ES2705081T3 - Ajuste de impedancia adaptativo de convertidor de CC-CC en una transmisión de potencia inalámbrica - Google Patents

Ajuste de impedancia adaptativo de convertidor de CC-CC en una transmisión de potencia inalámbrica Download PDF

Info

Publication number
ES2705081T3
ES2705081T3 ES15183000T ES15183000T ES2705081T3 ES 2705081 T3 ES2705081 T3 ES 2705081T3 ES 15183000 T ES15183000 T ES 15183000T ES 15183000 T ES15183000 T ES 15183000T ES 2705081 T3 ES2705081 T3 ES 2705081T3
Authority
ES
Spain
Prior art keywords
impedance
signal
input
wireless power
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES15183000T
Other languages
English (en)
Inventor
Novak William H Von
Stanley S Toncich
Ernest T Ozaki
Charles E Wheatley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Application granted granted Critical
Publication of ES2705081T3 publication Critical patent/ES2705081T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H04B5/266
    • H04B5/79
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings

Abstract

Un receptor de potencia inalámbrico, que comprende: medios (304) para recibir una señal de potencia inalámbrica desde un transmisor de potencia inalámbrico, comprendiendo los medios receptores un circuito resonante (320) que tiene una impedancia; medios (D3) para rectificar la señal de potencia inalámbrica a una señal de entrada en corriente continua; medios (350) para convertir la señal de entrada de corriente continua en una señal de salida de corriente continua, teniendo los medios para convertir una impedancia del convertidor de entrada; y caracterizado por medios (360) para modificar una impedancia de corriente alterna del receptor de potencia inalámbrico, comprendiendo los medios para modificar medios para determinar, basados, al menos en parte, en la señal de entrada de corriente continua, la impedancia del convertidor de entrada, medios para comparar la impedancia del convertidor de entrada con una impedancia deseada, y medios para ajustar, basados, al menos en parte, en la comparación, la impedancia del convertidor de entrada.

