JP4729778B2 - Epoxy resin composition, prepreg, and copper-clad laminate using the same - Google Patents

Epoxy resin composition, prepreg, and copper-clad laminate using the same Download PDF

Info

Publication number
JP4729778B2
JP4729778B2 JP2000278008A JP2000278008A JP4729778B2 JP 4729778 B2 JP4729778 B2 JP 4729778B2 JP 2000278008 A JP2000278008 A JP 2000278008A JP 2000278008 A JP2000278008 A JP 2000278008A JP 4729778 B2 JP4729778 B2 JP 4729778B2
Authority
JP
Japan
Prior art keywords
epoxy resin
coupling agent
resin composition
prepreg
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000278008A
Other languages
Japanese (ja)
Other versions
JP2002088141A (en
Inventor
澄也 三宅
孝幸 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000278008A priority Critical patent/JP4729778B2/en
Publication of JP2002088141A publication Critical patent/JP2002088141A/en
Application granted granted Critical
Publication of JP4729778B2 publication Critical patent/JP4729778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハロゲン系難燃剤を使用せずとも優れた難燃性を有し、かつ優れた耐熱性、寸法安定性を発現するエポキシ樹脂組成物、プリプレグ及びそれを用いた銅張積層板に関するものである。特にICパッケージのリジッドインターポーザ用途に好適な銅張積層板に関するものである。
【0002】
【従来の技術】
半導体の分野では高密度実装技術の進歩から従来の面実装からエリア実装に移行していくトレンドが進行し、BGAやCSPなど新しいパッケージが登場、増加しつつある。そのため以前にもましてインターポーザ用リジッド基板が注目されるようになり、高耐熱、低熱膨張基板の要求が高まってきた。
一般に基板の熱膨張係数を低減するためには、無機充填材、特に溶融シリカを使うことは広く行われていることではあるが、従来使用されてきた粗粒の溶融シリカでは、基板を構成するガラス基材と銅箔の狭い間隙に粗い充填材が挟まって形成される空間に水分が滞留し半田耐熱性が低下する問題が起こることを本発明者らは確認した。
一方、細粒溶融シリカを使用した場合、上記の問題は解消されるが、シリカ凝集の問題が生じる。この凝集が発生した場合も、外観不良が発生したり、凝集物が形成する空間に水分が滞留し半田耐熱性が低下する問題が起こる。特開平9−272155公報では微粒である0.3〜5μmの球状シリカを用いる技術が開示されているが、インターポーザ用基材に最適な樹脂組成の記載はなく、凝集の問題への言及もない。本発明者らによれば、たとえ球状シリカであっても、凝集が発生すれば外観不良が発生したり、凝集物が形成する空間に水分が滞留し半田耐熱性が低下する問題が起こる。
一方、これら半導体に用いられる樹脂部材は難燃性が求められることが多い。
従来この難燃性を付与するため、エポキシ樹脂においては臭素化エポキシなどのハロゲン系難燃剤を用いることが一般的であった。しかし、ハロゲン含有化合物からダイオキシンが発生するおそれがあることから、昨今の環境問題の深刻化とともに、ハロゲン系難燃剤を使用することが回避されるようになり、広く産業界にハロゲンフリーの難燃化システムが求められるようになった。このような時代の要求によってリン系難燃剤が脚光を浴び、リン酸エステルや赤リンが検討されたが、これらの従来のリン系難燃剤は加水分解しやすく樹脂との反応に乏しいため、半田耐熱性が低下したり、ガラス転移温度が低下するという問題があった。
【0003】
【発明が解決しようとする課題】
本発明はこのような問題を解決するべくなされたもので、ハロゲンフリーで優れた難燃性を有し、高耐熱、低熱膨張、低吸水性によって優れた半田耐熱性を有するリジッドインターポーザに好適なエポキシ樹脂組成物、及びそれを用いたプリプレグ、銅張積層板を提供するものである。
【0004】
【課題を解決するための手段】
本発明は、耐熱性に寄与する多官能エポキシ樹脂及びフェノール樹脂系硬化剤、難燃性や優れた耐加水分解性を有する特定構造のリン化合物、及び低熱膨張性や低吸水性を実現し、凝集をおこさない特定の球状シリカを必須成分として含有するインターポーザ用銅張積層板に好適なエポキシ樹脂組成物を主たる技術骨子とするものであり、かかる組成、プロセスにより上記目的を達成するに至った。
【0005】
具体的には、(A)1分子中に3個以上のエポキシ基を有するエポキシ樹脂、(B)1分子中に3個以上のフェノール性水酸基を有するフェノール樹脂系硬化剤、(C)9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド、及び(D)カップリング剤で予め表面処理された平均粒径2μm以下の球状溶融シリカ、を必須成分とすることを特徴とするエポキシ樹脂組成物と、それらを繊維基材に含浸、乾燥してなることを特徴とするプリプレグ、さらにはプリプレグを得るにあたり、平均粒径2μm以下の球状溶融シリカを特定のプロセスで表面処理して用いることを特徴とするプリプレグ。並びにこのプリプレグを用いて加熱成形してなる銅張積層板である。
【0006】
【発明の実施の形態】
本発明に用いる、(A)1分子中に3個以上のエポキシ基を有するエポキシ樹脂としては、オルソクレゾールノボラックエポキシ樹脂、フェノールノボラックエポキシ樹脂、ビスフェノールAノボラックエポキシ樹脂などのノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂および対応する芳香族環がアルキル化されたエポキシ樹脂などの誘導体、1,1,2,2−テトラキスヒドロキシフェニルエタンのグリシジルエーテル化物、およびその2量体、3量体などのテトラキスヒドロキシフェニルエタン型エポキシ樹脂、などが例示される。エポキシ樹脂は、後述する反応性リン化合物である、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシドがエポキシ基と反応して樹脂中のエポキシ基が減少することから、ガラス転移温度を高い状態に保つためには、3官能以上のエポキシ樹脂であることが必須である。
【0007】
特に3官能以上のエポキシ樹脂の中でも、ノボラック型エポキシ樹脂(A1)及び、トリスヒドロキシフェニルメタン型エポキシ樹脂とテトラキスヒドロキシフェニルエタン型エポキシ樹脂から選ばれる少なくとも1種のエポキシ樹脂(A2)を組み合わせた場合、トリスヒドロキシフェニルメタン型エポキシ樹脂又はテトラキスヒドロキシフェニルエタン型エポキシ樹脂(A2)で架橋密度を高くしてガラス転移温度を高くでき、一方ノボラック型エポキシ樹脂(A1)によって、前記(A2)のエポキシ樹脂の欠点である吸水性の大きさや架橋密度が過度に高くなることによる脆さ、密着性の低下などを防ぐことができる。特にノボラック型エポキシ樹脂(A1)の中でもオルソクレゾールノボラックエポキシ樹脂が吸水性を低減できるので好ましい。
【0008】
本発明において、エポキシ樹脂組成物中に占める(A)成分の割合は10〜50重量%が好ましい。10重量%未満では、結合剤成分が少なくなり、耐熱性特にICパッケージのインターポーザとしての耐半田クラック性が低下するようになる。50重量%を越えると、充填材の割合が低下し、熱膨張、吸水率が増加しICパッケージのインターポーザとしての耐半田クラック性が低下するので好ましくない。ここで、インターポーザとしての耐半田クラック性とは、リジッドインターポーザを使用したBGAやCSP等において行われるJEDEC実装ランク条件に準じた耐半田クラック試験において、インターポーザに起因するか、または間接的にインターポーザの特性が影響を与えて発生するクラック、または界面剥離に対する耐性を意味する。
なお、エポキシ樹脂として、(A)成分以外のエポキシ樹脂、例えばビスフェノールA型のエポキシ樹脂をエポキシ樹脂全体の30重量%以下配合してもよい。
【0009】
次に、成分(B)1分子中に3個以上のフェノール性水酸基を有するフェノール樹脂系硬化剤としては、フェノールノボラック、ビスフェノールAノボラック、フェノールアラルキル樹脂等が例示されるが、フェノール性水酸基当量が比較的小さく、低官能のモノマーを容易に除去できるフェノールノボラックが好ましい。
