JP5885330B2 - Epoxy resin, epoxy resin composition, prepreg and cured products thereof - Google Patents

Epoxy resin, epoxy resin composition, prepreg and cured products thereof Download PDF

Info

Publication number
JP5885330B2
JP5885330B2 JP2011163006A JP2011163006A JP5885330B2 JP 5885330 B2 JP5885330 B2 JP 5885330B2 JP 2011163006 A JP2011163006 A JP 2011163006A JP 2011163006 A JP2011163006 A JP 2011163006A JP 5885330 B2 JP5885330 B2 JP 5885330B2
Authority
JP
Japan
Prior art keywords
epoxy resin
group
carbon atoms
parts
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011163006A
Other languages
Japanese (ja)
Other versions
JP2013023677A (en
Inventor
宏一 川井
宏一 川井
政隆 中西
政隆 中西
一真 井上
一真 井上
清二 江原
清二 江原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2011163006A priority Critical patent/JP5885330B2/en
Priority to CN201280036852.5A priority patent/CN103703047A/en
Priority to PCT/JP2012/068728 priority patent/WO2013015286A1/en
Priority to KR1020147002041A priority patent/KR101869306B1/en
Priority to TW101126932A priority patent/TWI541264B/en
Publication of JP2013023677A publication Critical patent/JP2013023677A/en
Application granted granted Critical
Publication of JP5885330B2 publication Critical patent/JP5885330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Description

本発明は、新規なエポキシ樹脂およびエポキシ樹脂組成物に関する。また、かかるエポキシ樹脂組成物により形成されるプリプレグ等の硬化物に関する。   The present invention relates to a novel epoxy resin and epoxy resin composition. Moreover, it is related with hardened | cured materials, such as a prepreg formed with this epoxy resin composition.

エポキシ樹脂組成物は、一般的に機械的性質、耐水性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となり、接着剤、塗料、積層板、成形材料、注型材料などの幅広い分野に利用されている。近年、これらの分野に用いられるエポキシ樹脂の硬化物には、高純度化を始め、難燃性、耐熱性、耐湿性、強靭性、低線膨張率、低誘電率特性など諸特性の一層の向上が求められている。   Epoxy resin compositions are generally cured products with excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc., such as adhesives, paints, laminates, molding materials, casting materials, etc. It is used in a wide range of fields. In recent years, cured products of epoxy resins used in these fields have begun to be highly purified and have various properties such as flame retardancy, heat resistance, moisture resistance, toughness, low linear expansion coefficient, and low dielectric constant characteristics. There is a need for improvement.

特に、エポキシ樹脂組成物の代表的な用途である電気・電子産業分野においては、多機能化、高性能化、コンパクト化を目的とした半導体の高密度実装やプリント配線板の高密度配線化が進んでいるが、高密度実装化や高密度配線化に伴って半導体素子やプリント配線板の内部から発生する熱が増加し、誤作動を引き起こす原因となりうる。そのため、発生した熱をいかにして効率よく外部に放出させるかということが、エネルギー効率や機器設計の上からも重要な課題となっている。これら熱対策としては、メタルコア基板を使用したり、設計の段階で放熱しやすい構造を組んだり、使用する高分子材料(エポキシ樹脂)に高熱伝導フィラーを細密充填したりするなど、様々な工夫がなされている。しかしながら、高熱伝導部位を繋げるバインダー役の高分子材料の熱伝導率が低いため、高分子材料の熱伝導スピードが律速となり、効率的な放熱ができていないのが現状である。   In particular, in the electrical and electronic industry, which is a typical application of epoxy resin compositions, high-density mounting of semiconductors and high-density wiring of printed wiring boards have been promoted for the purpose of multi-function, high performance, and compactness. Although progress is being made, the heat generated from the inside of a semiconductor element or a printed wiring board increases with high-density mounting or high-density wiring, which may cause malfunction. Therefore, how to efficiently release generated heat to the outside is an important issue from the standpoint of energy efficiency and device design. These heat countermeasures include various measures such as using a metal core substrate, constructing a structure that easily dissipates heat at the design stage, and densely filling high thermal conductive filler in the polymer material (epoxy resin) to be used. Has been made. However, since the thermal conductivity of the polymer material acting as a binder that connects the high thermal conductivity sites is low, the thermal conduction speed of the polymer material becomes the rate-determining, and efficient heat dissipation is not possible at present.

エポキシ樹脂の高熱伝導化を実現する手段として、メソゲン基を構造中に導入することが特許文献1に報告されており、同文献にはメソゲン基を有するエポキシ樹脂として、ビフェニル骨格を有するエポキシ樹脂などが記載されている。またビフェニル骨格以外のエポキシ樹脂としてはフェニルベンゾエート型のエポキシ樹脂が記載されているが、該エポキシ樹脂は酸化によるエポキシ化反応によって製造する必要があることから、安全性やコストに難があり実用的とは言えない。ビフェニル骨格を有するエポキシ樹脂を用いた例としては特許文献2〜4が挙げられ、中でも特許文献3には高熱伝導率を有する無機充填材を併用する手法が記載されている。しかしながら、これら文献に記載の手法により得られる硬化物の熱伝導性は市場の要望を満足するレベルでは無く、比較的安価に入手可能なエポキシ樹脂を用いた、より高い熱伝導率を有する硬化物を与えるエポキシ樹脂組成物が求められている。   As a means for realizing high thermal conductivity of an epoxy resin, it is reported in Patent Document 1 that a mesogenic group is introduced into the structure. In the same document, as an epoxy resin having a mesogenic group, an epoxy resin having a biphenyl skeleton, etc. Is described. In addition, as an epoxy resin other than the biphenyl skeleton, a phenyl benzoate type epoxy resin is described. However, since the epoxy resin needs to be produced by an epoxidation reaction by oxidation, there are difficulties in safety and cost, and it is practical. It can not be said. Examples of using an epoxy resin having a biphenyl skeleton include Patent Documents 2 to 4, and among them, Patent Document 3 describes a technique in which an inorganic filler having high thermal conductivity is used in combination. However, the thermal conductivity of the cured product obtained by the methods described in these documents is not at a level that satisfies the market demand, and a cured product having higher thermal conductivity using an epoxy resin that is available at a relatively low cost. There is a need for an epoxy resin composition that provides.

また、これまでに報告されているメソゲン基を有する高熱伝導性エポキシ樹脂は融点が非常に高く樹脂状の取出しが困難であり、なおかつ溶剤溶解性が劣るものが多い。このようなエポキシ樹脂は硬化の際に完全に融解する前に硬化が始まってしまうため、均一な硬化物を作製することが困難であり、好ましいとは言えない。   In addition, high heat conductive epoxy resins having a mesogenic group that have been reported so far have a very high melting point, making it difficult to take out the resinous form, and many of them have poor solvent solubility. Since such an epoxy resin begins to cure before being completely melted during curing, it is difficult to produce a uniform cured product, which is not preferable.

日本国特開平11−323162号公報Japanese Unexamined Patent Publication No. 11-323162 日本国特開2004−2573号公報Japanese Unexamined Patent Publication No. 2004-2573 日本国特開2006−63315号公報Japanese Unexamined Patent Publication No. 2006-63315 日本国特開2003−137971号公報Japanese Unexamined Patent Publication No. 2003-137971

本発明はこのような問題を解決すべく検討の結果なされたものであり、その硬化物が高い熱伝導性を有する溶剤溶解性に優れたエポキシ樹脂を提供するものである。   The present invention has been made as a result of studies to solve such problems, and provides an epoxy resin excellent in solvent solubility in which the cured product has high thermal conductivity.

本発明者らは前記課題を解決するために鋭意研究した結果、本発明を完成させるに到った。
すなわち本発明は(1)下記式(1)〜(5)
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the present invention provides (1) the following formulas (1) to (5).

(式(1)中、Rはそれぞれ独立して存在し、水素原子、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、水酸基、ニトロ基又は炭素数1〜10のアルコキシ基のいずれかを表す。lはR1の数を表し、1〜4の整数である。) (In Formula (1), each R 1 is independently present and is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, a hydroxyl group, a nitro group, or an alkoxy having 1 to 10 carbon atoms. Represents one of the groups, l represents the number of R 1 , and is an integer of 1 to 4)

(式(2)中、Rはそれぞれ独立して存在し、水素原子、炭素数1〜20のアルキル基、炭素数6〜10のアリール基、炭素数1〜15のアルキルカルボニル基、炭素数2〜10のアルキルエステル基、炭素数1〜10のアルコキシ基、モルホリニルカルボニル基、フタルイミド基、ピペロニル基又は水酸基のいずれかを表す。) (In Formula (2), each R 2 is independently present, and is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkylcarbonyl group having 1 to 15 carbon atoms, or a carbon number. It represents any of 2-10 alkyl ester groups, C1-C10 alkoxy groups, morpholinylcarbonyl groups, phthalimide groups, piperonyl groups or hydroxyl groups.)

(式(3)中、Rはそれぞれ独立して存在し、水素原子、炭素数0〜10のアルキルカルボニル基、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、炭素数2〜10のアルキルエステル基、炭素数1〜10のアルコキシ基又は水酸基のいずれかを表す。nは炭素数を表し、0、1、2のいずれかの整数を表す。mはRの数を表し、1≦m≦n+2の関係を満たす。) (In Formula (3), each R 3 is independently present and is a hydrogen atom, an alkylcarbonyl group having 0 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a carbon number. Represents an alkyl ester group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms or a hydroxyl group, n represents the number of carbon atoms, and represents an integer of 0, 1 or 2. m represents the number of R 3 . And satisfies the relationship 1 ≦ m ≦ n + 2.)

(式(4)中、R12はそれぞれ独立して存在し、水素原子、炭素数1〜20のアルキル基、炭素数6〜10のアリール基、炭素数1〜10のアルコキシ基又は水酸基のいずれかを表す。) (In Formula (4), R < 12 > exists each independently and is any of a hydrogen atom, a C1-C20 alkyl group, a C6-C10 aryl group, a C1-C10 alkoxy group, or a hydroxyl group. Represents.)

(式(5)中、R13はそれぞれ独立して存在し、水素原子、炭素数1〜20のアルキル基、炭素数6〜10のアリール基、炭素数1〜10のアルコキシ基、炭素数1〜10のアルキルエステル基又は水酸基のいずれかを表す。また、mは1〜10の整数である。)
で表される化合物の一種以上と、
下記式(6)
(In Formula (5), R < 13 > exists each independently, A hydrogen atom, a C1-C20 alkyl group, a C6-C10 aryl group, a C1-C10 alkoxy group, C1-C1 Represents an alkyl ester group of 10 to 10 or a hydroxyl group, and m is an integer of 1 to 10.)
One or more of the compounds represented by:
Following formula (6)

(式(6)中、Rはそれぞれ独立して存在し、水素原子、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、水酸基、ニトロ基、ホルミル基、アリル基又は炭素数1〜10のアルコキシ基のいずれかを表す。kはRの数を表し、1〜4の整数である。)で表される化合物との反応によって得られるフェノール化合物と、該フェノール化合物に、エピハロヒドリンを反応させて得られるエポキシ樹脂とを該エポキシ樹脂量が当量比で過剰になる条件で反応させることによって得られるエポキシ樹脂、 (In formula (6), each R 4 is independently present and is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, a hydroxyl group, a nitro group, a formyl group, an allyl group, or carbon. Any one of the alkoxy groups represented by formulas 1 to 10. k represents the number of R 4 and is an integer of 1 to 4.) and a phenol compound obtained by reaction with the compound represented by , An epoxy resin obtained by reacting an epoxy resin obtained by reacting an epihalohydrin under conditions where the amount of the epoxy resin is excessive in an equivalent ratio,

(2)前項(1)に記載のエポキシ樹脂及び硬化剤を含有してなるエポキシ樹脂組成物、
(3)熱伝導率20W/m・K以上の無機充填材を含有してなる前項(2)に記載のエポキシ樹脂組成物、
(4)半導体封止用途に用いられる前項(3)に記載のエポキシ樹脂組成物、
(5)前項(4)に記載のエポキシ樹脂組成物及びシート状の繊維基材からなるプリプレグ、
(6)前項(4)に記載のエポキシ樹脂組成物、または前項(5)に記載のプリプレグを硬化してなる硬化物、
に関する。
(2) An epoxy resin composition comprising the epoxy resin and the curing agent according to (1) above,
(3) The epoxy resin composition according to item (2), which contains an inorganic filler having a thermal conductivity of 20 W / m · K or more,
(4) The epoxy resin composition according to (3), which is used for semiconductor sealing applications,
(5) A prepreg comprising the epoxy resin composition according to (4) and a sheet-like fiber base material,
(6) A cured product obtained by curing the epoxy resin composition according to item (4) or the prepreg according to item (5),
About.

本発明のエポキシ樹脂は、その硬化物が熱伝導に優れているため、半導体封止材料、プリプレグを始めとする各種複合材料、接着剤、塗料等に使用する場合に有用である。また、本発明のエポキシ樹脂は、メソゲン基を有するエポキシ樹脂と比較して低い融点を有し、さらに溶剤溶解性にも優れるため、均一な硬化物を与え得る。   The epoxy resin of the present invention is useful when used in various composite materials such as semiconductor encapsulating materials and prepregs, adhesives, paints, etc., because the cured product is excellent in heat conduction. Moreover, since the epoxy resin of this invention has a low melting point compared with the epoxy resin which has a mesogenic group, and also is excellent in solvent solubility, it can give a uniform hardened | cured material.

本発明のエポキシ樹脂は、モル比にして過剰量の特定のエポキシ樹脂(A)と下記特定のフェノール化合物(A)との反応によって得られる。
まず、フェノール化合物(A)について説明する。フェノール化合物(A)は下記式(1)〜(5)で表される化合物から選ばれる一種以上と下記式(6)で表される化合物との反応によって得られる。
The epoxy resin of the present invention is obtained by a reaction between an excess amount of the specific epoxy resin (A) and the following specific phenol compound (A) in molar ratio.
First, the phenol compound (A) will be described. The phenol compound (A) is obtained by a reaction between one or more compounds selected from the compounds represented by the following formulas (1) to (5) and a compound represented by the following formula (6).

(式(1)中、Rはそれぞれ独立して存在し、水素原子、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、水酸基、ニトロ基、又は炭素数1〜10のアルコキシ基のいずれかを表す。lはR1の数を表し、1〜4の整数である。)
式(1)において、アルキル基、アリール基、アルコキシ基は置換基を有していてもよく、該置換基としては、メチル基、エチル基、プロピル基等が挙げられる。
(In the formula (1), R 1 is present independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, a hydroxyl group, a nitro group, or 1 to 10 carbon atoms Represents one of alkoxy groups, and l represents the number of R 1 and is an integer of 1 to 4.)
In the formula (1), the alkyl group, aryl group, and alkoxy group may have a substituent, and examples of the substituent include a methyl group, an ethyl group, and a propyl group.

式(1)においてRはそれぞれ独立して存在し、水素原子、炭素数1〜10の置換基を有しないアルキル基、炭素数6〜10の置換基を有しないアリール基、水酸基、ニトロ基、又は炭素数1〜10の置換基を有しないアルコキシ基であることが好ましい。 In formula (1), each R 1 is independently present, and is a hydrogen atom, an alkyl group having no substituent having 1 to 10 carbon atoms, an aryl group having no substituent having 6 to 10 carbon atoms, a hydroxyl group, or a nitro group. Or an alkoxy group having no substituent having 1 to 10 carbon atoms.