Description

DESCRIPCIÓN
Ajuste de impedancia adaptativo de convertidor de CC-CC en una transmisión de potencia inalámbrica
ANTECEDENTES
Campo
[0001] La presente invención se refiere generalmente a una transferencia de potencia inalámbrica, y más específicamente a dispositivos, sistemas y procedimientos relacionados con la impedancia de ajuste adaptativo en un dispositivo receptor para mejorar la transferencia de potencia inalámbrica.
Antecedentes
[0002] Típicamente, cada dispositivo alimentado por batería, tal como un dispositivo electrónico inalámbrico, requiere su propio cargador y una fuente de alimentación, que normalmente es una toma de corriente de corriente alterna (CA). Tal configuración cableada puede llegar a ser engorrosa cuando han de cargarse muchos dispositivos.
[0003] Se están desarrollando enfoques que usan transmisión de energía por el aire o inalámbrica entre un transmisor y un receptor acoplado al dispositivo electrónico a cargar. Dichos enfoques generalmente están dentro de dos categorías. Una se basa en el acoplamiento de radiación de onda plana (también denominada radiación de campo lejano) entre una antena transmisora y una antena receptora en el dispositivo a cargar. La antena receptora recoge la potencia irradiada y la rectifica para cargar la batería. Las antenas generalmente son de longitud resonante para mejorar la eficiencia de acoplamiento. Este enfoque se ve afectado por el hecho de que el acoplamiento de energía desciende rápidamente con la distancia entre las antenas, por lo que la carga por encima de distancias razonables (por ejemplo, menos de 1 a 2 metros) se hace difícil. Adicionalmente, puesto que el sistema de transmisión irradia ondas planas, una radiación accidental puede interferir con otros sistemas si no se controla apropiadamente a través de filtración.
[0004] Otros enfoques con respecto a técnicas de transmisión de energía inalámbrica se basan en un acoplamiento inductivo entre una antena transmisora integrada, por ejemplo, en una alfombrilla o superficie "de carga" y una antena receptora (más un circuito rectificador) integrada en el dispositivo electrónico que se va a cargar. Este enfoque tiene la desventaja de que la separación entre las antenas transmisora y receptora debe ser muy cercana (por ejemplo, en milímetros). Aunque este enfoque no tiene la capacidad de cargar simultáneamente múltiples dispositivos en la misma zona, esta zona es típicamente muy pequeña y requiere que el usuario coloque con precisión los dispositivos con respecto a una zona específica.
[0005] La eficiencia es muy importante en un sistema de transferencia de potencia inalámbrica debido a las pérdidas que se producen en el transcurso de la transmisión inalámbrica de energía. Dado que la transmisión de potencia inalámbrica a menudo es menos eficiente que la transferencia cableada, la eficiencia es un motivo todavía mayor de preocupación en un entorno de transferencia de potencia inalámbrica.
[0006] Como resultado, al intentar proporcionar potencia a uno o más dispositivos de carga inalámbrica, existe la necesidad de procedimientos y aparatos para la adaptación a los cambios en el acoplamiento entre una antena transmisora y una antena receptora para optimizar o de otro modo ajustar el suministro de potencia para un dispositivo receptor acoplado a la antena receptora.
[0007] La Publicación de Solicitud de Patente de Estados Unidos N.° US 2009/067208 se refiere a un procedimiento y aparato para proporcionar potencia. La Publicación de Solicitud de Patente Internacional N.° WO 2008/099558 se refiere a un circuito de suministro de energía, una unidad de carga que tiene el circuito de suministro de potencia y un procedimiento de suministro de potencia. La Publicación de Solicitud de Patente de Estados Unidos N.° US 2007/290668 se refiere a un procedimiento de seguimiento del punto de máxima potencia y un dispositivo de seguimiento del mismo para un sistema de energía solar. La Publicación de Solicitud de Patente Internacional N.° WO 2007/048052 se refiere a sistemas y procedimientos para recibir y gestionar la potencia en dispositivos inalámbricos.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
[0008]
La FIG. 1 muestra un diagrama de bloques simplificado de un sistema de transferencia de potencia inalámbrico.
La FIG. 2 muestra un diagrama esquemático simplificado de un sistema de transferencia de potencia inalámbrico.
La FIG. 3 muestra un diagrama esquemático de una antena de bucle para su uso en realizaciones ejemplares de la presente invención.
La FIG. 4 es un diagrama de bloques simplificado de un transmisor, de acuerdo con una realización ejemplar de la presente invención.
La FIG. 5 es un diagrama de bloques simplificado de un receptor, de acuerdo con una realización ejemplar de la presente invención.
La FIG. 6 muestra un esquema de una circuitería de transmisión y una circuitería de recepción que muestra el acoplamiento entre las mismas y una carga de CC ajustable.
Las FIG. 7A-7B muestran cartas de Smith que ilustran un cambio en la impedancia de entrada de un par de bobinas acopladas que responden a un cambio en la impedancia de CC en el dispositivo receptor.
Las FIG. 8A-8B muestran diagramas de amplitud que muestran un acoplamiento mejorado entre un par de bobinas acopladas que responden a un cambio en la impedancia de CC en el dispositivo receptor.
Las FIG. 9A-9B muestran esquemas simplificados de dispositivos receptores que ilustran realizaciones ejemplares para ajustar la impedancia de CC en el dispositivo receptor.
Las FIG. 10A-10D muestran esquemas simplificados de dispositivos receptores que ilustran realizaciones ejemplares para ajustar la impedancia de CC en el dispositivo receptor usando un convertidor de modulación por ancho de pulsos.
La FIG. 11 ilustra diversos parámetros de entrada y salida que pueden usarse al ajustar la impedancia de CC en el dispositivo receptor.
DESCRIPCIÓN DETALLADA
[0009] La expresión "ejemplar" se usa en el presente documento en el sentido de "que sirve como ejemplo, instancia o ilustración". No debe considerarse que cualquier realización descrita en el presente documento como "ejemplar" sea preferida o ventajosa con respecto a otras realizaciones.
[0010] La descripción detallada presentada a continuación, en relación con los dibujos adjuntos, debe interpretarse como una descripción de realizaciones ejemplares de la presente invención y no pretende representar solamente las realizaciones en las que la presente invención puede llevarse a la práctica. La expresión "ejemplar" usada a lo largo de esta descripción se refiere a "que sirve como ejemplo, instancia o ilustración", y no debe interpretarse necesariamente como preferido o ventajoso con respecto a otras realizaciones ejemplares. La descripción detallada incluye detalles específicos con el objetivo de proporcionar un entendimiento minucioso de las realizaciones ejemplares de la invención. A los expertos en la técnica les resultará evidente que las realizaciones ejemplares de la invención pueden llevarse a la práctica sin estos detalles específicos. En algunos casos, se muestran estructuras y dispositivos ya conocidos en forma de diagrama de bloques con el fin de evitar ocultar la novedad de las realizaciones ejemplares presentadas en el presente documento.
[0011] La expresión "potencia inalámbrica" se usa en el presente documento para referirse a cualquier forma de energía asociada a campos eléctricos, campos magnéticos, campos electromagnéticos, o de otro modo, que se transmite de un transmisor a un receptor sin usar conductores electromagnéticos físicos.
[0012] La FIG. 1 ilustra una transmisión inalámbrica o sistema de carga 100, de acuerdo con diversas realizaciones ejemplares de la presente invención. Se proporciona una potencia de entrada 102 a un transmisor 104 para generar un campo radiado 106 para proporcionar una transferencia de energía. Un receptor 108 se acopla al campo radiado 106 y genera una potencia de salida 110 para su almacenamiento o consumo por parte de un dispositivo (no mostrado) acoplado a la potencia de salida 110. Tanto el transmisor 104 como el receptor 108 se separan por una distancia 112. En una realización ejemplar, el transmisor 104 y el receptor 108 se configuran de acuerdo con una relación de resonancia mutua y cuando la frecuencia de resonancia del receptor 108 y la frecuencia de resonancia del transmisor 104 están muy cercanas, las pérdidas de transmisión entre el transmisor 104 y el receptor 108 son mínimas cuando el receptor 108 se sitúa en el "campo cercano" del campo radiado 106.
[0013] El transmisor 104 incluye adicionalmente una antena transmisora 114 para proporcionar un medio para la transmisión de energía y el receptor 108 incluye adicionalmente una antena receptora 118 para proporcionar un medio para la recepción de energía. Las antenas transmisora y receptora se dimensionan de acuerdo con las aplicaciones y dispositivos que se asociarán con las mismas. Como se indica, se produce una transferencia de energía eficiente mediante el acoplamiento de una gran porción de la energía en el campo cercano de la antena transmisora con respecto a una antena receptora en lugar de propagar la mayor parte de la energía en una onda electromagnética al campo lejano. Cuando está en este campo cercano, puede desarrollarse un modo de acoplamiento entre la antena transmisora 114 y la antena receptora 118. El área alrededor de las antenas 114 y 118 donde este acoplamiento de campo cercano puede producirse se denomina en el presente documento como una región en modo de acoplamiento.
[0014] La FIG. 2 muestra un diagrama esquemático simplificado de un sistema de transferencia de potencia inalámbrico. El transmisor 104 incluye un oscilador 122, un amplificador de potencia 124 y un circuito de filtro y adaptación 126. El oscilador se configura para generar una frecuencia deseada, que puede ajustarse en respuesta a una señal de ajuste 123. La señal del oscilador puede amplificarse por el amplificador de potencia 124 con una cantidad de amplificación que responde a una señal de control 125. El circuito de filtro y adaptación 126 puede incluirse para filtrar los armónicos u otras frecuencias no deseadas y adaptar la impedancia del transmisor 104 a la antena transmisora 114.
[0015] El receptor 108 puede incluir un circuito de adaptación 132 y un circuito de rectificador y conmutación 134 para generar una potencia de salida de CC para cargar una batería 136 como se muestra en la FIG. 2 o alimentador un dispositivo acoplado al receptor (no mostrado). El circuito de adaptación 132 puede incluirse para adaptar la impedancia del receptor 108 a la antena receptora 118. El receptor 108 y el transmisor 104 pueden comunicarse en un canal de comunicación separado 119 (por ejemplo, Bluetooth, zigbee, móvil, etc.).
[0016] Como se ilustra en la FIG. 3, las antenas usadas en las realizaciones ejemplares pueden configurarse como una antena de "bucle" 150, que también puede denominarse en el presente documento como una antena "magnética". Las antenas de bucle pueden configurarse para incluir un núcleo de aire o un núcleo físico, tal como un núcleo de ferrita. Las antenas de bucle con núcleo de aire pueden ser más tolerables a los dispositivos físicos extraños situados en las proximidades del núcleo. Además, una antena de bucle con núcleo de aire permite la colocación de otros componentes en el área del núcleo. Además, un bucle con núcleo de aire puede permitir más fácilmente la colocación de la antena receptora 118 (FIG. 2) en un plano de la antena transmisora 114 (FIG. 2) donde la región en modo acoplado de la antena transmisora 114 (FIG. 2) puede ser más potente.
[0017] Como se indica, la transferencia eficiente de energía entre el transmisor 104 y el receptor 108 se produce durante la resonancia adaptada o casi adaptada entre el transmisor 104 y el receptor 108. Sin embargo, cuando la resonancia entre el transmisor 104 y el receptor 108 no se corresponde, la energía puede transferirse con una eficiencia inferior. La transferencia de energía se produce acoplando la energía del campo cercano de la antena transmisora a la antena receptora que reside en la vecindad donde este campo cercano se establece en lugar de propagar la energía de la antena transmisora al espacio libre.
[0018] La frecuencia de resonancia de las antenas de bucle o magnéticas se basa en la inductancia y la capacitancia. La inductancia en una antena de bucle es en general sencillamente la inductancia creada por el bucle, mientras que la capacitancia se añade generalmente a la inductancia de la antena de bucle para crear una estructura resonante a una frecuencia de resonancia deseada. Como un ejemplo no limitante, pueden añadirse el condensador 152 y el condensador 154 a la antena para crear un circuito de resonancia que genera la señal de resonancia 156. Por consiguiente, para antenas de bucle de mayor diámetro, el tamaño de la capacitancia necesaria para inducir resonancia disminuye según el diámetro o inductancia del bucle aumenta. Además, según el diámetro de la antena de bucle o magnética aumenta, aumenta el área de transferencia de energía eficiente del campo cercano. Por supuesto, son posibles otros circuitos de resonancia. Según otro ejemplo no limitante, puede colocarse un condensador en paralelo entre los dos terminales de la antena de bucle. Además, los expertos en la técnica reconocerán que, para las antenas de transmisión, la señal de resonancia 156 puede ser una entrada a la antena de bucle 150.
[0019] Las realizaciones ejemplares de la invención incluyen potencia de acoplamiento entre dos antenas que están en los campos cercanos de cada una. Como se indica, el campo cercano es un área alrededor de la antena en la que existen campos electromagnéticos, pero no pueden propagarse o irradiarse lejos de la antena. Típicamente están limitados a un volumen que está cerca del volumen físico de la antena. En las realizaciones ejemplares de la invención, las antenas de tipo magnético, tales como antenas de bucle de una única o múltiples vueltas se usan tanto para sistemas de antenas transmisoras (Tx) como receptoras (Rx) puesto que las amplitudes de campo cercano magnético tienen a ser mayores para las antenas de tipo magnético en comparación con los campos cercanos eléctricos de una antena de tipo eléctrico (por ejemplo, un dipolo pequeño). Esto permite un acoplamiento potencialmente mayor entre el par. Además, también se contemplan antenas "eléctricas" (por ejemplo, dipolos y monopolos) o una combinación de antenas magnéticas y eléctricas.
[0020] La antena Tx puede funcionar a una frecuencia que sea suficientemente baja y con un tamaño de antena que sea lo suficientemente grande para conseguir un buen acoplamiento (por ejemplo, >-4 dB) a una antena receptora pequeña a distancias significativamente mayores que las permitidas por el campo lejano y los enfoques inductivos que se han mencionado antes. Si la antena transmisora se dimensiona correctamente, pueden conseguirse altos niveles de acoplamiento (por ejemplo, de -1 a -4 dB) cuando la antena receptora en un dispositivo huésped se sitúa dentro de una región en modo de acoplamiento (es decir, en el campo cercano) de la antena de bucle transmisora accionada.
[0021] La FIG. 4 es un diagrama de bloques simplificado de un transmisor 200, de acuerdo con una realización ejemplar de la presente invención. El transmisor 200 incluye circuitería transmisora 202 y una antena transmisora 204. En general, la circuitería transmisora 202 proporciona potencia RF a la antena transmisora 204 proporcionando una señal oscilante que da como resultado la generación de energía de campo cercano alrededor de la antena transmisora 204. A modo de ejemplo, el transmisor 200 puede funcionar en la banda ISM de 13,56 MHz.
[0022] La circuitería transmisora ejemplar 202 incluye un circuito de adaptación de impedancia fijo 206 para adaptar la impedancia de la circuitería transmisora 202 (por ejemplo, 50 ohmios) a la antena transmisora 204 y un filtro de paso bajo (LPF) 208 configurado para reducir las emisiones de armónicos a niveles para impedir la autointerferencia de los dispositivos acoplados a los receptores 108 (FIG. 1). Otras realizaciones ejemplares para el circuito de adaptación pueden incluir inductores y transformadores. Otras realizaciones ejemplares para el filtro de paso bajo pueden incluir diferentes topologías de filtro, incluyendo, pero sin limitación, filtros de corte que atenúan las frecuencias específicas al pasar otros y pueden incluir una adaptación de impedancia adaptativa, que puede variarse basándose en métricas de transmisión medibles, tal como la potencia de salida a la antena o el consumo de corriente de CC por parte del amplificador de potencia. La circuitería transmisora 202 incluye adicionalmente un amplificador de potencia 210 configurado para accionar una señal RF según se determina por un oscilador 212 (también denominado en el presente documento como generador de señal). La circuitería transmisora puede consistir en dispositivos o circuitos discretos o, como alternativa, puede consistir en un conjunto integrado. Una potencia de salida RF ejemplar de la antena transmisora 204 puede estar en el orden de 2,5 a 8,0 W.
[0023] La circuitería transmisora 202 incluye adicionalmente un controlador 214 para habilitar el oscilador 212 durante las fases de transmisión (o ciclos de trabajo) para los receptores específicos, para ajustar la frecuencia del oscilador, para ajustar el nivel de potencia de salida, para implementar un protocolo de comunicación para interactuar con los dispositivos adyacentes a través de sus receptores adjuntos. El controlador 214 también sirve para determinar los cambios de impedancia en la antena transmisora 204 debido a cambios en la región en modo de acoplamiento debido a los receptores situados en la misma.
[0024] La circuitería transmisora 202 puede incluir adicionalmente un circuito de detección de carga 216 para detectar la presencia o ausencia de receptores activos en la proximidad del campo cercano generado por la antena transmisora 204. A modo de ejemplo, un circuito de detección de carga 216 supervisa la corriente que fluye al amplificador de potencia 210, que se ve afectado por la presencia o ausencia de receptores activos en la proximidad del campo cercano generado por la antena transmisora 204. La detección de los cambios para la carga en el amplificador de potencia 210 se supervisa por el controlador 214 para su uso al determinar si habilitar el oscilador 212 para transmitir energía para comunicar con un receptor activo.
[0025] La antena transmisora 204 puede implementarse como una antena de parche con el espesor, anchura y tipo de metal seleccionados para conservar bajas pérdidas resistivas. En una implementación convencional, la antena transmisora 204 puede configurarse generalmente para su asociación con una estructura mayor, tal como una mesa, alfombrilla, lámpara u otra configuración menos portátil. Por consiguiente, la antena transmisora 204 generalmente no necesitará "vueltas" para ser de una dimensión práctica. Una implementación ejemplar de una antena transmisora 204 puede ser "eléctricamente pequeña" (es decir, fracción de la longitud de onda) y adaptada para resonar a frecuencias útiles inferiores usando condensadores para definir la frecuencia de resonancia. En una aplicación ejemplar en la que la antena transmisora 204 puede ser de mayor diámetro, o longitud de lado si es un bucle cuadrado, (por ejemplo, 0,50 metros) con respecto a la antena receptora, la antena transmisora 204 no necesitará necesariamente un gran número de vueltas para obtener una capacitancia razonable para resonar la antena transmisora a la frecuencia deseada.
[0026] El transmisor 200 puede reunir y rastrear información sobre el paradero y el estado de los dispositivos receptores que pueden asociarse con el transmisor 200. Por lo tanto, la circuitería transmisora 202 puede incluir un detector de presencia 280, un detector encerrado 290, o una combinación de los mismos, contactados al controlador 214 (también denominado como un procesador en el presente documento). El controlador 214 puede ajustar una cantidad de potencia suministrada por el amplificador 210 en respuesta a las señales de presencia del detector de presencia 280 y el detector encerrado 290. El transmisor puede recibir potencia a través de varias fuentes de energía, tal como, por ejemplo, un convertidor CA-CC (no mostrado) para convertir la energía de CA convencional presente en un edificio, un convertidor CC-CC (no mostrado) para convertir una fuente de energía de CC convencional en una tensión adecuada para el transmisor 200, o directamente de una fuente de energía CC convencional (no mostrada).
[0027] Como un ejemplo no limitante, el detector de presencia 280 puede ser un detector de movimiento utilizado para detectar la presencia inicial de un dispositivo que se va a cargar que se inserta en el área de cobertura del transmisor. Después de la detección, el transmisor puede encenderse y la potencia RF recibida por el dispositivo puede usarse para conmutar un interruptor en el dispositivo receptor de una manera predeterminada, que a su vez da como resultado cambios en la impedancia del punto de accionamiento del transmisor.
[0028] Como otro ejemplo no limitante, el detector de presencia 280 puede ser un detector capaz de detectar un ser humano, por ejemplo, por detección infrarroja, detección de movimiento u otro medio adecuado. En algunas realizaciones ejemplares, puede haber regulaciones que limiten la cantidad de potencia que una antena transmisora puede transmitir a una frecuencia específica. En algunos casos, estas regulaciones pretenden proteger a los seres humanos de la radiación electromagnética. Sin embargo, puede haber entornos en los que las antenas transmisoras se coloquen en áreas no ocupadas por seres humanos, o no ocupadas frecuentemente por seres humanos, tales como, por ejemplo, talleres, plantas de producción, tiendas, y similares. Si estos entornos están libres de seres humanos, pueden ser permisible aumentar la potencia de salida de las antenas transmisoras por encima de las regulaciones de restricción de potencia normales. En otras palabras, el controlador 214 puede ajustar la potencia de salida de la antena transmisora 204 a un nivel reglamentario o inferior en respuesta a la presencia de seres humanos y ajustar la potencia de salida de la antena transmisora 204 a un nivel por encima del nivel reglamentario cuando un ser humano está fuera de una distancia reglamentaria del campo electromagnético de la antena transmisora 204. Además, el detector de presencia 280 puede ser un detector capaz de detectar objetos situados en la región de la antena transmisora. Esto puede ser útil para reducir o detener la potencia de salida cuando objetos que no están diseñados para recibir potencia inalámbrica y pueden dañarse por los campos magnéticos se colocan cerca de la antena transmisora.
[0029] Como un ejemplo no limitante, el detector encerrado 290 (también puede denominarse en el presente documento como un detector de compartimento cerrado o un detector de espacio cerrado) puede ser un dispositivo, tal como un conmutador de detección para determinar cuándo un recinto está en un estado cerrado o abierto. Cuando un transmisor está en un recinto que está en un estado encerrado, puede aumentarse un nivel de potencia del transmisor.
[0030] En realizaciones ejemplares, puede usarse un procedimiento mediante el cual el transmisor 200 no permanece encendido indefinidamente. En este caso, el transmisor 200 puede programarse para apagarse después de una cantidad de tiempo determinada por el usuario. Esta característica impide que el transmisor 200, particularmente el amplificador de potencia 210, funcione mucho tiempo después de que los dispositivos inalámbricos en su perímetro están completamente cargados. Este evento puede deberse al fallo del circuito para detectar la señal enviada desde el repetidor o la bobina receptora de que un dispositivo está completamente cargado. Para impedir que el transmisor 200 se apague automáticamente si otro dispositivo se coloca en su perímetro, la característica de apagado automático del transmisor 200 puede activarse únicamente después de un periodo de tiempo establecido de falta de movimiento detectado en su perímetro. El usuario puede ser capaz de determinar el intervalo de tiempo de inactividad, y cambiarlo según sea necesario. Como un ejemplo no limitante, el intervalo de tiempo puede ser mayor del necesario para cargar completamente un tipo específico de dispositivo inalámbrico bajo la suposición de que el dispositivo inicialmente está totalmente descargado.
[0031] La FIG. 5 es un diagrama de bloques simplificado de un receptor 300, de acuerdo con una realización ejemplar de la presente invención. El receptor 300 incluye circuitería receptora 302 y una antena receptora 304. El receptor 300 se acopla adicionalmente al dispositivo 350 para proporcionar la potencia recibida al mismo. Cabe apreciarse que el receptor 300 se ilustra como externo al dispositivo 350 pero puede integrarse en el dispositivo 350. Generalmente, la energía se propaga de forma inalámbrica a la antena receptora 304 y después se acopla a través de la circuitería receptora 302 al dispositivo 350.
[0032] La antena receptora 304 se sintoniza para resonar a la misma frecuencia, o casi la misma frecuencia, que la antena transmisora 204 (FIG. 4). La antena receptora 304 puede dimensionarse de forma análoga con la antena transmisora 204 o puede dimensionarse de forma diferente basándose en las dimensiones del dispositivo asociado 350. A modo de ejemplo, el dispositivo 350 puede ser un dispositivo electrónico portátil que tiene una dimensión en diámetro o longitud menor que la longitud de la antena transmisora 204. En tal ejemplo, la antena receptora 304 puede implementarse como una antena multivuelta para reducir el valor de la capacitancia de un condensador de sintonía (no mostrado) y aumentar la impedancia de la antena receptora. A modo de ejemplo, la antena receptora 304 puede colocarse alrededor de la circunferencia sustancial del dispositivo 350 con el fin de maximizar el diámetro de la antena y reducir el número de vueltas del bucle (es decir, bobinados) de la antena receptora y la capacitancia de interbobinado.
[0033] La circuitería receptora 302 proporciona una adaptación de la impedancia con respecto a la antena receptora 304. La circuitería receptora 302 incluye un circuito de conversión de potencia 306 para convertir una fuente de energía RF recibida en potencia de carga para su uso por el dispositivo 350. La circuitería de conversión de potencia 306 incluye un convertidor RF a CC 308 y también puede incluir un convertidor de CC en CC 310. El convertidor RF a CC 308 rectifica la señal de energía RF recibida en la antena receptora 304 en una potencia no alterna mientras que el convertidor de CC en CC 310 convierte la señal de energía RF rectificada en un potencial de energía (por ejemplo, tensión) que es compatible con el dispositivo 350. Se contemplan diversos convertidores RF a CC, incluyendo rectificadores parciales y completos, reguladores, puentes, dobladores, así como convertidores lineales y de conmutación.
[0034] La circuitería receptora 302 puede incluir adicionalmente circuitería de conmutación 312 para conectar la antena receptora 304 a la circuitería de conversión de potencia 306 o, como alternativa, para desconectar la circuitería de conversión de potencia 306. La desconexión de la antena receptora 304 de la circuitería de conversión de potencia 306 no sólo suspende la carga del dispositivo 350, sino también cambia la "carga" que "se ve" por el transmisor 200 (FIG. 2), que puede usarse para "ocultar" el receptor del transmisor.
[0035] Como se ha desvelado anteriormente, el transmisor 200 incluye el circuito de detección de carga 216 que detecta fluctuaciones en la corriente de polarización proporcionada al amplificador de potencia del transmisor 210. Por consiguiente, el transmisor 200 tiene un mecanismo para determinar cuando los receptores están presentes en el campo cercano del transmisor.
[0036] Cuando están presentes múltiples receptores 300 en un campo cercano de un transmisor, puede ser deseable multiplexar por tiempo la carga y descarga de uno o más de los receptores para permitir que otros receptores se acoplen más eficientemente al transmisor. Un receptor también puede ocultarse para eliminar el acoplamiento a otros receptores cercanos o para reducir la carga en los transmisores cercanos. Esta "descarga" de un receptor también se conoce en el presente documento como un "encubrimiento". Además, esta conmutación entre descarga y carga controladas por el receptor 300 y detectadas por el transmisor 200 proporciona un mecanismo de comunicación del receptor 300 al transmisor 200 como se explica en más detalle a continuación. Adicionalmente, puede asociarse un protocolo con la conmutación que permita el envío de un mensaje del receptor 300 al transmisor 200. A modo de ejemplo, la velocidad de conmutación puede estar en el orden de 100 p,s.
[0037] En una realización ejemplar, la comunicación entre el transmisor y el receptor se refiere a un mecanismo de control de detección y carga de dispositivo, en lugar de una comunicación de dos vías convencional. En otras palabras, el transmisor usa la manipulación de encendido/apagado de la señal transmitida para ajustar si la energía está disponible en el campo cercano. Los receptores interpretan estos cambios de energía como un mensaje del transmisor. Del lado del receptor, el receptor usa el ajuste y desajuste de la antena receptora para ajustar cuanta potencia se acepta del campo cercano. El transmisor puede detectar esta diferencia de potencia usada del campo cercano e interpretar estos cambios como un mensaje del receptor.
[0038] La circuitería receptora 302 puede incluir adicionalmente un detector de señalización y circuitería de baliza 314 usada para identificar fluctuaciones de energía recibida, que puede corresponder a la señalización de información del transmisor al receptor. Además, la señalización y la circuitería de baliza 314 también pueden usarse para detectar la transmisión de una energía de señal RF reducida (es decir, una señal de baliza) y para rectificar la energía de señal RF reducida en una potencia nominal para despertar circuitos no alimentados o agotados en la circuitería receptora 302 para configurar la circuitería receptora 302 para la carga inalámbrica.
[0039] La circuitería receptora 302 incluye adicionalmente el procesador 316 para coordinar los procesos del receptor 300 descrito en el presente documento, incluyendo el control de la circuitería de conmutación 312 que se describe en el presente documento. El encubrimiento del receptor 300 también puede producirse tras la aparición de otros eventos, incluyendo la detección de una fuente de carga externa por cable (por ejemplo, alimentación de pared/USB) que proporciona potencia de carga al dispositivo 350. El procesador 316, además de controlar el encubrimiento del receptor, también puede supervisar la circuitería de baliza 314 para determinar un estado de baliza y extraer mensajes enviados del transmisor. El procesador 316 también puede ajustar el convertidor de CC en CC 310 para un mejor rendimiento.
[0040] En algunas realizaciones ejemplares, la circuitería receptora 320 puede señalizar un requisito de potencia a un transmisor en forma de, por ejemplo, un nivel de potencia deseado, un nivel de potencia máxima, un nivel de corriente deseado, un nivel de corriente máxima, un nivel de tensión deseado, y un nivel de tensión máxima. Basándose en estos niveles, y la cantidad real de potencia recibida del transmisor, el procesador 316 puede ajustar el funcionamiento del convertidor de CC-CC en CC 310 para regular su salida en forma del ajuste del nivel de corriente, el ajuste del nivel de tensión, o una combinación de los mismos.
[0041] Las realizaciones ejemplares de la presente invención se refieren a circuitos y mecanismos de ajuste que permiten el ajuste de una impedancia de carga que termina en la antena receptora del dispositivo receptor de un modo que puede compensar los cambios en los efectos de acoplamiento entre las antenas transmisoras y las antenas receptoras.
[0042] Las soluciones actuales para ajustar las impedancias de carga se basan en el uso de componentes RF. Estos incluyen sintonizadores basados en condensadores e inductores fijos conmutables, condensadores de tensión variable (por ejemplo, ferroeléctricos, sistemas microelectromecánicos (MEMS), y diodos varactores). El enfoque de los condensadores e inductores fijos conmutables puede tener demasiada pérdida óhmica para ser práctico para un sistema de carga. Los sintonizadores variables basados en dispositivos ferroeléctricos y condensadores de tensión variable MEMs pueden no ser comercialmente viables en este momento. Los sintonizadores basados en diodos varactores pueden no ser capaces de manipular las potencias RF anticipadas en aplicaciones de energía inalámbrica.
[0043] Como se ha descrito anteriormente, los sistemas de carga inalámbrica incluyen típicamente una antena transmisora (es decir, una bobina de acoplamiento de transmisión), que transmite energía RF a una o más antenas receptoras (es decir, bobinas de acoplamiento de recepción) integradas en dispositivos receptores que se van a cargar o suministrados de otro modo con energía. La energía recibida se rectifica, acondiciona y entrega a la batería del dispositivo u otra circuitería operativa. Es típico que estas antenas funcionen a bajas frecuencias donde son eléctricamente pequeñas para acoplarse magnéticamente en lugar de radiar potencia.
[0044] Estas antenas pequeñas pueden conseguir una mejor eficiencia de acoplamiento cuando las dos bobinas son resonantes; es decir, cuando ambas se ajustan a la frecuencia usada para transmitir la potencia de una antena a la otra. Desafortunadamente, aunque la transferencia de potencia eficiente es un aspecto importante de cualquier esquema de transferencia de potencia inalámbrica, un subproducto del uso de antenas pequeñas y acopladas de forma resonante es que el ancho de banda resultante a veces es demasiado pequeño, haciendo que las antenas se desajusten y tengan posibles pérdidas dramáticas de eficiencia. Otro problema del uso de antenas resonantes pequeñas, acopladas holgadamente es que el acoplamiento mutuo entre las dos antenas variará según la antena receptora se mueve alrededor con respecto a la antena transmisora (por ejemplo, en un lugar diferente en sobre una almohadilla de carga), o cuando se múltiples dispositivos que se van a cargar se sitúan en proximidad cercana entre sí en la almohadilla de carga. Estos cambios de colocación variarán el acoplamiento entre las bobinas transmisoras y receptoras y darán como resultado una variación de la impedancia vista en la antena transmisora, dando como resultado una transferencia de potencia menos eficiente entre las antenas transmisoras y receptoras en el sistema de carga. Muchos de estos problemas pueden corregirse, o al menos reducirse en gran medida variando la resistencia de carga RF que se presenta a la antena receptora.