本発明では(B)成分は、エポキシ樹脂のエポキシ基と、(B)成分のフェノール性水酸基およびその他の活性水素の合計との当量比が0.8以上1.2以下となるよう添加することが好ましい。この範囲外ではガラス転移温度の低下や吸水率の増加で特にICパッケージのインターポーザとしての耐半田クラック性の低下やICの耐湿信頼性の低下が生じることがある。
【0010】
本発明の難燃成分である、成分(C)9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシドは、リンに結合している水素がエポキシ基と反応する反応性リン化合物であり、従来のリン酸エステルや赤リンのように加水分解して吸水性を高めたり、密着性を低下させたりすることがなく、極めて優れたリン系難燃剤である。本発明の(C)成分添加量は、エポキシ樹脂組成物全体に対して、0.5〜10重量%が好ましい。
0.5重量%未満では難燃効果が低下するおそれがあり、10重量%を越えるとガラス転移温度の低下や吸水率の増加で特にICパッケージのインターポーザとしての耐半田耐熱性の低下やICの耐湿信頼性の低下が生じることがある。
【0011】
本発明の成分(D)は、カップリング剤で予め表面処理された平均粒径2μm以下の球状溶融シリカである。多量に充填材を添加し低熱膨張性と樹脂の流動性を両立させるには球状溶融シリカが他の充填材に勝っており最適である。平均粒径2μm以下の微細な球状シリカは凝集しやすく、この凝集物が樹脂、ガラスクロス、銅箔などの界面に空間を形成し半田耐熱性を悪化させることがあるが、本発明の球状溶融シリカはカップリング剤で予め表面処理されているため、そのような問題が起こらない。
【0012】
本発明における表面処理方法は凝集物が発生しない方法であれば特に限定するものではなく、従来行われている湿式法、すなわち溶剤等にカップリング剤を希釈して充填材を混合する方法、あるいはその後乾燥する方法、さらには乾式法、すなわちミキサーで充填材を撹拌しつつカップリング剤を噴霧する方法等が実施される。このなかで、エポキシ樹脂組成物を溶剤に溶解してワニスとし、繊維基材に塗布し乾燥してプリプレグを得る工程において、ワニス調製時に、カップリング剤で表面処理された球状溶融シリカとして、平均粒径2μm以下の球状溶融シリカとカップリング剤と溶剤を混合し加熱反応してなるスラリー状物を配合すると球状溶融シリカの表面処理が極めて効果的に行われる。
【0013】
カップリング剤で予め表面処理された平均粒径2μm以下の球状溶融シリカにおけるカップリング剤は、シランカップリング剤、シロキサン結合の繰り返し単位を2個以上有し、かつアルコキシ基を有するシリコーンオイル型カップリング剤等のケイ素系カップリング剤やチタネート系カップリング剤等が挙げられるが、エポキシ樹脂と溶融球状シリカの表面の塗れ性向上の点で、ケイ素系カップリング剤が好ましい。具体的にはエポキシシランカップリング剤、アミノシランカップリング剤、ウレイドシランカップリング剤、メルカプトシランカップリング剤、ジシラザン、シロキサン結合の繰り返し単位を2個以上有し、かつアルコキシ基を有するシリコーンオイル型カップリング剤からなる群から少なくとも1種選ばれるものなどが挙げられる。特にエポキシシランカップリング剤、アミノシランカップリング剤と、シロキサン結合の繰り返し単位を2個以上有し、かつアルコキシ基を有するシリコーンオイル型カップリング剤を併用した場合、シリカ表面へカップリング剤が効率よく定着する。これらの場合のカップリング剤の割合は球状溶融シリカ100部(以下、すべて「部」は重量部を表す)に対し0.1部以上10部以下が一般的である。
【0014】
前述した球状溶融シリカとカップリング剤と溶剤を混合し加熱反応してスラリーとする場合、加熱温度は50℃から120℃の間が好ましい。この範囲の温度で加熱反応させると、シリカ表面のシラノールとカップリング剤の反応が選択的に起こる。この範囲より低い温度では反応が遅くなり、この範囲より高いとカップリング剤相互の縮合反応や、揮発が生じ好ましくない。球状溶融シリカ、カップリング剤、溶剤の混合比は任意に設定できるが、通常重量比で球状溶融シリカ100部に対し、カップリング剤が0.1部以上10部以下、溶剤は10部以上200部以下である。この範囲外では表面処理の効率が低下する場合がある。表面処理完了後のスラリーを一旦濾過して乾燥する前に異なる溶剤に再分散したり、デカンテーションで溶剤を減らすことも必要に応じて実施できる。ただし、この方法を用いる場合、再凝集を防ぐため表面処理済みの球状溶融シリカのスラリーは乾燥しないで他の成分と混合することが好ましい。
【0015】
どのような方法であれ、表面処理にカップリング剤を用いる場合にカップリング剤とシリカのシラノールの反応を促進するために、必要に応じて水や酸、アルカリなどを用いることは本発明に含まれる。平均粒径2μm以下の球状溶融シリカはエポキシ樹脂組成物中50重量%以上を占めると熱膨張、吸水率が小さくなるので好ましい。ただし、90重量%を越えるとエポキシ樹脂組成物中の無機充填材の割合が大きすぎて含浸等の操作が困難となる。また必要に応じて特性を妨げない範囲で他の充填材を使用してもよい。この場合、本発明のカップリング剤で予め表面処理された平均粒径2μm以下の球状溶融シリカ以外の球状シリカをはじめとして従来公知の充填材を、半田耐熱性等の特性を悪化させない程度において、任意に使用可能である。
【0016】
本発明のエポキシ樹脂組成物は必要に応じて、上記成分以外の添加剤を特性を損なわない範囲で添加することができる。本発明のエポキシ樹脂組成物は溶剤を用いてワニスとして、または無溶剤にて基材に塗布しプリプレグを得ることができる。基材としてはガラス織布、ガラス不織布、その他有機基材などを用いることができる。本発明のエポキシ樹脂組成物を繊維基材に含浸、乾燥することによりプリプレグが得られ、このプリプレグの1枚又は複数枚を銅箔とともに加熱成形して銅張積層板が得られる。これらのプリプレグ及び銅張積層板も本発明に含まれるものである。
【0017】
【実施例】
参考例1
平均粒径0.5μmの球状溶融シリカ60部をヘンシェルミキサーに投入、攪拌しながらγ−グリシドキシプロピルトリメトキシシラン0.5部及びシリコーンオイル型カップリング剤A(日本ユニカー製MAC2101)0.1部を少しずつ添加した。添加終了後5分攪拌し取り出した。
オルソクレゾールノボラックエポキシ樹脂(大日本インキ化学製エピクロンN−665)25部、フェノールノボラック(軟化点105℃)9.5部、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光化学製HCA)5部、およびエポキシ樹脂と硬化剤量の合計100部に対し2−フェニル−4−メチルイミダゾールを0.03部をメチルエチルケトンとメチルセロソルブの混合溶剤に溶解した後、この溶液に先にカップリング剤で表面処理した平均粒径0.5μmの球状溶融シリカをいかり型撹拌羽根で撹拌しながら少しずつ添加した。全成分を混合したところで高速攪拌機を用いて10分撹拌した。
作製したワニスを用いてガラスクロス(厚さ180μm、日東紡績製)に含浸し、150℃の加熱炉で6分乾燥してワニス固形分(プリプレグ中、ガラスクロスを除く成分)が約50重量%のプリプレグを得た。このプリプレグを所定枚数重ね、両面に厚み12μmの銅箔を重ねて、圧力40kgf/cm2 、温度190℃で120分加熱加圧成形を行い両面銅張積層板を得た。
【0018】
参考例2
予め溶剤としてメタノールを30部程度入れた3Lセパラブルフラスコにγ−グリシドキシプロピルトリメトキシシラン1部、平均粒径1.5μmの球状溶融シリカ70部を入れ、室温で3時間攪拌しその後加圧ろ過により溶剤を除去した。得られた固形分をバットに広げ防爆型乾燥機で2時間乾燥した後、ボールミルで3時間処理して凝集物を砕いた。次にフェノールノボラックエポキシ樹脂(大日本インキ化学製エピクロンN−775)12.5部、ビスフェノールAノボラックエポキシ樹脂(軟化点70℃、エポキシ当量201)5部、フェノールノボラック(軟化点105℃)8.5部、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光化学製HCA)3.5部およびエポキシ樹脂と硬化剤量の合計100部に対し2−フェニル−4−メチルイミダゾールを0.03部をメチルエチルケトンとメチルセロソルブの混合溶剤に溶解した後、先にカップリング剤で表面処理した平均粒径1.5μmの球状溶融シリカをいかり型撹拌羽根で撹拌しながら少しずつ添加した。全成分を混合したところで高速攪拌機を用いて10分撹拌しワニスを調製した。
作製したワニスを用いてガラスクロス(厚さ180μm、日東紡績製)に含浸し、150℃の加熱炉で6分乾燥してワニス固形分(プリプレグ中、ガラスクロスを除く成分)が約50重量%のプリプレグを得た。このプリプレグを所定枚数重ね、両面に厚み12μmの銅箔を重ねて、圧力40kgf/cm2 、温度190℃で120分加熱加圧成形を行い両面銅張積層板を得た。
【0019】
参考例3
