreg, and copper-clad laminate using the prepreg
JP4501475B2 (en) Metal foil with insulating layer and multilayer printed wiring board
JP4156180B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP5835401B2 (en) Prepreg, circuit board and semiconductor device
JP4517699B2 (en) Resin composition, prepreg and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Effective date: 20110809

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313

A521 Written amendment

Effective date: 20120612

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120622

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20120803

Free format text: JAPANESE INTERMEDIATE CODE: A912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917