[0045] En la variación de la resistencia de carga RF para afectar a un cambio en la impedancia vista por el amplificador transmisor, se conoce bien que esta impedancia vista por la fuente puede variar de forma resistiva, reactiva, o una combinación de las mismas, dependiendo de los circuitos de adaptación usados en las antenas transmisoras y receptoras. Para maximizar la eficiencia del sistema, es mejor variar únicamente el valor real (es decir, el valor resistivo) y mantener el valor reactivo de esta impedancia de entrada lo más constante posible. Aunque es posible compensar los cambios reactivos, esto puede aumentar en gran medida la complejidad del todo el sistema. Puede mostrarse que hay un circuito de adaptación que puede cumplir una meta de transferencia de potencia máxima sobre cualquier intervalo en las variaciones de carga resistiva. Ese circuito de adaptación puede ser un transformador sintonizado (resonante), que es simplemente una extensión de las antenas transmisoras y receptoras resonantes usadas para transferir la potencia. El uso de esta forma de circuito de adaptación se asume en los siguientes análisis.
[0046] La FIG. 6 muestra un esquema de una circuitería transmisora y una circuitería receptora que muestra el acoplamiento entre las mismas y una carga de CC ajustable 450. Como se muestra en la figura 6, un sistema de carga 405 puede caracterizarse por un modelo de transformador de bobina acoplada 430 donde la electrónica del transmisor se conecta a una bobina primaria 432 (es decir, una antena transmisora) y la electrónica del rectificador/regulador en el lado del receptor se conecta a una bobina secundaria 434 (es decir, una antena receptora).
[0047] Un excitador 410 genera una señal de oscilación a una frecuencia de resonancia deseada, tal como, por ejemplo, aproximadamente 13,56 MHz. Como un ejemplo, este excitador 410 puede configurarse como un excitador de clase E como se ilustra en la figura 6. Un circuito de adaptación de paso bajo 420 filtra y adapta la impedancia a la señal del excitador 410 con respecto a la antena transmisora 432 del modelo de transformador de bobina acoplada 430.
[0048] La energía se transfiere a través de radiación de campo cercano a la antena receptora 434 del modelo de transformador de bobina acoplada 430. La señal de oscilación acoplada a la antena receptora 434 se acopla a un circuito de adaptación de impedancia y rectificador 440 para proporcionar una adaptación de impedancia de CA para la antena receptora 434 y rectificar la señal de oscilación a una señal de CC sustancialmente. Un convertidor de CC en CC 450 convierte la señal de CC del rectificador 440 en una salida de CC útil por la circuitería en un dispositivo receptor (no mostrado). El convertidor de CC en CC 450 también se configura para ajustar la impedancia de Cc vista por el rectificador 440, que a su vez ajusta la impedancia de CA total de la entrada al rectificador 440. Como resultado, los cambios en la impedancia de CC en la entrada del convertidor de CC en CC 450 pueden crear una mejor adaptación con respecto a la impedancia de la antena receptora 434 y un mejor acoplamiento mutuo entre la antena receptora 434 y la antena transmisora 432.
[0049] Las autoinductancias (Ltx y Lrx), la inductancia mutua (m), y las resistencias de pérdida del modelo de transformador 430 pueden obtenerse a partir de las características de acoplamiento medidas o simuladas del par de antenas.
[0050] Puede mostrarse que, dada la inductancia mutua (m), y las pérdidas resistivas, R1 y R2 de las antenas transmisoras y receptoras, respectivamente, hay una carga óptima para antena receptora que maximizará la eficiencia de transferencia de potencia máxima. Esta carga óptima puede definirse como:
Reff = R1*[1+(omega*m)2/(R1*R2)]5
[0051] Típicamente, Reff puede estar en un intervalo de 1 a 20 ohmios. A través del uso del control de carga de CC, la carga RF vista por la bobina receptora 434 puede ajustarse a su valor más eficiente, ya que la inductancia mutua (m) varía debido a las razones que se han descrito anteriormente.
[0052] Otro uso para controlar la carga RF es que puede usarse una variación en la carga para controlar la potencia suministrada al dispositivo receptor. Esto puede ser a costa de algo de eficiencia, pero permite el usó máximo de la potencia disponible al servir una mezcla de dispositivos inalámbricos en diversos estados de carga.
[0053] Otro uso más para controlar la carga RF es que puede usarse una variación en la carga para ampliar el ancho de banda de la función de transferencia, cuyo resultado depende de la red de adaptación 420 entre una impedancia muy baja, o impedancia reactiva, el amplificador de potencia de transmisión 410, típico para los amplificadores de carga inalámbrica, y la antena transmisora 432. Este ajuste del ancho de banda puede funcionar mejor sobre una gran variación en la inductancia mutua (m) y la carga si el circuito de adaptación de entrada incluye una tercera inductancia sintonizada (no mostrada), acoplada solidariamente a la antena TX 432. En este caso, el ancho de banda aumentará linealmente con el aumento de la resistencia de carga RF si el amplificador de potencia tiene una impedancia fuente muy baja.
[0054] Los sistemas de carga inalámbrica existentes parecen ajenos al ancho de banda, ya que el ancho de banda permitido por FCC es bastante pequeño. Como se ha indicado anteriormente, el cambio de la carga para ampliar el ancho de banda puede reducir la eficiencia ligeramente desde su valor máximo, pero esto puede ser útil para mantener un sistema de carga funcional cuando puede ser necesario un aumento del ancho de banda. Aunque no es una opción sustancialmente deseable en la carga inalámbrica donde se requiere una alta eficiencia, este efecto de expansión del ancho de banda puede aplicarse a un sistema de comunicación de corto alcance donde la eficiencia es bastante menos importante.
[0055] El uso de una baja inductancia mutuamente acoplada a la antena transmisora 432 proporciona ventajas del sistema significativas sobre una adaptación pasiva más común. Este convertidor de CC en CC ajustado de la serie de entrada 450 da como resultado una segunda inversión de la impedancia, siendo la primera entre las antenas transmisoras y receptoras (432 y 434). Como resultado, cuando la impedancia de carga aumenta, la impedancia de entrada aumenta. Esto permite que la carga "oculte" el receptor del transmisor simplemente elevado la impedancia de carga del receptor. Este efecto puede repetirse ya que la conductancia de entrada puede ser una función lineal de la conductancia de carga.
[0056] Sin esta característica de encubrimiento, la carga del receptor tendrá que tener un corto para ocultar, usando un mecanismo, tal como el elemento 312 que se ha analizado anteriormente con referencia a la figura 5. Como resultado, una almohadilla de carga sin ningún dispositivo receptor presente aparecerá como un cortocircuito altamente ajustado en lugar de un circuito abierto. Además, cuando múltiples cargas descubiertas están presentes, la conductancia de entrada total para la antena transmisora 432 será la suma de las conductancias individuales de las antenas receptoras 434 y la potencia se distribuirá de acuerdo con su valor relativo.
[0057] Otra ventaja más de la adaptación de transformador de entrada ajustado es que la admitancia de entrada/salida resultante es real en la frecuencia (resonante) central y está coronada "plana" con respecto a la frecuencia. Por lo tanto, las primeras variaciones de orden en los parámetros del circuito afectan poco al proceso de transferencia de potencia.
[0058] Las FIG. 7A-7B muestran cartas de Smith que ilustran un cambio en la impedancia de entrada de un par de bobinas acopladas (adaptación inductiva no añadida) que responden a un cambio en la impedancia de CC en el dispositivo receptor. En las FIG. 7A y 7B, los círculos oscuros 510 y 520, respectivamente, indican círculos de resistencia constante.
[0059] Haciendo referencia a las FIG. 7A y 6, una impedancia de CC Rdc de aproximadamente 10,2 ohmios en la entrada al convertidor de CC en CC 450 da como resultado una impedancia de entrada compleja en la antena transmisora 432 de aproximadamente 50 ohmios y muy poca reactancia. Haciendo referencia a las FIG. 7B y 6, una impedancia de CC Rdc de aproximadamente 80 ohmios en la entrada al convertidor de CC en CC 450 da como resultado una impedancia de entrada compleja en la antena transmisora 432 de mucho menos de 50 ohmios, con muy poca reactancia.
[0060] Las FIG. 8A y 8B muestran diagramas de amplitud (530 y 540, respectivamente) que muestran un acoplamiento mejorado entre un par de bobinas acopladas que responden a un cambio en la impedancia de CC en el dispositivo receptor. En la FIG. 8A la amplitud en la frecuencia central de 13,56 MHz es aproximadamente -4,886 dB. Después de ajustar la impedancia de entrada con respecto al convertidor de CC en CC 450 (FIG. 6), la amplitud en la frecuencia central de 13,56 MHz se mejora a aproximadamente -3,225 dB, dando como resultado un mejor acoplamiento entre la antena receptora y la antena transmisora, que da como resultado más potencia transferida a la antena receptora.
[0061] Las FIG. 9A-9B muestran esquemas simplificados de dispositivos receptores que ilustran realizaciones ejemplares para ajustar la impedancia de CC en el dispositivo receptor. En ambas FIG. 9A y 9B, la antena receptora 304 alimenta un circuito de adaptación de impedancia ejemplar 320 que incluye los condensadores C1 y C2. Una salida del circuito de adaptación de impedancia 320 alimenta un simple rectificador 330 (como un ejemplo) que incluye los diodos D1 y D2 y el condensador C3 para convertir la frecuencia RF en una tensión de CC. Por supuesto, se contemplan muchos otros circuitos de adaptación de impedancia 320 y rectificadores 330 dentro del alcance de las realizaciones de la presente invención. Un convertidor de CC en CC 350 convierte la señal de entrada de CC 340 del rectificador en una señal de salida de CC 370 adecuada para su uso por un dispositivo receptor (no mostrado).
[0062] La FIG. 9A ilustra un sencillo aparato para mantener una impedancia puntual de potencia óptima en un sistema de transmisión de potencia inalámbrico. Un comparador 348 compara la señal de entrada de CC 340 con una referencia de tensión 345, que se selecciona de tal forma que, para una potencia esperada dada, la impedancia que se ve por el transmisor dará como resultado una cantidad máxima de potencia acoplada a la señal de salida de Cc 370. La salida 362 del comparador 348 alimenta el convertidor de CC en CC 350 con una señal para indicar si el convertidor de CC en CC 350 debe aumentar o disminuir su impedancia de CC de entrada. En realizaciones que usan un convertidor de conmutación de CC en CC 350, esta salida del comparador 362 puede convertirse en una señal de modulación por ancho de pulsos (PWM), que ajusta la impedancia de CC de entrada, como se explica a continuación. Este circuito de retroalimentación de tensión de entrada regula la impedancia de CC de entrada aumentando el ancho de pulso PWM según la tensión aumenta, disminuyendo de este modo la impedancia y la tensión.
[0063] La FIG. 9B ilustra un aparato ligeramente más complejo para mantener una impedancia puntual de potencia óptima en un sistema de transmisión de potencia inalámbrica. En la FIG. 9B, puede incluirse un detector de corriente 344 y puede usarse un multiplexor 346 para la conmutación si se muestrea una tensión o corriente en la señal de entrada de CC 340 por un procesador 360 en cualquier momento dado. En este sistema, la tensión (Vr) y la corriente (Ir) de la señal de entrada de CC 340 se miden, y una señal PWM 362 para el convertidor de CC en CC 350 puede variarse sobre un rango asignado previamente. El procesador 360 puede determinar que ancho de pulso para la señal PWM 362 produce la potencia máxima (es decir, la corriente por la tensión), que es una indicación de la mejor impedancia de entrada de CC. Este ancho de pulso determinado puede usarse durante su operación con el fin de transferir una cantidad óptima de potencia a la señal de salida de CC 370. Este proceso de muestreo y ajuste puede repetirse tanto como se desee para rastrear el cambio de las relaciones de acoplamiento, transmitir potencias o transmitir impedancias.
[0064] Como se ha indicado anteriormente, con el fin de obtener una potencia externa máxima a partir de una fuente con una resistencia o impedancia de salida finitas, la resistencia o la impedancia del receptor debe ser igual que en la fuente. En muchos casos, es deseable operar sistemas de potencia inalámbricos con el fin de maximizar la potencia recibida, para hacer un mejor uso de una fuente de potencia RF limitada.
[0065] Esta transferencia de potencia maximizada no siempre es la misma que la eficiencia máxima. En muchos casos, puede ser ventajoso operar la carga a una impedancia o resistencia mayor que igual para aumentar la eficiencia del sistema. En cualquier caso, sin embargo, el mantenimiento de una impedancia específica en el receptor puede ser útil para regular la cantidad de potencia transferida entre un transmisor y un receptor.
[0066] En sistema de potencia inalámbricos sencillos, puede no haber control de la impedancia de entrada; la carga de salida (a menudo una batería o dispositivo inalámbrico) puede ser el único excitador de la impedancia del sistema. Esto conduce a un ajuste de la impedancia del transmisor/receptor subóptima, con pérdidas consecuentes de transferencia de potencia, eficiencia, o una combinación de las mismas.
[0067] La impedancia de CC se define por (tensión/corriente). Por lo tanto, en cualquier corriente dada y una impedancia deseada, existe una tensión deseada = (corriente * impedancia deseada). Con un convertidor PWM, esta tensión deseada (y como resultado la impedancia deseada) puede conseguirse proporcionando un término de retroalimentación que compara la tensión de entrada con el término (corriente * impedancia deseada), y ajusta el ancho de pulso arriba o abajo para mantener este término.
[0068] Las FIG. 10A-10D muestran esquemas simplificados de dispositivos receptores que ilustran realizaciones ejemplares para ajustar la impedancia de CC en el dispositivo receptor usando un convertidor de modulación por ancho de pulsos. En las FIG. 10A-10D, los elementos comunes incluyen la antena receptora 304 que alimenta un circuito de adaptación de impedancia 320. Una salida del circuito de adaptación de impedancia 320 alimenta un simple rectificador, que se muestra simplemente como el diodo D3. Por supuesto, se contemplan muchos otros circuitos de adaptación de impedancia 320 y rectificadores dentro del alcance de las realizaciones de la presente invención. Un convertidor de CC en CC 350 convierte la señal de entrada de CC 340 del rectificador en una señal de salida de CC 370 adecuada para su uso por un dispositivo receptor (no mostrado). Un procesador 360 muestrea los parámetros de la señal de entrada de CC 340, la señal de salida de CC 370, o una combinación de las mismas, y genera una señal PWM 362 para el convertidor de CC en CC 350. El convertidor de CC en CC 350 es un convertidor en modo conmutación en el que la señal PWM 362 controla un conmutador S1 para cargar periódicamente un circuito de filtrado que incluye el diodo D4, el inductor LI y el condensador C4. Los expertos en la técnica reconocerán que el convertidor de CC en CC 350 como un convertidor reductor, que convierte una tensión en la señal de entrada de CC 340 en una tensión inferior en la señal de salida de CC 370. Aunque no se muestra, los expertos en la técnica también reconocerán que el convertidor de CC en CC en modo conmutador 350 también puede implementarse como un convertidor elevador para generar una señal de salida de CC 370 con una tensión que es mayor que la tensión en la señal de entrada de CC 340.
[0069] En la mayor parte de los casos, un requisito para regular la tensión de salida del receptor de potencia inalámbrico será más importante. Para la carga de la batería, por ejemplo, a menudo es importante no exceder una corriente de salida máxima o una tensión de salida máxima. Esto significa que con frecuencia el término de control de la tensión de salida dominará las reglas de controla para el ancho de pulso de la señal PWM 362.
[0070] Sin embargo, en muchos casos, la batería aceptará potencia a menos de una tasa máxima. Como un ejemplo, durante la carga de una batería de ion litio a tasas menores que su capacidad nominal, la tensión estará por debajo de la tensión de batería máxima y la corriente puede limitarse por la potencia máxima disponible a partir del sistema de potencia inalámbrico. Durante estos casos, el término de control de la impedancia secundario se hará dominante en el ajuste del ancho de pulso de la señal PWM con el fin de controlar la impedancia de CC.
[0071] Las realizaciones ejemplares de la divulgación proporcionan control de la impedancia de CC usando un término de retroalimentación en el convertidor de CC en CC en modo conmutación 350 para simular eficazmente una resistencia de CC de estado estable en el receptor. En otras palabras, la impedancia de CC se controla ajustando la frecuencia o el ciclo de trabajo de la señal PWM 362 con respecto al convertidor de CC en CC en modo conmutación 350 para simular una impedancia de CC dada.
[0072] La retroalimentación para el sistema se crea muestreando una o más características de la señal de entrada de CC 340, la señal de salida de CC 370, o una combinación de las mismas mediante un procesador 360. El procesador 360 usa entonces esta información muestreada, posiblemente junto con otra información, tal como transferencia de potencia esperada y eficiencia del convertidor de CC en CC 350 para ajustar la señal PWM 362, que ajusta la señal de entrada de CC y la señal de salida de CC para cerrar el bucle de retroalimentación.
[0073] Las diferencias individuales de los que se muestrea y cómo se generan los parámetros de la señal PWM se analizan con referencia a cuatro realizaciones ejemplares diferentes ilustradas como las FIG. 10A-10D.
[0074] En la FIG. 10A, el procesador 360 muestrea una tensión de la señal de entrada de CC 340, una corriente de la señal de entrada de CC 340, una tensión de la señal de salida de CC 370, y una corriente de la señal de salida de CC 370.
[0075] En algunas realizaciones, puede usarse un detector de tensión 342 entre la señal de entrada de CC 340 y el procesador 360. De forma análoga, puede usarse un detector de tensión 372 entre la señal de salida de CC 370 y el procesador 360. En otras realizaciones, los detectores de tensión 342 y 372 pueden no ser necesarios y el procesador 460 puede muestrear directamente tensiones en la señal de entrada de CC 340 y la señal de salida de CC 370.
[0076] En algunas realizaciones, puede usarse un detector de corriente 344 entre la señal de entrada de CC 340 y el procesador 360. De forma análoga, puede usarse un detector de corriente 374 entre la señal de salida de CC 370 y el procesador 360. En otras realizaciones, los detectores de corriente 344 y 374 pueden no ser necesarios y el procesador 360 puede muestrear directamente la corriente en la señal de entrada de CC 340 y la señal de salida de CC 370.
[0077] Con las mediciones de corriente y tensión de tanto la señal de entrada de CC 340 como de la señal de salida de CC 370, el procesador 360 puede determinar todos los parámetros necesarios para el sistema de conversión de potencia. La entrada de potencia en la señal de entrada de CC 340 puede determinarse como la tensión de entrada por la corriente de entrada. La potencia de salida en la señal de salida de CC 370 puede determinarse como la tensión de salida por la corriente de salida. La eficiencia del convertidor de CC en CC 350 puede determinarse como una diferencia entre la potencia de salida y la entrada de potencia. La impedancia de CC de la señal de entrada de CC 340 puede determinarse como la tensión de entrada dividida por la corriente de entrada.
[0078] El procesador 360 puede muestrear periódicamente todas las entradas (por ejemplo, aproximadamente una vez cada segundo, u otro periodo adecuado) para determinar la potencia de salida en ese momento. En respuesta, el procesador 360 puede cambiar el ciclo de trabajo de la señal PWM 362, que cambiará la impedancia de CC de la señal de entrada de CC 340. Por ejemplo, un ancho de pulso estrecho en la señal PWM 362 permite que la tensión de entrada permanezca relativamente alta y la corriente de entrada permanezca relativamente baja, lo que conduce a una mayor impedancia de CC para la señal de entrada de CC 340. Por el contrario, un ancho de pulso más amplio en la señal PWM 362 permite que se extraiga más corriente de la señal de entrada de CC 340, dando como resultado una tensión de entrada inferior y una impedancia de CC inferior para la señal de entrada de CC 340.
[0079] El muestreo y el ajuste periódico crea el bucle de retroalimentación que puede encontrar una impedancia de CC óptima para la señal de entrada de CC 340, y como resultado, una potencia óptima para la señal de salida de CC 370. A continuación, se analizan los detalles para encontrar estos valores con referencia a la FIG. 11.
[0080] En la FIG. 10B, el procesador 360 muestrea una tensión de la señal de entrada de CC 340, una tensión de la señal de salida de CC 370, y una corriente de la señal de salida de CC 370. Como se ha explicado anteriormente con referencia a la FIG. 10A, el detector de tensión 342, el detector de tensión 372, y el detector de corriente 374 puede incluirse entre sus señales respectivas y el procesador 360 dependiendo de la realización.
[0081] Al igual que en la FIG. 10A, en la FIG. 10B, la potencia de salida en la señal de salida de CC 370 puede determinarse como la tensión de salida por la corriente de salida. En muchos casos, la eficiencia del convertidor de CC en CC 350 se conocerá y será relativamente constante sobre el rango operativo deseado. Por lo tanto, el procesador 360 puede calcular la potencia de entrada en la señal de entrada de CC 340 basándose en la potencia de salida y una estimación de la eficiencia en el punto operativo de la corriente para el convertidor de CC en CC 350. Con la potencia de entrada estimada, y la tensión de entrada medida, puede determinarse la impedancia de CC de la señal de entrada de CC 340. Una vez más, el muestreo y el ajuste periódicos crea el bucle de retroalimentación que puede encontrar una impedancia de CC óptima para la señal de entrada de CC 340, y como resultado, una potencia óptima para la señal de salida de CC 370.
[0082] En la FIG. 10C, el procesador 360 muestrea una tensión de la señal de entrada de CC 340 y una corriente de la señal de entrada de CC 340. Como se ha explicado anteriormente con referencia a la FIG. 10A, el detector de tensión 342 y el detector de corriente 344 pueden incluirse entre la señal de entrada de CC 340 y el procesador 360 dependiendo de la realización.
[0083] En la FIG. 10C, la potencia de entrada en la señal de entrada de CC 340 puede determinarse como la tensión de entrada por la corriente de entrada y la impedancia de CC de la señal de entrada de CC 340 puede determinarse como la tensión de entrada dividida por la corriente de entrada. Al igual que en la FIG. 10B, en la FIG. 10C la eficiencia del convertidor de CC en CC 350 se conocerá y será relativamente constante sobre el intervalo operativo deseado. Por lo tanto, el procesador 360 puede calcular la potencia de salida en la señal de salida de CC 370 basándose en la potencia de entrada y una estimación de la eficiencia en el punto de operativo de la corriente para convertidor de CC en CC 350. Una vez más, el muestreo y el ajuste periódicos crea el bucle de retroalimentación que puede encontrar una impedancia de CC óptima para la señal de entrada de CC 340, y como resultado, una potencia óptima para la señal de salida de CC 370.
[0084] En la FIG. 10D, el procesador 360 muestrea únicamente la tensión de la señal de entrada de CC 340. Como se ha explicado anteriormente con referencia a la FIG. 10A, el detector de tensión 342 puede incluirse entre la señal de entrada de CC 340 y el procesador 360 dependiendo de la realización.
[0085] En la FIG. 10D, puede hacerse una estimación predeterminada en cuanto a la cantidad de potencia que se espera recibir a través de la antena receptora y el rectificador y administrada en la señal de entrada de CC. Usando esta estimación predeterminada, la impedancia de CC de la señal de entrada de CC 340 puede determinarse con respecto a la tensión de entrada. Al igual que con la FIG. 10B, en la FIG. 10C la eficiencia del convertidor de CC en CC 350 se conocerá y será relativamente constante por el rango operativo deseado. Por lo tanto, el procesador 360 puede estimar la potencia de salida en la señal de salida de CC 370 basándose en la estimación de potencia de entrada predeterminada y una estimación de la eficiencia en el punto operativo de la corriente para el convertidor de CC en CC 350. Una vez más, el muestreo y el ajuste periódicos crea el bucle de retroalimentación que puede encontrar una impedancia de CC óptima para la señal de entrada de CC 340, y como resultado, una potencia óptima para la señal de salida de CC 370.
[0086] La estimación de potencia predeterminada puede ser un valor fijo programado en el dispositivo receptor o puede comunicarse al dispositivo receptor desde el dispositivo transmisor, que puede tener medios para determinar qué cantidad de la potencia transmitida se acoplará a este dispositivo receptor particular.
[0087] La FIG. 11 ilustra diversos parámetros de entrada y salida que pueden usarse al ajustar la impedancia de CC en el dispositivo receptor. Este gráfico representa un sistema que tiene una impedancia fuente específica, pero donde se permite que una resistencia de carga varíe sobre un amplio intervalo. Esta resistencia de carga se representa como la resistencia variable del convertidor de CC en CC 450 de la FIG. 6. Como alternativa, la resistencia de carga puede representarse por la impedancia de CC de la señal de entrada de CC 340 con respecto al convertidor de CC en CC 350 que se muestra en las FIG 9A-10D.
[0088] En la FIG. 11, se excita una impedancia fuente de 50 ohm por una señal con un acoplamiento 1:1 de fuentecarga. La línea 620 muestra la corriente a través de la resistencia de carga. Se aprecia que según aumenta la impedancia de carga, la corriente disminuye debido a la Ley de Ohm. La línea 610 muestra la tensión a través de la resistencia de carga. Se aprecia que según la impedancia de carga aumenta, la tensión aumenta también por la ecuación divisora de la resistencia.
[0089] Estos dos conjuntos de datos para la corriente y la tensión de la resistencia de carga dan la potencia a través de la resistencia de carga, como se muestra por la línea 640. Ha de apreciarse que la potencia tiene picos en una cierta impedancia de carga. En este caso (acoplamiento de carga 1:1), este punto de potencia máxima se produce cuando la impedancia de carga es igual a, o está cerca, de la impedancia fuente. Si el acoplamiento es diferente, el punto de potencia pico puede desplazarse también.
[0090] La línea 650 representa una configuración PWM (fuera de 100) que tiene una relación inversa con respecto a la impedancia de salida. Ésta es la función mostrada por la mayor parte de los convertidores reductores. Como puede observarse, hay una configuración PWM ideal que maximiza la potencia recibida por la resistencia de carga. Los esquemas de control de la impedancia de potencia inalámbrica usados con referencia a las realizaciones ejemplares analizadas en el presente documento intentan descubrir y mantener esta configuración PWM ideal.
[0091] Por supuesto, como se ha indicado anteriormente, no siempre es necesaria una transferencia de potencia óptima. Usando las realizaciones de la invención que se ha analizado anteriormente en las FIG. 6 y 9A-10D, la impedancia de CC de la señal de entrada de CC 340, y como resultado la impedancia de CA de la antena receptora pueden desajustarse eficazmente a partir de una transferencia de potencia óptima para limitar la cantidad de potencia entregada en la señal de salida de CC 370. Esta limitación de potencia puede ser útil cuando el dispositivo receptor no puede aceptar la potencia máxima que puede entregarse a partir del convertidor de CC en CC 350. Algunos ejemplos no limitantes de esta necesidad de potencia reducida pueden encontrarse cuando una batería en el dispositivo receptor está cargando casi completamente o el convertidor de CC en CC 350 puede entregar más potencia que una capacidad nominal para la batería.
[0092] Los expertos en la técnica entenderán que la información y señales pueden representarse usando cualquiera de una diversidad de tecnologías y técnicas diferentes. Por ejemplo, datos, instrucciones, comandos, información, señales, bits, símbolos y chips, que pueden haber sido mencionados a lo largo de la descripción anterior, pueden representarse mediante tensiones, corrientes, ondas electromagnéticas, campos o partículas magnéticas, campos o partículas ópticas, o cualquier combinación de los mismos.
[0093] Los expertos en la técnica apreciarán además que los diversos bloques lógicos, módulos, circuitos y etapas de algoritmo ilustrativos descritos en relación con las realizaciones ejemplares dadas a conocer en el presente documento pueden implementarse como hardware electrónico, software informático o combinaciones de ambos. Para ilustrar claramente esta intercambiabilidad de hardware y software, anteriormente se han descrito diversos componentes, bloques, módulos, circuitos y etapas ilustrativos, generalmente, en términos de su funcionalidad. Si tal funcionalidad se implementa como hardware o software, dependerá de la aplicación particular y de las limitaciones de diseño impuestas sobre todo el sistema. Los expertos en la técnica pueden implementar la funcionalidad descrita de diferentes maneras para cada aplicación particular, pero no debe interpretarse que tales decisiones de implementación suponen un apartamiento del alcance de las realizaciones ejemplares de la invención.
[0094] Los diversos bloques lógicos, módulos y circuitos ilustrativos descritos en relación con las realizaciones ejemplares dadas a conocer en el presente documento pueden implementarse o realizarse con un procesador de propósito general, con un procesador de señales digitales (DSP), con un circuito integrado de aplicación específica (ASIC), con una matriz de puertas de campo programable (FPGA) o con otro dispositivo de lógica programable, lógica de transistor o de puertas discretas, componentes de hardware discretos, o con cualquier combinación de los mismos diseñada para realizar las funciones descritas en el presente documento. Un procesador de propósito general puede ser un microprocesador, pero, como alternativa, el procesador puede ser cualquier procesador, controlador, microcontrolador o máquina de estados convencional. Un procesador también puede implementarse como una combinación de dispositivos informáticos, por ejemplo, una combinación de un DSP y un microprocesador, una pluralidad de microprocesadores, uno o más microprocesadores junto con un núcleo de DSP o cualquier otra configuración de este tipo.
[0095] Las etapas de un procedimiento o algoritmo descrito en relación con las realizaciones ejemplares dadas a conocer en el presente documento pueden realizarse directamente en hardware, en un módulo de software ejecutado por un procesador o en una combinación de los dos. Un módulo de software puede residir en memoria de acceso aleatorio (RAM), memoria flash, memoria de sólo lectura (ROM), memoria ROM programable borrable (EPROM), memoria ROM programable borrable eléctricamente (EEPROM), registros, un disco duro, un disco extraíble, un CD-ROM o en cualquier otra forma de medio de almacenamiento conocida en la técnica. Un medio de almacenamiento ejemplar está acoplado al procesador de manera que el procesador pueda leer información de, y escribir información en, los medios de almacenamiento. Como alternativa, los medios de almacenamiento puede ser una parte integrante del procesador. El procesador y los medios de almacenamiento pueden residir en un ASIC. El ASIC puede residir en un terminal de usuario. Como alternativa, el procesador y los medios de almacenamiento pueden residir como componentes discretos en un terminal de usuario.
[0096] En una o más realizaciones ejemplares, las funciones descritas pueden implementarse en hardware, software, firmware o en cualquier combinación de los mismos. Si se implementan en software, las funciones pueden almacenarse en o transmitirse como una o más instrucciones o código en un medio legible por ordenador. Los medios legibles por ordenador incluyen tanto medios de almacenamiento informáticos como medios de comunicación, incluyendo cualquier medio que facilite la transferencia de un programa informático de un lugar a otro. Un medio de almacenamiento puede ser cualquier medio disponible al que pueda accederse mediante un ordenador. A modo de ejemplo, y no de manera limitativa, tales medios legibles por ordenador pueden comprender RAM, ROM, EEPROM, CD-ROM u otro almacenamiento de disco óptico, almacenamiento de disco magnético u otros dispositivos de almacenamiento magnético, o cualquier otro medio que pueda usarse para transportar o almacenar código de programa deseado en forma de instrucciones o estructuras de datos y al que pueda accederse mediante un ordenador. Además, cualquier conexión puede denominarse de manera apropiada medio legible por ordenador. Por ejemplo, si el software se transmite desde un sitio web, un servidor u otra fuente remota usando un cable coaxial, un cable de fibra óptica, un par trenzado, una línea de abonado digital (DSL) o tecnologías inalámbricas tales como infrarrojos, radio y microondas, entonces el cable coaxial, el cable de fibra óptica, el par trenzado, la DSL o las tecnologías inalámbricas tales como infrarrojos, radio y microondas se incluyen en la definición de medio. Los discos, tal y como se usan en el presente documento, incluyen discos compactos (CD), discos de láser, discos ópticos, discos versátiles digitales (DVD), discos flexibles y discos Blu-ray, donde los discos normalmente reproducen datos de manera magnética, así como de manera óptica con láser. Las combinaciones de lo anterior también deben incluirse dentro del alcance de los medios legibles por ordenador.
[0097] La anterior descripción de las realizaciones ejemplares dadas a conocer se proporciona para permitir que cualquier experto en la técnica realice o use la presente invención. Diversas modificaciones de estas realizaciones ejemplares resultarán fácilmente evidentes a los expertos en la técnica, y los principios genéricos definidos en el presente documento pueden aplicarse a otras realizaciones sin alejarse del alcance de la invención. Por tanto, la presente invención no pretende limitarse a las realizaciones mostradas en el presente documento, sino que se le concede el alcance más amplio compatible con los principios y características novedosas dados a conocer en el presente documento. La invención está definida por el alcance de las reivindicaciones adjuntas.