式(1)で表される化合物の具体例としては、2−ヒドロキシアセトフェノン、3−ヒドロキシアセトフェノン、4−ヒドロキシアセトフェノン、2’,4’−ジヒドロキシアセトフェノン、2’,5’−ジヒドロキシアセトフェノン、3’,4’−ジヒドロキシアセトフェノン、3’,5’−ジヒドロキシアセトフェノン、2’,3’,4’−トリヒドロキシアセトフェノン、2’,4’,6’−トリヒドロキシアセトフェノン一水和物、4’−ヒドロキシ−3’−メチルアセトフェノン、4’−ヒドロキシ−2’−メチルアセトフェノン、2’−ヒドロキシ−5’−メチルアセトフェノン、4’−ヒドロキシ−3’−メトキシアセトフェノン、2’−ヒドロキシ−4’−メトキシアセトフェノン、4’−ヒドロキシ−3’−ニトロアセトフェノン、4’−ヒドロキシ−3’,5’−ジメトキシアセトフェノン、4’,6’−ジメトキシ‐2’−ヒドロキシアセトフェノン、2’−ヒドロキシ−3’,4’−ジメトキシアセトフェノン、2’−ヒドロキシ−4’,5’−ジメトキシアセトフェノン、5−アセチルサリチル酸メチル、2’,3’−ジヒドロキシ−4’−メトキシアセトフェノン水和物、が挙げられる。これらのうち、得られるフェノール化合物をエポキシ化した際の溶剤溶解性が高く、かつエポキシ樹脂組成物の硬化物が高い熱伝導性を示すことから、4’−ヒドロキシ−3’−メトキシアセトフェノン、4’−ヒドロキシアセトフェノンが好ましい。   Specific examples of the compound represented by the formula (1) include 2-hydroxyacetophenone, 3-hydroxyacetophenone, 4-hydroxyacetophenone, 2 ′, 4′-dihydroxyacetophenone, 2 ′, 5′-dihydroxyacetophenone, 3 ′. , 4′-dihydroxyacetophenone, 3 ′, 5′-dihydroxyacetophenone, 2 ′, 3 ′, 4′-trihydroxyacetophenone, 2 ′, 4 ′, 6′-trihydroxyacetophenone monohydrate, 4′-hydroxy -3′-methylacetophenone, 4′-hydroxy-2′-methylacetophenone, 2′-hydroxy-5′-methylacetophenone, 4′-hydroxy-3′-methoxyacetophenone, 2′-hydroxy-4′-methoxyacetophenone 4'-hydroxy-3'-nitroacetate Enone, 4′-hydroxy-3 ′, 5′-dimethoxyacetophenone, 4 ′, 6′-dimethoxy-2′-hydroxyacetophenone, 2′-hydroxy-3 ′, 4′-dimethoxyacetophenone, 2′-hydroxy-4 Examples include ', 5'-dimethoxyacetophenone, methyl 5-acetylsalicylate, and 2', 3'-dihydroxy-4'-methoxyacetophenone hydrate. Of these, 4'-hydroxy-3'-methoxyacetophenone, 4) -hydroxy-3'-methoxyacetophenone, because the solvent solubility when epoxidizing the resulting phenol compound is high and the cured product of the epoxy resin composition exhibits high thermal conductivity '-Hydroxyacetophenone is preferred.

(式(2)中、Rはそれぞれ独立して存在し、水素原子、炭素数1〜20のアルキル基、炭素数6〜10のアリール基、炭素数1〜15のアルキルカルボニル基、炭素数2〜10のアルキルエステル基、炭素数1〜10のアルコキシ基、モルホリニルカルボニル基、フタルイミド基、ピペロニル基又は水酸基のいずれかを表す。) (In Formula (2), each R 2 is independently present, and is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkylcarbonyl group having 1 to 15 carbon atoms, or a carbon number. It represents any of 2-10 alkyl ester groups, C1-C10 alkoxy groups, morpholinylcarbonyl groups, phthalimide groups, piperonyl groups or hydroxyl groups.)

式(2)においてアリール基、アルキルカルボニル基、アルキルエステル基、アルコキシ基は置換基を有してもよく、該置換基としては、カルボニル基、エステル基、アルケニル基、フェニル基、アルコキシ基、エーテル基、フタルイミド基およびピペロニル基からなる群から選ばれる少なくとも1種であることが好ましい。   In the formula (2), the aryl group, alkylcarbonyl group, alkyl ester group, and alkoxy group may have a substituent. Examples of the substituent include a carbonyl group, an ester group, an alkenyl group, a phenyl group, an alkoxy group, and an ether. It is preferably at least one selected from the group consisting of a group, a phthalimide group and a piperonyl group.

式(2)で表される化合物の具体例としては、アセトン、1,3−ジフェニル−2−プロパノン、2−ブタノン、1−フェニル−1,3−ブタンジオン、2−ペンタノン、3−ペンタノン、4−メチル−2−ペンタノン、アセチルアセトン、2−ヘキサノン、3−ヘキサノン、イソアミルメチルケトン、エチルイソブチルケトン、4−メチル−2−ヘキサノン、2,5−ヘキサンジオン、1,6−ジフェニル−1,6−ヘキサンジオン、2−ヘプタノン、3−ヘプタノン、4−ヘプタノン、2−メチル−4−ヘプタノン、5−メチル−3−ヘプタノン、6−メチル−2−ヘプタノン、2,6−ジメチル−4−ヘプタノン、2−オクタノン、3−オクタノン、4−オクタノン、5−メチル−2−オクタノン、2−ノナノン、3−ノナノン、4−ノナノン、5−ノナノン、2−デカノン、3−デカノン、4−デカノン、5−デカノン、2−ウンデカノン、3−ウンデカノン、4−ウンデカノン、5−ウンデカノン、6−ウンデカノン、2−メチル−4−ウンデカノン、2−ドデカノン、3−ドデカノン、4−ドデカノン、5−ドデカノン、6−ドデカノン、2−テトラデカノン、3−テトラデカノン、8−ペンタデカノン、10−ノナデカノン、7−トリデカノン、2−ペンタデカノン、3−ヘキサデカノン、9−ヘプタデカノン、11−ヘンエイコサノン、12−トリコサノン、14−ヘプタコサノン、16−ヘントリアコンタノン、18−ペンタトリアコンタノン、4−エトキシ−2−ブタノン、4−(4−メトキシフェニル)−2−ブタノン、4−メトキシ−4−メチル−2−ペンタノン、4−メトキシフェニルアセトン、メトキシアセトン、フェノキシアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸ブチル、アセト酢酸イソブチル、アセト酢酸sec−ブチル、アセト酢酸tert−ブチル、アセト酢酸3−ペンチル、アセト酢酸アミル、アセト酢酸イソアミル、アセト酢酸ヘキシル、アセト酢酸ヘプチル、アセト酢酸n−オクチル、アセト酢酸ベンジル、アセチルこはく酸ジメチル、アセトニルマロン酸
ジメチル、アセトニルマロン酸ジエチル、アセト酢酸−2−メトキシエチル、アセト酢酸アリル、4−sec−ブトキシ−2−ブタノン、ベンジルブチルケトン、ビスデメトキシクルクミン、1,1−ジメトキシ−3−ブタノン、1,3−ジアセトキシアセトン、4−ヒドロキシフェニルアセトン、4−(4−ヒドロキシフェニル) −2−ブタノン、イソアミルメチルケトン、4−ヒドロキシ−2−ブタノン、5−ヘキセン−2−オン、アセトニルアセトン、3,4−ジメトキシフェニルアセトン、ピペロニルメチルケトン、ピペロニルアセトン、フタルイミドアセトン、4−イソプロポキシ−2−ブタノン、4−イソブトキシ−2−ブタノン、アセトキシ−2−プロパノン、N−アセトアセチルモルホリン、1−アセチル−4−ピペリドン、などが挙げられる。これらのうち、得られるフェノール化合物をエポキシ化した際の溶剤溶解性が高く、かつエポキシ樹脂組成物の硬化物が高い熱伝導性を示すことから、アセトンが好ましい。
Specific examples of the compound represented by the formula (2) include acetone, 1,3-diphenyl-2-propanone, 2-butanone, 1-phenyl-1,3-butanedione, 2-pentanone, 3-pentanone, 4 -Methyl-2-pentanone, acetylacetone, 2-hexanone, 3-hexanone, isoamyl methyl ketone, ethyl isobutyl ketone, 4-methyl-2-hexanone, 2,5-hexanedione, 1,6-diphenyl-1,6- Hexanedione, 2-heptanone, 3-heptanone, 4-heptanone, 2-methyl-4-heptanone, 5-methyl-3-heptanone, 6-methyl-2-heptanone, 2,6-dimethyl-4-heptanone, 2 -Octanone, 3-octanone, 4-octanone, 5-methyl-2-octanone, 2-nonanone, 3-nonanone, 4- Nanone, 5-nonanone, 2-decanone, 3-decanone, 4-decanone, 5-decanone, 2-undecanone, 3-undecanone, 4-undecanone, 5-undecanone, 6-undecanone, 2-methyl-4-undecanone, 2-dodecanone, 3-dodecanone, 4-dodecanone, 5-dodecanone, 6-dodecanone, 2-tetradecanone, 3-tetradecanone, 8-pentadecanone, 10-nonadecanone, 7-tridecanone, 2-pentadecanone, 3-hexadecanone, 9- Heptadecanone, 11-heneicosanone, 12-tricosanone, 14-heptacosanone, 16-hentriacontanone, 18-pentatriacontanone, 4-ethoxy-2-butanone, 4- (4-methoxyphenyl) -2-butanone, 4 -Methoxy-4-methyl-2-pe Thanone, 4-methoxyphenylacetone, methoxyacetone, phenoxyacetone, methyl acetoacetate, ethyl acetoacetate, propyl acetoacetate, butyl acetoacetate, isobutyl acetoacetate, sec-butyl acetoacetate, tert-butyl acetoacetate, 3-acetoacetic acid 3- Pentyl, amyl acetoacetate, isoamyl acetoacetate, hexyl acetoacetate, heptyl acetoacetate, n-octyl acetoacetate, benzyl acetoacetate, dimethyl succinate, dimethyl acetonylmalonate, diethyl acetonylmalonate, acetoacetate-2- Methoxyethyl, allyl acetoacetate, 4-sec-butoxy-2-butanone, benzyl butyl ketone, bisdemethoxycurcumin, 1,1-dimethoxy-3-butanone, 1,3-diacetoxyacetone, 4-hydroxy Cyphenylacetone, 4- (4-hydroxyphenyl) -2-butanone, isoamylmethylketone, 4-hydroxy-2-butanone, 5-hexen-2-one, acetonylacetone, 3,4-dimethoxyphenylacetone, Peronyl methyl ketone, piperonyl acetone, phthalimidoacetone, 4-isopropoxy-2-butanone, 4-isobutoxy-2-butanone, acetoxy-2-propanone, N-acetoacetylmorpholine, 1-acetyl-4-piperidone, Etc. Among these, acetone is preferable because solvent solubility when the obtained phenol compound is epoxidized is high and a cured product of the epoxy resin composition exhibits high thermal conductivity.

(式(3)中、Rはそれぞれ独立して存在し、水素原子、炭素数0〜10のアルキルカルボニル基、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、炭素数2〜10のアルキルエステル基、炭素数1〜10のアルコキシ基又は水酸基のいずれかを表す。nは炭素数を表し、0、1、2のいずれかの整数を表す。mはRの数を表し、1≦m≦n+2の関係を満たす。) (In Formula (3), each R 3 is independently present and is a hydrogen atom, an alkylcarbonyl group having 0 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a carbon number. Represents an alkyl ester group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms or a hydroxyl group, n represents the number of carbon atoms, and represents an integer of 0, 1 or 2. m represents the number of R 3 . And satisfies the relationship 1 ≦ m ≦ n + 2.)

尚、式(3)中、Rが炭素数0のアルキルカルボニル基である場合とは、一般式(3)の主骨格であるシクロアルカンを構成する炭素原子を含んでなるカルボニル構造を示し、例えば1,3−シクロペンタンジオン等が挙げられる。
式(3)において上記置換基はエーテル基あるいはカルボニル基であることが好ましい。
式(3)においてアルキルカルボニル基、アルキル基、アリール基、アルキルエステル基、アルコキシ基は置換基を有してもよく、該置換基としては、メチル基、エチル基、プロピル基等が挙げられる。
In the formula (3), the case where R 3 is an alkylcarbonyl group having 0 carbon atoms represents a carbonyl structure containing a carbon atom constituting the cycloalkane which is the main skeleton of the general formula (3), Examples thereof include 1,3-cyclopentanedione.
In the formula (3), the substituent is preferably an ether group or a carbonyl group.
In formula (3), the alkylcarbonyl group, alkyl group, aryl group, alkyl ester group, and alkoxy group may have a substituent, and examples of the substituent include a methyl group, an ethyl group, and a propyl group.

式(3)で表される化合物の具体例としては、シクロペンタノン、3−フェニルシクロペンタノン、2−アセチルシクロペンタノン、1,3−シクロペンタンジオン、2−メチル−1,3−シクロペンタンジオン、2−エチル−1,3−シクロペンタンジオン、シクロヘキサノン、3−メチルシクロヘキサノン、4−メチルシクロヘキサノン、4−エチルシクロヘキサノン、4−tert−ブチルシクロヘキサノン、4−ペンチルシクロヘキサノン、3−フェニルシクロヘキサノン、4−フェニルシクロヘキサノン、3,3−ジメチルシクロヘキサノン、3,4−ジメチルシクロヘキサノン、3,5−ジメチルシクロヘキサノン、4,4−ジメチルシクロヘキサノン、3,3,5−トリメチルシクロヘキサノン、2−アセチルシクロヘキサノン、4−シクロヘキサノンカルボン酸エチル、1,4−シクロヘキサンジオンモノエチレンケタール、ビシクロヘキサン−4,4’−ジオンモノエチレンケタール、1,4−シクロヘキサンジオンモノ−2,2−ジメチルトリメチレンケタール、2−アセチル−5,5−ジメチル−1,3−シクロヘキサンジオン、1,2−シクロヘキサンジオン、1,3−シクロヘキサンジオン、1,4−シクロヘキサンジオン、2−メチル−1,3−シクロヘキサンジオン、5−メチル−1,3−シクロヘキサンジオン、ジメドン、1,4−シクロヘキサンジオン−2,5−ジカルボン酸ジメチル、4,4’−ビシクロヘキサノン、2,2−ビス(4−オキソシクロヘキシル)プロパン、シクロヘプタノン、などが挙げられる。これらのうち、得られるフェノール化合物をエポキシ化した際の溶剤溶解性が高く、かつエポキシ樹脂組成物の硬化物が高い熱伝導性を示すことから、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、4−メチルシクロヘキサノンが好ましい。   Specific examples of the compound represented by the formula (3) include cyclopentanone, 3-phenylcyclopentanone, 2-acetylcyclopentanone, 1,3-cyclopentanedione, 2-methyl-1,3-cyclo Pentanedione, 2-ethyl-1,3-cyclopentanedione, cyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 4-ethylcyclohexanone, 4-tert-butylcyclohexanone, 4-pentylcyclohexanone, 3-phenylcyclohexanone, 4 -Phenylcyclohexanone, 3,3-dimethylcyclohexanone, 3,4-dimethylcyclohexanone, 3,5-dimethylcyclohexanone, 4,4-dimethylcyclohexanone, 3,3,5-trimethylcyclohexanone, 2-acetylcyclohexano Ethyl 4-cyclohexanone carboxylate, 1,4-cyclohexanedione monoethylene ketal, bicyclohexane-4,4′-dione monoethylene ketal, 1,4-cyclohexanedione mono-2,2-dimethyltrimethylene ketal, 2- Acetyl-5,5-dimethyl-1,3-cyclohexanedione, 1,2-cyclohexanedione, 1,3-cyclohexanedione, 1,4-cyclohexanedione, 2-methyl-1,3-cyclohexanedione, 5-methyl -1,3-cyclohexanedione, dimedone, dimethyl 1,4-cyclohexanedione-2,5-dicarboxylate, 4,4′-bicyclohexanone, 2,2-bis (4-oxocyclohexyl) propane, cycloheptanone, Etc. Among these, cyclopentanone, cyclohexanone, cycloheptanone, 4- (2), because the solvent solubility when the obtained phenol compound is epoxidized is high and the cured product of the epoxy resin composition exhibits high thermal conductivity. Methylcyclohexanone is preferred.