予め溶剤としてメタノールを40部程度入れた3Lセパラブルフラスコに、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン0.5部及びシリコーンオイル型カップリング剤A(日本ユニカー製MAC2101)0.1部、平均粒径0.5μmの球状溶融シリカ80部を入れ、90℃、1時間攪拌しスラリーを得た。次にテトラキスヒドロキシフェニルエタン型エポキシ樹脂(油化シェルエポキシ製エピコートE1031S)12.5部、フェノールノボラック(軟化点105℃)5.5部、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光化学製HCA)1.5部およびエポキシ樹脂と硬化剤量の合計100部に対し2−フェニル−4−メチルイミダゾールを0.03部をメチルエチルケトンとメチルセロソルブの混合溶剤に溶解した後、先に準備した球状シリカを含むスラリーをいかり型撹拌羽根で撹拌しながら少しずつ添加した。全成分を混合したところで高速攪拌機を用いて10分撹拌しワニスを調製した。
作製したワニスを用いてガラスクロス(厚さ180μm、日東紡績製)に含浸し、150℃の加熱炉で6分乾燥してワニス固形分(プリプレグ中、ガラスクロスを除く成分)が約50重量%のプリプレグを得た。このプリプレグを所定枚数重ね、両面に厚み12μmの銅箔を重ねて、圧力40kgf/cm2 、温度190℃で120分加熱加圧成形を行い両面銅張積層板を得た。
【0020】
実施例8〜14及び比較例1〜6
表1及び表2に示す配合にて、参考例1、2または3と同様の方法で両面銅張積層板を得た。ただし、シリカの表面処理方法は参考例1と同様のものはA、参考例2と同様のものはB、参考例3と同様のものはCで表した。
評価方法は下記の通りである。評価結果を表1及び表2の下欄に示す。
【0021】
得られた両面銅張積層板の評価方法を▲1▼〜▲4▼に、BGAの評価方法を▲5▼、▲6▼に示す。
▲1▼ガラス転移温度
厚さ0.6mmの両面銅張積層板を全面エッチングし、得られた積層板から10mm×60mmのテストピースを切り出し、動的粘弾性測定装置を用いて3℃/分で昇温し、tanδのピーク位置をガラス転移温度とした。
▲2▼線膨張係数
厚さ1.2mmの両面銅張積層板を全面エッチングし、得られた積層板から2mm×2mmのテストピースを切り出し、TMAを用いてZ方向の線膨張係数を5℃/分で測定した。
▲3▼難燃性
厚さ0.6mmの両面銅張積層板を全面エッチングし、得られた積層板からUL−94規格、垂直法により測定した。
▲4▼半田耐熱性
厚さ0.4mmの両面銅張積層板を作製し、JIS C 6481に準じた方法でテストピースを8枚作製し、プレッシャークッカー125℃、8時間吸湿処理を行った後、260℃の半田槽に120秒浸漬して外観異常が現れた数を調べた。
【0022】
▲5▼パッケージ反り量
実施例で作製した厚さ0.4mmの両面銅張積層板をBGA用に回路加工した。この回路基板(リジッドインターポーザ)と封止材料に住友ベークライト製EME−7720を用いて、金型温度180℃、注入圧力75kg/cm2 、硬化時間2分で225pBGA(パッケージサイズは24×24mm、厚さ1.17mm、シリコンチップはサイズ9×9mm、厚さ0.35mm、チップと回路基板のボンディングパッドとを25μm径の金線でボンディングしている。)を成形し、175℃、8時間で後硬化した。室温に冷却後、パッケージのゲート部から対角線方向に、パッケージ上面の高さの変位を表面粗さ計により測定し、ゲート部を基準とした最大の変位値を反り量とした。単位はμm。
▲6▼BGA耐半田クラック性
▲5▼と同様の方法で得たパッケージ8個を、85℃、相対湿度60%の環境下で240時間放置した後、JEDECの方法に準じてIRリフロー処理を行った。処理後の内部の剥離、及びクラックの有無を超音波探傷機で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/8と表示する。
【0023】
本発明のエポキシ樹脂組成物を用いて得られた銅張積層板は、ハロゲン化合物を使用していないにもかかわらず優れた難燃性を有し、積層板単体及びICパッケージでの評価において優れた半田耐熱性を示し、加えて成形後の反りも極めて小さい。
【0024】
【表1】
【0025】
【表2】
【0026】
表の注
1)シリカの表面処理方法:実施例1と同様のものはA、実施例2と同様のものはB、実施例3と同様のものはCで表した。
2)シリコーンオイル型カップリング剤A:日本ユニカー製MAC2101
3)シリコーンオイル型カップリング剤B:日本ユニカー製MAC2301
4)オルソクレゾールノボラックエポキシ樹脂:大日本インキ化学製エピクロN−665
5)フェノールノボラックエポキシ樹脂:大日本インキ化学製エピクロンN−775
6)テトラキスヒドロキシフェニルエタン型エポキシ樹脂:油化シェルエポキシ製エピコートE1031S
7)トリスヒドロキシフェニルメタン型エポキシ樹脂:油化シェルエポキシ製エピコートE1032
8)ビスフェノールAノボラックエポキシ樹脂:軟化点70℃、エポキシ当量201
9)ビスフェノールA型エポキシ樹脂:エポキシ当量250
10)フェノールノボラック:軟化点105℃、水酸基当量104
11)ビスフェノールAノボラック:軟化点115℃、水酸基当量129
12)フェノールアラルキル樹脂:三井化学製XL−225
13)9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光化学製HCA)
14)2−フェニル−4−メチルイミダゾール:配合量はエポキシ樹脂と硬化剤の合計量100部に対する量
【0027】
【発明の効果】
本発明のエポキシ樹脂組成物は、ハロゲン系難燃剤を使用せずとも優れた難燃性を有し、高耐熱、低熱膨張の特性を有している。従って、本発明のエポキシ樹脂組成物から得られた銅張積層板は半田耐熱性に優れ、反りの小さいICパッケージのリジッドインターポーザを提供でき、関連産業に大きく寄与することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition having excellent flame retardancy without using a halogen flame retardant, and exhibiting excellent heat resistance and dimensional stability, a prepreg, and a copper-clad laminate using the same. Is. In particular, the present invention relates to a copper clad laminate suitable for use in a rigid interposer of an IC package.
[0002]
[Prior art]
In the field of semiconductors, a trend of shifting from conventional surface mounting to area mounting is progressing due to progress in high-density mounting technology, and new packages such as BGA and CSP are appearing and increasing. Therefore, the rigid substrate for interposer has been attracting more attention than before, and the demand for a high heat resistance and low thermal expansion substrate has increased.
In general, in order to reduce the thermal expansion coefficient of a substrate, inorganic fillers, particularly fused silica, are widely used. However, conventionally used coarse-grained fused silica constitutes a substrate. The present inventors have confirmed that there is a problem that moisture stays in a space formed by a coarse filler sandwiched in a narrow gap between the glass substrate and the copper foil and solder heat resistance is lowered.
On the other hand, when fine fused silica is used, the above problem is solved, but the problem of silica aggregation occurs. Even when this agglomeration occurs, there is a problem in that an appearance defect occurs, or moisture stays in the space where the agglomerates are formed and the solder heat resistance is lowered. Japanese Patent Application Laid-Open No. 9-272155 discloses a technique using spherical silica having a particle size of 0.3 to 5 μm, but there is no description of an optimal resin composition for an interposer substrate, and there is no mention of the problem of aggregation. . According to the present inventors, even if spherical silica is used, there is a problem that appearance deteriorates when the aggregation occurs, or moisture stays in a space where the aggregate is formed and solder heat resistance is lowered.
On the other hand, the resin member used for these semiconductors is often required to have flame retardancy.
Conventionally, in order to impart this flame retardancy, it has been common to use halogen-based flame retardants such as brominated epoxy in epoxy resins. However, since dioxins may be generated from halogen-containing compounds, the use of halogen-based flame retardants has been avoided along with the recent serious environmental problems. A system has been required. Phosphoric flame retardants have attracted attention due to the demands of these times, and phosphoric acid esters and red phosphorus have been studied. However, these conventional phosphoric flame retardants are easily hydrolyzed and have poor reaction with resins. There existed a problem that heat resistance fell or a glass transition temperature fell.
[0003]
[Problems to be solved by the invention]
The present invention has been made to solve such problems, and is suitable for a rigid interposer having halogen-free and excellent flame retardancy, and excellent solder heat resistance due to high heat resistance, low thermal expansion and low water absorption. An epoxy resin composition, and a prepreg and a copper clad laminate using the same are provided.
[0004]
[Means for Solving the Problems]
The present invention realizes a polyfunctional epoxy resin and a phenolic resin-based curing agent that contributes to heat resistance, a phosphorus compound having a specific structure having flame retardancy and excellent hydrolysis resistance, and low thermal expansion and low water absorption, An epoxy resin composition suitable for a copper-clad laminate for interposers containing a specific spherical silica that does not cause aggregation as an essential component is the main technical point, and the above-mentioned purpose has been achieved by such a composition and process. .
[0005]
Specifically, (A) an epoxy resin having three or more epoxy groups in one molecule, (B) a phenol resin-based curing agent having three or more phenolic hydroxyl groups in one molecule, (C) 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and (D) spherical fused silica having an average particle size of 2 μm or less that has been surface-treated in advance with a coupling agent, are essential components. In order to obtain a prepreg characterized by being impregnated into a fiber base material and drying them, and further to obtain a prepreg, a spherical fused silica having an average particle size of 2 μm or less is surface-treated by a specific process. A prepreg characterized by being used. In addition, a copper-clad laminate obtained by heat molding using this prepreg.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the epoxy resin having three or more epoxy groups in one molecule used in the present invention include novolac epoxy resins such as orthocresol novolac epoxy resin, phenol novolac epoxy resin, bisphenol A novolac epoxy resin, and trishydroxy. Derivatives such as phenylmethane type epoxy resins and epoxy resins in which the corresponding aromatic rings are alkylated, glycidyl etherified products of 1,1,2,2-tetrakishydroxyphenylethane, dimers, trimers thereof, etc. Examples thereof include tetrakishydroxyphenylethane type epoxy resin. The epoxy resin is a reactive phosphorus compound described later, since 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide reacts with the epoxy group to reduce the epoxy group in the resin. In order to keep the glass transition temperature at a high level, it is essential to be a trifunctional or higher functional epoxy resin.