Claims (13)

REIVINDICACIONES
1. Un receptor de potencia inalámbrico, que comprende:
medios (304) para recibir una señal de potencia inalámbrica desde un transmisor de potencia inalámbrico, comprendiendo los medios receptores un circuito resonante (320) que tiene una impedancia;
medios (D3) para rectificar la señal de potencia inalámbrica a una señal de entrada en corriente continua; medios (350) para convertir la señal de entrada de corriente continua en una señal de salida de corriente continua, teniendo los medios para convertir una impedancia del convertidor de entrada; y caracterizado por medios (360) para modificar una impedancia de corriente alterna del receptor de potencia inalámbrico, comprendiendo los medios para modificar medios para determinar, basados, al menos en parte, en la señal de entrada de corriente continua, la impedancia del convertidor de entrada, medios para comparar la impedancia del convertidor de entrada con una impedancia deseada, y medios para ajustar, basados, al menos en parte, en la comparación, la impedancia del convertidor de entrada.
2. El receptor de potencia inalámbrico de la reivindicación 1, en el que los medios para ajustar la impedancia del convertidor de entrada comprenden además medios para ajustar una salida de potencia de la señal de salida de corriente continua desde los medios para convertir basándose en parte en uno o más de una tensión de la señal de entrada de corriente continua y una corriente de la señal de entrada de corriente continua.
3. El receptor de potencia inalámbrico de la reivindicación 1, en el que los medios para ajustar la impedancia del convertidor de entrada de los medios para convertir comprenden además medios para ajustar la salida de potencia de la señal de salida en corriente continua desde los medios para convertir basándose en parte en una o más de una tensión de la señal de entrada de corriente continua, una tensión de la señal de salida de corriente continua, y una corriente de la señal de entrada de corriente continua y una corriente de la señal de salida de corriente continua.
4. El receptor de potencia inalámbrico de la reivindicación 1, que comprende además medios para comparar la señal de entrada de corriente continua con una señal de referencia de tensión para determinar un valor, los medios para ajustar la impedancia del convertidor de entrada de los medios para convertir configurados para ajustar la impedancia del convertidor de entrada de los medios para convertir basándose en parte en el valor.
5. El receptor de potencia inalámbrico de la reivindicación 1, que comprende además medios para ajustar un ancho de banda de recepción de la impedancia del circuito resonante.
6. El receptor de potencia inalámbrico de la reivindicación 1, que comprende además medios para ajustar la impedancia del convertidor de entrada basándose en una señal de control, la impedancia del circuito resonante que responde a los ajustes en la impedancia del convertidor de entrada y medios para ajustar la señal de control basándose, al menos en parte, en la señal de entrada en corriente continua.
7. El receptor de potencia inalámbrico de la reivindicación 6, que comprende además un medio (360) para procesar, estando el medio para procesar configurado para:
recibir la señal de entrada en corriente continua;
muestrear la señal de entrada de corriente continua para obtener un valor; y
ajustar un ciclo de trabajo de la señal de control basándose en parte en el valor muestreado, la impedancia del circuito resonante que responde al ajuste en el ciclo de trabajo de la señal de control.
8. El receptor de potencia inalámbrico de la reivindicación 6, que comprende además un medio para procesar configurado para:
recibir la señal de entrada de corriente continua; y
muestrear la señal de entrada de corriente continua para obtener un valor, en el que el ajuste de la señal de control se basa en parte en el valor muestreado de la señal de entrada de corriente continua para reducir una salida de potencia en la señal de salida de corriente continua a un nivel de potencia inferior a un nivel de potencia máxima permitido por un dispositivo de carga configurado para recibir la señal de salida de corriente continua.
9. El receptor de potencia inalámbrico de la reivindicación 6, en el que los medios para ajustar la señal de control están configurados para ajustar la señal de control basándose en parte en una de una tensión de la señal de salida de corriente continua y una corriente de la señal de salida de corriente continua.
10. Un procedimiento, que comprende:
recibir una señal de potencia inalámbrica desde un transmisor de potencia inalámbrico en un receptor de potencia inalámbrico que incluye un circuito resonante que tiene una impedancia;
rectificar la señal de potencia inalámbrica a una señal de entrada de corriente continua;
convertir la señal de entrada de corriente continua en una señal de salida de corriente continua en un convertidor que tiene una impedancia del convertidor de entrada; y
caracterizado por modificar una impedancia de corriente alterna del receptor de potencia inalámbrico determinando, basándose, al menos en parte, en la señal de entrada de corriente continua, la impedancia del convertidor de entrada, comparar la impedancia del convertidor de entrada con una impedancia deseada y ajustar, basándose en parte en la comparación, la impedancia del convertidor de entrada.
11. El procedimiento de la reivindicación 10, en el que ajustar la impedancia del convertidor de entrada comprende ajustar una salida de potencia de la señal de salida de corriente continua basándose en parte en uno o más de una tensión de la señal de entrada de corriente continua y una corriente de la señal de entrada de corriente continua.
12. El procedimiento de la reivindicación 10, en el que ajustar la impedancia del convertidor de entrada comprende ajustar la salida de potencia de la señal de salida de corriente continua basándose en parte en una o más de una tensión de la señal de entrada de corriente continua, una tensión de la señal de salida de corriente continua, una corriente de la señal de entrada de corriente continua y una corriente de la señal de salida de corriente continua.
13. El procedimiento de la reivindicación 10, en el que ajustar la impedancia del convertidor de entrada comprende ajustar la salida de potencia de la señal de salida de corriente continua basándose en parte en una comparación de la señal de entrada de corriente continua con una señal de referencia de tensión.
ES15183000T 2009-03-20 2010-03-22 Ajuste de impedancia adaptativo de convertidor de CC-CC en una transmisión de potencia inalámbrica Active ES2705081T3 (es)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16215709P 2009-03-20 2009-03-20
US17646809P 2009-05-07 2009-05-07
US12/713,123 US8338991B2 (en) 2009-03-20 2010-02-25 Adaptive impedance tuning in wireless power transmission

Publications (1)

Publication Number Publication Date
ES2705081T3 true ES2705081T3 (es) 2019-03-21

Family

ID=42229293

Family Applications (2)

Application Number Title Priority Date Filing Date
ES15183000T Active ES2705081T3 (es) 2009-03-20 2010-03-22 Ajuste de impedancia adaptativo de convertidor de CC-CC en una transmisión de potencia inalámbrica
ES10711503.2T Active ES2553138T3 (es) 2009-03-20 2010-03-22 Ajuste de impedancia adaptativo en una transmisión de potencia inalámbrica

Family Applications After (1)

Application Number Title Priority Date Filing Date
ES10711503.2T Active ES2553138T3 (es) 2009-03-20 2010-03-22 Ajuste de impedancia adaptativo en una transmisión de potencia inalámbrica

Country Status (9)

Country Link
US (2) US8338991B2 (es)
EP (2) EP2409378B1 (es)
JP (2) JP5612069B2 (es)
KR (2) KR101714335B1 (es)
CN (2) CN104901432B (es)
ES (2) ES2705081T3 (es)
HU (1) HUE042668T2 (es)
TW (1) TW201106572A (es)
WO (1) WO2010108191A1 (es)

Families Citing this family (869)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
CN103647137B (zh) 2008-05-14 2015-11-18 麻省理工学院 包括干涉增强的无线能量传输
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
US8686598B2 (en) 2008-09-27 2014-04-01 Witricity Corporation Wireless energy transfer for supplying power and heat to a device
US8471410B2 (en) 2008-09-27 2013-06-25 Witricity Corporation Wireless energy transfer over distance using field shaping to improve the coupling factor
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8304935B2 (en) 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8466583B2 (en) 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8569914B2 (en) 2008-09-27 2013-10-29 Witricity Corporation Wireless energy transfer using object positioning for improved k
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US8461720B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8461721B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using object positioning for low loss
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US8692410B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Wireless energy transfer with frequency hopping
US8324759B2 (en) 2008-09-27 2012-12-04 Witricity Corporation Wireless energy transfer using magnetic materials to shape field and reduce loss
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US8487480B1 (en) 2008-09-27 2013-07-16 Witricity Corporation Wireless energy transfer resonator kit
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US8587155B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using repeater resonators
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8476788B2 (en) 2008-09-27 2013-07-02 Witricity Corporation Wireless energy transfer with high-Q resonators using field shaping to improve K
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8552592B2 (en) 2008-09-27 2013-10-08 Witricity Corporation Wireless energy transfer with feedback control for lighting applications
AU2009296413A1 (en) 2008-09-27 2010-04-01 Witricity Corporation Wireless energy transfer systems
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US8461722B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape field and improve K
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
WO2010039967A1 (en) 2008-10-01 2010-04-08 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8338991B2 (en) * 2009-03-20 2012-12-25 Qualcomm Incorporated Adaptive impedance tuning in wireless power transmission
JP5362437B2 (ja) * 2009-05-12 2013-12-11 長野日本無線株式会社 電力伝送システム
JP5459058B2 (ja) * 2009-11-09 2014-04-02 株式会社豊田自動織機 共鳴型非接触電力伝送装置
JP2011138214A (ja) * 2009-12-25 2011-07-14 Toshiba Corp 半導体集積回路装置
US8779745B2 (en) * 2010-03-01 2014-07-15 National Semiconductor Corporation Three-quarter bridge power converters for wireless power transfer applications and other applications
US9413197B2 (en) 2010-05-31 2016-08-09 Fu Da Tong Technology Co., Ltd. Inductive power supply system and intruding metal detection method thereof
US9412512B2 (en) 2010-06-03 2016-08-09 Powermat Technologies Ltd. Inductive charging
KR101394963B1 (ko) * 2010-07-29 2014-05-16 한국전자통신연구원 무선 전력 송신기, 무선 전력 수신기, 및 그것들을 이용한 무선 전력 전송 방법
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
TWI428611B (zh) * 2010-09-10 2014-03-01 Ind Tech Res Inst 零偏壓式功率偵測器
US9337664B2 (en) * 2010-12-16 2016-05-10 Qualcomm Incorporated Wireless power receiver circuitry
US9899882B2 (en) * 2010-12-20 2018-02-20 Qualcomm Incorporated Wireless power peer to peer communication
KR20120069349A (ko) * 2010-12-20 2012-06-28 삼성전자주식회사 스위칭 손실을 줄이는 직류-직류 전압 변환기, 상기 직류-직류 전압 변환기를 포함하는 무선전력 수신 장치
FI20100427L (fi) * 2010-12-21 2012-06-23 Harri Heikki Tapani Elo Menetelmä ja laite samanaikaista tasasuuntausta, säätöä ja tehokertoimen korjausta varten
US9831687B2 (en) 2011-02-01 2017-11-28 Fu Da Tong Technology Co., Ltd. Supplying-end module for induction-type power supply system and signal analysis circuit therein
TWI570427B (zh) 2015-10-28 2017-02-11 富達通科技股份有限公司 感應式電源供應器及其金屬異物檢測方法
US9671444B2 (en) 2011-02-01 2017-06-06 Fu Da Tong Technology Co., Ltd. Current signal sensing method for supplying-end module of induction type power supply system
TWI524622B (zh) * 2014-06-06 2016-03-01 富達通科技股份有限公司 感應式電源供應器之供電模組及其資料判讀方法
US9628147B2 (en) 2011-02-01 2017-04-18 Fu Da Tong Technology Co., Ltd. Method of automatically adjusting determination voltage and voltage adjusting device thereof
TWI568125B (zh) 2015-01-14 2017-01-21 富達通科技股份有限公司 感應式電源供應器之供電模組及其電壓測量方法
US10056944B2 (en) 2011-02-01 2018-08-21 Fu Da Tong Technology Co., Ltd. Data determination method for supplying-end module of induction type power supply system and related supplying-end module
US10615645B2 (en) * 2011-02-01 2020-04-07 Fu Da Tong Technology Co., Ltd Power supply device of induction type power supply system and NFC device identification method of the same
US10630113B2 (en) * 2011-02-01 2020-04-21 Fu Da Tong Technology Co., Ltd Power supply device of induction type power supply system and RF magnetic card identification method of the same
US10038338B2 (en) * 2011-02-01 2018-07-31 Fu Da Tong Technology Co., Ltd. Signal modulation method and signal rectification and modulation device
US9600021B2 (en) 2011-02-01 2017-03-21 Fu Da Tong Technology Co., Ltd. Operating clock synchronization adjusting method for induction type power supply system
KR20120097239A (ko) * 2011-02-24 2012-09-03 삼성전기주식회사 무선 전력 전송 시스템
US20120223590A1 (en) * 2011-03-02 2012-09-06 Qualcommm Incorporated Reducing heat dissipation in a wireless power receiver
US9887583B2 (en) * 2011-03-10 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Power-receiving device, wireless power-feeding system including power-receiving device, and wireless communication system including power-receiving device
KR101198006B1 (ko) 2011-03-23 2012-11-05 삼성전기주식회사 무선 전력 송신 장치 및 무선 전력 송수신 장치
US9166562B2 (en) 2013-02-25 2015-10-20 Qualcomm Incorporated Impedance transformation network for improved driver circuit performance
US10381874B2 (en) 2011-03-25 2019-08-13 Qualcomm Incorporated Filter for improved driver circuit efficiency and method of operation
CN103748764A (zh) 2011-05-13 2014-04-23 三星电子株式会社 无线电力传输系统中的发送器和接收器以及发送器和接收器无线发送/接收收发电力的方法
US9509166B2 (en) * 2011-05-16 2016-11-29 Samsung Electronics Co., Ltd. Apparatus and method for wireless power transmission
US9444247B2 (en) * 2011-05-17 2016-09-13 Samsung Electronics Co., Ltd. Apparatus and method of protecting power receiver of wireless power transmission system
KR102012684B1 (ko) * 2011-05-31 2019-08-26 삼성전자주식회사 무선 전력을 이용한 통신 장치 및 방법
US8604765B2 (en) * 2011-06-06 2013-12-10 National Instruments Corporation Resistance simulation and common mode rejection for digital source-measure units
JP5338862B2 (ja) * 2011-06-29 2013-11-13 株式会社ダイフク 無接触給電設備
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
EP2736206B1 (en) * 2011-07-20 2020-09-02 LG Electronics Inc. Two-way communication using wireless power signal
CA2844062C (en) 2011-08-04 2017-03-28 Witricity Corporation Tunable wireless power architectures
EP2745379B1 (en) * 2011-08-16 2019-10-16 Signify Holding B.V. A capacitive contactless powering system
CN103875159B (zh) 2011-09-09 2017-03-08 WiTricity公司 无线能量传送系统中的外部物体检测
US20130062966A1 (en) 2011-09-12 2013-03-14 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
KR101933462B1 (ko) * 2011-10-19 2019-01-02 삼성전자주식회사 무선 전력의 크기를 조정하는 무선 전력 수신기
IN2014CN02821A (es) * 2011-10-21 2015-07-03 Qualcomm Inc
AU2012332131A1 (en) 2011-11-04 2014-05-22 Witricity Corporation Wireless energy transfer modeling tool
US20140252878A1 (en) * 2011-11-25 2014-09-11 Nokia Corporation Over-load protection of radio receivers
TWI613882B (zh) * 2011-12-16 2018-02-01 半導體能源研究所股份有限公司 直流對直流轉換器、受電裝置及供電系統
KR101254092B1 (ko) * 2011-12-21 2013-04-12 주식회사 스파콘 신호 검출장치 및 이를 구비한 무선 전력전송장치
JP5927582B2 (ja) * 2012-01-10 2016-06-01 パナソニックIpマネジメント株式会社 照明用非接触給電システム、および照明器具
KR101883742B1 (ko) * 2012-01-11 2018-07-31 삼성전자주식회사 무선 전력 송신기 및 그 제어 방법
KR101883655B1 (ko) * 2012-01-11 2018-08-01 삼성전자주식회사 무선 전력 수신기 및 그 제어 방법
US9417199B2 (en) * 2012-01-17 2016-08-16 Triune Systems, LLC Method and system of wireless power transfer foreign object detection
MX338023B (es) * 2012-01-23 2016-03-31 Univ Utah State Sistema inalambrico de transferencia de energia.
JP2015508987A (ja) 2012-01-26 2015-03-23 ワイトリシティ コーポレーションWitricity Corporation 減少した場を有する無線エネルギー伝送
US8933589B2 (en) 2012-02-07 2015-01-13 The Gillette Company Wireless power transfer using separately tunable resonators
TWI587597B (zh) * 2012-02-17 2017-06-11 Lg伊諾特股份有限公司 無線電力傳輸器,無線電力接收器,以及無線電力傳輸系統的電力傳輸方法
JP5620424B2 (ja) * 2012-03-06 2014-11-05 株式会社東芝 無線電力受電装置および無線電力送電装置
DE102012102007A1 (de) * 2012-03-09 2013-09-12 Infineon Technologies Ag Leistungsversorgungsvorrichtung zum Liefern einer Spannung aus einem elektromagnetischen Feld
US9407106B2 (en) 2012-04-03 2016-08-02 Qualcomm Incorporated System and method for wireless power control communication using bluetooth low energy
KR101925405B1 (ko) * 2012-04-12 2018-12-05 삼성전자주식회사 무선 에너지 수신 장치 및 방법, 무선 에너지 전송 장치
KR101428161B1 (ko) 2012-04-26 2014-08-07 엘지이노텍 주식회사 무선전력 수신장치 및 그의 전력 제어 방법
TWI618369B (zh) * 2012-05-10 2018-03-11 通路實業集團國際公司 測量無線感測器中之可變阻抗元件的系統與方法
KR101789195B1 (ko) * 2012-05-16 2017-10-26 한국전자통신연구원 공진 결합 무선 전력 수신기 및 송신기
US11621583B2 (en) 2012-05-21 2023-04-04 University Of Washington Distributed control adaptive wireless power transfer system
US20150280444A1 (en) * 2012-05-21 2015-10-01 University Of Washington Through Its Center For Commercialization Wireless power delivery in dynamic environments
US8827889B2 (en) * 2012-05-21 2014-09-09 University Of Washington Through Its Center For Commercialization Method and system for powering implantable devices
JP2013258878A (ja) * 2012-06-14 2013-12-26 Mitsubishi Electric Corp 整流器
JP6089464B2 (ja) 2012-06-25 2017-03-08 株式会社豊田自動織機 非接触電力伝送装置
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US9450449B1 (en) 2012-07-06 2016-09-20 Energous Corporation Antenna arrangement for pocket-forming
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US20140008993A1 (en) 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
KR101930805B1 (ko) * 2012-07-10 2018-12-20 삼성전자주식회사 무선 전력 수신 장치 및 방법
JP5728620B2 (ja) * 2012-07-25 2015-06-03 富士フイルム株式会社 電子機器の電源管理方法、電源管理プログラム、電子機器、給電装置
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9735701B2 (en) * 2012-08-03 2017-08-15 Mediatek Singapore Ptd. Ltd. Circuit and method for measuring available power in a wireless power system
US9275791B2 (en) 2012-08-31 2016-03-01 Qualcomm Incorporated Systems and methods for decoupling multiple wireless charging transmitters
US9170592B2 (en) * 2012-09-05 2015-10-27 Atmel Corporation Fully integrated voltage regulator using open loop digital control for optimum power stepping and slew rate
JP2014060864A (ja) * 2012-09-18 2014-04-03 Toyota Industries Corp 受電機器及び非接触電力伝送装置
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US20140084688A1 (en) * 2012-09-21 2014-03-27 Samsung Electronics Co. Ltd Method and apparatus for wireless power transmission
EP2720341B1 (en) 2012-10-12 2021-04-07 Samsung Electronics Co., Ltd Wireless Electric Power Receiver for Wirelessly Regulating Electric Power Using Switch
US9438062B2 (en) 2012-10-12 2016-09-06 Samsung Electronics Co., Ltd Wireless electric power receiver for wirelessly regulating electric power using switch
CN109969007A (zh) 2012-10-19 2019-07-05 韦特里西提公司 无线能量传输系统中的外来物检测
CN104885333B (zh) 2012-11-09 2018-05-15 加州理工学院 智能rf透镜效应:高效、动态和移动无线功率传输
US11843260B2 (en) 2012-11-09 2023-12-12 California Institute Of Technology Generator unit for wireless power transfer
US10003278B2 (en) 2013-11-22 2018-06-19 California Institute Of Technology Active CMOS recovery units for wireless power transmission
US11616520B2 (en) 2012-11-09 2023-03-28 California Institute Of Technology RF receiver
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9793740B2 (en) 2012-11-26 2017-10-17 Samsung Electronics Co., Ltd. Apparatus and method for charge control in wireless charging system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
CN103873102B (zh) * 2012-12-10 2016-07-06 联想(北京)有限公司 射频芯片、射频电路以及电子设备
US9831705B2 (en) 2012-12-12 2017-11-28 Qualcomm Incorporated Resolving communcations in a wireless power system with co-located transmitters
US9660478B2 (en) 2012-12-12 2017-05-23 Qualcomm Incorporated System and method for facilitating avoidance of wireless charging cross connection
CN104884965B (zh) * 2012-12-17 2017-09-08 爱德万测试公司 Rf探头
CN104937810B (zh) * 2012-12-18 2018-03-30 韩国科学技术院 能够通过调制接收端的有效负载电阻提高效率及功率传送的无线功率接收装置
US8829734B2 (en) 2013-01-06 2014-09-09 Glenn Gulak Method and system for maximum achievable efficiency in near-field coupled wireless power transfer systems
KR102039352B1 (ko) 2013-01-23 2019-11-04 삼성전자주식회사 무선 전력 송신기
US9553486B2 (en) 2013-03-04 2017-01-24 Hello Inc. Monitoring system and device with sensors that is remotely powered
US9438044B2 (en) 2013-03-04 2016-09-06 Hello Inc. Method using wearable device with unique user ID and telemetry system in communication with one or more social networks
US9159223B2 (en) 2013-03-04 2015-10-13 Hello, Inc. User monitoring device configured to be in communication with an emergency response system or team
US9662015B2 (en) 2013-03-04 2017-05-30 Hello Inc. System or device with wearable devices having one or more sensors with assignment of a wearable device user identifier to a wearable device user
US9367793B2 (en) 2013-03-04 2016-06-14 Hello Inc. Wearable device with magnets distanced from exterior surfaces of the wearable device
US9420857B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with interior frame
US20140246502A1 (en) 2013-03-04 2014-09-04 Hello Inc. Wearable devices with magnets encased by a material that redistributes their magnetic fields
US9737214B2 (en) 2013-03-04 2017-08-22 Hello Inc. Wireless monitoring of patient exercise and lifestyle
US9298882B2 (en) 2013-03-04 2016-03-29 Hello Inc. Methods using patient monitoring devices with unique patient IDs and a telemetry system
US9634921B2 (en) 2013-03-04 2017-04-25 Hello Inc. Wearable device coupled by magnets positioned in a frame in an interior of the wearable device with at least one electronic circuit
US9436903B2 (en) 2013-03-04 2016-09-06 Hello Inc. Wearable device with magnets with a defined distance between adjacent magnets
US9406220B2 (en) 2013-03-04 2016-08-02 Hello Inc. Telemetry system with tracking receiver devices
US9149189B2 (en) 2013-03-04 2015-10-06 Hello, Inc. User or patient monitoring methods using one or more analysis tools
US9392939B2 (en) 2013-03-04 2016-07-19 Hello Inc. Methods using a monitoring device to monitor individual activities, behaviors or habit information and communicate with a database with corresponding individual base information for comparison
US9204798B2 (en) 2013-03-04 2015-12-08 Hello, Inc. System for monitoring health, wellness and fitness with feedback
US9430938B2 (en) 2013-03-04 2016-08-30 Hello Inc. Monitoring device with selectable wireless communication
US9526422B2 (en) 2013-03-04 2016-12-27 Hello Inc. System for monitoring individuals with a monitoring device, telemetry system, activity manager and a feedback system
US9420856B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with adjacent magnets magnetized in different directions
US9432091B2 (en) * 2013-03-04 2016-08-30 Hello Inc. Telemetry system with wireless power receiver and monitoring devices
US9320434B2 (en) 2013-03-04 2016-04-26 Hello Inc. Patient monitoring systems and messages that send alerts to patients only when the patient is awake
US9848776B2 (en) 2013-03-04 2017-12-26 Hello Inc. Methods using activity manager for monitoring user activity
US9462856B2 (en) 2013-03-04 2016-10-11 Hello Inc. Wearable device with magnets sealed in a wearable device structure
US9398854B2 (en) 2013-03-04 2016-07-26 Hello Inc. System with a monitoring device that monitors individual activities, behaviors or habit information and communicates with a database with corresponding individual base information for comparison
US9704209B2 (en) 2013-03-04 2017-07-11 Hello Inc. Monitoring system and device with sensors and user profiles based on biometric user information
US9357922B2 (en) 2013-03-04 2016-06-07 Hello Inc. User or patient monitoring systems with one or more analysis tools
US9530089B2 (en) 2013-03-04 2016-12-27 Hello Inc. Wearable device with overlapping ends coupled by magnets of a selected width, length and depth
US9330561B2 (en) 2013-03-04 2016-05-03 Hello Inc. Remote communication systems and methods for communicating with a building gateway control to control building systems and elements
US9345403B2 (en) 2013-03-04 2016-05-24 Hello Inc. Wireless monitoring system with activity manager for monitoring user activity
US9427160B2 (en) 2013-03-04 2016-08-30 Hello Inc. Wearable device with overlapping ends coupled by magnets positioned in the wearable device by an undercut
US9424508B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with magnets having first and second polarities
US9361572B2 (en) 2013-03-04 2016-06-07 Hello Inc. Wearable device with magnets positioned at opposing ends and overlapped from one side to another
US9427189B2 (en) 2013-03-04 2016-08-30 Hello Inc. Monitoring system and device with sensors that are responsive to skin pigmentation
US9532716B2 (en) 2013-03-04 2017-01-03 Hello Inc. Systems using lifestyle database analysis to provide feedback
US9445651B2 (en) 2013-03-04 2016-09-20 Hello Inc. Wearable device with overlapping ends coupled by magnets
US9339188B2 (en) 2013-03-04 2016-05-17 James Proud Methods from monitoring health, wellness and fitness with feedback
US9345404B2 (en) 2013-03-04 2016-05-24 Hello Inc. Mobile device that monitors an individuals activities, behaviors, habits or health parameters
US9910144B2 (en) * 2013-03-07 2018-03-06 Cpg Technologies, Llc Excitation and use of guided surface wave modes on lossy media
US9912031B2 (en) 2013-03-07 2018-03-06 Cpg Technologies, Llc Excitation and use of guided surface wave modes on lossy media
US9998180B2 (en) * 2013-03-13 2018-06-12 Integrated Device Technology, Inc. Apparatuses and related methods for modulating power of a wireless power receiver
JP2014204469A (ja) * 2013-04-01 2014-10-27 日東電工株式会社 無線電力伝送装置、無線電力伝送装置の供給電力制御方法、及び、無線電力伝送装置の製造方法
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US9843763B2 (en) 2013-05-10 2017-12-12 Energous Corporation TV system with wireless power transmitter
US9537357B2 (en) 2013-05-10 2017-01-03 Energous Corporation Wireless sound charging methods and systems for game controllers, based on pocket-forming
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US10004451B1 (en) 2013-06-21 2018-06-26 Fitbit, Inc. User monitoring system
US9993166B1 (en) 2013-06-21 2018-06-12 Fitbit, Inc. Monitoring device using radar and measuring motion with a non-contact device
US10058290B1 (en) 2013-06-21 2018-08-28 Fitbit, Inc. Monitoring device with voice interaction
JP5639693B1 (ja) * 2013-07-09 2014-12-10 日東電工株式会社 無線電力伝送装置及び無線電力伝送装置の供給電力制御方法
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9490653B2 (en) * 2013-07-23 2016-11-08 Qualcomm Incorporated Systems and methods for enabling a universal back-cover wireless charging solution
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
WO2015023899A2 (en) 2013-08-14 2015-02-19 Witricity Corporation Impedance tuning
US20150091523A1 (en) * 2013-10-02 2015-04-02 Mediatek Singapore Pte. Ltd. Wireless charger system that has variable power / adaptive load modulation
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
CN105765821B (zh) 2013-11-22 2019-08-09 加州理工学院 用于无线电力输送的发生器单元
US10164472B2 (en) 2013-12-03 2018-12-25 Massachusetts Institute Of Technology Method and apparatus for wirelessly charging portable electronic devices
JP2015109724A (ja) * 2013-12-03 2015-06-11 株式会社豊田自動織機 非接触電力伝送装置及び受電機器
US20160308398A1 (en) * 2013-12-10 2016-10-20 Mitsubishi Electric Engineering Company, Limited Rectifying circuit for high-frequency power supply
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9419469B2 (en) 2013-12-23 2016-08-16 Automotive Research & Testing Center High efficiency wireless charging system and its control method
US20170163169A1 (en) * 2013-12-26 2017-06-08 Mitsubishi Electric Engineering Company, Limited Rectifying circuit for high-frequency power supply
JP6188824B2 (ja) * 2013-12-26 2017-08-30 三菱電機エンジニアリング株式会社 高周波電源用整流回路
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US9995777B2 (en) * 2014-02-14 2018-06-12 Qualcomm Incorporated Device detection through dynamic impedance change measurement
WO2015123614A2 (en) 2014-02-14 2015-08-20 Witricity Corporation Object detection for wireless energy transfer systems
US20170070079A1 (en) * 2014-02-22 2017-03-09 Humavox Ltd. A Wireless Charging Device and Methods of Use
AU2015218896B2 (en) * 2014-02-23 2018-03-29 Apple Inc. Adjusting filter in a coupled coil system
JP6499185B2 (ja) 2014-02-23 2019-04-10 アップル インコーポレイテッドApple Inc. 誘導電力伝送システムのインピーダンス整合
US9373966B2 (en) 2014-03-03 2016-06-21 Divergent, Inc. Wireless power and communication systems using magnetic vector potential
AR099614A1 (es) * 2014-03-03 2016-08-03 Divergent Inc Generación y utilización de potencial vectorial magnético
US9472366B2 (en) 2014-03-03 2016-10-18 Divergent, Inc. Generation and use of electric fields from capacitive effects of a solenoid
KR102187437B1 (ko) 2014-03-11 2020-12-08 엘지이노텍 주식회사 무선전력 전송 장치를 구비한 무선전력전송 시스템
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
EP3140680B1 (en) 2014-05-07 2021-04-21 WiTricity Corporation Foreign object detection in wireless energy transfer systems
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US10032557B1 (en) 2014-05-29 2018-07-24 Apple Inc. Tuning of primary and secondary resonant frequency for improved efficiency of inductive power transfer
US9923382B2 (en) * 2014-05-30 2018-03-20 Infineon Technologies Austria Ag Active rectifier for efficient wireless power transfer
US9537353B1 (en) 2014-06-03 2017-01-03 Apple Inc. Methods for detecting mated coils
US9685814B1 (en) 2014-06-13 2017-06-20 Apple Inc. Detection of coil coupling in an inductive charging system
GB2527312B (en) * 2014-06-17 2021-03-03 Advanced Risc Mach Ltd Harvesting power from ambient energy in an electronic device
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
CN104242715B (zh) * 2014-07-10 2018-01-19 丁文萍 一种Class E结构的无线输电装置用高频电源设备
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9813041B1 (en) 2014-07-31 2017-11-07 Apple Inc. Automatic boost control for resonant coupled coils
KR102288706B1 (ko) * 2014-08-19 2021-08-10 캘리포니아 인스티튜트 오브 테크놀로지 무선 전력 전달
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US10014733B2 (en) 2014-08-28 2018-07-03 Apple Inc. Temperature management in a wireless energy transfer system
US10193372B2 (en) 2014-09-02 2019-01-29 Apple Inc. Operating an inductive energy transfer system
US9941566B2 (en) 2014-09-10 2018-04-10 Cpg Technologies, Llc Excitation and use of guided surface wave modes on lossy media
US10175203B2 (en) 2014-09-11 2019-01-08 Cpg Technologies, Llc Subsurface sensing using guided surface wave modes on lossy media
US10027116B2 (en) 2014-09-11 2018-07-17 Cpg Technologies, Llc Adaptation of polyphase waveguide probes
US10074993B2 (en) 2014-09-11 2018-09-11 Cpg Technologies, Llc Simultaneous transmission and reception of guided surface waves
US9893402B2 (en) 2014-09-11 2018-02-13 Cpg Technologies, Llc Superposition of guided surface waves on lossy media
US9859707B2 (en) 2014-09-11 2018-01-02 Cpg Technologies, Llc Simultaneous multifrequency receive circuits
US10084223B2 (en) 2014-09-11 2018-09-25 Cpg Technologies, Llc Modulated guided surface waves
US9887587B2 (en) 2014-09-11 2018-02-06 Cpg Technologies, Llc Variable frequency receivers for guided surface wave transmissions
US9960470B2 (en) 2014-09-11 2018-05-01 Cpg Technologies, Llc Site preparation for guided surface wave transmission in a lossy media
US9887557B2 (en) 2014-09-11 2018-02-06 Cpg Technologies, Llc Hierarchical power distribution
US9882397B2 (en) 2014-09-11 2018-01-30 Cpg Technologies, Llc Guided surface wave transmission of multiple frequencies in a lossy media
US10101444B2 (en) 2014-09-11 2018-10-16 Cpg Technologies, Llc Remote surface sensing using guided surface wave modes on lossy media
US10079573B2 (en) 2014-09-11 2018-09-18 Cpg Technologies, Llc Embedding data on a power signal
US10001553B2 (en) 2014-09-11 2018-06-19 Cpg Technologies, Llc Geolocation with guided surface waves
US10033198B2 (en) 2014-09-11 2018-07-24 Cpg Technologies, Llc Frequency division multiplexing for wireless power providers
US9887556B2 (en) 2014-09-11 2018-02-06 Cpg Technologies, Llc Chemically enhanced isolated capacitance
US10498393B2 (en) 2014-09-11 2019-12-03 Cpg Technologies, Llc Guided surface wave powered sensing devices
US10137794B2 (en) 2014-09-15 2018-11-27 Stmicroelectronics, Inc. Method and apparatus for a wireless charging system
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
JP6264467B2 (ja) * 2014-09-25 2018-01-24 富士通株式会社 受電器、及び、電力伝送システム
US10811908B2 (en) 2014-09-25 2020-10-20 Supply, Inc. System and method for wireless power reception
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
GB2534114A (en) * 2014-09-30 2016-07-20 Drayson Tech (Europe) Ltd Inductive power transfer system
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9612296B2 (en) 2014-10-08 2017-04-04 Qualcomm Incorporated Methods and apparatus for testing of wireless power transmitters and systems
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10411920B2 (en) 2014-11-20 2019-09-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing electromagnetic waves within pathways of a cable
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10505248B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication cable having a plurality of uninsulated conductors forming interstitial areas for propagating electromagnetic waves therein and method of use
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10554454B2 (en) 2014-11-20 2020-02-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing electromagnetic waves in a cable
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10505252B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication system having a coupler for guiding electromagnetic waves through interstitial areas formed by a plurality of stranded uninsulated conductors and method of use
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US10505249B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication system having a cable with a plurality of stranded uninsulated conductors forming interstitial areas for guiding electromagnetic waves therein and method of use
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US11025460B2 (en) 2014-11-20 2021-06-01 At&T Intellectual Property I, L.P. Methods and apparatus for accessing interstitial areas of a cable
US10505250B2 (en) 2014-11-20 2019-12-10 At&T Intellectual Property I, L.P. Communication system having a cable with a plurality of stranded uninsulated conductors forming interstitial areas for propagating guided wave modes therein and methods of use
US10516555B2 (en) 2014-11-20 2019-12-24 At&T Intellectual Property I, L.P. Methods and apparatus for creating interstitial areas in a cable
US9883296B2 (en) * 2014-12-03 2018-01-30 Starkey Laboratories, Inc. Filter to suppress harmonics for an antenna
JP6389114B2 (ja) * 2014-12-15 2018-09-12 株式会社Ihiエアロスペース レクテナ制御器
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US10153665B2 (en) 2015-01-14 2018-12-11 Fu Da Tong Technology Co., Ltd. Method for adjusting output power for induction type power supply system and related supplying-end module
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
TWI552529B (zh) * 2015-02-04 2016-10-01 茂達電子股份有限公司 解調電路及使用其的無線充電裝置
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
WO2016133028A1 (ja) * 2015-02-20 2016-08-25 株式会社村田製作所 高周波フィルタ、高周波フロントエンド回路、通信機器、および、高周波フィルタの設計方法
TWI626827B (zh) * 2015-02-26 2018-06-11 立錡科技股份有限公司 諧振式無線電源接收電路及其控制方法
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9935501B2 (en) 2015-04-10 2018-04-03 Samsung Electro-Mechanics Co., Ltd. Wireless power transmitting and receiving device, apparatus including the same, and method
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US10263450B2 (en) * 2015-05-13 2019-04-16 Intel IP Corporation Power regulation in wireless charging
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10276907B2 (en) 2015-05-14 2019-04-30 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10714803B2 (en) 2015-05-14 2020-07-14 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US20160336784A1 (en) * 2015-05-15 2016-11-17 Intel Corporation Reconfigrable charging station for extended power capability and active area
US9936337B2 (en) 2015-05-23 2018-04-03 Square, Inc. Tuning a NFC antenna of a device
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10193595B2 (en) * 2015-06-02 2019-01-29 Cpg Technologies, Llc Excitation and use of guided surface waves
US9923385B2 (en) * 2015-06-02 2018-03-20 Cpg Technologies, Llc Excitation and use of guided surface waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10756805B2 (en) 2015-06-03 2020-08-25 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US11410154B2 (en) 2015-06-05 2022-08-09 Block, Inc. Apparatuses, methods, and systems for transmitting payment proxy information
US9899881B2 (en) * 2015-06-08 2018-02-20 Samsung Electro-Mechanics Co., Ltd. Wireless power transmitting device
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10666084B2 (en) 2015-07-10 2020-05-26 Apple Inc. Detection and notification of an unpowered releasable charging device
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10511346B2 (en) 2015-07-14 2019-12-17 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on an uninsulated conductor
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10790593B2 (en) 2015-07-14 2020-09-29 At&T Intellectual Property I, L.P. Method and apparatus including an antenna comprising a lens and a body coupled to a feedline having a structure that reduces reflections of electromagnetic waves
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10129057B2 (en) 2015-07-14 2018-11-13 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on a cable
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10439290B2 (en) 2015-07-14 2019-10-08 At&T Intellectual Property I, L.P. Apparatus and methods for wireless communications
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10742243B2 (en) 2015-07-14 2020-08-11 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US10112495B2 (en) 2015-07-27 2018-10-30 Ford Global Technologies, Llc Vehicle wireless charging system including an inverter to control a voltage input to a vehicle power converter
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US10498160B2 (en) 2015-08-03 2019-12-03 Massachusetts Institute Of Technology Efficiency maximization for device-to-device wireless charging
US9887585B2 (en) 2015-09-08 2018-02-06 Cpg Technologies, Llc Changing guided surface wave transmissions to follow load conditions
CN108350854B (zh) 2015-09-08 2019-11-19 Cpg技术有限责任公司 海上电力的远距离传输
US9857402B2 (en) 2015-09-08 2018-01-02 CPG Technologies, L.L.C. Measuring and reporting power received from guided surface waves
US9997040B2 (en) 2015-09-08 2018-06-12 Cpg Technologies, Llc Global emergency and disaster transmission
US9921256B2 (en) 2015-09-08 2018-03-20 Cpg Technologies, Llc Field strength monitoring for optimal performance
KR20180052666A (ko) 2015-09-09 2018-05-18 씨피지 테크놀로지스, 엘엘씨. 유도 표면파 전력 전달 시스템에서의 부하 쉐딩
WO2017044280A1 (en) 2015-09-09 2017-03-16 Cpg Technologies, Llc. Guided surface waveguide probes
WO2017044281A1 (en) 2015-09-09 2017-03-16 Cpg Technologies, Llc Guided surface waveguide probes
US10027131B2 (en) 2015-09-09 2018-07-17 CPG Technologies, Inc. Classification of transmission
US9496921B1 (en) 2015-09-09 2016-11-15 Cpg Technologies Hybrid guided surface wave communication
CA2997624A1 (en) 2015-09-09 2017-03-16 Cpg Technologies, Llc. Power internal medical devices with guided surface waves
US9885742B2 (en) 2015-09-09 2018-02-06 Cpg Technologies, Llc Detecting unauthorized consumption of electrical energy
US10063095B2 (en) 2015-09-09 2018-08-28 CPG Technologies, Inc. Deterring theft in wireless power systems
US9887558B2 (en) 2015-09-09 2018-02-06 Cpg Technologies, Llc Wired and wireless power distribution coexistence
US10205326B2 (en) 2015-09-09 2019-02-12 Cpg Technologies, Llc Adaptation of energy consumption node for guided surface wave reception
US9882436B2 (en) 2015-09-09 2018-01-30 Cpg Technologies, Llc Return coupled wireless power transmission
KR20180050402A (ko) * 2015-09-10 2018-05-14 씨피지 테크놀로지스, 엘엘씨. 이동식 유도 표면 도파로 프로브들 및 수신기들
US10498006B2 (en) 2015-09-10 2019-12-03 Cpg Technologies, Llc Guided surface wave transmissions that illuminate defined regions
US10312747B2 (en) 2015-09-10 2019-06-04 Cpg Technologies, Llc Authentication to enable/disable guided surface wave receive equipment
AU2016320686B2 (en) 2015-09-10 2019-01-03 Cpg Technologies, Llc. Geolocation using guided surface waves
US10103452B2 (en) 2015-09-10 2018-10-16 Cpg Technologies, Llc Hybrid phased array transmission
US10324163B2 (en) 2015-09-10 2019-06-18 Cpg Technologies, Llc Geolocation using guided surface waves
US10559893B1 (en) 2015-09-10 2020-02-11 Cpg Technologies, Llc Pulse protection circuits to deter theft
US10408916B2 (en) 2015-09-10 2019-09-10 Cpg Technologies, Llc Geolocation using guided surface waves
US10396566B2 (en) 2015-09-10 2019-08-27 Cpg Technologies, Llc Geolocation using guided surface waves
US10408915B2 (en) 2015-09-10 2019-09-10 Cpg Technologies, Llc Geolocation using guided surface waves
WO2017044266A1 (en) 2015-09-10 2017-03-16 Cpg Technologies, Llc. Global time synchronization using a guided surface wave
US10193229B2 (en) 2015-09-10 2019-01-29 Cpg Technologies, Llc Magnetic coils having cores with high magnetic permeability
CN108352612A (zh) 2015-09-11 2018-07-31 Cpg技术有限责任公司 增强的引导表面波导探头
CN108352729A (zh) 2015-09-11 2018-07-31 Cpg技术有限责任公司 全局电功率倍增
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10482440B1 (en) 2015-09-18 2019-11-19 Square, Inc. Simulating NFC experience
TWI621319B (zh) * 2015-09-19 2018-04-11 立錡科技股份有限公司 諧振式無線電源發送電路及其控制方法
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10861003B1 (en) 2015-09-24 2020-12-08 Square, Inc. Near field communication device coupling system
US10198727B1 (en) 2015-09-25 2019-02-05 Square, Inc. Modulation of a near-field communication signal
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
CN108700620B (zh) 2015-10-14 2021-03-05 无线电力公司 无线能量传输系统中的相位和振幅检测
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
KR101683651B1 (ko) * 2015-10-21 2016-12-20 현대자동차주식회사 무선충전장치의 이음 저감 장치 및 방법
EP3365958B1 (en) 2015-10-22 2020-05-27 WiTricity Corporation Dynamic tuning in wireless energy transfer systems
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
KR102399275B1 (ko) * 2015-12-01 2022-05-19 삼성전자주식회사 무선 전력 수신기 및 그 제어 방법
US11303156B2 (en) 2015-12-18 2022-04-12 General Electric Company Contactless power transfer system and method for controlling the same
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10079515B2 (en) * 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10135286B2 (en) 2015-12-24 2018-11-20 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture offset from a patch antenna
US10263476B2 (en) 2015-12-29 2019-04-16 Energous Corporation Transmitter board allowing for modular antenna configurations in wireless power transmission systems
US9760883B1 (en) * 2015-12-31 2017-09-12 Square, Inc. Feedback control loop for NFC transmitter voltage control
KR101847256B1 (ko) * 2016-01-11 2018-05-28 한국전자통신연구원 무선전력 수신장치, 그를 포함하는 무선전력 전송 시스템 및 수신단의 유효부하저항 변환비율을 자동으로 제어하는 방법
KR20180101618A (ko) 2016-02-02 2018-09-12 위트리시티 코포레이션 무선 전력 전송 시스템 제어
CN109075614B (zh) 2016-02-08 2021-11-02 韦特里西提公司 可变电容装置、阻抗匹配系统、传输系统、阻抗匹配网络
US10040358B2 (en) 2016-06-13 2018-08-07 Ford Global Technologies, Llc Wireless power transfer for vehicles
CN109478871B (zh) 2016-06-30 2022-08-02 韦特里西提公司 二极管导通传感器
US10432197B2 (en) * 2016-08-08 2019-10-01 Qualcomm Incorporated Electronic devices employing adiabatic logic circuits with wireless charging
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
CN106451823B (zh) * 2016-09-05 2019-02-05 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种便携的高增益无线能量发射机
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US20180083473A1 (en) * 2016-09-16 2018-03-22 Qualcomm Incorporated Variable capacitor series tuning configuration
US10644531B1 (en) 2016-09-22 2020-05-05 Apple Inc. Adaptable power rectifier for wireless charger system
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10205212B2 (en) 2016-12-06 2019-02-12 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting a phase of electromagnetic waves
US10096883B2 (en) 2016-12-06 2018-10-09 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting a wavelength electromagnetic waves
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
CN110050379A (zh) * 2016-12-08 2019-07-23 胡马沃克斯有限责任公司 用于自适应电池充电的充电器及其使用方法
US10264467B2 (en) 2016-12-08 2019-04-16 At&T Intellectual Property I, L.P. Method and apparatus for collecting data associated with wireless communications
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10136255B2 (en) 2016-12-08 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing on a communication device
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
CN116455101A (zh) 2016-12-12 2023-07-18 艾诺格思公司 发射器集成电路
JP6152919B1 (ja) * 2016-12-27 2017-06-28 パナソニックIpマネジメント株式会社 エナジーハーベスト端末
US9961483B1 (en) * 2016-12-30 2018-05-01 Intel Coporation Wireless charger cross-talk prevention
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10110274B2 (en) 2017-01-27 2018-10-23 At&T Intellectual Property I, L.P. Method and apparatus of communication utilizing waveguide and wireless devices
EP3565087B1 (en) 2017-02-22 2021-03-31 Samsung Electronics Co., Ltd. Wireless power transmitter
KR102392887B1 (ko) * 2017-02-22 2022-05-03 삼성전자주식회사 무선 전력 송신 장치, 무선으로 전력을 수신하는 전자 장치 및 그 동작 방법
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10560147B1 (en) 2017-03-07 2020-02-11 Cpg Technologies, Llc Guided surface waveguide probe control system
US10630111B2 (en) 2017-03-07 2020-04-21 Cpg Technologies, Llc Adjustment of guided surface waveguide probe operation
US10559867B2 (en) 2017-03-07 2020-02-11 Cpg Technologies, Llc Minimizing atmospheric discharge within a guided surface waveguide probe
US20200190192A1 (en) 2017-03-07 2020-06-18 Sutro Biopharma, Inc. Pd-1/tim-3 bi-specific antibodies, compositions thereof, and methods of making and using the same
US10559866B2 (en) 2017-03-07 2020-02-11 Cpg Technologies, Inc Measuring operational parameters at the guided surface waveguide probe
US10581492B1 (en) 2017-03-07 2020-03-03 Cpg Technologies, Llc Heat management around a phase delay coil in a probe
CN110383631B (zh) * 2017-03-10 2023-06-09 三菱电机工程技术株式会社 谐振型电力接收装置
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
WO2018183892A1 (en) 2017-03-30 2018-10-04 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10389274B2 (en) 2017-04-07 2019-08-20 Apple Inc. Boosted output inverter for electronic devices
US10523063B2 (en) 2017-04-07 2019-12-31 Apple Inc. Common mode noise compensation in wireless power systems
US10097241B1 (en) 2017-04-11 2018-10-09 At&T Intellectual Property I, L.P. Machine assisted development of deployment site inventory
US10523388B2 (en) 2017-04-17 2019-12-31 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna having a fiber optic link
US10630341B2 (en) 2017-05-11 2020-04-21 At&T Intellectual Property I, L.P. Method and apparatus for installation and alignment of radio devices
US10468744B2 (en) 2017-05-11 2019-11-05 At&T Intellectual Property I, L.P. Method and apparatus for assembly and installation of a communication device
US10419072B2 (en) 2017-05-11 2019-09-17 At&T Intellectual Property I, L.P. Method and apparatus for mounting and coupling radio devices
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10720797B2 (en) 2017-05-26 2020-07-21 California Institute Of Technology Method and apparatus for dynamic RF lens focusing and tracking of wireless power recovery unit
US10798665B2 (en) 2017-06-06 2020-10-06 Supply, Inc. Method and system for wireless power delivery
US11178625B2 (en) 2017-06-06 2021-11-16 Supply, Inc. Method and system for wireless power delivery
US10778044B2 (en) 2018-11-30 2020-09-15 Supply, Inc. Methods and systems for multi-objective optimization and/or wireless power delivery
WO2018226871A1 (en) 2017-06-06 2018-12-13 Supply, Inc. Method and system for wireless power delivery
WO2018226864A1 (en) * 2017-06-06 2018-12-13 Supply, Inc. System and method for wireless power reception
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
CN111108662B (zh) 2017-06-29 2023-12-12 韦特里西提公司 无线电力系统的保护和控制
US10389403B2 (en) 2017-07-05 2019-08-20 At&T Intellectual Property I, L.P. Method and apparatus for reducing flow of currents on an outer surface of a structure
US10727583B2 (en) 2017-07-05 2020-07-28 At&T Intellectual Property I, L.P. Method and apparatus for steering radiation on an outer surface of a structure
US10103777B1 (en) 2017-07-05 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for reducing radiation from an external surface of a waveguide structure
US11140692B2 (en) * 2017-07-31 2021-10-05 Lg Electronics Inc. Signal transmission and reception method on basis of LTE and NR in wireless communication system and device therefor
US10430784B1 (en) 2017-08-31 2019-10-01 Square, Inc. Multi-layer antenna
US10244408B1 (en) 2017-10-19 2019-03-26 At&T Intellectual Property I, L.P. Dual mode communications device with null steering and methods for use therewith
US10051488B1 (en) 2017-10-19 2018-08-14 At&T Intellectual Property I, L.P. Dual mode communications device with remote device feedback and methods for use therewith
US10714831B2 (en) 2017-10-19 2020-07-14 At&T Intellectual Property I, L.P. Dual mode communications device with remote radio head and methods for use therewith
US10446899B2 (en) 2017-09-05 2019-10-15 At&T Intellectual Property I, L.P. Flared dielectric coupling system and methods for use therewith
US10374278B2 (en) 2017-09-05 2019-08-06 At&T Intellectual Property I, L.P. Dielectric coupling system with mode control and methods for use therewith
JP6803818B2 (ja) * 2017-09-05 2020-12-23 本田技研工業株式会社 電力供給システム
US10062970B1 (en) 2017-09-05 2018-08-28 At&T Intellectual Property I, L.P. Dual mode communications device and methods for use therewith
US10374277B2 (en) 2017-09-05 2019-08-06 At&T Intellectual Property I, L.P. Multi-arm dielectric coupling system and methods for use therewith
US10291286B2 (en) 2017-09-06 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for guiding an electromagnetic wave to a transmission medium
US10608312B2 (en) 2017-09-06 2020-03-31 At&T Intellectual Property I, L.P. Method and apparatus for generating an electromagnetic wave that couples onto a transmission medium
US10305179B2 (en) 2017-09-06 2019-05-28 At&T Intellectual Property I, L.P. Antenna structure with doped antenna body
US10673116B2 (en) 2017-09-06 2020-06-02 At&T Intellectual Property I, L.P. Method and apparatus for coupling an electromagnetic wave to a transmission medium
US10205231B1 (en) 2017-09-06 2019-02-12 At&T Intellectual Property I, L.P. Antenna structure with hollow-boresight antenna beam
US10305197B2 (en) 2017-09-06 2019-05-28 At&T Intellectual Property I, L.P. Multimode antenna system and methods for use therewith
US10230426B1 (en) 2017-09-06 2019-03-12 At&T Intellectual Property I, L.P. Antenna structure with circularly polarized antenna beam
US10469228B2 (en) 2017-09-12 2019-11-05 At&T Intellectual Property I, L.P. Apparatus and methods for exchanging communications signals
US11190052B2 (en) 2017-10-03 2021-11-30 Powermat Technologies Ltd. Wireless power receiver having transfer optimization and method thereof
US10764762B2 (en) 2017-10-04 2020-09-01 At&T Intellectual Property I, L.P. Apparatus and methods for distributing a communication signal obtained from ultra-wideband electromagnetic waves
US9998172B1 (en) 2017-10-04 2018-06-12 At&T Intellectual Property I, L.P. Apparatus and methods for processing ultra-wideband electromagnetic waves
US10498589B2 (en) 2017-10-04 2019-12-03 At&T Intellectual Property I, L.P. Apparatus and methods for mitigating a fault that adversely affects ultra-wideband transmissions
US10123217B1 (en) 2017-10-04 2018-11-06 At&T Intellectual Property I, L.P. Apparatus and methods for communicating with ultra-wideband electromagnetic waves
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US10454151B2 (en) 2017-10-17 2019-10-22 At&T Intellectual Property I, L.P. Methods and apparatus for coupling an electromagnetic wave onto a transmission medium
US10763916B2 (en) 2017-10-19 2020-09-01 At&T Intellectual Property I, L.P. Dual mode antenna systems and methods for use therewith
US10553959B2 (en) 2017-10-26 2020-02-04 At&T Intellectual Property I, L.P. Antenna system with planar antenna and directors and methods for use therewith
US10553960B2 (en) 2017-10-26 2020-02-04 At&T Intellectual Property I, L.P. Antenna system with planar antenna and methods for use therewith
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US10554235B2 (en) 2017-11-06 2020-02-04 At&T Intellectual Property I, L.P. Multi-input multi-output guided wave system and methods for use therewith
US10355745B2 (en) 2017-11-09 2019-07-16 At&T Intellectual Property I, L.P. Guided wave communication system with interference mitigation and methods for use therewith
US10003364B1 (en) 2017-11-09 2018-06-19 At&T Intellectual Property I, L.P. Guided wave communication system with interference cancellation and methods for use therewith
US10555318B2 (en) 2017-11-09 2020-02-04 At&T Intellectual Property I, L.P. Guided wave communication system with resource allocation and methods for use therewith
US10284261B1 (en) 2017-11-15 2019-05-07 At&T Intellectual Property I, L.P. Access point and methods for communicating with guided electromagnetic waves
US10555249B2 (en) 2017-11-15 2020-02-04 At&T Intellectual Property I, L.P. Access point and methods for communicating resource blocks with guided electromagnetic waves
US10230428B1 (en) 2017-11-15 2019-03-12 At&T Intellectual Property I, L.P. Access point and methods for use in a radio distributed antenna system
US10469192B2 (en) 2017-12-01 2019-11-05 At&T Intellectual Property I, L.P. Methods and apparatus for controllable coupling of an electromagnetic wave
US10389419B2 (en) 2017-12-01 2019-08-20 At&T Intellectual Property I, L.P. Methods and apparatus for generating and receiving electromagnetic waves
US10374281B2 (en) 2017-12-01 2019-08-06 At&T Intellectual Property I, L.P. Apparatus and method for guided wave communications using an absorber
US10820329B2 (en) 2017-12-04 2020-10-27 At&T Intellectual Property I, L.P. Guided wave communication system with interference mitigation and methods for use therewith
CN107860985B (zh) * 2017-12-05 2024-01-26 广东电网有限责任公司江门供电局 一种mems电场传感器及其无线供能系统与方法
US10424845B2 (en) 2017-12-06 2019-09-24 At&T Intellectual Property I, L.P. Method and apparatus for communication using variable permittivity polyrod antenna
US11018525B2 (en) 2017-12-07 2021-05-25 At&T Intellectual Property 1, L.P. Methods and apparatus for increasing a transfer of energy in an inductive power supply
US10680308B2 (en) 2017-12-07 2020-06-09 At&T Intellectual Property I, L.P. Methods and apparatus for bidirectional exchange of electromagnetic waves
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11018526B2 (en) 2018-02-08 2021-05-25 Massachusetts Institute Of Technology Detuning for a resonant wireless power transfer system including cooperative power sharing
US10651687B2 (en) 2018-02-08 2020-05-12 Massachusetts Institute Of Technology Detuning for a resonant wireless power transfer system including cryptography
US10277267B1 (en) * 2018-02-21 2019-04-30 Nxp B.V. Antenna tuning device
JP7301058B2 (ja) * 2018-02-22 2023-06-30 ユニバーシティ オブ マサチューセッツ アンテナハードウェア及び制御
CN111869045B (zh) 2018-03-08 2024-04-16 利奇电力公司 用于无线功率输送的方法和系统
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
CN108448746B (zh) * 2018-03-14 2021-09-10 上海空间电源研究所 微波输能系统的微能量采集及最大功率输出装置及方法
US10326495B1 (en) 2018-03-26 2019-06-18 At&T Intellectual Property I, L.P. Coaxial surface wave communication system and methods for use therewith
US10200106B1 (en) 2018-03-26 2019-02-05 At&T Intellectual Property I, L.P. Analog surface wave multipoint repeater and methods for use therewith
US10171158B1 (en) 2018-03-26 2019-01-01 At&T Intellectual Property I, L.P. Analog surface wave repeater pair and methods for use therewith
US10714824B2 (en) 2018-03-26 2020-07-14 At&T Intellectual Property I, L.P. Planar surface wave launcher and methods for use therewith
US10340979B1 (en) 2018-03-26 2019-07-02 At&T Intellectual Property I, L.P. Surface wave communication system and methods for use therewith
US10531357B2 (en) 2018-03-26 2020-01-07 At&T Intellectual Property I, L.P. Processing of data channels provided in electromagnetic waves by an access point and methods thereof
US10727577B2 (en) 2018-03-29 2020-07-28 At&T Intellectual Property I, L.P. Exchange of wireless signals guided by a transmission medium and methods thereof
US10547545B2 (en) 2018-03-30 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching of data channels provided in electromagnetic waves
US10581275B2 (en) 2018-03-30 2020-03-03 At&T Intellectual Property I, L.P. Methods and apparatus for regulating a magnetic flux in an inductive power supply
US10419074B1 (en) 2018-05-16 2019-09-17 At&T Intellectual Property I, L.P. Method and apparatus for communications using electromagnetic waves and an insulator
TW202002460A (zh) * 2018-06-13 2020-01-01 金碳洁股份有限公司 微波充電管理電路及其方法
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US10804962B2 (en) 2018-07-09 2020-10-13 At&T Intellectual Property I, L.P. Method and apparatus for communications using electromagnetic waves
US10629995B2 (en) 2018-08-13 2020-04-21 At&T Intellectual Property I, L.P. Guided wave launcher with aperture control and methods for use therewith
US10305192B1 (en) 2018-08-13 2019-05-28 At&T Intellectual Property I, L.P. System and method for launching guided electromagnetic waves with impedance matching
US10749570B2 (en) 2018-09-05 2020-08-18 At&T Intellectual Property I, L.P. Surface wave launcher and methods for use therewith
US10784721B2 (en) 2018-09-11 2020-09-22 At&T Intellectual Property I, L.P. Methods and apparatus for coupling and decoupling portions of a magnetic core
US10778286B2 (en) 2018-09-12 2020-09-15 At&T Intellectual Property I, L.P. Methods and apparatus for transmitting or receiving electromagnetic waves
US10405199B1 (en) 2018-09-12 2019-09-03 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting or receiving electromagnetic waves
US10833727B2 (en) 2018-10-02 2020-11-10 At&T Intellectual Property I, L.P. Methods and apparatus for launching or receiving electromagnetic waves
US10587310B1 (en) 2018-10-10 2020-03-10 At&T Intellectual Property I, L.P. Methods and apparatus for selectively controlling energy consumption of a waveguide system
US10938249B2 (en) * 2018-10-11 2021-03-02 Searete Llc Dynamic rectifier circuits with multiple-order timescale feedback controls
US10693667B2 (en) 2018-10-12 2020-06-23 At&T Intellectual Property I, L.P. Methods and apparatus for exchanging communication signals via a cable of twisted pair wires
US10516197B1 (en) 2018-10-18 2019-12-24 At&T Intellectual Property I, L.P. System and method for launching scattering electromagnetic waves
US10957977B2 (en) 2018-11-14 2021-03-23 At&T Intellectual Property I, L.P. Device with virtual reflector for transmitting or receiving electromagnetic waves
US10523269B1 (en) 2018-11-14 2019-12-31 At&T Intellectual Property I, L.P. Device with configurable reflector for transmitting or receiving electromagnetic waves
US10505584B1 (en) 2018-11-14 2019-12-10 At&T Intellectual Property I, L.P. Device with resonant cavity for transmitting or receiving electromagnetic waves
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US10931012B2 (en) 2018-11-14 2021-02-23 At&T Intellectual Property I, L.P. Device with programmable reflector for transmitting or receiving electromagnetic waves
US10686649B2 (en) 2018-11-16 2020-06-16 At&T Intellectual Property I, L.P. Method and apparatus for managing a local area network
WO2020113096A1 (en) 2018-11-28 2020-06-04 Supply, Inc. System and method for wireless power delivery
US10812139B2 (en) 2018-11-29 2020-10-20 At&T Intellectual Property I, L.P. Method and apparatus for communication utilizing electromagnetic waves and a telecommunication line
US10727955B2 (en) 2018-11-29 2020-07-28 At&T Intellectual Property I, L.P. Method and apparatus for power delivery to waveguide systems
US10623033B1 (en) 2018-11-29 2020-04-14 At&T Intellectual Property I, L.P. Methods and apparatus to reduce distortion between electromagnetic wave transmissions
US11082091B2 (en) 2018-11-29 2021-08-03 At&T Intellectual Property I, L.P. Method and apparatus for communication utilizing electromagnetic waves and a power line
US10965344B2 (en) 2018-11-29 2021-03-30 At&T Intellectual Property 1, L.P. Methods and apparatus for exchanging wireless signals utilizing electromagnetic waves having differing characteristics
US10371889B1 (en) 2018-11-29 2019-08-06 At&T Intellectual Property I, L.P. Method and apparatus for providing power to waveguide systems
US10785125B2 (en) 2018-12-03 2020-09-22 At&T Intellectual Property I, L.P. Method and procedure for generating reputation scores for IoT devices based on distributed analysis
US10819391B2 (en) 2018-12-03 2020-10-27 At&T Intellectual Property I, L.P. Guided wave launcher with reflector and methods for use therewith
US10623056B1 (en) 2018-12-03 2020-04-14 At&T Intellectual Property I, L.P. Guided wave splitter and methods for use therewith
US11171960B2 (en) 2018-12-03 2021-11-09 At&T Intellectual Property I, L.P. Network security management based on collection and cataloging of network-accessible device information
US10978773B2 (en) 2018-12-03 2021-04-13 At&T Intellectual Property I, L.P. Guided wave dielectric coupler having a dielectric cable with an exposed dielectric core position for enabling electromagnetic coupling between the cable and a transmission medium
US10623057B1 (en) 2018-12-03 2020-04-14 At&T Intellectual Property I, L.P. Guided wave directional coupler and methods for use therewith
US11283182B2 (en) 2018-12-03 2022-03-22 At&T Intellectual Property I, L.P. Guided wave launcher with lens and methods for use therewith
US11362438B2 (en) 2018-12-04 2022-06-14 At&T Intellectual Property I, L.P. Configurable guided wave launcher and methods for use therewith
US10977932B2 (en) 2018-12-04 2021-04-13 At&T Intellectual Property I, L.P. Method and apparatus for electromagnetic wave communications associated with vehicular traffic
US11394122B2 (en) 2018-12-04 2022-07-19 At&T Intellectual Property I, L.P. Conical surface wave launcher and methods for use therewith
US11205857B2 (en) 2018-12-04 2021-12-21 At&T Intellectual Property I, L.P. System and method for launching guided electromagnetic waves with channel feedback
US11121466B2 (en) 2018-12-04 2021-09-14 At&T Intellectual Property I, L.P. Antenna system with dielectric antenna and methods for use therewith
US10581522B1 (en) 2018-12-06 2020-03-03 At&T Intellectual Property I, L.P. Free-space, twisted light optical communication system
JP2020092385A (ja) 2018-12-07 2020-06-11 旭化成エレクトロニクス株式会社 フレーム制御装置、充電装置、受電器および給電システム
US10637535B1 (en) 2018-12-10 2020-04-28 At&T Intellectual Property I, L.P. Methods and apparatus to receive electromagnetic wave transmissions
US11182770B1 (en) 2018-12-12 2021-11-23 Square, Inc. Systems and methods for sensing locations of near field communication devices
US10790569B2 (en) 2018-12-12 2020-09-29 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference in a waveguide communication system
US10666323B1 (en) 2018-12-13 2020-05-26 At&T Intellectual Property I, L.P. Methods and apparatus for monitoring conditions to switch between modes of transmission
US10812142B2 (en) 2018-12-13 2020-10-20 At&T Intellectual Property I, L.P. Method and apparatus for mitigating thermal stress in a waveguide communication system
US10469156B1 (en) 2018-12-13 2019-11-05 At&T Intellectual Property I, L.P. Methods and apparatus for measuring a signal to switch between modes of transmission
US10812143B2 (en) 2018-12-13 2020-10-20 At&T Intellectual Property I, L.P. Surface wave repeater with temperature control and methods for use therewith
IL264042B (en) 2018-12-31 2020-07-30 Doron Eyal Systems and methods for regulating force withdrawal from inspiratory force
US11038262B2 (en) * 2019-01-15 2021-06-15 Wiliot, LTD. Multi-band energy harvesting system
JP2022523022A (ja) 2019-01-28 2022-04-21 エナージャス コーポレイション 無線送電のための小型アンテナ用のシステム及び方法
JP2022519749A (ja) 2019-02-06 2022-03-24 エナージャス コーポレイション アンテナアレイ内の個々のアンテナに使用するための最適位相を推定するシステム及び方法
US11534613B2 (en) * 2019-02-09 2022-12-27 Onward Medical N.V. Wireless power transfer for medical devices
US10998776B2 (en) * 2019-04-11 2021-05-04 Apple Inc. Wireless power system with in-band communications
EP3726702B1 (fr) * 2019-04-17 2021-11-03 EM Microelectronic-Marin SA Procédé et système de transmission de la puissance d'un signal de type radiofréquence reçu par un récepteur radiofréquence
US11171522B2 (en) 2019-04-24 2021-11-09 Google Llc Wireless charging efficiency
US11025299B2 (en) 2019-05-15 2021-06-01 At&T Intellectual Property I, L.P. Methods and apparatus for launching and receiving electromagnetic waves
US11368038B2 (en) * 2019-08-06 2022-06-21 Microsoft Technology Licensing, Llc Adaptive wireless charging receiver loading
US11431201B2 (en) 2019-09-16 2022-08-30 Analog Devices International Unlimited Company Techniques for improved wireless energy transmission efficiency
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
WO2021055899A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US20210096226A1 (en) * 2019-10-01 2021-04-01 Hyundai Autron Co., Ltd. Lidar system and its control method
EP3859980A1 (en) * 2020-01-29 2021-08-04 EM Microelectronic-Marin SA Control system for uhf rfid passive tags
US11283177B2 (en) 2019-12-02 2022-03-22 At&T Intellectual Property I, L.P. Surface wave transmission device with RF housing and methods for use therewith
US10951265B1 (en) 2019-12-02 2021-03-16 At&T Intellectual Property I, L.P. Surface wave repeater with cancellation and methods for use therewith
US10886589B1 (en) 2019-12-02 2021-01-05 At&T Intellectual Property I, L.P. Guided wave coupling system for telephony cable messenger wire and methods for use therewith
US10812136B1 (en) 2019-12-02 2020-10-20 At&T Intellectual Property I, L.P. Surface wave repeater with controllable isolator and methods for use therewith
US10951266B1 (en) 2019-12-03 2021-03-16 At&T Intellectual Property I, L.P. Guided wave coupling system for telephony cable wrap wire and methods for use therewith
US10930992B1 (en) 2019-12-03 2021-02-23 At&T Intellectual Property I, L.P. Method and apparatus for communicating between waveguide systems
US11277159B2 (en) 2019-12-03 2022-03-15 At&T Intellectual Property I, L.P. Method and apparatus for managing propagation delays of electromagnetic waves
US10812144B1 (en) 2019-12-03 2020-10-20 At&T Intellectual Property I, L.P. Surface wave repeater and methods for use therewith
US11070250B2 (en) 2019-12-03 2021-07-20 At&T Intellectual Property I, L.P. Method and apparatus for calibrating waveguide systems to manage propagation delays of electromagnetic waves
US10812291B1 (en) 2019-12-03 2020-10-20 At&T Intellectual Property I, L.P. Method and apparatus for communicating between a waveguide system and a base station device
US11387560B2 (en) 2019-12-03 2022-07-12 At&T Intellectual Property I, L.P. Impedance matched launcher with cylindrical coupling device and methods for use therewith
US11502724B2 (en) 2019-12-03 2022-11-15 At&T Intellectual Property I, L.P. Method and apparatus for transitioning between electromagnetic wave modes
US10833730B1 (en) 2019-12-03 2020-11-10 At&T Intellectual Property I, L.P. Method and apparatus for providing power to a waveguide system
US10804959B1 (en) 2019-12-04 2020-10-13 At&T Intellectual Property I, L.P. Transmission device with corona discharge mitigation and methods for use therewith
US11223098B2 (en) 2019-12-04 2022-01-11 At&T Intellectual Property I, L.P. Waveguide system comprising a scattering device for generating a second non-fundamental wave mode from a first non-fundamental wave mode
US10951267B1 (en) 2019-12-04 2021-03-16 At&T Intellectual Property I, L.P. Method and apparatus for adapting a waveguide to properties of a physical transmission medium
US11356208B2 (en) 2019-12-04 2022-06-07 At&T Intellectual Property I, L.P. Transmission device with hybrid ARQ and methods for use therewith
US10992343B1 (en) 2019-12-04 2021-04-27 At&T Intellectual Property I, L.P. Guided electromagnetic wave communications via an underground cable
US11063334B2 (en) 2019-12-05 2021-07-13 At&T Intellectual Property I, L.P. Method and apparatus having one or more adjustable structures for launching or receiving electromagnetic waves having a desired wavemode
US11031667B1 (en) 2019-12-05 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus having an adjustable structure positioned along a transmission medium for launching or receiving electromagnetic waves having a desired wavemode
US10812123B1 (en) 2019-12-05 2020-10-20 At&T Intellectual Property I, L.P. Magnetic coupler for launching and receiving electromagnetic waves and methods thereof
US11581917B2 (en) 2019-12-05 2023-02-14 At&T Intellectual Property I, L.P. Method and apparatus adapted to a characteristic of an outer surface of a transmission medium for launching or receiving electromagnetic waves
US11356143B2 (en) 2019-12-10 2022-06-07 At&T Intellectual Property I, L.P. Waveguide system with power stabilization and methods for use therewith
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11469041B2 (en) * 2020-01-06 2022-10-11 Aira, Inc. Dynamic multi-coil tuning
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US20230226358A1 (en) * 2020-06-09 2023-07-20 Uro Medical Corporation Neural Stimulator Impedance Control and Matching
US11201753B1 (en) 2020-06-12 2021-12-14 At&T Intellectual Property I, L.P. Method and apparatus for managing power being provided to a waveguide system
US11095170B1 (en) 2020-07-16 2021-08-17 Stmicroelectronics (Shenzhen) R&D Co. Ltd. Wireless charging
CN111884352B (zh) * 2020-07-24 2022-12-13 浙江大学 一种适用于多模块无线充电系统的联合控制方法
GB2611950A (en) * 2020-08-14 2023-04-19 Cirrus Logic Int Semiconductor Ltd Wireless power architecture with series-coupled power converters
US11171764B1 (en) 2020-08-21 2021-11-09 At&T Intellectual Property I, L.P. Method and apparatus for automatically retransmitting corrupted data
KR102420250B1 (ko) * 2020-12-24 2022-07-14 한국전자기술연구원 정류기의 입력 임피던스 보상이 적용된 무선전력전송용 수신기 및 방법
KR20220125514A (ko) * 2021-03-05 2022-09-14 삼성전자주식회사 무선으로 전력을 수신하는 전자 장치와 이의 동작 방법
US11456771B1 (en) 2021-03-17 2022-09-27 At&T Intellectual Property I, L.P. Apparatuses and methods for facilitating a conveyance of status in communication systems and networks
US11569868B2 (en) 2021-03-17 2023-01-31 At&T Intellectual Property I, L.P. Apparatuses and methods for enhancing a reliability of power available to communicaton devices via an insulator
US11533079B2 (en) 2021-03-17 2022-12-20 At&T Intellectual Property I, L.P. Methods and apparatuses for facilitating guided wave communications with an enhanced flexibility in parameters
US11671926B2 (en) 2021-03-17 2023-06-06 At&T Intellectual Property I, L.P. Methods and apparatuses for facilitating signaling and power in a communication system
US11664883B2 (en) 2021-04-06 2023-05-30 At&T Intellectual Property I, L.P. Time domain duplexing repeater using envelope detection
JP2024516565A (ja) 2021-04-14 2024-04-16 リーチ パワー,インコーポレイテッド 無線電力ネットワーキングのためのシステムおよび方法
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith
WO2023122822A1 (pt) * 2021-12-30 2023-07-06 Ibbx Inovação Em Sistemas De Software E Hardware Ltda Sistema e método para otimizar a entrega de energia elétrica durante o carregamento de um elemento de armazenamento
WO2023158859A1 (en) * 2022-02-18 2023-08-24 Iontra Inc Systems and methods for wireless battery charging using circuit modeling
WO2024005515A1 (ko) * 2022-06-28 2024-01-04 삼성전자주식회사 무선으로 전력을 수신하는 전자 장치와 이의 동작 방법
CN115173584B (zh) * 2022-09-06 2023-03-10 荣耀终端有限公司 一种电力接收装置、电力发送装置及电力传输方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG54559A1 (en) 1996-09-13 1998-11-16 Hitachi Ltd Power transmission system ic card and information communication system using ic card
KR19980024391U (ko) * 1996-10-31 1998-07-25 양재신 자동차용 변속레버
DE19958265A1 (de) * 1999-12-05 2001-06-21 Iq Mobil Electronics Gmbh Drahtloses Energieübertragungssystem mit erhöhter Ausgangsspannung
US20070007821A1 (en) * 2005-07-06 2007-01-11 Nazzareno Rossetti Untethered power supply of electronic devices
WO2007013726A1 (en) * 2005-07-29 2007-02-01 Ls Cable Ltd. Contact-less chargeable battery and charging device, battery charging set, and charging control method thereof
CA2626345A1 (en) * 2005-10-21 2007-04-26 The Regents Of The University Of Colorado Systems and methods for receiving and managing power in wireless devices
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US7948208B2 (en) * 2006-06-01 2011-05-24 Mojo Mobility, Inc. Power source, charging system, and inductive receiver for mobile devices
TWI328730B (en) * 2006-06-16 2010-08-11 Ablerex Electronics Co Ltd Maximum power point tracking method and tracker thereof for a solar power system
FR2904132B1 (fr) * 2006-07-21 2008-08-22 Ask Sa Dispositif d'identification par radiofrequence (rfid) appose sur un objet a identifier
IL182936A (en) * 2006-09-06 2012-03-29 Alberto Milano System and method of communication using a phase shift controlled antenna array
JP5261942B2 (ja) * 2007-02-14 2013-08-14 株式会社リコー 充電制御回路への電源供給を行う電源回路、その電源回路を備えた充電装置及び充電制御回路への電源供給方法
US8461817B2 (en) * 2007-09-11 2013-06-11 Powercast Corporation Method and apparatus for providing wireless power to a load device
TWI366320B (en) 2008-03-24 2012-06-11 A wireless power transmission system
US20100034238A1 (en) * 2008-08-05 2010-02-11 Broadcom Corporation Spread spectrum wireless resonant power delivery
JP4868077B2 (ja) * 2008-09-25 2012-02-01 トヨタ自動車株式会社 給電システムおよび電動車両
US8338991B2 (en) * 2009-03-20 2012-12-25 Qualcomm Incorporated Adaptive impedance tuning in wireless power transmission

Also Published As

Publication number Publication date
EP2988428A1 (en) 2016-02-24
US20100277003A1 (en) 2010-11-04
JP2012521737A (ja) 2012-09-13
JP5612069B2 (ja) 2014-10-22
EP2988428B1 (en) 2018-10-24
JP2015019576A (ja) 2015-01-29
HUE042668T2 (hu) 2019-07-29
CN104901432B (zh) 2017-05-24
KR101714335B1 (ko) 2017-03-08
JP5728612B2 (ja) 2015-06-03
CN102396132A (zh) 2012-03-28
KR101631198B1 (ko) 2016-06-16
CN102396132B (zh) 2015-06-03
US20140070621A9 (en) 2014-03-13
ES2553138T3 (es) 2015-12-04
KR20110134912A (ko) 2011-12-15
TW201106572A (en) 2011-02-16
KR20160071478A (ko) 2016-06-21
WO2010108191A1 (en) 2010-09-23
EP2409378B1 (en) 2015-09-09
CN104901432A (zh) 2015-09-09
US20130113299A1 (en) 2013-05-09
US8796887B2 (en) 2014-08-05
US8338991B2 (en) 2012-12-25
EP2409378A1 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
ES2705081T3 (es) Ajuste de impedancia adaptativo de convertidor de CC-CC en una transmisión de potencia inalámbrica
US9281711B2 (en) Class E amplifier overload detection and prevention
US9461481B2 (en) Systems and methods for controlling output power of a wireless power transmitter
ES2657593T3 (es) Sistema y procedimiento para la transmisión de potencia inalámbrica de bajas pérdidas
EP2474101B1 (en) De-tuning in wireless power reception
KR101632129B1 (ko) 폐자 루프로 유도 충전시키는 시스템들 및 방법들
US9166439B2 (en) Systems and methods for forward link communication in wireless power systems
JP6199408B2 (ja) Dcバイアスを使用した高電力のrf電界効果トランジスタスイッチング
EP2847847B1 (en) Push-pull driver for generating a signal for wireless power transfer
US20140080409A1 (en) Static tuning of wireless transmitters
BR112016022779B1 (pt) Sistemas, aparelhos, e métodos para configuração de bobina receptora de potência sem fio
US9673872B2 (en) Multi-band transmit antenna
EP2891254A2 (en) Systems and methods for decoupling multiple wireless charging transmitters