(式(4)中、R12はそれぞれ独立して存在し、水素原子、炭素数1〜20のアルキル基、炭素数6〜10のアリール基、炭素数1〜10のアルコキシ基、又は、水酸基のいずれかを表す。) (In Formula (4), R < 12 > exists each independently and is a hydrogen atom, a C1-C20 alkyl group, a C6-C10 aryl group, a C1-C10 alkoxy group, or a hydroxyl group. Represents one of these.)

式(4)においてR12はそれぞれ独立して存在し、水素原子、炭素数1〜20の無置換のアルキル基、炭素数6〜10の無置換のアリール基、炭素数1〜10の無置換のアルコキシ基、又は水酸基であることが好ましい。
式(4)においてアルキル基、アリール基、アルコキシ基は置換基を有してもよく、該置換基としては、メチル基、エチル基、プロピル基等が挙げられる。
In formula (4), R 12 is independently present, and is a hydrogen atom, an unsubstituted alkyl group having 1 to 20 carbon atoms, an unsubstituted aryl group having 6 to 10 carbon atoms, or an unsubstituted group having 1 to 10 carbon atoms. It is preferably an alkoxy group or a hydroxyl group.
In the formula (4), the alkyl group, aryl group, and alkoxy group may have a substituent, and examples of the substituent include a methyl group, an ethyl group, and a propyl group.

式(4)で表される化合物の具体例としては、ジアセチル、2,3−ペンタンジオン、3,4−ヘキサンジオン、5−メチル−2,3−ヘキサンジオン、2,3−ヘプタンジオン、などが挙げられる。これらのうち、得られるフェノール化合物をエポキシ化した際の溶剤溶解性が高く、かつエポキシ樹脂組成物の硬化物が高い熱伝導性を示すことから、ジアセチルが好ましい。   Specific examples of the compound represented by the formula (4) include diacetyl, 2,3-pentanedione, 3,4-hexanedione, 5-methyl-2,3-hexanedione, 2,3-heptanedione, and the like. Is mentioned. Of these, diacetyl is preferred because of high solvent solubility when the resulting phenol compound is epoxidized and high thermal conductivity of the cured product of the epoxy resin composition.

(式(5)中、R13はそれぞれ独立して存在し、水素原子、炭素数1〜20のアルキル基、炭素数6〜10のアリール基、炭素数1〜10のアルコキシ基、炭素数1〜10のアルキルエステル基、又は、水酸基のいずれかを表す。また、mは1〜10の整数である。) (In Formula (5), R < 13 > exists each independently, A hydrogen atom, a C1-C20 alkyl group, a C6-C10 aryl group, a C1-C10 alkoxy group, C1-C1 Represents an alkyl ester group of 10 to 10 or a hydroxyl group, and m is an integer of 1 to 10.)

式(5)においてアルキル基、アリール基、アルコキシ基は置換基を有してもよく、該置換基としては、メチル基、エチル基、プロピル基等が挙げられる。
式(5)においてR13はそれぞれ独立して存在し、水素原子、炭素数1〜20の置換基を有しないアルキル基、炭素数6〜10の置換基を有しないアリール基、炭素数1〜10の置換基を有しないアルコキシ基、炭素数1〜10の置換基を有しないアルキルエステル基、又は水酸基であることが好ましい。
In the formula (5), the alkyl group, aryl group, and alkoxy group may have a substituent, and examples of the substituent include a methyl group, an ethyl group, and a propyl group.
In formula (5), each R 13 is independently present, and is a hydrogen atom, an alkyl group having no substituent having 1 to 20 carbon atoms, an aryl group having no substituent having 6 to 10 carbon atoms, or 1 to 1 carbon atoms. It is preferably an alkoxy group not having 10 substituents, an alkyl ester group having no substituent having 1 to 10 carbon atoms, or a hydroxyl group.

式(5)で表される化合物の具体例としては、ジアセト酢酸エチル、2,5−ヘキサンジオン、3−メチル−2,4−ペンタンジオン、3−エチル−2,4−ペンタンジオン、3−ブチル−2,4−ペンタンジオン、3−フェニル−2,4−ペンタンジオン、4−アセチル−5−オキソヘキサン酸エチルなどが挙げられる。これらのうち、得られるフェノール化合物をエポキシ化した際の溶剤溶解性が高く、かつエポキシ樹脂組成物の硬化物が高い熱伝導性を示すことから、3−メチル−2,4−ペンタンジオン、3−エチル−2,4−ペンタンジオンが好ましい。   Specific examples of the compound represented by the formula (5) include ethyl diacetoacetate, 2,5-hexanedione, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione, 3- Examples include butyl-2,4-pentanedione, 3-phenyl-2,4-pentanedione, and ethyl 4-acetyl-5-oxohexanoate. Among these, since the solvent solubility at the time of epoxidizing the phenol compound obtained is high and the cured product of the epoxy resin composition exhibits high thermal conductivity, 3-methyl-2,4-pentanedione, 3 -Ethyl-2,4-pentanedione is preferred.

(式(6)中、Rはそれぞれ独立して存在し、水素原子、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、水酸基、ニトロ基、ホルミル基、アリル基又は炭素数1〜10のアルコキシ基のいずれかを表す。kはRの数を表し、1〜4の整数である。)
式(6)においてアルキル基、アリール基、アルコキシ基は置換基を有してもよく、該置換基としては、メチル基、エチル基、プロピル基等が挙げられる。
(In formula (6), each R 4 is independently present and is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, a hydroxyl group, a nitro group, a formyl group, an allyl group, or carbon. Represents one of the alkoxy groups of formula 1 to 10. k represents the number of R 4 and is an integer of 1 to 4)
In the formula (6), the alkyl group, aryl group, and alkoxy group may have a substituent, and examples of the substituent include a methyl group, an ethyl group, and a propyl group.

式(6)で表される化合物の具体例としては、例えば、2−ヒドロキシベンズアルデヒド、3−ヒドロキシベンズアルデヒド、4−ヒドロキシベンズアルデヒド、2,3‐ジヒドロキシベンズアルデヒド、2,4−ジヒドロキシベンズアルデヒド、2,5−ジヒドロキシベンズアルデヒド、3,4−ジヒドロキシベンズアルデヒド、シリンガアルデヒド、3,5−ジ−tert−ブチル−4−ヒドロキシベンズアルデヒド、イソバニリン、4−ヒドロキシ−3−ニトロベンズアルデヒド、5−ヒドロキシ−2−ニトロベンズアルデヒド、3,4−ジヒドロキシ−5−ニトロベンズアルデヒド、バニリン、o−バニリン、2−ヒドロキシ−1−ナフトアルデヒド、2−ヒドロキシ−5−ニトロ−m−アニスアルデヒド、2−ヒドロキシ−5−メチルイソフタルアルデヒド、2−ヒドロキシ−4−メトキシベンズアルデヒド、1−ヒドロキシ−2−ナフトアルデヒド、2−ヒドロキシ−5−メトキシベンズアルデヒド、5−ニトロバニリン、5−アリル−3−メトキシサリチルアルデヒド、3,5−ジ−tert−ブチルサリチルアルデヒド、3−エトキシサリチルアルデヒド、4−ヒドロキシイソフタルアルデヒド、4−ヒドロキシ−3,5−ジメチルベンズアルデヒド、2,4,6−トリヒドロキシベンズアルデヒド、2,4,5−トリヒドロキシベンズアルデヒド、2,3,4−トリヒドロキシベンズアルデヒド、3,4,5−トリヒドロキシベンズアルデヒド、3−エトキシ−4−ヒドロキシベンズアルデヒド、などが挙げられる。これらは1種のみを使用しても、2種類以上を併用してもよい。これらのうち、得られるフェノール化合物をエポキシ化した際の溶剤溶解性が高く、エポキシ樹脂組成物の硬化物が特に高い熱伝導性を示すことから、バニリンを単独で使用するのが好ましい。   Specific examples of the compound represented by the formula (6) include 2-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, 2,3-dihydroxybenzaldehyde, 2,4-dihydroxybenzaldehyde, 2,5- Dihydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, syringaldehyde, 3,5-di-tert-butyl-4-hydroxybenzaldehyde, isovanillin, 4-hydroxy-3-nitrobenzaldehyde, 5-hydroxy-2-nitrobenzaldehyde, 3 , 4-dihydroxy-5-nitrobenzaldehyde, vanillin, o-vanillin, 2-hydroxy-1-naphthaldehyde, 2-hydroxy-5-nitro-m-anisaldehyde, 2-hydroxy-5-methyli Sophthalaldehyde, 2-hydroxy-4-methoxybenzaldehyde, 1-hydroxy-2-naphthaldehyde, 2-hydroxy-5-methoxybenzaldehyde, 5-nitrovanillin, 5-allyl-3-methoxysalicylaldehyde, 3,5- Di-tert-butylsalicylaldehyde, 3-ethoxysalicylaldehyde, 4-hydroxyisophthalaldehyde, 4-hydroxy-3,5-dimethylbenzaldehyde, 2,4,6-trihydroxybenzaldehyde, 2,4,5-trihydroxybenzaldehyde 2,3,4-trihydroxybenzaldehyde, 3,4,5-trihydroxybenzaldehyde, 3-ethoxy-4-hydroxybenzaldehyde, and the like. These may use only 1 type or may use 2 or more types together. Among these, it is preferable to use vanillin alone, because the solvent solubility when the obtained phenol compound is epoxidized is high, and the cured product of the epoxy resin composition exhibits particularly high thermal conductivity.

フェノール化合物(A)は、酸性条件下もしくは塩基性条件下、式(1)〜(5)で表される化合物の一種以上と式(6)で表される化合物とのアルドール縮合反応によって得られる。
式(6)で表される化合物は式(1)で表される化合物1モルに対して1.0〜1.05モル、式(2)、式(3)、式(4)および式(5)で表される化合物1モルに対して2.0〜3.15モルを使用する。
The phenol compound (A) is obtained by an aldol condensation reaction between one or more of the compounds represented by the formulas (1) to (5) and the compound represented by the formula (6) under acidic conditions or basic conditions. .
The compound represented by the formula (6) is 1.0 to 1.05 mol, the formula (2), the formula (3), the formula (4) and the formula (1) with respect to 1 mol of the compound represented by the formula (1). 2.0-3.15 mol is used with respect to 1 mol of compounds represented by 5).

酸性条件下でアルドール縮合反応を行う場合、用い得る酸性触媒としては、塩酸、硫酸、硝酸のような無機酸、トルエンスルホン酸、キシレンスルホン酸、シュウ酸等の有機酸が挙げられる。これらは単独で使用してもよく、複数の種類を併用してもよい。酸性触媒の使用量は、式(6)で表される化合物1モルに対して0.01〜1.0モル、好ましくは0.2〜0.5モルである。   When the aldol condensation reaction is performed under acidic conditions, examples of the acidic catalyst that can be used include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, and organic acids such as toluenesulfonic acid, xylenesulfonic acid, and oxalic acid. These may be used alone or in combination of a plurality of types. The usage-amount of an acidic catalyst is 0.01-1.0 mol with respect to 1 mol of compounds represented by Formula (6), Preferably it is 0.2-0.5 mol.

一方、塩基性条件下でアルドール縮合反応を行う場合、用い得る塩基性触媒としては、水酸化ナトリウム及び水酸化カリウム等の金属水酸化物、炭酸カリウム及び炭酸ナトリウム等の炭酸アルカリ金属塩、ジエチルアミン、トリエチルアミン、トリブチルアミン、ジイソブチルアミン、ピリジン及びピペリジン等のアミン誘導体、並びにジメチルアミノエチルアルコール及びジエチルアミノエチルアルコール等のアミノアルコール誘導体が挙げられる。塩基性条件の場合も、先に挙げた塩基性触媒を単独で使用してもよく、複数の種類を併用してもよい。塩基性触媒の使用量は、式(6)で表される化合物1モルに対して0.1〜2.5モル、好ましくは0.2〜2.0モルである。   On the other hand, when the aldol condensation reaction is performed under basic conditions, usable basic catalysts include metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as potassium carbonate and sodium carbonate, diethylamine, Examples include amine derivatives such as triethylamine, tributylamine, diisobutylamine, pyridine and piperidine, and amino alcohol derivatives such as dimethylaminoethyl alcohol and diethylaminoethyl alcohol. Also in the case of basic conditions, the basic catalysts listed above may be used alone, or a plurality of types may be used in combination. The usage-amount of a basic catalyst is 0.1-2.5 mol with respect to 1 mol of compounds represented by Formula (6), Preferably it is 0.2-2.0 mol.

フェノール化合物(A)を得る反応では、必要に応じて溶剤を使用してもよい。用い得る溶剤としては、例えばケトン類のように式(6)で表される化合物との反応性を有するものでなければ特に制限はないが、原料の式(6)で表される化合物を容易に溶解させる点ではアルコール類を用いるのが好ましい。   In the reaction for obtaining the phenol compound (A), a solvent may be used as necessary. The solvent that can be used is not particularly limited as long as it does not have reactivity with the compound represented by the formula (6) such as ketones, but the compound represented by the formula (6) as a raw material can be easily used. Alcohols are preferably used from the viewpoint of dissolution in the aqueous solution.

反応温度は通常10〜90℃であり、好ましくは35〜70℃である。反応時間は通常0.5〜10時間であるが、原料化合物の種類によって反応性に差があるため、この限りではない。反応終了後、樹脂として取り出す場合には、反応物を水洗後または水洗無しに、加熱減圧下で反応液から未反応物や溶媒等を除去する。結晶で取り出す場合、大量の水中に反応液を滴下することにより結晶を析出させる。塩基性条件で反応を行った場合は生成したフェノール化合物(A)が水中に溶解することもありうるので、塩酸を加えるなどして中性〜酸性条件にして結晶として析出させるのが好ましい。   The reaction temperature is usually 10 to 90 ° C, preferably 35 to 70 ° C. Although reaction time is 0.5 to 10 hours normally, since there is a difference in reactivity with the kind of raw material compound, it is not this limitation. When taking out as a resin after completion | finish of reaction, an unreacted substance, a solvent, etc. are removed from a reaction liquid under heating and pressure reduction, after washing | cleaning a reaction substance without water washing. When taking out with a crystal | crystallization, a crystal | crystallization is deposited by dripping a reaction liquid in a lot of water. When the reaction is carried out under basic conditions, the produced phenol compound (A) may be dissolved in water. Therefore, it is preferable to precipitate crystals as neutral to acidic conditions by adding hydrochloric acid or the like.

次に、エポキシ樹脂(A)について説明する。
エポキシ樹脂(A)は、上記手法によって得られたフェノール化合物(A)とエピハロヒドリンとを反応させ、エポキシ化することにより得られる。なお、エポキシ化の際には、フェノール化合物(A)を1種類のみ使用しても、2種以上を併用してもよい。また、フェノール化合物(A)に、フェノール化合物(A)以外のフェノール化合物を併用しても良い。
前記において併用できるフェノール化合物(A)以外のフェノール化合物としては、エポキシ樹脂の原料として通常用いられるフェノール化合物であれば特に制限なく用いることができるが、硬化物が高い熱伝導率を有するという本発明の効果が損なわれる恐れがあるので、他のフェノール化合物の併用量は極力少ないことが好ましく、フェノール化合物(A)のみを用いることが特に好ましい。
エポキシ樹脂(A)としては、特に優れた溶剤溶解性を示し、なおかつ高い熱伝導率有する硬化物が得られることから、式(6)で表される化合物と式(3)で表される化合物との反応により得られたフェノール化合物(A)のエポキシ化物が好ましい。以下において、フェノール化合物とした場合、フェノール化合物(A)単独、またはこれと必要に併用する他のフェノール化合物との混合物の両者を指す。
Next, the epoxy resin (A) will be described.
The epoxy resin (A) is obtained by reacting the phenol compound (A) obtained by the above method with epihalohydrin and epoxidizing it. In the case of epoxidation, only one type of phenol compound (A) may be used, or two or more types may be used in combination. Moreover, you may use together phenolic compounds other than a phenolic compound (A) with a phenolic compound (A).
As the phenolic compound other than the phenolic compound (A) that can be used in the above, any phenolic compound that is usually used as a raw material for epoxy resin can be used without particular limitation, but the present invention that the cured product has high thermal conductivity. Therefore, the combined use amount of other phenol compounds is preferably as small as possible, and it is particularly preferable to use only the phenol compound (A).
As the epoxy resin (A), a compound represented by the formula (6) and a compound represented by the formula (3) are obtained because they exhibit a particularly excellent solvent solubility and a cured product having high thermal conductivity. The epoxidized product of the phenol compound (A) obtained by the reaction with is preferable. Below, when it is set as a phenol compound, both the phenol compound (A) independent and the mixture with the other phenol compound used together with this are pointed out.

エポキシ樹脂(A)を得る反応において、エピハロヒドリンとしてはエピクロルヒドリン、α−メチルエピクロルヒドリン、β−メチルエピクロルヒドリン、エピブロモヒドリン等が使用できるが、工業的に入手が容易なエピクロルヒドリンが好ましい。エピハロヒドリンの使用量は、フェノール化合物(A)の水酸基1モルに対し通常2〜20モル、好ましくは2〜15モル、特に好ましくは2〜6モルである。エポキシ樹脂(A)は、アルカリ金属酸化物の存在下でフェノール化合物とエピハロヒドリンとを付加させ、次いで生成した1,2−ハロヒドリンエーテル基を閉環させてエポキシ化する反応により得られる。この際、エピハロヒドリンを上記のように通常より顕著に少ない量で使用することにより、エポキシ樹脂の分子量を延ばすとともに分子量分布を広げることができる。この結果、得られるエポキシ樹脂は、比較的低い軟化点を有する樹脂状物として系中から取り出せ、優れた溶剤溶解性を示す。   In the reaction for obtaining the epoxy resin (A), epichlorohydrin, α-methylepichlorohydrin, β-methylepichlorohydrin, epibromohydrin, and the like can be used as the epihalohydrin, and epichlorohydrin which is easily available industrially is preferable. The usage-amount of epihalohydrin is 2-20 mol normally with respect to 1 mol of hydroxyl groups of a phenol compound (A), Preferably it is 2-15 mol, Most preferably, it is 2-6 mol. The epoxy resin (A) is obtained by a reaction in which a phenol compound and an epihalohydrin are added in the presence of an alkali metal oxide, and then the resulting 1,2-halohydrin ether group is closed and epoxidized. At this time, by using epihalohydrin in an amount significantly smaller than usual as described above, the molecular weight of the epoxy resin can be increased and the molecular weight distribution can be broadened. As a result, the resulting epoxy resin can be removed from the system as a resinous material having a relatively low softening point, and exhibits excellent solvent solubility.

エポキシ化反応に使用できるアルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム等が挙げられ、これらは固形物をそのまま使用しても、あるいはその水溶液を使用してもよい。水溶液を使用する場合は、該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に、減圧下または常圧下で連続的に留出させた水及びエピハロヒドリンの混合液から分液により水を除去し、エピハロヒドリンのみを反応系内に連続的に戻す方法でもよい。アルカリ金属水酸化物の使用量は、フェノール化合物の水酸基1モルに対して通常0.9〜3.0モル、好ましくは1.0〜2.5モル、より好ましくは1.0〜2.0モル、特に好ましくは1.0〜1.3モルである。
また、本発明者等は、エポキシ化反応において、特にフレーク状の水酸化ナトリウムを用いることで、水溶液とした水酸化ナトリウムを使用するよりも得られるエポキシ樹脂に含まれるハロゲン量を顕著に低減させることが可能となることを知見するに至った。このハロゲンはエピハロヒドリン由来のものであり、エポキシ樹脂中に多く混入するほど硬化物の熱伝導性の低下が引き起こされる。更にこのフレーク状の水酸化ナトリウムは、反応系内に分割添加されることが好ましい。分割添加を行なうことで、反応温度の急激な減少を防ぐことができ、これにより不純物である1,3−ハロヒドリン体やハロメチレン体の生成を防止することができ、より熱伝導率の高い硬化物の形成が可能となる。
Examples of the alkali metal hydroxide that can be used for the epoxidation reaction include sodium hydroxide, potassium hydroxide, and the like, and these may be used as they are, or an aqueous solution thereof may be used. When using an aqueous solution, the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system and separated from a mixture of water and epihalohydrin distilled continuously under reduced pressure or normal pressure. Alternatively, water may be removed and only the epihalohydrin is continuously returned to the reaction system. The amount of the alkali metal hydroxide used is usually 0.9 to 3.0 mol, preferably 1.0 to 2.5 mol, more preferably 1.0 to 2.0 mol per mol of the hydroxyl group of the phenol compound. Mol, particularly preferably 1.0 to 1.3 mol.
Further, the present inventors remarkably reduce the amount of halogen contained in the epoxy resin obtained by using flaky sodium hydroxide in the epoxidation reaction, rather than using sodium hydroxide as an aqueous solution. It came to know that it became possible. This halogen is derived from epihalohydrin, and the more it is mixed in the epoxy resin, the lower the thermal conductivity of the cured product. Further, the flaky sodium hydroxide is preferably added in portions in the reaction system. By performing the divided addition, it is possible to prevent a rapid decrease in the reaction temperature, thereby preventing the formation of impurities such as 1,3-halohydrin and halomethylene, and a cured product with higher thermal conductivity. Can be formed.

エポキシ化反応を促進するために、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加することが好ましい。4級アンモニウム塩の使用量としては、フェノール化合物の水酸基1モルに対し通常0.1〜15gであり、好ましくは0.2〜10gである。   In order to accelerate the epoxidation reaction, it is preferable to add a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride as a catalyst. The amount of the quaternary ammonium salt used is usually 0.1 to 15 g, preferably 0.2 to 10 g, per 1 mol of the hydroxyl group of the phenol compound.

また、エポキシ化の際に、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメチルスルホン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン等の非プロトン性極性溶媒などを添加して反応を行うことが反応進行上好ましい。中でも、アルコール類またはジメチルスルホキシドが好ましい。アルコール類を用いた場合にはエポキシ樹脂が高い収率で得ることができる。一方、ジメチルスルホキシドを用いた場合にはエポキシ樹脂中のハロゲン量をより低減させることができる。   In addition, during the epoxidation, it is preferable for the reaction to proceed by adding an aprotic polar solvent such as alcohols such as methanol, ethanol and isopropyl alcohol, dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran and dioxane. Of these, alcohols or dimethyl sulfoxide are preferable. When alcohols are used, an epoxy resin can be obtained with a high yield. On the other hand, when dimethyl sulfoxide is used, the halogen content in the epoxy resin can be further reduced.

上記アルコール類を使用する場合、その使用量はエピハロヒドリンの使用量に対し通常2〜50質量%、好ましくは4〜35質量%である。また非プロトン性極性溶媒を用いる場合はエピハロヒドリンの使用量に対し通常5〜100質量%、好ましくは10〜80質量%である。   When using the said alcohol, the usage-amount is 2-50 mass% normally with respect to the usage-amount of an epihalohydrin, Preferably it is 4-35 mass%. Moreover, when using an aprotic polar solvent, it is 5-100 mass% normally with respect to the usage-amount of epihalohydrin, Preferably it is 10-80 mass%.

反応温度は通常30〜90℃であり、好ましくは35〜80℃である。反応時間は通常0.5〜10時間であり、好ましくは1〜8時間である。
反応終了後、反応物を水洗後、または水洗無しに加熱減圧下で反応液からエピハロヒドリンや溶媒等を除去する。また得られたエポキシ樹脂中に含まれるハロゲン量をさらに低減させるために、回収したエポキシ樹脂をトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて反応を行ない、閉環を確実なものにすることも出来る。この場合、アルカリ金属水酸化物の使用量は、フェノール化合物の水酸基1モルに対して通常0.01〜0.3モル、好ましくは0.05〜0.2モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜2時間である。
The reaction temperature is usually 30 to 90 ° C, preferably 35 to 80 ° C. The reaction time is usually 0.5 to 10 hours, preferably 1 to 8 hours.
After completion of the reaction, the reaction product is washed with water or without washing with water, and the epihalohydrin, the solvent and the like are removed from the reaction solution under heating and reduced pressure. In order to further reduce the amount of halogen contained in the obtained epoxy resin, the recovered epoxy resin is dissolved in a solvent such as toluene or methyl isobutyl ketone, and an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is obtained. The reaction can be carried out by adding an aqueous solution of to ensure ring closure. In this case, the usage-amount of an alkali metal hydroxide is 0.01-0.3 mol normally with respect to 1 mol of hydroxyl groups of a phenol compound, Preferably it is 0.05-0.2 mol. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.

反応終了後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下で溶剤を留去することによりエポキシ樹脂(A)が得られる。また、エポキシ樹脂(A)が結晶として析出する場合は、大量の水に生成した塩を溶解した後に、エポキシ樹脂(A)の結晶を濾取してもよい。   After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and the solvent is distilled off under heating and reduced pressure to obtain the epoxy resin (A). Moreover, when an epoxy resin (A) precipitates as a crystal | crystallization, after melt | dissolving the salt produced | generated in a lot of water, you may filter the crystal | crystallization of an epoxy resin (A).

次に上記手法によって得られるエポキシ樹脂(A)とフェノール化合物(A)とを反応させて本発明のエポキシ樹脂を得る方法について説明する。
フェノール化合物(A)の使用量はエポキシ樹脂(A)のエポキシ基1モルに対して、フェノール化合物(A)の水酸基量が通常0.1〜0.8モル、好ましくは0.1〜0.7モル、さらに好ましくは0.2〜0.6モルとなるように使用する。フェノール化合物(A)の量が少ないと優れた溶剤溶解性を持たせることができず、逆に多すぎると高分子量化が進み軟化点が高く、溶融粘度も高くなり作業性の悪化に繋がる。
Next, a method for obtaining the epoxy resin of the present invention by reacting the epoxy resin (A) obtained by the above method with the phenol compound (A) will be described.
The amount of the phenol compound (A) used is usually 0.1 to 0.8 mol, preferably 0.1 to 0.1 mol, based on 1 mol of the epoxy group of the epoxy resin (A). It is used so that it may become 7 mol, More preferably, it is 0.2-0.6 mol. If the amount of the phenol compound (A) is small, excellent solvent solubility cannot be imparted. Conversely, if the amount is too large, the high molecular weight increases, the softening point is high, the melt viscosity is increased, and workability is deteriorated.

本発明のエポキシ樹脂を得る反応において、硬化促進剤を使用することができる。硬化促進剤としてはトリフェニルホスフィンが具体例として挙げられるが、これに限らない。硬化促進剤の使用量はエポキシ樹脂(A)100質量部に対して、通常0.01〜0.2質量部、好ましくは0.02〜0.15質量部となるように使用する。   In the reaction for obtaining the epoxy resin of the present invention, a curing accelerator can be used. Specific examples of the curing accelerator include, but are not limited to, triphenylphosphine. The curing accelerator is used in an amount of usually 0.01 to 0.2 parts by mass, preferably 0.02 to 0.15 parts by mass with respect to 100 parts by mass of the epoxy resin (A).

本発明のエポキシ樹脂を得る反応においては必要に応じて溶剤を使用してもよい。用い得る溶剤としては特段の制限はないが、エポキシ樹脂(A)、フェノール化合物(A)の両方を溶解させやすい溶剤でいえば、メチルエチルケトンやメチルイソブチルケトンなどのケトン類やシクロヘキサノンやシクロペンタノンなどのアノン類の溶剤を溶剤として用いるのが好ましい。   In the reaction for obtaining the epoxy resin of the present invention, a solvent may be used as necessary. There are no particular restrictions on the solvent that can be used. Speaking of solvents that easily dissolve both the epoxy resin (A) and the phenolic compound (A), ketones such as methyl ethyl ketone and methyl isobutyl ketone, cyclohexanone, cyclopentanone, etc. It is preferable to use an anone solvent as the solvent.

反応温度は通常30〜120℃であり、好ましくは35〜110℃である。反応時間は通常0.5〜15時間であり、好ましくは1〜10時間である。反応終了後、反応物を水洗後、または水洗無しに加熱減圧下で反応液から溶媒等を除去することで本発明のエポキシ樹脂を得る。   The reaction temperature is usually 30 to 120 ° C, preferably 35 to 110 ° C. The reaction time is usually 0.5 to 15 hours, preferably 1 to 10 hours. After completion of the reaction, the epoxy resin of the present invention is obtained by removing the solvent and the like from the reaction solution under heating and reduced pressure after washing the reaction product with water or without washing with water.

以下、本発明のエポキシ樹脂組成物について記載する。本発明のエポキシ樹脂組成物は、本発明のエポキシ樹脂を必須成分として含有する。   Hereinafter, the epoxy resin composition of the present invention will be described. The epoxy resin composition of the present invention contains the epoxy resin of the present invention as an essential component.

本発明のエポキシ樹脂組成物において、本発明のエポキシ樹脂は単独でまたは他のエポキシ樹脂と併用して使用することが出来る。   In the epoxy resin composition of the present invention, the epoxy resin of the present invention can be used alone or in combination with other epoxy resins.

他のエポキシ樹脂の具体例としては、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD及びビスフェノールI等)やフェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン及びジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド及びシンナムアルデヒド等)との重縮合物、キシレン等の芳香族化合物とホルムアルデヒドの重縮合物とフェノール類との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン及びイソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン及びベンゾフェノン等)との重縮合物、フェノール類と芳香族ジメタノール類(ベンゼンジメタノール及びビフェニルジメタノール等)との重縮合物、フェノール類と芳香族ジクロロメチル類(α,α’−ジクロロキシレン及びビスクロロメチルビフェニル等)との重縮合物、フェノール類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル及びビスフェノキシメチルビフェニル等)との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物、並びにアルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、通常用いられるエポキシ樹脂であればこれらに限定されるものではない。これらは、1種類のみ使用しても、2種以上を併用してもよい。
他のエポキシ樹脂を併用する場合、本発明のエポキシ樹脂組成物中の全エポキシ樹脂成分に占める本発明のエポキシ樹脂の割合は30質量%以上が好ましく、40質量%以上がより好ましく、70質量%以上が更に好ましく、特に好ましくは100質量%(他のエポキシ樹脂を併用しない場合)である。ただし、本発明のエポキシ樹脂をエポキシ樹脂組成物の改質剤として使用する場合は、全エポキシ樹脂中で1〜30質量%となる割合で添加する。本発明のエポキシ樹脂組成物としては、エポキシ樹脂として本発明のエポキシ樹脂を100質量%使用するのが最も好ましい。
Specific examples of other epoxy resins include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, bisphenol I, etc.) and phenols (phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted) Naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene and dihydroxynaphthalene) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.) Of polycondensates with benzene, aromatic compounds such as xylene and formaldehyde Polycondensates of compounds and phenols, phenols and various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene and isoprene Etc.), polycondensates of phenols and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, etc.), phenols and aromatic dimethanols (benzene dimethanol, biphenyl dimethanol, etc.) Polycondensates, phenols and aromatic dichloromethyls (α, α'-dichloroxylene, bischloromethylbiphenyl etc.), phenols and aromatic bisalkoxymethyls Polycondensates with bismethoxymethylbenzene, bismethoxymethylbiphenyl, bisphenoxymethylbiphenyl, etc., polycondensates of bisphenols and various aldehydes, and glycidyl ether epoxy resins obtained by glycidylation of alcohols, alicyclic An epoxy resin, a glycidylamine-based epoxy resin, a glycidyl ester-based epoxy resin, and the like can be mentioned, but the epoxy resin is not limited to these as long as it is a commonly used epoxy resin. These may be used alone or in combination of two or more.
When other epoxy resins are used in combination, the proportion of the epoxy resin of the present invention in the total epoxy resin component in the epoxy resin composition of the present invention is preferably 30% by mass or more, more preferably 40% by mass or more, and 70% by mass. The above is more preferable, and 100% by mass (when no other epoxy resin is used in combination) is particularly preferable. However, when using the epoxy resin of this invention as a modifier of an epoxy resin composition, it adds in the ratio used as 1-30 mass% in all the epoxy resins. As the epoxy resin composition of the present invention, it is most preferable to use 100% by mass of the epoxy resin of the present invention as an epoxy resin.

本発明のエポキシ樹脂組成物は硬化剤を含有する。硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物及びフェノール系化合物等が挙げられる。これら硬化剤の具体例を下記(a)〜(e)に示す。
(a)アミン系化合物 ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン及びナフタレンジアミン等
(b)酸無水物系化合物 無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸及びメチルヘキサヒドロ無水フタル酸等
(c)アミド系化合物 ジシアンジアミド、若しくはリノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂等、
The epoxy resin composition of the present invention contains a curing agent. Examples of the curing agent include amine compounds, acid anhydride compounds, amide compounds, and phenol compounds. Specific examples of these curing agents are shown in the following (a) to (e).
(A) Amine-based compounds Diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, naphthalenediamine, etc. (b) Acid anhydride-based compounds Phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride , Tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, etc. (c) Amide-based compounds Polyamide resin, etc.

(d)フェノール系化合物多価フェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’−ジヒドロキシビフェニル、2,2’−ジヒドロキシビフェニル、3,3’,5,5’−テトラメチル−(1,1’−ビフェニル)−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン及び1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン等);フェノール類(例えば、フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン及びジヒドロキシナフタレン等)と、アルデヒド類(ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド及びフルフラール等)、ケトン類(p−ヒドロキシアセトフェノン及びo−ヒドロキシアセトフェノン等)、若しくはジエン類(ジシクロペンタジエン及びトリシクロペンタジエン等)との縮合により得られるフェノール樹脂;前記フェノール類と、置換ビフェニル類(4,4’−ビス(クロルメチル)−1,1’−ビフェニル及び4,4’−ビス(メトキシメチル)−1,1’−ビフェニル等)、若しくは置換フェニル類(1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン及び1,4−ビス(ヒドロキシメチル)ベンゼン等)等との重縮合により得られるフェノール樹脂;前記フェノール類及び/又は前記フェノール樹脂の変性物;テトラブロモビスフェノールA及び臭素化フェノール樹脂等のハロゲン化フェノール類
(e)その他イミダゾール類、BF アミン錯体、グアニジン誘導体
(D) Phenol compound polyhydric phenols (bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4′-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 3,3 ′, 5, 5'-tetramethyl- (1,1'-biphenyl) -4,4'-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane and 1,1,2,2-tetrakis (4 -Hydroxyphenyl) ethane and the like; phenols (eg, phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene and dihydroxynaphthalene) and aldehydes (formaldehyde, acetaldehyde, benzaldehyde, p-hydro) Phenol resins obtained by condensation with benzaldehyde, o-hydroxybenzaldehyde, furfural, etc.), ketones (p-hydroxyacetophenone, o-hydroxyacetophenone, etc.), or dienes (dicyclopentadiene, tricyclopentadiene, etc.); Phenols and substituted biphenyls (such as 4,4′-bis (chloromethyl) -1,1′-biphenyl and 4,4′-bis (methoxymethyl) -1,1′-biphenyl), or substituted phenyls ( Phenol resins obtained by polycondensation with 1,4-bis (chloromethyl) benzene, 1,4-bis (methoxymethyl) benzene, 1,4-bis (hydroxymethyl) benzene and the like; Or a modified product of the phenol resin; Lumpur A and halogenated phenols such as brominated phenol resin (e) Other imidazoles, BF 3 - amine complex, guanidine derivatives

これら他の硬化剤の中ではジアミノジフェニルメタン、ジアミノジフェニルスルホン及びナフタレンジアミンなどのアミン系化合物、並びにカテコールとアルデヒド類、ケトン類、ジエン類、置換ビフェニル類又は置換フェニル類との縮合物などの活性水素基が隣接している構造を有する硬化剤がエポキシ樹脂の配列に寄与するため好ましい。
硬化剤は単独で用いてもよく、複数を併用してもよい。全硬化剤の使用量は、全エポキシ樹脂のエポキシ基1当量に対して0.5〜2.0当量が好ましく、0.6〜1.5当量が特に好ましい。
Among these other curing agents, active hydrogen such as amine compounds such as diaminodiphenylmethane, diaminodiphenylsulfone and naphthalenediamine, and condensates of catechol with aldehydes, ketones, dienes, substituted biphenyls or substituted phenyls. A curing agent having a structure in which groups are adjacent is preferable because it contributes to the arrangement of the epoxy resin.
A hardening | curing agent may be used independently and may use multiple. 0.5-2.0 equivalent is preferable with respect to 1 equivalent of epoxy groups of all epoxy resins, and, as for the usage-amount of all the hardening | curing agents, 0.6-1.5 equivalent is especially preferable.

本発明のエポキシ樹脂組成物は必要に応じて熱伝導に優れた無機充填材を含有させることで、その硬化物にさらに優れた高熱伝導性を付与することができる。
本発明のエポキシ樹脂組成物が含有する無機充填材は、エポキシ樹脂組成物の硬化物に、より高い熱伝導率を付与する目的で加えられるもので、無機充填材自体の熱伝導率が低すぎる場合には、エポキシ樹脂と硬化剤の組み合わせにより得られた高熱伝導率が損なわれる恐れがある。従って、本発明のエポキシ樹脂組成物が含有する無機充填材としては、熱伝導率が高いものほど好ましく、通常20W/m・K以上、好ましくは30W/m・K以上、より好ましくは50W/m・K以上の熱伝導率を有するものであれば何ら制限はない。
尚、ここでいう熱伝導率とは、ASTM E1530に準拠した方法で測定した値である。この様な特性を有する無機充填材の具体例としては、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、アルミナ、酸化マグネシウム等の無機粉末充填材、合成繊維、セラミックス繊維等の繊維質充填材、着色剤等が挙げられる。これら無機充填材の形状は、粉末(塊状、球状)、単繊維、長繊維等いずれであってもよいが、特に、平板状のものであれば、無機充填材自身の積層効果によって硬化物の熱伝導性がより高くなり、硬化物の放熱性が更に向上するので好ましい。
本発明のエポキシ樹脂組成物における無機充填材の使用量は、エポキシ樹脂組成物中の樹脂成分100質量部に対して通常2〜1000質量部であるが、熱伝導率を出来るだけ高める為には、本発明のエポキシ樹脂組成物の具体的な用途における取り扱い等に支障を来たさない範囲で、可能な限り無機充填材の使用量を増やすことが好ましい。これら無機充填材は1種のみを使用しても、2種類以上を併用してもよい。
The epoxy resin composition of the present invention can impart further excellent high heat conductivity to the cured product by containing an inorganic filler excellent in heat conduction as required.
The inorganic filler contained in the epoxy resin composition of the present invention is added for the purpose of imparting higher thermal conductivity to the cured product of the epoxy resin composition, and the thermal conductivity of the inorganic filler itself is too low. In some cases, the high thermal conductivity obtained by the combination of the epoxy resin and the curing agent may be impaired. Therefore, as the inorganic filler contained in the epoxy resin composition of the present invention, the one having higher thermal conductivity is preferable, usually 20 W / m · K or more, preferably 30 W / m · K or more, more preferably 50 W / m. -There is no restriction as long as it has a thermal conductivity of K or higher.
In addition, heat conductivity here is the value measured by the method based on ASTM E1530. Specific examples of inorganic fillers having such characteristics include inorganic powder fillers such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, alumina, magnesium oxide, synthetic fibers, Examples thereof include fibrous fillers such as ceramic fibers, and coloring agents. The shape of these inorganic fillers may be any of powder (bulk shape, spherical shape), single fiber, long fiber, etc. However, in particular, if it is a flat plate, the cured product is cured by the lamination effect of the inorganic filler itself. This is preferable because the thermal conductivity becomes higher and the heat dissipation of the cured product is further improved.
Although the usage-amount of the inorganic filler in the epoxy resin composition of this invention is 2-1000 mass parts normally with respect to 100 mass parts of resin components in an epoxy resin composition, in order to raise heat conductivity as much as possible. It is preferable to increase the amount of the inorganic filler as much as possible as long as the handling of the epoxy resin composition of the present invention in a specific application is not hindered. These inorganic fillers may be used alone or in combination of two or more.

また、充填材全体としての熱伝導率を20W/m・K以上に維持できる範囲であれば、熱伝導率が20W/m・K以上の無機充填材に熱伝導率が20W/m・K未満の充填材を併用しても構わないが、出来るだけ熱伝導率の高い硬化物を得るという本発明の目的からして、熱伝導率が20W/m・K未満の充填材の使用は最小限に留めるべきである。併用し得る充填材の種類や形状に特に制限はない。   In addition, if the thermal conductivity of the entire filler can be maintained at 20 W / m · K or more, the thermal conductivity of the inorganic filler with 20 W / m · K or more is less than 20 W / m · K. However, for the purpose of the present invention to obtain a cured product having as high a thermal conductivity as possible, the use of a filler having a thermal conductivity of less than 20 W / m · K is minimal. Should be kept on. There is no particular limitation on the type and shape of the filler that can be used in combination.

本発明のエポキシ樹脂組成物を半導体封止用途に用いる場合、硬化物の耐熱性、耐湿性、力学的性質などの点から、エポキシ樹脂組成物中において75〜93質量%を占める割合で熱伝導率が20W/m・K以上の無機充填材使用するのが好ましい。この場合、残部はエポキシ樹脂成分、硬化剤成分及びその他必要に応じて添加される添加剤であり、添加剤としては併用できる他の無機充填材や後述する硬化促進剤等である。   When the epoxy resin composition of the present invention is used for semiconductor sealing applications, heat conduction is performed at a ratio of 75 to 93% by mass in the epoxy resin composition in terms of heat resistance, moisture resistance, mechanical properties, etc. of the cured product. It is preferable to use an inorganic filler having a rate of 20 W / m · K or more. In this case, the balance is an epoxy resin component, a curing agent component, and other additives that are added as necessary. Examples of the additive include other inorganic fillers that can be used in combination and a curing accelerator that will be described later.

本発明のエポキシ樹脂組成物には硬化促進剤を含有させることもできる。使用できる硬化促進剤としては、例えば、2−メチルイミダゾール、2−エチルイミダゾール、2−フェニルイミダゾール及び2−エチル−4−メチルイミダゾール等のイミダゾール類、2−(ジメチルアミノメチル)フェノール、トリエチレンジアミン、トリエタノールアミン及び1,8−ジアザビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン、ジフェニルホスフィン及びトリブチルホスフィン等の有機ホスフィン類、オクチル酸スズなどの金属化合物、テトラフェニルホスホニウム・テトラフェニルボレート及びテトラフェニルホスホニウム・エチルトリフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2−エチル−4−メチルイミダゾール・テトラフェニルボレート及びN−メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩などが挙げられる。硬化促進剤は、エポキシ樹脂100質量部に対して0.01〜15質量部が必要に応じ用いられる。   The epoxy resin composition of the present invention may contain a curing accelerator. Examples of the curing accelerator that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole and 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, triethylenediamine, Tertiary amines such as triethanolamine and 1,8-diazabicyclo (5,4,0) undecene-7, organic phosphines such as triphenylphosphine, diphenylphosphine and tributylphosphine, metal compounds such as tin octylate, Tetrasubstituted phosphonium tetrasubstituted borates such as tetraphenylphosphonium tetraphenylborate and tetraphenylphosphonium ethyltriphenylborate, 2-ethyl-4-methylimidazole tetraphenylborate and N Such as tetraphenyl boron salts such methylmorpholine tetraphenylborate and the like. 0.01-15 mass parts is used for a hardening accelerator as needed with respect to 100 mass parts of epoxy resins.

本発明のエポキシ樹脂組成物には、必要に応じてシランカップリング剤、離型剤及び顔料等種々の配合剤、各種熱硬化性樹脂並びに各種熱可塑性樹脂等を添加することができる。熱硬化性樹脂及び熱可塑性樹脂の具体例としては、ビニルエステル樹脂、不飽和ポリエステル樹脂、マレイミド樹脂、シアナート樹脂、イソシアナート化合物、ベンゾオキサジン化合物、ビニルベンジルエーテル化合物、ポリブタジエンおよびこの変性物、アクリロニトリル共重合体の変性物、インデン樹脂、フッ素樹脂、シリコーン樹脂、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル、ポリアセタール、ポリスチレン、ポリエチレン、ジシクロペンタジエン樹脂等が挙げられる。熱硬化性樹脂、または熱可塑性樹脂は本発明のエポキシ樹脂組成物中において60質量%以下を占める量が用いられる。   If necessary, various compounding agents such as a silane coupling agent, a release agent and a pigment, various thermosetting resins, various thermoplastic resins, and the like can be added to the epoxy resin composition of the present invention. Specific examples of thermosetting resins and thermoplastic resins include vinyl ester resins, unsaturated polyester resins, maleimide resins, cyanate resins, isocyanate compounds, benzoxazine compounds, vinyl benzyl ether compounds, polybutadiene and its modified products, and acrylonitrile. Examples include modified polymers, indene resins, fluororesins, silicone resins, polyetherimides, polyethersulfones, polyphenylene ethers, polyacetals, polystyrenes, polyethylenes, and dicyclopentadiene resins. The thermosetting resin or thermoplastic resin is used in an amount occupying 60% by mass or less in the epoxy resin composition of the present invention.

本発明のエポキシ樹脂組成物は、上記各成分を均一に混合することにより得られ、その好ましい用途としては半導体封止材やプリント配線版等が挙げられる。
本発明のエポキシ樹脂組成物は従来知られているのと同様の方法で容易にその硬化物とすることが出来る。例えば、本発明のエポキシ樹脂組成物の必須成分であるエポキシ樹脂、硬化剤及び熱伝導率が20W/m・K以上の無機充填材、並びに必要により硬化促進剤、配合剤、各種熱硬化性樹脂や各種熱可塑性樹脂等を、必要に応じて押出機、ニーダ又はロール等を用いて均一になるまで充分に混合して得られた本発明のエポキシ樹脂組成物を、溶融注型法あるいはトランスファー成型法やインジェクション成型法、圧縮成型法などによって成型し、更にその融点以上で2〜10時間加熱することにより本発明のエポキシ樹脂組成物の硬化物を得ることが出来る。前述の方法でリードフレーム等に搭載された半導体素子を封止することにより、本発明のエポキシ樹脂組成物を半導体封止用途に用いることができる。
The epoxy resin composition of the present invention can be obtained by uniformly mixing the above-mentioned components, and preferred applications thereof include semiconductor encapsulants and printed wiring boards.
The epoxy resin composition of the present invention can be easily made into a cured product by the same method as conventionally known. For example, an epoxy resin that is an essential component of the epoxy resin composition of the present invention, a curing agent, an inorganic filler having a thermal conductivity of 20 W / m · K or more, and a curing accelerator, a compounding agent, and various thermosetting resins as necessary. And various thermoplastic resins, etc., if necessary, using an extruder, kneader or roll, etc., until the mixture is sufficiently mixed until uniform, the melt casting method or transfer molding A cured product of the epoxy resin composition of the present invention can be obtained by molding by a method, an injection molding method, a compression molding method, or the like, and further heating for 2 to 10 hours above the melting point. By sealing the semiconductor element mounted on the lead frame or the like by the above-described method, the epoxy resin composition of the present invention can be used for semiconductor sealing applications.

また、本発明のエポキシ樹脂組成物は溶剤を含むワニスとすることもできる。該ワニスは、例えば、エポキシ樹脂、硬化剤のうち、少なくとも一方に本発明のエポキシ樹脂、もしくは本発明のフェノール樹脂の少なくとも一方を含み、必要に応じて熱伝導率が20W/m・K以上の無機充填材などのその他の成分を含む混合物を、トルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、N,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、ジメチルスルホキシド、N−メチルピロリドン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、グルタル酸ジアルキル、コハク酸ジアルキル、アジピン酸ジアルキル等のエステル類、γ−ブチロラクトン等の環状エステル類、石油エーテル、石油ナフサ、水添石油ナフサ及びソルベントナフサ等の石油系溶剤等の有機溶剤と混合することにより得ることが出来る。溶剤の量はワニス全体に対し通常10〜95質量%、好ましくは15〜85質量%である。
上記のようにして得られるワニスをガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維及び紙などの繊維基材に含浸させた後に加熱によって溶剤を除去すると共に、本発明のエポキシ樹脂組成物を半硬化状態とすることにより、本発明のプリプレグを得ることが出来る。尚、ここで言う「半硬化状態」とは、反応性の官能基であるエポキシ基が一部未反応で残っている状態を意味する。該プリプレグを熱プレス成型して硬化物を得ることが出来る。
Moreover, the epoxy resin composition of this invention can also be made into the varnish containing a solvent. The varnish includes, for example, at least one of the epoxy resin of the present invention or the phenol resin of the present invention in at least one of an epoxy resin and a curing agent, and if necessary, has a thermal conductivity of 20 W / m · K or more. Mixtures containing other components such as inorganic fillers, toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, N, N′-dimethylformamide, N, N′-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether Glycol ethers such as Tell, ethyl acetate, butyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, propylene glycol monomethyl ether acetate, dialkyl glutarate, dialkyl succinate, dialkyl adipate, It can be obtained by mixing with a cyclic ester such as γ-butyrolactone, an organic solvent such as petroleum ether such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha and solvent naphtha. The amount of the solvent is usually 10 to 95% by mass, preferably 15 to 85% by mass with respect to the whole varnish.
The varnish obtained as described above is impregnated into a fiber substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber and paper, and then the solvent is removed by heating, and the epoxy resin composition of the present invention By making a semi-cured state, the prepreg of the present invention can be obtained. Here, the “semi-cured state” means a state in which an epoxy group which is a reactive functional group partially remains unreacted. The prepreg can be hot press molded to obtain a cured product.

以下、本発明を実施例で更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。合成例、実施例、比較例において部は質量部を意味する。
なお、エポキシ当量、融点、軟化点、全塩素量、熱伝導率は以下の条件で測定した。
・エポキシ当量
JIS K−7236に記載された方法で測定し、単位はg/eq.である。
・融点
Seiko Instruments Inc.製 EXSTAR6000
測定試料 2mg〜5mg 昇温速度 10℃/min.
・軟化点
JIS K−7234に準拠した方法で測定し、単位は℃である。
・熱伝導率
ASTM E1530に準拠した方法で測定し、単位はW/m・Kである。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. In the synthesis examples, examples, and comparative examples, “part” means “part by mass”.
The epoxy equivalent, melting point, softening point, total chlorine content, and thermal conductivity were measured under the following conditions.
-Epoxy equivalent Measured by the method described in JIS K-7236, the unit is g / eq. It is.
Melting point Seiko Instruments Inc. EXSTAR6000 made
Measurement sample 2 mg to 5 mg Temperature rising rate 10 ° C./min.
-Softening point It measures by the method based on JISK-7234, and a unit is (degreeC).
-Thermal conductivity It measures by the method based on ASTM E1530, and a unit is W / m * K.

合成例1
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、4’−ヒドロキシアセトフェノン136部、バニリン152部およびエタノール200部を仕込み、溶解した。これに97質量%硫酸20部を添加後60℃まで昇温し、この温度で10時間反応後、反応液を水1200部に注入し、晶析させた。結晶を濾別後、水600部で2回水洗し、その後真空乾燥し、黄色結晶のフェノール化合物1を256部得た。得られた結晶のDSC測定による吸熱ピーク温度は233℃であった。
Synthesis example 1
A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with 136 parts of 4′-hydroxyacetophenone, 152 parts of vanillin and 200 parts of ethanol and dissolved. After adding 20 parts of 97 mass% sulfuric acid to this, it heated up to 60 degreeC, and after reacting at this temperature for 10 hours, the reaction liquid was inject | poured into 1200 parts of water, and was crystallized. The crystals were separated by filtration, washed twice with 600 parts of water, and then vacuum-dried to obtain 256 parts of phenol compound 1 as yellow crystals. The endothermic peak temperature of the obtained crystal as measured by DSC was 233 ° C.

合成例2
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、4’−ヒドロキシ−3’−メトキシアセトフェノン166部、4−ヒドロキシベンズアルデヒド122部およびエタノール200部を仕込み、溶解した。これに97%硫酸20部を添加後50℃まで昇温し、この温度で10時間反応後、反応液を水1200部に注入し、晶析させた。結晶を濾別後、水600部で2回水洗し、その後真空乾燥し、茶褐色結晶のフェノール化合物2を285部得た。得られた結晶のDSC測定による吸熱ピーク温度は193℃であった。
Synthesis example 2
In a flask equipped with a stirrer, a reflux condenser, and a stirrer, 166 parts of 4′-hydroxy-3′-methoxyacetophenone, 122 parts of 4-hydroxybenzaldehyde, and 200 parts of ethanol were charged and dissolved. After adding 20 parts of 97% sulfuric acid thereto, the temperature was raised to 50 ° C., and after reacting at this temperature for 10 hours, the reaction solution was poured into 1200 parts of water for crystallization. The crystals were separated by filtration, washed twice with 600 parts of water, and then vacuum-dried to obtain 285 parts of phenol compound 2 as brown crystals. The endothermic peak temperature of the obtained crystal as measured by DSC was 193 ° C.

合成例3
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、4−メチルシクロヘキサノン56部、バニリン152部およびエタノール150部を仕込み、溶解した。97質量%硫酸10部を添加後50℃まで昇温し、この温度で10時間反応後、トリポリリン酸ナトリウム25部を加え、30分間撹拌した。その後メチルイソブチルケトンを500部添加後、水200部で2回水洗し、その後エバポレーターにて溶剤を留去し、半固形のフェノール化合物3を304部得た。
合成例4
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、アセトン29部、バニリン152部およびエタノール300部を仕込み、溶解した。これに50%水酸化ナトリウム水溶液80部を添加後45℃まで昇温し、この温度で120時間反応後、反応液を1.5N塩酸800mLに注入し、晶析させた。結晶を濾別後、水600部で2回水洗し、その後真空乾燥し、黄色結晶のフェノール化合物4を165部得た。得られた結晶の融点はDSC測定により201℃であった。
Synthesis example 3
In a flask equipped with a stirrer, a reflux condenser, and a stirrer, 56 parts of 4-methylcyclohexanone, 152 parts of vanillin and 150 parts of ethanol were charged and dissolved. After adding 10 parts of 97 mass% sulfuric acid, the temperature was raised to 50 ° C., and after reacting at this temperature for 10 hours, 25 parts of sodium tripolyphosphate was added and stirred for 30 minutes. Thereafter, 500 parts of methyl isobutyl ketone was added, followed by washing twice with 200 parts of water, and then the solvent was distilled off with an evaporator to obtain 304 parts of semi-solid phenol compound 3.
Synthesis example 4
A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with 29 parts of acetone, 152 parts of vanillin and 300 parts of ethanol and dissolved. To this was added 80 parts of a 50% aqueous sodium hydroxide solution, the temperature was raised to 45 ° C., and the reaction was carried out at this temperature for 120 hours. The crystals were separated by filtration, washed twice with 600 parts of water, and then vacuum-dried to obtain 165 parts of phenol compound 4 as yellow crystals. The melting point of the obtained crystal was 201 ° C. by DSC measurement.

合成例5
撹拌機、還流冷却管、撹拌装置を備えたフラスコに窒素パージを施しながら、合成例1で得られたフェノール化合物1を135部、エピクロルヒドリン370部、ジメチルスルホキシド(以下、DMSO)93部を加え、撹拌下、70℃にまで昇温し、溶解し、フレーク状の水酸化ナトリウム41部を90分間かけて分割添加した後、70℃のまま2.5時間反応を行なった。反応終了後、ロータリーエバポレーターを用いて135℃で減圧下、過剰のエピクロルヒドリン等の溶剤を留去した。残留物をメチルイソブチルケトン(以下、MIBK)440部に溶解した後に水洗し塩を取り除いた。水洗後、MIBK溶液を70℃に昇温し、撹拌下で30%水酸化ナトリウム水溶液11部を添加し、1時間反応を行なった後、洗浄水が中性になるまで水洗を行ない、得られた溶液を、ロータリーエバポレーターを用いて180℃で減圧下にMIBK等を留去することでエポキシ樹脂1を200部得た。得られたエポキシ樹脂のエポキシ当量は240g/eq.、軟化点は56℃であった。
Synthesis example 5
While purging a flask equipped with a stirrer, a reflux condenser, and a stirrer with nitrogen purge, 135 parts of the phenol compound 1 obtained in Synthesis Example 1, 370 parts of epichlorohydrin, and 93 parts of dimethyl sulfoxide (hereinafter, DMSO) were added, Under stirring, the temperature was raised to 70 ° C., and the mixture was dissolved. After 41 parts of flaky sodium hydroxide were added in portions over 90 minutes, the reaction was allowed to proceed at 70 ° C. for 2.5 hours. After completion of the reaction, excess solvent such as epichlorohydrin was distilled off under reduced pressure at 135 ° C. using a rotary evaporator. The residue was dissolved in 440 parts of methyl isobutyl ketone (hereinafter referred to as MIBK) and then washed with water to remove the salt. After washing with water, the MIBK solution was heated to 70 ° C., and 11 parts of a 30% aqueous sodium hydroxide solution was added with stirring. After reacting for 1 hour, washing was carried out until the washing water became neutral. 200 parts of epoxy resin 1 was obtained by distilling MIBK etc. off under reduced pressure at 180 degreeC using the rotary evaporator. The epoxy equivalent of the obtained epoxy resin is 240 g / eq. The softening point was 56 ° C.

合成例6
撹拌機、還流冷却管、撹拌装置を備えたフラスコに窒素パージを施しながら、合成例2で得られたフェノール化合物2を135部、エピクロルヒドリン370部、ジメチルスルホキシド(以下、DMSO)93部を加え、撹拌下、70℃にまで昇温し、溶解し、フレーク状の水酸化ナトリウム41部を90分間かけて分割添加した後、70℃のまま2.5時間反応を行なった。反応終了後、ロータリーエバポレーターを用いて135℃で減圧下、過剰のエピクロルヒドリン等の溶剤を留去した。残留物をMIBK440部に溶解した後に水洗し塩を取り除いた。水洗後、MIBK溶液を70℃に昇温し、撹拌下で30%水酸化ナトリウム水溶液11部を添加し、1時間反応を行なった後、洗浄水が中性になるまで水洗を行ない、得られた溶液を、ロータリーエバポレーターを用いて180℃で減圧下にMIBK等を留去することでエポキシ樹脂2を201部得た。得られたエポキシ樹脂のエポキシ当量は243g/eq.、軟化点は60℃であった。
Synthesis Example 6
While purging a flask equipped with a stirrer, a reflux condenser, and a stirrer with nitrogen purge, 135 parts of the phenol compound 2 obtained in Synthesis Example 2, 370 parts of epichlorohydrin, and 93 parts of dimethyl sulfoxide (hereinafter, DMSO) were added. Under stirring, the temperature was raised to 70 ° C., and the mixture was dissolved. After 41 parts of flaky sodium hydroxide were added in portions over 90 minutes, the reaction was allowed to proceed at 70 ° C. for 2.5 hours. After completion of the reaction, excess solvent such as epichlorohydrin was distilled off under reduced pressure at 135 ° C. using a rotary evaporator. The residue was dissolved in 440 parts of MIBK and then washed with water to remove the salt. After washing with water, the MIBK solution was heated to 70 ° C., and 11 parts of a 30% aqueous sodium hydroxide solution was added with stirring. After reacting for 1 hour, washing was carried out until the washing water became neutral. 201 parts of epoxy resin 2 was obtained by distilling MIBK etc. off under reduced pressure at 180 degreeC using the rotary evaporator. The epoxy equivalent of the obtained epoxy resin is 243 g / eq. The softening point was 60 ° C.

合成例7
撹拌機、還流冷却管、撹拌装置を備えたフラスコに窒素パージを施しながら、合成例3で得られたフェノール化合物3を190部、エピクロルヒドリン370部、ジメチルスルホキシド(以下、DMSO)93部を加え、撹拌下、70℃にまで昇温し、溶解し、フレーク状の水酸化ナトリウム41部を90分間かけて分割添加した後、70℃のまま2.5時間反応を行なった。反応終了後、ロータリーエバポレーターを用いて135℃で減圧下、過剰のエピクロルヒドリン等の溶剤を留去した。残留物をMIBK492部に溶解した後に水洗し塩を取り除いた。水洗後、MIBK溶液を70℃に昇温し、撹拌下で30%水酸化ナトリウム水溶液11部を添加し、1時間反応を行なった後、洗浄水が中性になるまで水洗を行ない、得られた溶液を、ロータリーエバポレーターを用いて180℃で減圧下にMIBK等を留去することでエポキシ樹脂3を224部得た。得られたエポキシ樹脂のエポキシ当量は270g/eq.、軟化点は62℃であった。
Synthesis example 7
While purging a flask equipped with a stirrer, a reflux condenser, and a stirrer with nitrogen purge, 190 parts of the phenol compound 3 obtained in Synthesis Example 3, 370 parts of epichlorohydrin, and 93 parts of dimethyl sulfoxide (hereinafter, DMSO) were added. Under stirring, the temperature was raised to 70 ° C., and the mixture was dissolved. After 41 parts of flaky sodium hydroxide were added in portions over 90 minutes, the reaction was allowed to proceed at 70 ° C. for 2.5 hours. After completion of the reaction, excess solvent such as epichlorohydrin was distilled off under reduced pressure at 135 ° C. using a rotary evaporator. The residue was dissolved in 492 parts of MIBK and then washed with water to remove the salt. After washing with water, the MIBK solution was heated to 70 ° C., and 11 parts of a 30% aqueous sodium hydroxide solution was added with stirring. After reacting for 1 hour, washing was carried out until the washing water became neutral. 224 parts of epoxy resin 3 was obtained by distilling MIBK etc. off under reduced pressure at 180 degreeC using the rotary evaporator. The epoxy equivalent of the obtained epoxy resin is 270 g / eq. The softening point was 62 ° C.

合成例8
撹拌機、還流冷却管、撹拌装置を備えたフラスコに窒素パージを施しながら、合成例4で得られたフェノール化合物4を163部、エピクロルヒドリン370部、ジメチルスルホキシド(以下、DMSO)93部を加え、撹拌下、70℃にまで昇温し、溶解し、フレーク状の水酸化ナトリウム41部を90分間かけて分割添加した後、70℃のまま2.5時間反応を行なった。反応終了後、ロータリーエバポレーターを用いて135℃で減圧下、過剰のエピクロルヒドリン等の溶剤を留去した。残留物をMIBK438部に溶解した後に水洗し塩を取り除いた。水洗後、MIBK溶液を70℃に昇温し、撹拌下で30%水酸化ナトリウム水溶液11部を添加し、1時間反応を行なった後、洗浄水が中性になるまで水洗を行ない、得られた溶液を、ロータリーエバポレーターを用いて180℃で減圧下にMIBK等を留去することでエポキシ樹脂4を200部得た。得られたエポキシ樹脂のエポキシ当量は240g/eq.、軟化点は52℃であった。
Synthesis Example 8
While purging a flask equipped with a stirrer, a reflux condenser, and a stirrer with nitrogen purge, 163 parts of the phenol compound 4 obtained in Synthesis Example 4, 370 parts of epichlorohydrin, 93 parts of dimethyl sulfoxide (hereinafter, DMSO) were added, Under stirring, the temperature was raised to 70 ° C., and the mixture was dissolved. After 41 parts of flaky sodium hydroxide were added in portions over 90 minutes, the reaction was allowed to proceed at 70 ° C. for 2.5 hours. After completion of the reaction, excess solvent such as epichlorohydrin was distilled off under reduced pressure at 135 ° C. using a rotary evaporator. The residue was dissolved in 438 parts of MIBK and then washed with water to remove the salt. After washing with water, the MIBK solution was heated to 70 ° C., and 11 parts of a 30% aqueous sodium hydroxide solution was added with stirring. After reacting for 1 hour, washing was carried out until the washing water became neutral. 200 parts of epoxy resin 4 was obtained by distilling MIBK etc. off under reduced pressure at 180 degreeC using the rotary evaporator. The epoxy equivalent of the obtained epoxy resin is 240 g / eq. The softening point was 52 ° C.

実施例1
撹拌機、還流冷却管、撹拌装置を備えたフラスコに窒素パージを施しながら、合成例5で得られたエポキシ樹脂1
200部、合成例1で得られたフェノール化合物1 68部、MIBK200部を加え、撹拌下、80℃にまで昇温して溶解し、トリフェニルホスフィン0.2部を添加した後100℃まで昇温し、100℃のまま8時間反応を行った。反応後、ロータリーエバポレーターを用いて180℃で減圧下にMIBK等を留去することでエポキシ樹脂5を268部得た。得られたエポキシ樹脂のエポキシ当量は540g/eq.、軟化点は87℃であった。
Example 1
Epoxy resin 1 obtained in Synthesis Example 5 while purging nitrogen in a flask equipped with a stirrer, a reflux condenser, and a stirrer
200 parts, 68 parts of the phenolic compound 1 obtained in Synthesis Example 1 and 200 parts of MIBK were added, and the mixture was heated to 80 ° C. with stirring and dissolved. After adding 0.2 part of triphenylphosphine, the temperature was raised to 100 ° C. The reaction was carried out for 8 hours at 100 ° C. After the reaction, 268 parts of epoxy resin 5 was obtained by distilling off MIBK and the like under reduced pressure at 180 ° C. using a rotary evaporator. The epoxy equivalent of the obtained epoxy resin is 540 g / eq. The softening point was 87 ° C.

実施例2
撹拌機、還流冷却管、撹拌装置を備えたフラスコに窒素パージを施しながら、合成例6で得られたエポキシ樹脂2
201部、合成例2で得られたフェノール化合物2 68部、MIBK200部を加え、撹拌下、80℃にまで昇温して溶解し、トリフェニルホスフィン0.2部を添加した後100℃まで昇温し、100℃のまま6時間反応を行った。反応後、ロータリーエバポレーターを用いて180℃で減圧下にMIBK等を留去することでエポキシ樹脂6を269部得た。得られたエポキシ樹脂のエポキシ当量は542g/eq.、軟化点は89℃であった。
Example 2
Epoxy resin 2 obtained in Synthesis Example 6 while purging nitrogen in a flask equipped with a stirrer, a reflux condenser, and a stirrer
201 parts, 68 parts of phenol compound 2 obtained in Synthesis Example 2 and 200 parts of MIBK were added, and the mixture was heated to 80 ° C. and dissolved with stirring. After adding 0.2 part of triphenylphosphine, the temperature was raised to 100 ° C. The reaction was carried out for 6 hours at 100 ° C. After the reaction, 269 parts of epoxy resin 6 was obtained by distilling off MIBK and the like under reduced pressure at 180 ° C. using a rotary evaporator. The epoxy equivalent of the obtained epoxy resin is 542 g / eq. The softening point was 89 ° C.

実施例3
撹拌機、還流冷却管、撹拌装置を備えたフラスコに窒素パージを施しながら、合成例7で得られたエポキシ樹脂3
235部、合成例3で得られたフェノール化合物3 93部、MIBK235部を加え、撹拌下、80℃にまで昇温して溶解し、トリフェニルホスフィン0.2部を添加した後100℃まで昇温し、100℃のまま6時間反応を行った。反応後、ロータリーエバポレーターを用いて180℃で減圧下にMIBK等を留去することでエポキシ樹脂7を328部得た。得られたエポキシ樹脂のエポキシ当量は667g/eq.、軟化点は97℃であった。
Example 3
Epoxy resin 3 obtained in Synthesis Example 7 while purging nitrogen with a stirrer, reflux condenser, and flask equipped with a stirrer
235 parts, 93 parts of phenolic compound 3 obtained in Synthesis Example 3 and 235 parts of MIBK were added, and the mixture was heated to 80 ° C. with stirring and dissolved. After adding 0.2 part of triphenylphosphine, the temperature was raised to 100 ° C. The reaction was carried out for 6 hours at 100 ° C. After the reaction, 328 parts of epoxy resin 7 was obtained by distilling off MIBK and the like under reduced pressure at 180 ° C. using a rotary evaporator. The epoxy equivalent of the obtained epoxy resin is 667 g / eq. The softening point was 97 ° C.

実施例4
撹拌機、還流冷却管、撹拌装置を備えたフラスコに窒素パージを施しながら、合成例8で得られたエポキシ樹脂4
220部、合成例4で得られたフェノール化合物4 82部、MIBK220部を加え、撹拌下、80℃にまで昇温して溶解し、トリフェニルホスフィン0.2部を添加した後100℃まで昇温し、100℃のまま6時間反応を行った。反応後、ロータリーエバポレーターを用いて180℃で減圧下にMIBK等を留去することでエポキシ樹脂8を302部得た。得られたエポキシ樹脂のエポキシ当量は610g/eq.、軟化点は88℃であった。
Example 4
Epoxy resin 4 obtained in Synthesis Example 8 while purging nitrogen with a stirrer, reflux condenser, and flask equipped with a stirrer.
220 parts, 82 parts of phenolic compound 4 obtained in Synthesis Example 4 and 220 parts of MIBK were added, and the mixture was heated to 80 ° C. and dissolved with stirring. After adding 0.2 part of triphenylphosphine, the temperature was raised to 100 ° C. The reaction was carried out for 6 hours at 100 ° C. After the reaction, 302 parts of epoxy resin 8 was obtained by distilling off MIBK and the like under reduced pressure at 180 ° C. using a rotary evaporator. The epoxy equivalent of the obtained epoxy resin was 610 g / eq. The softening point was 88 ° C.

実施例5
撹拌機、還流冷却管、撹拌装置を備えたフラスコに窒素パージを施しながら、合成例5で得られたエポキシ樹脂1
200部、合成例2で得られたフェノール化合物2 68部、MIBK200部を加え、撹拌下、80℃にまで昇温して溶解し、トリフェニルホスフィン0.2部を添加した後100℃まで昇温し、100℃のまま8時間反応を行った。反応後、ロータリーエバポレーターを用いて180℃で減圧下にMIBK等を留去することでエポキシ樹脂9を268部得た。得られたエポキシ樹脂のエポキシ当量は542g/eq.、軟化点は82℃であった。
Example 5
Epoxy resin 1 obtained in Synthesis Example 5 while purging nitrogen in a flask equipped with a stirrer, a reflux condenser, and a stirrer
200 parts, 68 parts of phenolic compound 2 obtained in Synthesis Example 2 and 200 parts of MIBK were added, and the mixture was heated to 80 ° C. with stirring and dissolved. After adding 0.2 part of triphenylphosphine, the temperature was raised to 100 ° C. The reaction was carried out for 8 hours at 100 ° C. After the reaction, 268 parts of epoxy resin 9 was obtained by distilling off MIBK and the like under reduced pressure at 180 ° C. using a rotary evaporator. The epoxy equivalent of the obtained epoxy resin is 542 g / eq. The softening point was 82 ° C.

実施例6
撹拌機、還流冷却管、撹拌装置を備えたフラスコに窒素パージを施しながら、合成例5で得られたエポキシ樹脂1
200部、合成例3で得られたフェノール化合物3 92部、MIBK200部を加え、撹拌下、80℃にまで昇温して溶解し、トリフェニルホスフィン0.2部を添加した後100℃まで昇温し、100℃のまま8時間反応を行った。反応後、ロータリーエバポレーターを用いて180℃で減圧下にMIBK等を留去することでエポキシ樹脂10を292部得た。得られたエポキシ樹脂のエポキシ当量は600g/eq.、軟化点は93℃であった。
Example 6
Epoxy resin 1 obtained in Synthesis Example 5 while purging nitrogen in a flask equipped with a stirrer, a reflux condenser, and a stirrer
200 parts, 92 parts of the phenol compound 3 obtained in Synthesis Example 3 and 200 parts of MIBK were added, and the mixture was heated to 80 ° C. with stirring and dissolved. After adding 0.2 part of triphenylphosphine, the temperature was raised to 100 ° C. The reaction was carried out for 8 hours at 100 ° C. After the reaction, 292 parts of epoxy resin 10 was obtained by distilling off MIBK and the like under reduced pressure at 180 ° C. using a rotary evaporator. The epoxy equivalent of the obtained epoxy resin is 600 g / eq. The softening point was 93 ° C.

実施例7
撹拌機、還流冷却管、撹拌装置を備えたフラスコに窒素パージを施しながら、合成例5で得られたエポキシ樹脂1
200部、合成例4で得られたフェノール化合物4 82部、MIBK200部を加え、撹拌下、80℃にまで昇温して溶解し、トリフェニルホスフィン0.2部を添加した後100℃まで昇温し、100℃のまま8時間反応を行った。反応後、ロータリーエバポレーターを用いて180℃で減圧下にMIBK等を留去することでエポキシ樹脂11を282部得た。得られたエポキシ樹脂のエポキシ当量は570g/eq.、軟化点は52℃であった。
Example 7
Epoxy resin 1 obtained in Synthesis Example 5 while purging nitrogen in a flask equipped with a stirrer, a reflux condenser, and a stirrer
200 parts, 82 parts of phenolic compound 4 obtained in Synthesis Example 4 and 200 parts of MIBK were added, and the mixture was heated to 80 ° C. with stirring and dissolved. After adding 0.2 parts of triphenylphosphine, the temperature was raised to 100 ° C. The reaction was carried out for 8 hours at 100 ° C. After the reaction, 282 parts of epoxy resin 11 was obtained by distilling off MIBK and the like under reduced pressure at 180 ° C. using a rotary evaporator. The epoxy equivalent of the obtained epoxy resin is 570 g / eq. The softening point was 52 ° C.

これらの操作によって得られたエポキシ樹脂5〜11を含む各種エポキシ樹脂の60℃、100℃におけるMIBKに対する樹脂濃度30%での溶解性を表1に示した。   Table 1 shows the solubility of various epoxy resins including epoxy resins 5 to 11 obtained by these operations at 60 ° C. and 100 ° C. with respect to MIBK at a resin concentration of 30%.

エポキシ樹脂12:下記式(7)で表されるエポキシ樹脂(商品名:NC−3000 日本化薬製 エポキシ当量276g/eq.)   Epoxy resin 12: Epoxy resin represented by the following formula (7) (trade name: NC-3000, Nippon Kayaku Epoxy equivalent 276 g / eq.)

エポキシ樹脂13:下記式(8)及び(9)で表されるエポキシ樹脂を等モル含有するビフェニル型エポキシ樹脂(商品名:YL−6121H ジャパンエポキシレジン製 エポキシ当量175g/eq.)   Epoxy resin 13: a biphenyl type epoxy resin containing an equimolar amount of an epoxy resin represented by the following formulas (8) and (9) (trade name: YL-6121H manufactured by Japan Epoxy Resin, epoxy equivalent of 175 g / eq.)

実施例8〜14および比較例1、2
各種成分を表2の割合(部)で配合し、ミキシングロールで混練、タブレット化後、トランスファー成形で樹脂成形体を調製し、160℃で2時間、更に180℃で8時間加熱を行い、本発明のエポキシ樹脂組成物及び比較用樹脂組成物の硬化物を得た。これら硬化物の熱伝導率を測定した結果を表2に示した。
Examples 8 to 14 and Comparative Examples 1 and 2
Various components are blended in the proportions (parts) shown in Table 2, kneaded with mixing rolls, tableted, prepared by resin molding by transfer molding, heated at 160 ° C. for 2 hours, and further heated at 180 ° C. for 8 hours. Hardened | cured material of the epoxy resin composition of invention and the resin composition for a comparison was obtained. The results of measuring the thermal conductivity of these cured products are shown in Table 2.

硬化剤1:下記式(10)で表されるフェノールノボラック(商品名:H−1、 明和化成製 水酸基当量105g/eq.) Curing agent 1: Phenol novolak represented by the following formula (10) (trade name: H-1, hydroxyl group equivalent 105 g / eq. Manufactured by Meiwa Kasei)

硬化促進剤:トリフェニルホスフィン(北興化学工業製)   Curing accelerator: Triphenylphosphine (manufactured by Hokuko Chemical)

実施例15〜21および比較例3,4
各種成分を表3の割合(部)で配合し、ミキシングロールで混練、タブレット化後、トランスファー成形で樹脂成形体を調製し、160℃で2時間、更に180℃で8時間加熱を行い、本発明のエポキシ樹脂組成物及び比較用樹脂組成物の硬化物を得た。これら硬化物の熱伝導率を測定した結果を表3に示した。
Examples 15 to 21 and Comparative Examples 3 and 4
Various components are blended in the proportions (parts) shown in Table 3, kneaded with a mixing roll, converted into a tablet, a resin molded product is prepared by transfer molding, heated at 160 ° C. for 2 hours, and further heated at 180 ° C. for 8 hours. Hardened | cured material of the epoxy resin composition of invention and the resin composition for a comparison was obtained. The results of measuring the thermal conductivity of these cured products are shown in Table 3.

無機充填材1:球状アルミナ(商品名:DAW−100 電気化学工業製、熱伝導率38W/m・K)
無機充填材2:窒化ホウ素(商品名:SGP 電気化学工業製、熱伝導率60W/m・K)
Inorganic filler 1: spherical alumina (trade name: DAW-100, manufactured by Denki Kagaku Kogyo Co., Ltd., thermal conductivity 38 W / m · K)
Inorganic filler 2: Boron nitride (trade name: SGP, manufactured by Denki Kagaku Kogyo Co., Ltd., thermal conductivity 60 W / m · K)

実施例22
ジメチルホルムアミド1000部に実施例1で得られたエポキシ樹脂5を100部、70℃で溶解させた後、室温に戻した。ジメチルホルムアミド48部に硬化剤である1,5−ナフタレンジアミン(東京化成製、アミン当量40g/eq.)7部を70℃で溶解させた後、室温に戻した。上記のエポキシ樹脂溶液と硬化剤溶液を、撹拌羽タイプのホモミキサで混合・撹拌して均一なワニスにし、さらに無機充填材(商品名:SGP 電気化学工業製、熱伝導率60W/m・K)204部(樹脂固形分100体積部に対し50体積部)、およびジメチルホルムアミド100部を加えて混合・撹拌し、本発明のエポキシ樹脂組成物を調製した。
このエポキシ樹脂組成物のワニスを、厚さ0.2mmのガラス繊維織布(商品名:7628/AS890AW 旭シュエーベル製)に含浸させ、加熱乾燥してプリプレグを得た。このプリプレグ4枚とその両側に配した銅箔を重ね合わせた後、温度175℃、圧力4MPaの条件で90分間加熱加圧成型して一体化し、厚さ0.8mmの積層板を得た。この積層板の熱伝導率を測定したところ、4.3W/m・Kであった。
Example 22
100 parts of the epoxy resin 5 obtained in Example 1 was dissolved in 1000 parts of dimethylformamide at 70 ° C. and then returned to room temperature. In 48 parts of dimethylformamide, 7 parts of 1,5-naphthalenediamine (manufactured by Tokyo Chemical Industry Co., Ltd., amine equivalent: 40 g / eq.) As a curing agent was dissolved at 70 ° C. and then returned to room temperature. The above epoxy resin solution and the curing agent solution are mixed and stirred with a stirring blade type homomixer to make a uniform varnish, and further an inorganic filler (trade name: SGP, manufactured by Denki Kagaku Kogyo Co., Ltd., thermal conductivity 60 W / m · K) 204 parts (50 parts by volume with respect to 100 parts by volume of resin solids) and 100 parts of dimethylformamide were added and mixed and stirred to prepare the epoxy resin composition of the present invention.
The varnish of this epoxy resin composition was impregnated into a 0.2 mm thick glass fiber woven fabric (trade name: 7628 / AS890AW, manufactured by Asahi Schwer) and dried by heating to obtain a prepreg. After the four prepregs and the copper foils arranged on both sides thereof were superposed, they were integrated by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa to obtain a laminate having a thickness of 0.8 mm. The thermal conductivity of the laminate was measured and found to be 4.3 W / m · K.

実施例23
実施例22におけるエポキシ樹脂5をエポキシ樹脂7
100部に、1,5−ナフタレンジアミンの量を6部に、無機充填材の量を201部にそれぞれ変更したこと以外は実施例22と同様の操作手順により積層板を得た。この積層板の熱伝導率を測定したところ、4.5W/m・Kであった。
Example 23
Epoxy resin 5 in Example 22 was changed to epoxy resin 7
A laminate was obtained by the same operation procedure as in Example 22 except that 100 parts, the amount of 1,5-naphthalenediamine was changed to 6 parts, and the amount of inorganic filler was changed to 201 parts. The heat conductivity of this laminate was measured and found to be 4.5 W / m · K.

比較例5
実施例22におけるエポキシ樹脂5をエポキシ樹脂13(YL−6121H)100部に、1,5−ナフタレンジアミンの量を23部に、無機充填材の量を234部にそれぞれ変更したこと以外は実施例22と同様の操作手順により積層板を得た。この積層板の熱伝導率を測定したところ、3.6W/m・Kであった。
Comparative Example 5
Example 22 except that epoxy resin 5 in Example 22 was changed to 100 parts of epoxy resin 13 (YL-6121H), the amount of 1,5-naphthalenediamine was changed to 23 parts, and the amount of inorganic filler was changed to 234 parts. A laminate was obtained by the same operation procedure as in No. 22. The heat conductivity of this laminate was measured and found to be 3.6 W / m · K.

以上の結果より、本発明のエポキシ樹脂は、溶剤溶解性に優れ、なおかつ本発明のエポキシ樹脂を含有するエポキシ樹脂組成物の硬化物は、優れた熱伝導性を有することが確認できた。したがって本発明のエポキシ樹脂は、電気・電子部品用絶縁材料及び積層板(プリント配線板など)等に使用する場合に極めて有用である。   From the above results, it was confirmed that the epoxy resin of the present invention was excellent in solvent solubility, and the cured product of the epoxy resin composition containing the epoxy resin of the present invention had excellent thermal conductivity. Therefore, the epoxy resin of the present invention is extremely useful when used for insulating materials for electric / electronic parts, laminated boards (printed wiring boards, etc.) and the like.

本発明のエポキシ樹脂組成物の硬化物は、従来のエポキシ樹脂の硬化物と比較して優れた熱伝導性を有するとともに、溶剤溶解性にも優れる。従って、封止材、プリプレグ等として電気・電子材料、成型材料、注型材料、積層材料、塗料、接着剤、レジスト、光学材料などの広範囲の用途に極めて有用である。   The cured product of the epoxy resin composition of the present invention has excellent thermal conductivity and superior solvent solubility as compared with a cured product of a conventional epoxy resin. Therefore, it is extremely useful for a wide range of applications such as an electric / electronic material, a molding material, a casting material, a laminated material, a paint, an adhesive, a resist, and an optical material as a sealing material and a prepreg.

Claims (6)

下記式(1)〜(3)で表される化合物の一種以上と、式(6)で表される化合物との反応によって得られるフェノール化合物と、該フェノール化合物に、エピハロヒドリンを反応させて得られるエポキシ樹脂とを該エポキシ樹脂量が当量比で過剰になる条件で反応させることによって得られるエポキシ樹脂であって、エポキシ当量が540g/eq.以上であるエポキシ樹脂。
(式(1)中、Rはそれぞれ独立して存在し、水素原子、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、水酸基、ニトロ基又は炭素数1〜10のアルコキシ基のいずれかを表す。lはRの数を表し、1〜4の整数である。)
(式(2)中、Rはそれぞれ独立して存在し、水素原子、炭素数〜20のアルキル基、炭素数6〜10のアリール基、炭素数〜15のアルキルカルボニル基、炭素数2〜10のアルキルエステル基、炭素数1〜10のアルコキシ基、モルホリニルカルボニル基、フタルイミド基、ピペロニル基又は水酸基のいずれかを表す。)
(式(3)中、Rはそれぞれ独立して存在し、水素原子、炭素数2〜10のアルキルカルボニル基、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、炭素数2〜10のアルキルエステル基、炭素数1〜10のアルコキシ基又は水酸基のいずれかを表す。nは炭素数を表し、0、1、2のいずれかの整数を表す。mはRの数を表し、1≦m≦n+2の関係を満たす。)
(式(6)中、Rはそれぞれ独立して存在し、水素原子、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、水酸基、ニトロ基、ホルミル基、アリル基又は炭素数1〜10のアルコキシ基のいずれかを表す。kはRの数を表し、1〜4の整数である。)
Obtained by reacting one or more compounds represented by the following formulas (1) to (3) with a compound represented by formula (6) and an epihalohydrin to the phenol compound. An epoxy resin obtained by reacting an epoxy resin with an amount in which the amount of the epoxy resin is excessive in an equivalent ratio, wherein the epoxy equivalent is 540 g / eq. That is the epoxy resin.
(In Formula (1), each R 1 is independently present and is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, a hydroxyl group, a nitro group, or an alkoxy having 1 to 10 carbon atoms. Represents one of the groups, l represents the number of R 1 and is an integer of 1 to 4)
(In the formula (2), R 2 is present independently represent a hydrogen atom, an alkyl group of 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkylcarbonyl group 2-15 carbon atoms, carbon atoms It represents any of 2-10 alkyl ester groups, C1-C10 alkoxy groups, morpholinylcarbonyl groups, phthalimide groups, piperonyl groups or hydroxyl groups.)
(In Formula (3), each R 3 is independently present, and is a hydrogen atom, an alkylcarbonyl group having 2 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a carbon number. Represents an alkyl ester group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms or a hydroxyl group, n represents the number of carbon atoms, and represents an integer of 0, 1 or 2. m represents the number of R 3 . And satisfies the relationship 1 ≦ m ≦ n + 2.)
(In formula (6), each R 6 is independently present and is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, a hydroxyl group, a nitro group, a formyl group, an allyl group, or carbon. Represents any one of the alkoxy groups of formula 1 to 10. k represents the number of R 6 and is an integer of 1 to 4)
請求項1に記載のエポキシ樹脂及び硬化剤を含有してなるエポキシ樹脂組成物。  An epoxy resin composition comprising the epoxy resin according to claim 1 and a curing agent. 熱伝導率20W/m・K以上の無機充填材を含有してなる請求項2に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 2, comprising an inorganic filler having a thermal conductivity of 20 W / m · K or more. 半導体封止用途に用いられる請求項3に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 3, which is used for semiconductor sealing applications. 請求項4に記載のエポキシ樹脂組成物及びシート状の繊維基材からなるプリプレグ。   A prepreg comprising the epoxy resin composition according to claim 4 and a sheet-like fiber base material. 請求項4に記載のエポキシ樹脂組成物、または請求項5に記載のプリプレグを硬化してなる硬化物。

Hardened | cured material formed by hardening | curing the epoxy resin composition of Claim 4, or the prepreg of Claim 5.

JP2011163006A 2011-07-26 2011-07-26 Epoxy resin, epoxy resin composition, prepreg and cured products thereof Active JP5885330B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011163006A JP5885330B2 (en) 2011-07-26 2011-07-26 Epoxy resin, epoxy resin composition, prepreg and cured products thereof
CN201280036852.5A CN103703047A (en) 2011-07-26 2012-07-24 Epoxy resin, epoxy resin composition, prepreg, and curing product of each
PCT/JP2012/068728 WO2013015286A1 (en) 2011-07-26 2012-07-24 Epoxy resin, epoxy resin composition, prepreg, and curing product of each
KR1020147002041A KR101869306B1 (en) 2011-07-26 2012-07-24 Epoxy resin, epoxy resin composition, prepreg, and curing product of each
TW101126932A TWI541264B (en) 2011-07-26 2012-07-26 Epoxy resin, epoxy resin composition, prepreg and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011163006A JP5885330B2 (en) 2011-07-26 2011-07-26 Epoxy resin, epoxy resin composition, prepreg and cured products thereof

Publications (2)

Publication Number Publication Date
JP2013023677A JP2013023677A (en) 2013-02-04
JP5885330B2 true JP5885330B2 (en) 2016-03-15

Family

ID=47601129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011163006A Active JP5885330B2 (en) 2011-07-26 2011-07-26 Epoxy resin, epoxy resin composition, prepreg and cured products thereof

Country Status (5)

Country Link
JP (1) JP5885330B2 (en)
KR (1) KR101869306B1 (en)
CN (1) CN103703047A (en)
TW (1) TWI541264B (en)
WO (1) WO2013015286A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070051A1 (en) * 2016-10-14 2018-04-19 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured object, and composite material
WO2018168556A1 (en) * 2017-03-15 2018-09-20 日立化成株式会社 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
CN109320918B (en) * 2018-11-07 2021-01-29 中国科学院宁波材料技术与工程研究所 Recyclable carbon fiber reinforced epoxy resin composite material, and preparation method and application thereof
CN113620790B (en) * 2021-08-11 2023-12-19 万华化学(四川)有限公司 Method for preparing 4-oxo-isophorone by beta-IP oxidation
CN116515119B (en) * 2023-05-11 2023-12-15 南京工业大学 All-bio-based aryl diamine flame retardant, and preparation method and application thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1447016C3 (en) * 1963-10-25 1973-11-15 Kalle Ag, 6202 Wiesbaden-Biebrich Presensitized printing plate
DE2256961A1 (en) * 1972-11-21 1974-05-22 Herbert Prof Dr Phil Koelbel Curable epoxy resin compsn - having superior heat resistance and mech. props.
DE2256947A1 (en) * 1972-11-21 1974-05-22 Reichhold Albert Chemie Ag NEW POLYGLYCIDYL ETHER
JPH09100339A (en) * 1994-09-08 1997-04-15 Sumitomo Chem Co Ltd Epoxy resin composition and semiconductor device sealed therewith
JPH11323162A (en) 1998-03-19 1999-11-26 Hitachi Ltd Insulation composition
JP3708423B2 (en) * 2000-10-20 2005-10-19 株式会社日鉱マテリアルズ Phenolic curing agent for epoxy resin and epoxy resin composition using the same
JP4955856B2 (en) * 2001-01-26 2012-06-20 パナソニック株式会社 Phosphorus-containing epoxy resin composition, prepreg, resin-coated metal foil, adhesive sheet, laminate, multilayer board, phosphorus-containing epoxy resin varnish for coating, phosphorus-containing epoxy resin sealing material, phosphorus-containing epoxy resin casting material, phosphorus for impregnation Containing epoxy resin varnish
JP2003055434A (en) * 2001-08-15 2003-02-26 Toto Kasei Co Ltd Flame retardant for synthetic resin, and flame- retardant resin composition containing the flame retardant
JP2003137971A (en) 2001-11-02 2003-05-14 Shin Kobe Electric Mach Co Ltd Epoxy resin composition, prepreg, laminate and printed wiring board
JP3885664B2 (en) 2002-06-03 2007-02-21 新神戸電機株式会社 Prepreg, laminated board and printed wiring board
JP4224765B2 (en) * 2002-10-21 2009-02-18 Dic株式会社 Epoxy resin composition and molded cured product thereof
JP5010112B2 (en) 2004-07-26 2012-08-29 新神戸電機株式会社 Manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board
WO2010140674A1 (en) * 2009-06-05 2010-12-09 日本化薬株式会社 Epoxy resin composition, prepreg and cured products thereof
TWI522340B (en) * 2010-01-29 2016-02-21 Nippon Kayaku Kk Phenol compounds, epoxy resins, epoxy resin compositions, prepregs and the like

Also Published As

Publication number Publication date
TWI541264B (en) 2016-07-11
TW201309746A (en) 2013-03-01
CN103703047A (en) 2014-04-02
KR101869306B1 (en) 2018-06-20
WO2013015286A1 (en) 2013-01-31
JP2013023677A (en) 2013-02-04
KR20140058511A (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP6033919B2 (en) Phenol compounds, epoxy resins, epoxy resin compositions, prepregs and cured products thereof
JP5502080B2 (en) Epoxy resin composition, prepreg and cured products thereof
JP5224365B2 (en) Epoxy resin composition, prepreg and cured products thereof
JP5885330B2 (en) Epoxy resin, epoxy resin composition, prepreg and cured products thereof
JP6238845B2 (en) Phenol resin, phenol resin mixture, epoxy resin, epoxy resin composition and cured products thereof
JP5885331B2 (en) Epoxy resin mixture, epoxy resin composition, prepreg and cured products thereof
JP5840470B2 (en) Epoxy resin mixture, epoxy resin composition, prepreg and cured products thereof
JP5725826B2 (en) Epoxy resin composition, prepreg and cured products thereof
JP5704720B2 (en) Epoxy resin mixture, epoxy resin composition, prepreg and cured products thereof
JP2012121962A (en) Epoxy resin composition, prepreg, and cured product of the same
JP5553737B2 (en) Epoxy resin composition, prepreg and cured products thereof
JP5607186B2 (en) Epoxy resin composition, prepreg and cured products thereof
JP2015067830A (en) Epoxy resin, epoxy resin composition, prepreg and cured product thereof
JP2015067831A (en) Epoxy resin, epoxy resin composition, prepreg and their cured product
JP2015067832A (en) Epoxy resin, epoxy resin composition, prepreg and their cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5885330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250