[0007]
In particular, among tri- or higher functional epoxy resins, novolac type epoxy resin (A1) and at least one epoxy resin (A2) selected from trishydroxyphenylmethane type epoxy resin and tetrakishydroxyphenylethane type epoxy resin , Trishydroxyphenylmethane type epoxy resin or tetrakishydroxyphenylethane type epoxy resin (A2) can increase the crosslink density to increase the glass transition temperature, while novolac type epoxy resin (A1) allows the epoxy resin of the above (A2) it drawback is that water absorption size and crosslink density brittleness due to excessively high in the this to prevent such reduction in adhesion. Among the novolak epoxy resins (A1), orthocresol novolac epoxy resins are particularly preferable because they can reduce water absorption.
[0008]
In the present invention, the proportion of the component (A) in the epoxy resin composition is preferably 10 to 50% by weight. If it is less than 10% by weight, the binder component is reduced, and the heat resistance, particularly the solder crack resistance as an interposer of an IC package is lowered. If it exceeds 50% by weight, the proportion of the filler decreases, thermal expansion and water absorption increase, and solder crack resistance as an IC package interposer decreases, which is not preferable. Here, the solder crack resistance as an interposer is caused by the interposer or indirectly in the solder crack resistance test according to the JEDEC mounting rank condition performed in the BGA or CSP using a rigid interposer. It means the resistance to cracks that occur due to the influence of properties, or interfacial peeling.
In addition, as an epoxy resin, you may mix | blend 30 weight% or less of epoxy resins other than (A) component, for example, a bisphenol A type epoxy resin.
[0009]
Next, examples of the phenol resin-based curing agent having three or more phenolic hydroxyl groups in one molecule of component (B) include phenol novolac, bisphenol A novolac, phenol aralkyl resin, etc. Phenol novolac, which is relatively small and can easily remove low-functional monomers, is preferred.
In the present invention, the component (B) is added so that the equivalent ratio of the epoxy group of the epoxy resin to the total of the phenolic hydroxyl group and other active hydrogen of the component (B) is 0.8 or more and 1.2 or less. Is preferred. Outside this range, a decrease in glass transition temperature and an increase in water absorption may cause a decrease in solder crack resistance as an IC package interposer and a decrease in moisture resistance reliability of the IC.
[0010]
Component (C) 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, which is a flame retardant component of the present invention, is reactive phosphorus in which hydrogen bonded to phosphorus reacts with an epoxy group It is a compound and does not hydrolyze like conventional phosphoric acid esters or red phosphorus to increase water absorption or decrease adhesion, and is an extremely excellent phosphorus flame retardant. The amount of component (C) added in the present invention is preferably 0.5 to 10% by weight with respect to the entire epoxy resin composition.
If the amount is less than 0.5% by weight, the flame retardant effect may be reduced. If the amount exceeds 10% by weight, the glass transition temperature is decreased and the water absorption rate is increased. Deterioration of moisture resistance reliability may occur.
[0011]
Component (D) of the present invention is a spherical fused silica having an average particle size of 2 μm or less that has been surface-treated with a coupling agent in advance. Spherical fused silica is superior to other fillers and is optimal for adding a large amount of filler to achieve both low thermal expansion and resin fluidity. Fine spherical silica with an average particle size of 2 μm or less tends to aggregate, and this aggregate may form a space at the interface of resin, glass cloth, copper foil, etc., and deteriorate the solder heat resistance. Since silica is surface-treated with a coupling agent in advance, such a problem does not occur.
[0012]
The surface treatment method in the present invention is not particularly limited as long as it does not generate aggregates, and is a conventional wet method, that is, a method of diluting a coupling agent in a solvent or the like and mixing a filler, or Thereafter, a drying method, a dry method, that is, a method of spraying the coupling agent while stirring the filler with a mixer, and the like are performed. Among these, in the process of dissolving the epoxy resin composition in a solvent to obtain a varnish, applying it to a fiber base material and drying to obtain a prepreg, as a spherical fused silica surface-treated with a coupling agent at the time of varnish preparation, the average If a slurry-like product obtained by mixing a spherical fused silica having a particle size of 2 μm or less, a coupling agent and a solvent and reacting by heating is blended, the surface treatment of the spherical fused silica is performed extremely effectively.
[0013]
A coupling agent in spherical fused silica having an average particle diameter of 2 μm or less that has been surface-treated in advance with a coupling agent is a silane coupling agent, a silicone oil cup having two or more repeating units of siloxane bonds, and having an alkoxy group Silicon-based coupling agents such as ring agents, titanate-based coupling agents, and the like can be mentioned, and silicon-based coupling agents are preferable from the viewpoint of improving the wettability of the epoxy resin and fused spherical silica surfaces. Specifically, an epoxy silane coupling agent, an amino silane coupling agent, a ureido silane coupling agent, a mercapto silane coupling agent, a disilazane, a silicone oil type cup having two or more repeating units of siloxane bond and having an alkoxy group. Examples include at least one selected from the group consisting of ring agents. In particular, when an epoxy silane coupling agent, an amino silane coupling agent, and a silicone oil coupling agent having two or more repeating units of siloxane bond and having an alkoxy group are used in combination, the coupling agent is efficiently applied to the silica surface. To settle. In these cases, the ratio of the coupling agent is generally 0.1 part or more and 10 parts or less with respect to 100 parts of spherical fused silica (hereinafter, all “parts” represent parts by weight).
[0014]
When the above-mentioned spherical fused silica, coupling agent, and solvent are mixed and reacted by heating to form a slurry, the heating temperature is preferably between 50 ° C and 120 ° C. When the reaction is carried out at a temperature in this range, the reaction between the silanol on the silica surface and the coupling agent occurs selectively. If the temperature is lower than this range, the reaction becomes slow. The mixing ratio of the spherical fused silica, the coupling agent, and the solvent can be arbitrarily set, but the coupling agent is usually 0.1 part or more and 10 parts or less, and the solvent is 10 parts or more and 200 parts per 100 parts by weight of the spherical fused silica. Or less. Outside this range, the efficiency of the surface treatment may decrease. The slurry after the surface treatment is once filtered and redispersed in a different solvent before drying, or the solvent can be reduced by decantation as necessary. However, when this method is used, it is preferable to mix the surface-treated spherical fused silica slurry with other components without drying in order to prevent re-aggregation.
[0015]
In any method, when a coupling agent is used for the surface treatment, it is included in the present invention to use water, acid, alkali or the like as necessary in order to promote the reaction between the coupling agent and silica silanol. It is. Spherical fused silica having an average particle size of 2 μm or less accounts for 50% by weight or more in the epoxy resin composition because thermal expansion and water absorption are reduced. However, if it exceeds 90% by weight, the proportion of the inorganic filler in the epoxy resin composition is too large, and operations such as impregnation become difficult. Moreover, you may use another filler in the range which does not disturb a characteristic as needed. In this case, conventionally known fillers including spherical silica other than spherical fused silica having an average particle diameter of 2 μm or less that has been surface-treated in advance with the coupling agent of the present invention, to the extent that characteristics such as solder heat resistance are not deteriorated, It can be used arbitrarily.
[0016]
If necessary, the epoxy resin composition of the present invention may contain additives other than the above components as long as the characteristics are not impaired. The epoxy resin composition of the present invention can be applied to a substrate as a varnish using a solvent or without a solvent to obtain a prepreg. As the substrate, glass woven fabric, glass nonwoven fabric, and other organic substrates can be used. A fiber base is impregnated with the epoxy resin composition of the present invention and dried to obtain a prepreg, and one or a plurality of the prepregs are thermoformed together with a copper foil to obtain a copper-clad laminate. These prepregs and copper clad laminates are also included in the present invention.
[0017]
【Example】
Reference example 1
60 parts of spherical fused silica having an average particle size of 0.5 μm was put into a Henschel mixer, and 0.5 parts of γ-glycidoxypropyltrimethoxysilane and a silicone oil type coupling agent A (Nihon Unicar MAC2101) were added while stirring. One part was added in small portions. After completion of the addition, the mixture was stirred for 5 minutes and taken out.
Orthocresol novolak epoxy resin (Epiclon N-665 manufactured by Dainippon Ink & Chemicals, Inc.) 25 parts, phenol novolac (softening point 105 ° C.) 9.5 parts, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10- After dissolving 0.03 part of 2-phenyl-4-methylimidazole in a mixed solvent of methyl ethyl ketone and methyl cellosolve with respect to 5 parts of oxide (HCA manufactured by Sanko Chemical) and a total of 100 parts of the epoxy resin and the curing agent, Spherical fused silica having an average particle size of 0.5 μm, which had been surface-treated with a coupling agent in advance, was added to the solution little by little while stirring with a stirring stirrer blade. When all the components were mixed, the mixture was stirred for 10 minutes using a high-speed stirrer.
The prepared varnish is used to impregnate a glass cloth (thickness 180 μm, manufactured by Nitto Boseki) and dried in a heating furnace at 150 ° C. for 6 minutes to obtain a varnish solid content (a component excluding the glass cloth in the prepreg) of about 50% by weight. Prepreg was obtained. A predetermined number of the prepregs were stacked, and a copper foil having a thickness of 12 .mu.m was stacked on both sides, followed by heat-press molding at a pressure of 40 kgf / cm @ 2 and a temperature of 190 DEG C. for 120 minutes to obtain a double-sided copper-clad laminate.
[0018]
Reference example 2
1 part of γ-glycidoxypropyltrimethoxysilane and 70 parts of spherical fused silica with an average particle size of 1.5 μm are placed in a 3 L separable flask containing about 30 parts of methanol as a solvent in advance, and stirred at room temperature for 3 hours and then added. The solvent was removed by pressure filtration. The obtained solid was spread on a vat and dried for 2 hours with an explosion-proof dryer, and then treated with a ball mill for 3 hours to crush the agglomerates. Next, 12.5 parts of phenol novolac epoxy resin (Epiclon N-775 manufactured by Dainippon Ink and Chemicals), 5 parts of bisphenol A novolac epoxy resin (softening point 70 ° C., epoxy equivalent 201), phenol novolac (softening point 105 ° C.) 8. 2-phenyl-4 for 5 parts, 3.5 parts of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (HCA manufactured by Sanko Chemical) and a total of 100 parts of epoxy resin and curing agent amount -After dissolving 0.03 part of methylimidazole in a mixed solvent of methyl ethyl ketone and methyl cellosolve, the spherical fused silica with an average particle diameter of 1.5 μm, which was previously surface-treated with a coupling agent, was a little while stirring with a stirrer type stirring blade. Added in increments. When all the components were mixed, the mixture was stirred for 10 minutes using a high-speed stirrer to prepare a varnish.
The prepared varnish is used to impregnate a glass cloth (thickness 180 μm, manufactured by Nitto Boseki) and dried in a heating furnace at 150 ° C. for 6 minutes to obtain a varnish solid content (a component excluding the glass cloth in the prepreg) of about 50% by weight. Prepreg was obtained. A predetermined number of the prepregs were stacked, and a copper foil having a thickness of 12 .mu.m was stacked on both sides, followed by heat-press molding at a pressure of 40 kgf / cm @ 2 and a temperature of 190 DEG C. for 120 minutes to obtain a double-sided copper-clad laminate.
[0019]
Reference example 3
In a 3 L separable flask containing about 40 parts of methanol as a solvent in advance, 0.5 part of γ- (2-aminoethyl) aminopropyltrimethoxysilane and a silicone oil type coupling agent A (Nihon Unicar MAC2101) 0.1 80 parts of spherical fused silica having an average particle size of 0.5 μm was added and stirred at 90 ° C. for 1 hour to obtain a slurry. Next, 12.5 parts of tetrakishydroxyphenylethane type epoxy resin (Epicoat E1031S made by oil-based shell epoxy), 5.5 parts of phenol novolak (softening point 105 ° C.), 9,10-dihydro-9-oxa-10-phospha To 1.5 parts of phenanthrene-10-oxide (manufactured by Sanko Chemical Co., Ltd.) and 0.03 part of 2-phenyl-4-methylimidazole as a mixed solvent of methyl ethyl ketone and methyl cellosolve for a total of 100 parts of epoxy resin and curing agent After dissolution, the slurry containing spherical silica prepared earlier was added little by little while stirring with a stirring blade. When all the components were mixed, the mixture was stirred for 10 minutes using a high-speed stirrer to prepare a varnish.
The prepared varnish is used to impregnate a glass cloth (thickness 180 μm, manufactured by Nitto Boseki) and dried in a heating furnace at 150 ° C. for 6 minutes to obtain a varnish solid content (a component excluding the glass cloth in the prepreg) of about 50% by weight. Prepreg was obtained. A predetermined number of the prepregs were stacked, and a copper foil having a thickness of 12 .mu.m was stacked on both sides, followed by heat-press molding at a pressure of 40 kgf / cm @ 2 and a temperature of 190 DEG C. for 120 minutes to obtain a double-sided copper-clad laminate.
[0020]
Examples 8-14 and Comparative Examples 1-6
Double-sided copper-clad laminates were obtained in the same manner as in Reference Examples 1, 2, or 3 with the formulations shown in Tables 1 and 2. However, as for the surface treatment method of silica, A is the same as in Reference Example 1 , B is the same as Reference Example 2, and C is the same as Reference Example 3 .
The evaluation method is as follows. The evaluation results are shown in the lower column of Tables 1 and 2.
[0021]
The evaluation methods of the obtained double-sided copper-clad laminate are shown in (1) to (4), and the evaluation methods of BGA are shown in (5) and (6).
(1) A double-sided copper-clad laminate with a glass transition temperature thickness of 0.6 mm is etched all over, and a 10 mm × 60 mm test piece is cut out from the obtained laminate, and 3 ° C./min using a dynamic viscoelasticity measuring device. The tan δ peak position was taken as the glass transition temperature.
(2) Linear expansion coefficient A double-sided copper-clad laminate with a thickness of 1.2 mm is etched all over, a 2 mm x 2 mm test piece is cut out from the resulting laminate, and the linear expansion coefficient in the Z direction is 5 ° C using TMA. Measured at / min.
(3) Flame retardant property A double-sided copper clad laminate having a thickness of 0.6 mm was entirely etched, and the obtained laminate was measured by UL-94 standard and vertical method.
(4) Solder heat resistance After a double-sided copper-clad laminate with a thickness of 0.4 mm was prepared, eight test pieces were prepared by a method according to JIS C 6481, and a moisture absorption treatment was performed at 125 ° C. for 8 hours. The number of appearance abnormalities was examined by immersing in a solder bath at 260 ° C. for 120 seconds.
[0022]
{Circle around (5)} Package Warpage A double-sided copper clad laminate having a thickness of 0.4 mm produced in the example was subjected to circuit processing for BGA. Using EME-7720 manufactured by Sumitomo Bakelite as the circuit board (rigid interposer) and sealing material, the mold temperature is 180 ° C., the injection pressure is 75 kg / cm 2 , the curing time is 2 minutes, and 225 pBGA (package size is 24 × 24 mm, thickness The silicon chip is 9 × 9 mm in size, the thickness is 0.35 mm, and the bonding pad of the chip and the circuit board is bonded with a gold wire with a diameter of 25 μm.) And molded at 175 ° C. for 8 hours Post-cured. After cooling to room temperature, the height displacement of the upper surface of the package was measured with a surface roughness meter in the diagonal direction from the gate portion of the package, and the maximum displacement value based on the gate portion was taken as the amount of warpage. The unit is μm.
(6) BGA solder crack resistance Eight packages obtained by the same method as in (5) above are allowed to stand for 240 hours in an environment of 85 ° C. and 60% relative humidity, and then subjected to IR reflow treatment according to the JEDEC method. went. The internal peeling after processing and the presence or absence of cracks were observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 8 is displayed.
[0023]
The copper-clad laminate obtained by using the epoxy resin composition of the present invention has excellent flame retardancy despite the fact that no halogen compound is used, and is excellent in evaluation with a laminate alone and an IC package. In addition, it exhibits excellent solder heat resistance and extremely little warpage after molding.
[0024]
[Table 1]
[0025]
[Table 2]
[0026]
Note 1) Surface treatment method of silica: A is the same as in Example 1, B is the same as Example 2, and C is the same as Example 3.
2) Silicone oil type coupling agent A: Nippon Unicar MAC2101
3) Silicone oil type coupling agent B: Nihon Unicar MAC2301
4) Orthocresol novolac epoxy resin: Epichrome N-665 manufactured by Dainippon Ink and Chemicals, Inc.
5) Phenol novolac epoxy resin: Epicron N-775 manufactured by Dainippon Ink and Chemicals, Inc.
6) Tetrakishydroxyphenylethane type epoxy resin: Epicoat E1031S made of oil-based shell epoxy
7) Trishydroxyphenylmethane type epoxy resin: Epicoat E1032 made of oil-shell epoxy
8) Bisphenol A novolak epoxy resin: softening point 70 ° C., epoxy equivalent 201
9) Bisphenol A type epoxy resin: epoxy equivalent 250
10) Phenol novolak: softening point 105 ° C., hydroxyl group equivalent 104
11) Bisphenol A novolak: softening point 115 ° C., hydroxyl equivalent 129
12) Phenol aralkyl resin: XL-225 manufactured by Mitsui Chemicals
13) 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (HCA manufactured by Sanko Chemical)
14) 2-Phenyl-4-methylimidazole: The amount is based on 100 parts of the total amount of epoxy resin and curing agent.
【The invention's effect】
The epoxy resin composition of the present invention has excellent flame retardancy without using a halogen-based flame retardant, and has characteristics of high heat resistance and low thermal expansion. Therefore, the copper clad laminate obtained from the epoxy resin composition of the present invention is excellent in solder heat resistance, can provide a rigid interposer for IC packages with little warpage, and can greatly contribute to related industries.

Claims (6)

基材に含浸してプリプレグを得るのに用いるエポキシ樹脂組成物であって、 (A)1分子中に3個以上のエポキシ基を有するエポキシ樹脂、(B)1分子中に3個以上のフェノール性水酸基を有するフェノール樹脂系硬化剤、(C)9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド、及び(D)カップリング剤で予め表面処理された平均粒径2μm以下の球状溶融シリカを必須成分とし、成分(A)がノボラック型エポキシ樹脂(A1)と、トリスヒドロキシフェニルメタン型エポキシ樹脂、またはテトラキスヒドロキシフェニルエタン型エポキシ樹脂から選ばれる少なくとも1種のエポキシ樹脂(A2)との組み合わせであることを特徴とするエポキシ樹脂組成物。An epoxy resin composition used for impregnating a base material to obtain a prepreg, comprising: (A) an epoxy resin having three or more epoxy groups in one molecule; and (B) three or more phenols in one molecule. Phenolic resin-based curing agent having a functional hydroxyl group, (C) 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and (D) an average particle size of 2 μm previously surface-treated with a coupling agent The following spherical fused silica is an essential component, and the component (A) is at least one epoxy resin selected from a novolac type epoxy resin (A1) and a trishydroxyphenylmethane type epoxy resin or a tetrakishydroxyphenylethane type epoxy resin ( An epoxy resin composition, which is a combination with A2). カップリング剤が、エポキシシランカップリング剤、アミノシランカップリング剤、ウレイドシランカップリング剤、メルカプトシランカップリング剤、ジシラザン、シロキサン結合の繰り返し単位を2個以上有し、かつアルコキシ基を有するシリコーンオイル型カップリング剤からなる群から選ばれる少なくとも1種のカップリング剤である請求項1記載のエポキシ樹脂組成物。Coupling agent is an epoxy silane coupling agent, amino silane coupling agent, ureido silane coupling agent, mercapto silane coupling agent, disilazane, silicone oil type having two or more repeating units of siloxane bond and having an alkoxy group The epoxy resin composition according to claim 1, wherein the epoxy resin composition is at least one coupling agent selected from the group consisting of coupling agents. 成分(B)がフェノールノボラックである請求項1または2に記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1 or 2 , wherein the component (B) is a phenol novolac. 成分(D)が、平均粒径2μm以下の球状溶融シリカ、カップリング剤及び溶剤を混合し加熱反応してなるスラリー状物にて配合されてなる請求項1乃至3のいずれかに記載のエポキシ樹脂組成物。The epoxy according to any one of claims 1 to 3, wherein the component (D) is blended in a slurry-like product obtained by mixing spherical fused silica having an average particle size of 2 µm or less, a coupling agent and a solvent and subjecting the mixture to a heat reaction. Resin composition. 請求項1乃至のいずれかに記載のエポキシ樹脂組成物を繊維基材に含浸、乾燥してなることを特徴とするプリプレグ。A prepreg obtained by impregnating and drying a fiber base material with the epoxy resin composition according to any one of claims 1 to 4 . 請求項記載のプリプレグを加熱成形してなることを特徴とする銅張積層板。A copper-clad laminate obtained by heat-molding the prepreg according to claim 5 .
JP2000278008A 2000-09-13 2000-09-13 Epoxy resin composition, prepreg, and copper-clad laminate using the same Expired - Fee Related JP4729778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000278008A JP4729778B2 (en) 2000-09-13 2000-09-13 Epoxy resin composition, prepreg, and copper-clad laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000278008A JP4729778B2 (en) 2000-09-13 2000-09-13 Epoxy resin composition, prepreg, and copper-clad laminate using the same

Publications (2)

Publication Number Publication Date
JP2002088141A JP2002088141A (en) 2002-03-27
JP4729778B2 true JP4729778B2 (en) 2011-07-20

Family

ID=18763237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000278008A Expired - Fee Related JP4729778B2 (en) 2000-09-13 2000-09-13 Epoxy resin composition, prepreg, and copper-clad laminate using the same

Country Status (1)

Country Link
JP (1) JP4729778B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729777B2 (en) * 2000-09-13 2011-07-20 住友ベークライト株式会社 Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP2002114837A (en) * 2000-10-05 2002-04-16 Sumitomo Bakelite Co Ltd Epoxy resin composition for interposer, prepreg and copper-clad laminate using the same
JP4903989B2 (en) * 2004-07-27 2012-03-28 株式会社アドマテックス Composition for printed circuit boards
JP4961761B2 (en) * 2005-02-09 2012-06-27 東レ株式会社 Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device
JP5476715B2 (en) * 2008-12-25 2014-04-23 味の素株式会社 Method for producing resin composition varnish
CN111269461A (en) * 2020-03-09 2020-06-12 贵州民族大学 Phosphaphenanthrene silane grafted and modified graphene and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007898A (en) * 1998-06-25 2000-01-11 Sumitomo Bakelite Co Ltd Flame-retardant resin composition and prepreg and laminate using the same
JP2000080285A (en) * 1998-09-07 2000-03-21 Sumitomo Bakelite Co Ltd Thermosetting resin composition and semiconductor device using the same
JP2000186186A (en) * 1998-12-22 2000-07-04 Sumitomo Bakelite Co Ltd Flame-retarded resin composition and semiconductor- sealing material and laminated board using the same
JP2000212403A (en) * 1999-01-20 2000-08-02 Sumitomo Bakelite Co Ltd Flame-retarded resin composition, and prepreg and laminate prepared therefrom
JP2002047395A (en) * 2000-08-03 2002-02-12 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg and copper-clad laminate using it
JP2002088140A (en) * 2000-09-13 2002-03-27 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg and copper-clad laminate using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166822A (en) * 1985-01-19 1986-07-28 Toshiba Chem Corp Resin composition for sealing
JPS63245947A (en) * 1987-03-31 1988-10-13 Nitto Electric Ind Co Ltd Semiconductor device
JPH0694369B2 (en) * 1989-05-24 1994-11-24 日本化学工業株式会社 Modified fused spherical silica and method for producing the same
JP3365110B2 (en) * 1994-12-02 2003-01-08 東レ株式会社 Prepreg and fiber reinforced composite materials
JPH09324108A (en) * 1996-06-07 1997-12-16 Sumitomo Bakelite Co Ltd Flame-retarded resin composition and laminated board made thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007898A (en) * 1998-06-25 2000-01-11 Sumitomo Bakelite Co Ltd Flame-retardant resin composition and prepreg and laminate using the same
JP2000080285A (en) * 1998-09-07 2000-03-21 Sumitomo Bakelite Co Ltd Thermosetting resin composition and semiconductor device using the same
JP2000186186A (en) * 1998-12-22 2000-07-04 Sumitomo Bakelite Co Ltd Flame-retarded resin composition and semiconductor- sealing material and laminated board using the same
JP2000212403A (en) * 1999-01-20 2000-08-02 Sumitomo Bakelite Co Ltd Flame-retarded resin composition, and prepreg and laminate prepared therefrom
JP2002047395A (en) * 2000-08-03 2002-02-12 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg and copper-clad laminate using it
JP2002088140A (en) * 2000-09-13 2002-03-27 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg and copper-clad laminate using the same

Also Published As

Publication number Publication date
JP2002088141A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP2013001807A (en) Resin composition for electronic circuit board material, prepreg and laminated plate
JP4132703B2 (en) Prepreg for copper-clad laminate and copper-clad laminate using the same
JP3060530B2 (en) Surface treatment method of inorganic particles and thermosetting resin composition
JP4729778B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP2001288244A (en) Thermosetting resin composition, production method thereof, and product produced by using the same
JP4560928B2 (en) Epoxy resin composition for interposer, prepreg, and copper-clad laminate using the same
JP4729777B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP4714970B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP4639439B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP2006312751A (en) Resin composition, prepreg and copper-clad laminate using the prepreg
JP2002060468A (en) Epoxy resin composition, prepreg, and copper-clad laminate using the prepreg
JP4529268B2 (en) Epoxy resin composition, prepreg and copper-clad laminate using the same
JP3267144B2 (en) Epoxy resin composition for sealing material and semiconductor device using the same
JP4156180B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP2002080559A (en) Epoxy resin composition for interposer, prepreg and copper-clad laminate using the prepreg
JP2773955B2 (en) Semiconductor device
JP2002105292A (en) Epoxy resin composition for interposer, prepreg and sheet laminated with cupper using the same
JP2002097346A (en) Epoxy resin composition for interposer, prepreg and copper-clad laminated sheet using the same
JP2016065250A (en) Prepreg, laminate sheet and metal laminate sheet
JP2002114837A (en) Epoxy resin composition for interposer, prepreg and copper-clad laminate using the same
JP2002097343A (en) Epoxy resin composition for interposer, prepreg and copper-clad laminated sheet using the same
JP6136058B2 (en) Resin composition for electronic circuit board material, prepreg, laminate and metal-clad laminate
JPH06157754A (en) Resin composition
JP3982344B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2002020456A (en) Epoxy resin composition, prepreg, and copper clad laminate therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees