JP4714970B2 - Epoxy resin composition, prepreg, and copper-clad laminate using the same - Google Patents

Epoxy resin composition, prepreg, and copper-clad laminate using the same Download PDF

Info

Publication number
JP4714970B2
JP4714970B2 JP2000235301A JP2000235301A JP4714970B2 JP 4714970 B2 JP4714970 B2 JP 4714970B2 JP 2000235301 A JP2000235301 A JP 2000235301A JP 2000235301 A JP2000235301 A JP 2000235301A JP 4714970 B2 JP4714970 B2 JP 4714970B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
prepreg
component
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000235301A
Other languages
Japanese (ja)
Other versions
JP2002047395A (en
Inventor
澄也 三宅
孝幸 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000235301A priority Critical patent/JP4714970B2/en
Publication of JP2002047395A publication Critical patent/JP2002047395A/en
Application granted granted Critical
Publication of JP4714970B2 publication Critical patent/JP4714970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ハロゲン系難燃剤を使用せずとも優れた難燃性を有し、かつ優れた耐熱性、寸法安定性を発現するエポキシ樹脂組成物、プリプレグ及びそれを用いた銅張積層板に関するものである。
【0002】
【従来の技術】
半導体の分野では高密度実装技術の進歩から従来の面実装からエリア実装に移行していくトレンドが進行し、BGAやCSPなど新しいパッケージが登場、増加しつつある。そのため以前にもましてインターポーザ用リジッド基板が注目されるようになり、高耐熱、低熱膨張基板の要求が高まってきた。
一方、これら半導体に用いられる樹脂部材は難燃性が求められることが多い。
従来この難燃性を付与するため、エポキシ樹脂においては臭素化エポキシなどのハロゲン系難燃剤を用いることが一般的であった。しかし、ハロゲン含有化合物からダイオキシンが発生するおそれがあることから、昨今の環境問題の深刻化とともに、ハロゲン系難燃剤を使用することが回避されるようになり、広く産業界にハロゲンフリーの難燃化システムが求められるようになった。このような時代の要求によってリン系難燃剤が脚光を浴び、リン酸エステルや赤リンが検討されたが、これら従来のリン系難燃剤は加水分解しやすく樹脂との反応に乏しいため、耐半田性が低下したり、ガラス転移温度が低下するという問題があった。
【0003】
【発明が解決しようとする課題】
本発明はこのような問題を解決するべくなされたもので、ハロゲンフリーで優れた難燃性を有し、かつ高耐熱、低熱膨張の特性を発現しうるエポキシ樹脂組成物、プリプレグ、及び銅張積層板を提供するものである。
【0004】
【課題を解決するための手段】
本発明は、耐熱性に寄与する多官能エポキシ樹脂、フェノール樹脂系硬化剤、難燃性や優れた耐加水分解性を有する特定構造のリン化合物、及び低熱膨張性や低吸水性を発現する特定の球状シリカを必須成分として含有する銅張積層板用として好適なエポキシ樹脂組成物を技術骨子とするものであり、かかる組成により上記目的を達成するに至った。
【0005】
具体的には、1分子中に3個以上のエポキシ基を有するエポキシ樹脂、1分子中に3個以上のフェノール性水酸基を有するフェノール樹脂系硬化剤、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド、及び最大粒径24μm以下で、平均粒径2μm以上5μm以下、かつ比表面積が5m2/g以下の球状溶融シリカを必須成分とすることを特徴とするエポキシ樹脂組成物、さらにはこれらの成分に加え、カップリング剤を必須成分として含有することを特徴とするエポキシ樹脂組成物、およびこれらのエポキシ樹脂組成物を基材に含浸、乾燥して得られるプリプレグ、それを用いて加熱成形してなる銅張積層板である。
【0006】
【発明の実施の形態】
本発明に用いる、(A)1分子中に3個以上のエポキシ基を有するエポキシ樹脂としては、オルソクレゾールノボラックエポキシ樹脂、フェノールノボラックエポキシ樹脂、ビスフェノールAノボラックエポキシ樹脂などのノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂および対応する芳香族環がアルキル化されたエポキシ樹脂などの誘導体、1,1,2,2−テトラキスヒドロキシフェニルエタンのグリシジルエーテル化物、およびその2量体、3量体などのテトラキスヒドロキシフェニルエタン型エポキシ樹脂、などが例示される。エポキシ樹脂は、後述する反応性リン化合物である、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシドがエポキシ基と反応して樹脂中のエポキシ基が減少することから、ガラス転移温度を高い状態に保つためには、3官能以上のエポキシ樹脂であることが必須である。特に3官能以上のエポキシ樹脂の中でも、ノボラック型エポキシ樹脂(A1)及び、トリスヒドロキシフェニルメタン型エポキシ樹脂とテトラキスヒドロキシフェニルエタン型エポキシ樹脂から選ばれる少なくとも1種のエポキシ樹脂(A2)を組み合わせた場合、トリスヒドロキシフェニルメタン型エポキシ樹脂又はテトラキスヒドロキシフェニルエタン型エポキシ樹脂(A2)で架橋密度を高くしてガラス転移温度を高くでき、一方ノボラック型エポキシ樹脂(A1)によって、前記(A2)のエポキシ樹脂の欠点である吸水性の大きさや架橋密度が過度に高くなることによる脆さ、密着性の低下などを防ぐことができる。特にノボラック型エポキシ樹脂(A1)の中でもオルソクレゾールノボラックエポキシ樹脂が吸水性を低減できるので好ましい。本発明において、エポキシ樹脂組成物中に占める(A)成分の割合は10〜50重量%が好ましい。10重量%未満では、結合剤成分が少なくなり、耐熱性が低下するようになる。50重量%を越えると、充填材の割合が低下し、熱膨張、吸水率が増加するので好ましくない。
なお、エポキシ樹脂として、(A)成分以外のエポキシ樹脂、例えばビスフェノールA型のエポキシ樹脂をエポキシ樹脂全体の30重量%以下配合してもよい。
【0007】
次に成分(B)1分子中に3個以上のフェノール性水酸基を有するフェノール樹脂系硬化剤としては、フェノールノボラック、ビスフェノールAノボラック、フェノールアラルキル樹脂等が例示されるが、フェノール性水酸基当量が比較的小さく、低官能のモノマーを容易に除去できるフェノールノボラックが好ましい。
本発明では(B)成分は、エポキシ樹脂のエポキシ基と、(B)成分のフェノール性水酸基およびその他の活性水素の合計との当量比が0.8以上1.2以下となるよう添加することが好ましい。この範囲外ではガラス転移温度の低下や電気特性の低下が生じることがある。
【0008】
本発明の難燃成分である、成分(C)9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシドは、リンに結合している水素がエポキシ基と反応する反応性リン化合物であり、従来のリン酸エステルや赤リンのように加水分解して吸水性を高めたり、密着性を低下させたりすることがなく、極めて優れたリン系難燃剤である。本発明の(C)成分添加量は、エポキシ樹脂組成物全体に対して、0.5〜10重量%が好ましい。0.5重量%未満では難燃効果が低下するおそれがあり、10重量%を越えるとガラス転移温度が低下する場合がある。
【0009】
本発明の成分(D)は、最大粒径24μm以下で、平均粒径2μm以上5μm以下、かつ比表面積が5m2/g以下の球状溶融シリカである。多量に充填材を添加し低熱膨張性と樹脂の流動性を両立させるには球状溶融シリカが他の充填材に勝っており最適である。球状溶融シリカの中でも最大粒径24μm以下で、平均粒径2μm以上5μm以下、かつBET法による比表面積が5m2/g以下の球状溶融シリカが好ましい。最大粒径が24μmを超える粗粒が含まれると銅箔と基材の間で粗粒に起因する空間ができ、吸湿した場合に水が滞留して半田耐熱が悪化したり、銅張積層板板の外観が悪化したりする。また平均粒径が2μmより小さい場合や比表面積が5m2/gを超える場合、粒子の2次凝集により前述粗粒が含まれる場合と同様の問題が生じる場合がある。この球状溶融シリカはエポキシ樹脂組成物中50重量%以上を占めると熱膨張、吸水率が小さくなるので好ましい。ただし、90重量%を越えるとエポキシ樹脂組成物中の無機充填材の割合が大きすぎて含浸等の操作が困難となる。また必要に応じて特性を妨げない範囲で他の充填材を使用してもよい。この場合、最大粒径24μm以下で、平均粒径2μm以上5μm以下、かつ比表面積が5m2/g以下の球状溶融シリカ以外の球状シリカをはじめとして従来公知の充填材を、半田耐熱性等の特性を悪化させない程度において、任意に使用可能である。
【0010】
本発明の樹脂組成物にさらにカップリング剤を用いると、樹脂と充填材の界面のぬれ性が向上し好ましい。特にシロキサン結合の繰り返し単位を2個以上有し、かつアルコキシ基を有するシリコーンオイル型カップリング剤(E)はプリプレグ製造時の高温にさらされても揮発することなく、充填材表面にコーティングされるので好ましく用いられる。この場合、汎用シランカップリング剤との併用が充填材とのぬれ性と充填材表面へのカップリング剤の定着性のバランスがとれ効果的である。本発明では(E)成分は、エポキシ樹脂組成物全体に対して、0.1〜5重量%が好ましい。0.1重量%未満では充填材の表面全体にカップリング剤を分散させることができない可能性がある。また5重量%を越えるとガラス転移温度が低下する場合がある。
【0011】
本発明のエポキシ樹脂組成物は必要に応じて、上記成分以外の添加剤を特性を損なわない範囲で添加することができる。本発明のエポキシ樹脂組成物は溶剤を用いてワニスとして、または無溶剤にて基材に塗布しプリプレグを得ることができる。基材としてはガラス織布、ガラス不織布、その他有機基材などを用いることができる。本発明のエポキシ樹脂組成物は繊維基材に含浸、乾燥することによりプリプレグが得られ、このプリプレグの1枚又は複数枚を銅箔とともに加熱成形して銅張積層板が得られる。これらのプリプレグ及び銅張積層板も本発明に含まれるものである。
【0012】
【実施例】
実施例1
オルソクレゾールノボラックエポキシ樹脂(大日本インキ化学製エピクロンN−665)25重量部(以下、部と略す)、フェノールノボラック(軟化点105℃)9.5部、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光化学製HCA)5部、およびエポキシ樹脂と硬化剤量の合計100部に対し2−フェニル−4−メチルイミダゾールを0.03部をメチルエチルケトンとメチルセロソルブの混合溶剤に溶解した後、この溶液にエポキシシランカップリング剤(日本ユニカー製A−187)0.4部、シリコーンオイル型カップリング剤A(日本ユニカー製MAC2101)0.1部を加え撹拌し、続いて球状溶融シリカA(24μm以上をカットした平均粒径4μmの球状溶融シリカ、比表面積2m2/g )60部をいかり型撹拌羽根で撹拌しながら少しずつ添加した。全成分を混合したところで高速攪拌機を用いて10分撹拌した。
作製したワニスを用いてガラスクロス(厚さ180μm、日東紡績製)に含浸し、150℃の加熱炉で6分乾燥してワニス固形分(プリプレグ中、ガラスクロスを除く成分)が約50重量%のプリプレグを得た。このプリプレグを所定枚数重ね、両面に厚み12μmの銅箔を重ねて、圧力40kgf/cm2 、温度190℃で120分加熱加圧成形を行い両面銅張積層板を得た。
【0013】
得られた両面銅張積層板の評価方法を▲1▼〜▲3▼に、BGAの評価方法を▲4▼、▲5▼に示す。
▲1▼ガラス転移温度
厚さ0.6mmの両面銅張積層板を全面エッチングし、得られた積層板から10mm×60mmのテストピースを切り出し、動的粘弾性測定装置を用いて3℃/分で昇温し、tanδのピーク位置をガラス転移温度とした。
▲2▼線膨張係数
厚さ1.2mmの両面銅張積層板を全面エッチングし、得られた積層板から2mm×2mmのテストピースを切り出し、TMAを用いてZ方向の線膨張係数を5℃/分で測定した。
▲3▼難燃性
厚さ0.6mmの両面銅張積層板を全面エッチングし、得られた積層板からUL−94規格、垂直法により測定した。
▲4▼半田耐熱性
厚さ0.4mmの両面銅張積層板を作製し、JISC6481に準じた方法でテストピースを4枚作製し、プレッシャークッカー125℃4時間吸湿処理を行った後、260℃の半田槽に120秒浸漬して外観異常が現れた数を調べた。
【0014】
▲5▼パッケージ反り量
実施例で作製した厚さ0.4mmの両面銅張積層板をBGA用に回路加工した。この回路基板(リジッドインターポーザ)と封止材料に住友ベークライト製EME−7720を用いて、金型温度180℃、注入圧力75kg/cm2 、硬化時間2分で225pBGA(パッケージサイズは24×24mm、厚さ1.17mm、シリコンチップはサイズ9×9mm、厚さ0.35mm、チップと回路基板のボンディングパッドとを25μm径の金線でボンディングしている。)を成形し、175℃、8時間で後硬化した。室温に冷却後、パッケージのゲート部から対角線方向に、パッケージ上面の高さの変位を表面粗さ計により測定し、ゲート部を基準とした最大の変位値を反り量とした。単位はμm。
▲6▼BGA耐半田クラック性
▲5▼と同様の方法で得たパッケージ8個を、85℃、相対湿度60%の環境下で240時間放置した後、JEDECの方法に準じてIRリフロー処理を行った。処理後の内部の剥離、及びクラックの有無を超音波探傷機で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/8と表示する。
【0015】
実施例2〜14及び比較例1〜6
表1及び表2に示す配合にて、実施例1と同様の方法で両面銅張積層板を得た。評価方法も前述の通りである。評価結果を表1及び表2の下欄に示す。
本発明のエポキシ樹脂組成物を用いて得られた銅張積層板は、ハロゲン化合物を使用していないにもかかわらず優れた難燃性を有し、積層板単体及びICパッケージでの評価において優れた半田耐熱性を示し、加えて成形後の反りも極めて小さい。
【0016】
【表1】

Figure 0004714970
【0017】
【表2】
Figure 0004714970
【0018】
表の注
1)球状溶融シリカA:24μm以上をカットした平均粒径4μmの球状溶融シリカ、比表面積2m2/g
2)球状溶融シリカB:24μm以上をカットした平均粒径3μmの球状溶融シリカ、比表面積4m2/g
3)球状溶融シリカC:24μm以上をカットした平均粒径2.5μmの球状溶融シリカ、比表面積4.5m2/g
4)球状溶融シリカD:24μm以上の粗粒がカットされていない平均粒径22μmの球状溶融シリカ、比表面積2.7m2/g
5)球状溶融シリカE:平均粒径0.6μmの球状溶融シリカ、比表面積6m2/g
6)破砕状溶融シリカF:平均粒径18μmの破砕状溶融シリカ、比表面積2.2m2/g
7)平均粒径5μmのタルク
8)平均粒径12μmの水酸化アルミニウム
9)エポキシシランカップリング剤:日本ユニカー製A187
10)シリコーンオイル型カップリング剤A:日本ユニカー製MAC2101
11)シリコーンオイル型カップリング剤B:日本ユニカー製MAC2301
12)オルソクレゾールノボラックエポキシ樹脂:大日本インキ化学製エピクロN−665
13)フェノールノボラックエポキシ樹脂:大日本インキ化学製エピクロンN−775
14)テトラキスヒドロキシフェニルエタン型エポキシ樹脂:油化シェルエポキシ製エピコートE1031S
15)トリスヒドロキシフェニルメタン型エポキシ樹脂:油化シェルエポキシ製エピコートE1032
16)ビスフェノールAノボラックエポキシ樹脂:軟化点70℃、エポキシ当量201
17)ビスフェノールA型エポキシ樹脂:エポキシ当量250
18)フェノールノボラック:軟化点105℃、水酸基当量104
19)ビスフェノールAノボラック:軟化点115℃、水酸基当量129
20)フェノールアラルキル樹脂:三井化学製XL−225
21)9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光化学製HCA)
22)2−フェニル−4−メチルイミダゾール:配合量はエポキシ樹脂と硬化剤の合計量100部に対する量
23)平均粒径3μmの破砕状溶融シリカG、比表面積15m2/g
【0019】
【発明の効果】
本発明のエポキシ樹脂組成物は、ハロゲン系難燃剤を使用せずとも優れた難燃性を有し、高耐熱、低熱膨張の特性を有している。従って、本発明のエポキシ樹脂組成物から得られた銅張積層板は半田耐熱性に優れ、反りの小さいICパッケージ用基板を提供でき、関連産業に大きく寄与することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition having excellent flame retardancy without using a halogen flame retardant, and exhibiting excellent heat resistance and dimensional stability, a prepreg, and a copper-clad laminate using the same. Is.
[0002]
[Prior art]
In the field of semiconductors, a trend of shifting from conventional surface mounting to area mounting is progressing due to progress in high-density mounting technology, and new packages such as BGA and CSP are appearing and increasing. Therefore, the rigid substrate for interposer has been attracting more attention than before, and the demand for a high heat resistance and low thermal expansion substrate has increased.
On the other hand, the resin member used for these semiconductors is often required to have flame retardancy.
Conventionally, in order to impart this flame retardancy, it has been common to use halogen-based flame retardants such as brominated epoxy in epoxy resins. However, since dioxins may be generated from halogen-containing compounds, the use of halogen-based flame retardants has been avoided along with the recent serious environmental problems. A system has been required. Phosphoric flame retardants have been highlighted due to the demands of these times, and phosphoric acid esters and red phosphorus have been studied. However, these conventional phosphoric flame retardants are easily hydrolyzed and have poor reaction with resins. There is a problem that the property is lowered and the glass transition temperature is lowered.
[0003]
[Problems to be solved by the invention]
The present invention has been made to solve such problems, and is an epoxy resin composition, prepreg, and copper-clad that are halogen-free, have excellent flame retardancy, and can exhibit high heat resistance and low thermal expansion characteristics. A laminated board is provided.
[0004]
[Means for Solving the Problems]
The present invention is a polyfunctional epoxy resin that contributes to heat resistance, a phenol resin curing agent, a phosphorus compound having a specific structure having flame retardancy and excellent hydrolysis resistance, and a specific that expresses low thermal expansion and low water absorption An epoxy resin composition suitable for a copper-clad laminate containing spherical silica as an essential component is used as a technical outline, and the above-described object has been achieved by such a composition.
[0005]
Specifically, an epoxy resin having three or more epoxy groups in one molecule, a phenol resin curing agent having three or more phenolic hydroxyl groups in one molecule, 9,10-dihydro-9-oxa-10 -Epoxy resin comprising phosphaphenanthrene-10-oxide and spherical fused silica having a maximum particle size of 24 µm or less, an average particle size of 2 µm to 5 µm, and a specific surface area of 5 m 2 / g or less as essential components. An epoxy resin composition characterized by containing a coupling agent as an essential component in addition to these compositions, and a prepreg obtained by impregnating and drying these epoxy resin compositions on a substrate, It is a copper clad laminated board formed by thermoforming using it.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the epoxy resin having three or more epoxy groups in one molecule used in the present invention include novolac epoxy resins such as orthocresol novolac epoxy resin, phenol novolac epoxy resin, bisphenol A novolac epoxy resin, and trishydroxy. Derivatives such as phenylmethane type epoxy resins and epoxy resins in which the corresponding aromatic rings are alkylated, glycidyl etherified products of 1,1,2,2-tetrakishydroxyphenylethane, dimers, trimers thereof, etc. Examples thereof include tetrakishydroxyphenylethane type epoxy resin. The epoxy resin is a reactive phosphorus compound described later, since 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide reacts with the epoxy group to reduce the epoxy group in the resin. In order to keep the glass transition temperature at a high level, it is essential to be a trifunctional or higher functional epoxy resin. In particular, among tri- or higher functional epoxy resins, novolac type epoxy resin (A1) and at least one epoxy resin (A2) selected from trishydroxyphenylmethane type epoxy resin and tetrakishydroxyphenylethane type epoxy resin , Trishydroxyphenylmethane type epoxy resin or tetrakishydroxyphenylethane type epoxy resin (A2) can increase the crosslink density to increase the glass transition temperature, while novolac type epoxy resin (A1) allows the epoxy resin of the above (A2) It is possible to prevent brittleness and lowering of adhesion due to excessively high water absorption and crosslink density. Among the novolak epoxy resins (A1), orthocresol novolac epoxy resins are particularly preferable because they can reduce water absorption. In the present invention, the proportion of the component (A) in the epoxy resin composition is preferably 10 to 50% by weight. If it is less than 10% by weight, the binder component is reduced and the heat resistance is lowered. If it exceeds 50% by weight, the proportion of the filler decreases, and thermal expansion and water absorption increase, which is not preferable.
In addition, as an epoxy resin, you may mix | blend 30 weight% or less of epoxy resins other than (A) component, for example, a bisphenol A type epoxy resin.
[0007]
Next, examples of the phenol resin curing agent having 3 or more phenolic hydroxyl groups in one molecule of component (B) include phenol novolak, bisphenol A novolak, phenol aralkyl resin, etc., but the phenolic hydroxyl group equivalents are compared. Phenol novolacs that can easily remove small, low-functional monomers are preferred.
In the present invention, the component (B) is added so that the equivalent ratio of the epoxy group of the epoxy resin to the total of the phenolic hydroxyl group and other active hydrogen of the component (B) is 0.8 or more and 1.2 or less. Is preferred. Outside this range, the glass transition temperature and electrical characteristics may be lowered.
[0008]
Component (C) 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, which is a flame retardant component of the present invention, is reactive phosphorus in which hydrogen bonded to phosphorus reacts with an epoxy group It is a compound and does not hydrolyze like conventional phosphoric acid esters or red phosphorus to increase water absorption or decrease adhesion, and is an extremely excellent phosphorus flame retardant. The amount of component (C) added in the present invention is preferably 0.5 to 10% by weight with respect to the entire epoxy resin composition. If the amount is less than 0.5% by weight, the flame retardant effect may be lowered. If the amount exceeds 10% by weight, the glass transition temperature may be lowered.
[0009]
Component (D) of the present invention is spherical fused silica having a maximum particle size of 24 μm or less, an average particle size of 2 μm or more and 5 μm or less, and a specific surface area of 5 m 2 / g or less. Spherical fused silica is superior to other fillers and is optimal for adding a large amount of filler to achieve both low thermal expansion and resin fluidity. Among the spherical fused silica, spherical fused silica having a maximum particle size of 24 μm or less, an average particle size of 2 μm or more and 5 μm or less, and a specific surface area by the BET method of 5 m 2 / g or less is preferable. When coarse particles with a maximum particle size exceeding 24 μm are included, a space resulting from the coarse particles is formed between the copper foil and the base material, and when the moisture is absorbed, water stays and solder heat resistance deteriorates, or a copper-clad laminate. The appearance of the board will deteriorate. Further, when the average particle size is smaller than 2 μm or when the specific surface area exceeds 5 m 2 / g, the same problem as in the case where the coarse particles are contained due to secondary aggregation of the particles may occur. When spherical fused silica accounts for 50% by weight or more in the epoxy resin composition, thermal expansion and water absorption are reduced, which is preferable. However, if it exceeds 90% by weight, the proportion of the inorganic filler in the epoxy resin composition is too large, and operations such as impregnation become difficult. Moreover, you may use another filler in the range which does not disturb a characteristic as needed. In this case, conventionally known fillers such as spherical silica other than spherical fused silica having a maximum particle size of 24 μm or less, an average particle size of 2 μm or more and 5 μm or less and a specific surface area of 5 m 2 / g or less can be used. It can be used arbitrarily as long as the characteristics are not deteriorated.
[0010]
When a coupling agent is further used in the resin composition of the present invention, the wettability of the interface between the resin and the filler is improved, which is preferable. In particular, the silicone oil type coupling agent (E) having two or more repeating units of siloxane bonds and having an alkoxy group is coated on the surface of the filler without volatilizing even when exposed to high temperatures during prepreg production. Therefore, it is preferably used. In this case, the combined use with a general-purpose silane coupling agent is effective in balancing the wettability with the filler and the fixing property of the coupling agent on the surface of the filler. In the present invention, the component (E) is preferably 0.1 to 5% by weight with respect to the entire epoxy resin composition. If it is less than 0.1% by weight, the coupling agent may not be dispersed over the entire surface of the filler. If it exceeds 5% by weight, the glass transition temperature may decrease.
[0011]
If necessary, the epoxy resin composition of the present invention may contain additives other than the above components as long as the characteristics are not impaired. The epoxy resin composition of the present invention can be applied to a substrate as a varnish using a solvent or without a solvent to obtain a prepreg. As the substrate, glass woven fabric, glass nonwoven fabric, and other organic substrates can be used. The epoxy resin composition of the present invention is impregnated into a fiber base material and dried to obtain a prepreg, and one or a plurality of the prepregs are thermoformed together with a copper foil to obtain a copper-clad laminate. These prepregs and copper clad laminates are also included in the present invention.
[0012]
【Example】
Example 1
Orthocresol novolac epoxy resin (Epiclon N-665 manufactured by Dainippon Ink and Chemicals) 25 parts by weight (hereinafter abbreviated as “parts”), phenol novolac (softening point 105 ° C.) 9.5 parts, 9,10-dihydro-9-oxa- 10 parts of 10-phosphaphenanthrene-10-oxide (manufactured by Sanko Chemical Co., Ltd. HCA), and 0.03 part of 2-phenyl-4-methylimidazole for 100 parts in total of epoxy resin and amount of curing agent, methyl ethyl ketone and methyl cellosolve After dissolving in a mixed solvent, 0.4 part of an epoxy silane coupling agent (Nihon Unicar A-187) and 0.1 part of a silicone oil type coupling agent A (Nihon Unicar MAC2101) were added to this solution and stirred. Subsequently, spherical fused silica A (spherical fused silica with an average particle size of 4 μm cut from 24 μm or more, specific surface (2 m 2 / g product) 60 parts were added little by little while stirring with a stirring blade. When all the components were mixed, the mixture was stirred for 10 minutes using a high-speed stirrer.
The prepared varnish is used to impregnate a glass cloth (thickness 180 μm, manufactured by Nitto Boseki) and dried in a heating furnace at 150 ° C. for 6 minutes to obtain a varnish solid content (a component excluding the glass cloth in the prepreg) of about 50% by weight. Prepreg was obtained. A predetermined number of the prepregs were stacked, a copper foil having a thickness of 12 μm was stacked on both sides, and heat-pressing was performed at a pressure of 40 kgf / cm 2 and a temperature of 190 ° C. for 120 minutes to obtain a double-sided copper-clad laminate.
[0013]
The evaluation methods of the obtained double-sided copper-clad laminate are shown in (1) to (3), and the evaluation methods of BGA are shown in (4) and (5).
(1) A double-sided copper-clad laminate with a glass transition temperature thickness of 0.6 mm is etched all over, and a 10 mm × 60 mm test piece is cut out from the obtained laminate, and 3 ° C./min using a dynamic viscoelasticity measuring device. The tan δ peak position was taken as the glass transition temperature.
(2) Linear expansion coefficient A double-sided copper-clad laminate with a thickness of 1.2 mm is etched all over, a 2 mm x 2 mm test piece is cut out from the resulting laminate, and the linear expansion coefficient in the Z direction is 5 ° C using TMA. Measured at / min.
(3) Flame retardant property A double-sided copper clad laminate having a thickness of 0.6 mm was entirely etched, and the obtained laminate was measured by UL-94 standard and vertical method.
(4) Solder heat resistance A double-sided copper clad laminate having a thickness of 0.4 mm was prepared, four test pieces were prepared by a method in accordance with JIS C6481, subjected to a moisture absorption treatment at 125 ° C. for 4 hours, and then 260 ° C. The number of appearance anomalies appeared after immersion in a solder bath for 120 seconds.
[0014]
{Circle around (5)} Package Warpage A double-sided copper clad laminate having a thickness of 0.4 mm produced in the example was subjected to circuit processing for BGA. Using EME-7720 manufactured by Sumitomo Bakelite as the circuit board (rigid interposer) and sealing material, the mold temperature is 180 ° C., the injection pressure is 75 kg / cm 2 , the curing time is 2 minutes, and 225 pBGA (package size is 24 × 24 mm, thickness The silicon chip is 9 × 9 mm in size, the thickness is 0.35 mm, and the bonding pad of the chip and the circuit board is bonded with a gold wire with a diameter of 25 μm.) And molded at 175 ° C. for 8 hours Post-cured. After cooling to room temperature, the height displacement of the upper surface of the package was measured with a surface roughness meter in the diagonal direction from the gate portion of the package, and the maximum displacement value based on the gate portion was taken as the amount of warpage. The unit is μm.
(6) BGA solder crack resistance Eight packages obtained by the same method as in (5) above are allowed to stand for 240 hours in an environment of 85 ° C. and 60% relative humidity, and then subjected to IR reflow treatment according to the JEDEC method. went. The internal peeling after processing and the presence or absence of cracks were observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 8 is displayed.
[0015]
Examples 2-14 and Comparative Examples 1-6
Double-sided copper-clad laminates were obtained in the same manner as in Example 1 with the formulations shown in Tables 1 and 2. The evaluation method is also as described above. The evaluation results are shown in the lower column of Tables 1 and 2.
The copper-clad laminate obtained by using the epoxy resin composition of the present invention has excellent flame retardancy despite the fact that no halogen compound is used, and is excellent in evaluation with a laminate alone and an IC package. In addition, it exhibits excellent solder heat resistance and extremely little warpage after molding.
[0016]
[Table 1]
Figure 0004714970
[0017]
[Table 2]
Figure 0004714970
[0018]
Note 1) Spherical fused silica A: Spherical fused silica with an average particle size of 4 μm cut from 24 μm or more, specific surface area 2 m 2 / g
2) Spherical fused silica B: Spherical fused silica with an average particle size of 3 μm cut from 24 μm or more, specific surface area of 4 m 2 / g
3) Spherical fused silica C: Spherical fused silica with an average particle size of 2.5 μm cut from 24 μm or more, specific surface area 4.5 m 2 / g
4) Spherical fused silica D: Spherical fused silica having an average particle size of 22 μm, in which coarse particles of 24 μm or more are not cut, specific surface area 2.7 m 2 / g
5) Spherical fused silica E: Spherical fused silica having an average particle size of 0.6 μm, specific surface area of 6 m 2 / g
6) Crushed fused silica F: Crushed fused silica having an average particle size of 18 μm, specific surface area 2.2 m 2 / g
7) Talc with an average particle size of 5 μm 8) Aluminum hydroxide with an average particle size of 12 μm 9) Epoxysilane coupling agent: A187 manufactured by Nihon Unicar
10) Silicone oil type coupling agent A: Nihon Unicar MAC2101
11) Silicone oil type coupling agent B: Nihon Unicar MAC2301
12) Orthocresol novolac epoxy resin: Epichrome N-665 manufactured by Dainippon Ink and Chemicals, Inc.
13) Phenol novolak epoxy resin: Epicron N-775 manufactured by Dainippon Ink and Chemicals, Inc.
14) Tetrakishydroxyphenylethane type epoxy resin: Epicoat E1031S made of oil-based shell epoxy
15) Trishydroxyphenylmethane type epoxy resin: Epicoat E1032 made of oil-shell epoxy
16) Bisphenol A novolac epoxy resin: softening point 70 ° C., epoxy equivalent 201
17) Bisphenol A type epoxy resin: epoxy equivalent 250
18) Phenol novolac: softening point 105 ° C., hydroxyl group equivalent 104
19) Bisphenol A novolak: softening point 115 ° C., hydroxyl equivalent 129
20) Phenol aralkyl resin: XL-225 manufactured by Mitsui Chemicals
21) 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (HCA manufactured by Sanko Chemical)
22) 2-Phenyl-4-methylimidazole: blending amount is 100 parts of the total amount of epoxy resin and curing agent 23) Crushed fused silica G having an average particle size of 3 μm, specific surface area 15 m 2 / g
[0019]
【The invention's effect】
The epoxy resin composition of the present invention has excellent flame retardancy without using a halogen-based flame retardant, and has characteristics of high heat resistance and low thermal expansion. Therefore, the copper clad laminate obtained from the epoxy resin composition of the present invention is excellent in solder heat resistance and can provide a substrate for IC package with little warpage, and can greatly contribute to related industries.

Claims (6)

基材に含浸してプリプレグを得るのに用いるエポキシ樹脂組成物であって、 (A)1分子中に3個以上のエポキシ基を有するエポキシ樹脂、(B)1分子中に3個以上のフェノール性水酸基を有するフェノール樹脂系硬化剤、(C)9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド、及び(D)最大粒径24μm以下で、平均粒径2μm以上5μm以下、かつ比表面積が5m2/g以下の球状溶融シリカを必須成分とし、前記成分(D)の含有量が、エポキシ樹脂組成物中の50重量%以上、90重量%以下であることを特徴とするエポキシ樹脂組成物。An epoxy resin composition used for impregnating a base material to obtain a prepreg, comprising: (A) an epoxy resin having three or more epoxy groups in one molecule; and (B) three or more phenols in one molecule. (C) 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and (D) a maximum particle size of 24 μm or less and an average particle size of 2 μm to 5 μm And spherical fused silica having a specific surface area of 5 m 2 / g or less as an essential component, and the content of the component (D) is 50% by weight or more and 90% by weight or less in the epoxy resin composition. An epoxy resin composition. 成分(A)が、トリスヒドロキシフェニルメタン型エポキシ樹脂、テトラキスヒドロキシフェニルエタン型エポキシ樹脂及びノボラック型エポキシ樹脂から選ばれる少なくとも1種のエポキシ樹脂である請求項1記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, wherein the component (A) is at least one epoxy resin selected from a trishydroxyphenylmethane type epoxy resin, a tetrakishydroxyphenylethane type epoxy resin, and a novolac type epoxy resin. 成分(A)が、ノボラック型エポキシ樹脂(A1)及び、トリスヒドロキシフェニルメタン型エポキシ樹脂とテトラキスヒドロキシフェニルエタン型エポキシ樹脂から選ばれる少なくとも1種のエポキシ樹脂(A2)である請求項1記載のエポキシ樹脂組成物。  2. The epoxy according to claim 1, wherein the component (A) is a novolak type epoxy resin (A1) and at least one epoxy resin (A2) selected from a trishydroxyphenylmethane type epoxy resin and a tetrakishydroxyphenylethane type epoxy resin. Resin composition. 成分(B)がフェノールノボラックである請求項1,2又は3記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, 2 or 3, wherein the component (B) is a phenol novolac. 請求項1乃至のいずれかに記載のエポキシ樹脂組成物を繊維基材に含浸、乾燥してなることを特徴とするプリプレグ。A prepreg obtained by impregnating and drying a fiber base material with the epoxy resin composition according to any one of claims 1 to 4 . 請求項記載のプリプレグを加熱成形してなることを特徴とする銅張積層板。A copper-clad laminate obtained by heat-molding the prepreg according to claim 5 .
JP2000235301A 2000-08-03 2000-08-03 Epoxy resin composition, prepreg, and copper-clad laminate using the same Expired - Fee Related JP4714970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000235301A JP4714970B2 (en) 2000-08-03 2000-08-03 Epoxy resin composition, prepreg, and copper-clad laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000235301A JP4714970B2 (en) 2000-08-03 2000-08-03 Epoxy resin composition, prepreg, and copper-clad laminate using the same

Publications (2)

Publication Number Publication Date
JP2002047395A JP2002047395A (en) 2002-02-12
JP4714970B2 true JP4714970B2 (en) 2011-07-06

Family

ID=18727535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000235301A Expired - Fee Related JP4714970B2 (en) 2000-08-03 2000-08-03 Epoxy resin composition, prepreg, and copper-clad laminate using the same

Country Status (1)

Country Link
JP (1) JP4714970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060468A (en) * 2000-08-16 2002-02-26 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg, and copper-clad laminate using the prepreg

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639439B2 (en) * 2000-08-04 2011-02-23 住友ベークライト株式会社 Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP4729778B2 (en) * 2000-09-13 2011-07-20 住友ベークライト株式会社 Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP5157045B2 (en) * 2005-01-17 2013-03-06 日立化成株式会社 Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JP4984647B2 (en) * 2006-01-31 2012-07-25 日立化成工業株式会社 Resin composition, prepreg and metal-clad laminate
WO2018225599A1 (en) * 2017-06-09 2018-12-13 ナガセケムテックス株式会社 Epoxy resin composition, electronic component mounting structure body, and production method therefor
CN113637289B (en) * 2021-06-17 2022-10-21 上海道宜半导体材料有限公司 Epoxy resin composition and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166822A (en) * 1985-01-19 1986-07-28 Toshiba Chem Corp Resin composition for sealing
JPH09249736A (en) * 1996-03-15 1997-09-22 Nippon Kayaku Co Ltd Epoxy resin composition, and powder coating material and article produced therefrom

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251836A (en) * 1991-05-23 1993-09-28 Hitachi Chem Co Ltd Prepreg and substrate for metal core printed-wiring board
JP3109399B2 (en) * 1994-11-11 2000-11-13 信越化学工業株式会社 Epoxy resin composition for TAB sealing and TAB device
JPH1077392A (en) * 1996-09-02 1998-03-24 Hitachi Chem Co Ltd Epoxy resin composition, epoxy resin prepreg, epoxy resin laminate and multilayered printed wiring board
JP3611435B2 (en) * 1997-10-22 2005-01-19 住友ベークライト株式会社 Flame retardant resin composition, prepreg and laminate using the same
JP2000212403A (en) * 1999-01-20 2000-08-02 Sumitomo Bakelite Co Ltd Flame-retarded resin composition, and prepreg and laminate prepared therefrom
JP2002038022A (en) * 2000-07-21 2002-02-06 Toppan Printing Co Ltd Insulating resin composition for multilayer printed wiring board, multilayer printed wiring board using the same, and production method using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166822A (en) * 1985-01-19 1986-07-28 Toshiba Chem Corp Resin composition for sealing
JPH09249736A (en) * 1996-03-15 1997-09-22 Nippon Kayaku Co Ltd Epoxy resin composition, and powder coating material and article produced therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060468A (en) * 2000-08-16 2002-02-26 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg, and copper-clad laminate using the prepreg

Also Published As

Publication number Publication date
JP2002047395A (en) 2002-02-12

Similar Documents

Publication Publication Date Title
JP6129277B2 (en) Composition of low dielectric phosphorus-containing polyester compound and method for preparing the same
JP2013001807A (en) Resin composition for electronic circuit board material, prepreg and laminated plate
JP4132703B2 (en) Prepreg for copper-clad laminate and copper-clad laminate using the same
JP3821728B2 (en) Prepreg
JP4322463B2 (en) Copper-clad laminate prepreg and copper-clad laminate
EP1197514B1 (en) Incombustible resin composition, prepreg, laminated plate, metal-clad laminated plate, printed wiring board and multi-layer printed wiring board
JP4714970B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP4244975B2 (en) Epoxy resin composition for prepreg, prepreg, multilayer printed wiring board
JP4639439B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP4560928B2 (en) Epoxy resin composition for interposer, prepreg, and copper-clad laminate using the same
JP3664124B2 (en) Flame retardant resin composition, prepreg, laminate, metal-clad laminate, printed wiring board and multilayer printed wiring board using the same
JP2006312751A (en) Resin composition, prepreg and copper-clad laminate using the prepreg
JP4729777B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP4729778B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP2004277671A (en) Prepreg and printed circuit board using the same
JP2002060468A (en) Epoxy resin composition, prepreg, and copper-clad laminate using the prepreg
JP4156180B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP5428212B2 (en) Resin composition, prepreg and printed wiring board using the same
JP4529268B2 (en) Epoxy resin composition, prepreg and copper-clad laminate using the same
JP2007043184A (en) Insulating sheet with copper foil for multilayered printed wiring board and printed wiring board using it
JP2016065250A (en) Prepreg, laminate sheet and metal laminate sheet
JP2002080559A (en) Epoxy resin composition for interposer, prepreg and copper-clad laminate using the prepreg
JP2000071411A (en) Resin-laminated substrate
JP6136058B2 (en) Resin composition for electronic circuit board material, prepreg, laminate and metal-clad laminate
JP2002105292A (en) Epoxy resin composition for interposer, prepreg and sheet laminated with cupper using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees