ES2141928T5 - Balones de elastomero de copolimero en bloques para cateter. - Google Patents

Balones de elastomero de copolimero en bloques para cateter. Download PDF

Info

Publication number
ES2141928T5
ES2141928T5 ES95913555T ES95913555T ES2141928T5 ES 2141928 T5 ES2141928 T5 ES 2141928T5 ES 95913555 T ES95913555 T ES 95913555T ES 95913555 T ES95913555 T ES 95913555T ES 2141928 T5 ES2141928 T5 ES 2141928T5
Authority
ES
Spain
Prior art keywords
segments
balloon
block copolymer
polyamide
balloon according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
ES95913555T
Other languages
English (en)
Other versions
ES2141928T3 (es
Inventor
Lixiao Wang
Jianhua Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Ltd Barbados
Original Assignee
Boston Scientific Ltd Barbados
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22758397&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2141928(T5) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Boston Scientific Ltd Barbados filed Critical Boston Scientific Ltd Barbados
Publication of ES2141928T3 publication Critical patent/ES2141928T3/es
Application granted granted Critical
Publication of ES2141928T5 publication Critical patent/ES2141928T5/es
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1029Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/783Measuring, controlling or regulating blowing pressure
    • B29C2049/7831Measuring, controlling or regulating blowing pressure characterised by pressure values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6418Heating of preforms
    • B29C49/64195Heated by the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7542Catheters

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Child & Adolescent Psychology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Materials For Medical Uses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

LOS BALONES PARA DISPOSITIVOS MEDICOS, EN PARTICULAR PARA LOS CATETERES CON BALON PARA ANGIOPLASTIA, ESTAN HECHOS DE ELASTOMEROS TERMOPLASTICOS DE COPOLIMEROS EN BLOQUE EN EL QUE LOS COPOLIMEROS EN BLOQUE ESTAN HECHOS DE SEGMENTOS DUROS DE POLIESTER O POLIAMIDA Y SEGMENTOS BLANDOS DE POLIETER, LOS SEGMENTOS DUROS DE POLIESTER SON POLIESTERES DE UN ACIDO DICARBOXILICO AROMATICO Y UN DIOL C{SUB,2}-C{SUB,4}; LOS SEGMENTOS DUROS DE POLIAMIDA SON POLIAMIDAS DE ACIDOS CARBOXILICOS C{SUB,6} O SUPERIORES Y DIAMINAS ORGANICAS C{SUB,6} O SUPERIORES O ACIDOS {OE}-AMINO-{AL} ALIFATICOS, Y LOS SEGMENTOS BLANDOS DE POLIETER SON POLIETERES DE DIOLES C{SUB,2}-C{SUB,10}. EL COPOLIMERO EN BLOQUE TIENE UN MODULO DE BAJA FLEXIBILIDAD, ES DECIR, DE MENOS DE 150.000 PSI; EL COPOLIMERO EN BLOQUE TIENE UNA DUREZA MAYOR DE 60, EN LA ESCALA DE SHORE D Y EL PORCENTAJE POR PESO DEL POLIMERO EN BLOQUE ATRIBUIBLE A LOS SEGMENTOS DUROS ESTA, APROXIMADAMENTE, ENTRE 50% Y 95%. LOS POLIMEROS PROPORCIONAN BALONES DE ALTA RESISTENCIA, UNA PARED DELGADA, CONFORMABLES Y SEMICONFORMABLES, LO QUE PRODUCE UN CATETER DE BAJO PERFIL. ESTOS CATETERES TIENEN MUY BUENA PENETRACION INICIAL, UN SEGUIMIENTO SENCILLO Y UNA BUENA PENETRACION DESPUES DE HINCHARLOS POR PRIMERA VEZ.

Description

Balones de elastómero de copolímero en bloques para catéter.
Antecedentes de la invención
En el tratamiento médico se utilizan ampliamente globos o balones montados en los extremos distales de los catéteres. El balón puede utilizarse para ensanchar un vaso sanguíneo en el cual está inserto el catéter o para forzar un vaso bloqueado para que se abra. Los requisitos de resistencia y de tamaño de los balones varían ampliamente según el uso previsto del balón y el tamaño del vaso dentro del cual se inserta el catéter. Tal vez las aplicaciones más exigentes para tales balones se dan en la angioplastia por balón en la cual los catéteres se insertan en largas distancias dentro de vasos extraordinariamente pequeños y se utilizan para abrir estenosis de vasos sanguíneos por medio del hinchado del balón. Estas aplicaciones requieren balones relativamente no elásticos de pared extremadamente delgada y de alta resistencia, con propiedades predecibles de hinchado. Se necesitan paredes delgadas debido a que los grosores de la conexión y de la pared del balón limitan el diámetro mínimo del extremo distal del catéter y determinan por ello los límites en cuanto a tamaño de vaso tratable por medio del método y la facilidad del paso del catéter a través del sistema vascular. Se necesita alta resistencia debido a que el balón se utiliza para abrir por empuje una estenosis y por lo tanto la delgada pared no debe estallar bajo las elevadas presiones internas necesarias para cumplir esta función. El balón debe tener cierta elasticidad de modo que pueda controlarse el diámetro hinchado, de modo que se permita que el cirujano haga variar el diámetro del balón según se requiera para tratar lesiones individuales, pero esta elasticidad debe ser relativamente baja de modo que el diámetro pueda controlarse fácilmente. Las pequeñas variaciones de presión no deben provocar grandes variaciones de diámetro.
Si bien los balones de angioplastia se consideran no elásticos con respecto a los balones utilizados en la mayor parte de otras aplicaciones, existe en la técnica una clasificación general de tales balones basada en la capacidad de expansión o "cedencia" de un balón con respecto a otro. Tal como se utiliza aquí, los balones "no cedentes" son los menos elásticos, aumentando de diámetro unos 2-7%, típicamente unos 5%, cuando el balón es presurizado desde una presión de hinchado de unas 6 atm a una presión de unas 12 atm, esto es, tienen una "distensión" en esta franja de presiones de unos 5%. Los balones "semicedentes" tienen distensiones algo mayores, generalmente de 7-16% y típicamente de 10-12% en la misma franja de presurización. Los balones "cedentes" son aún más distensibles teniendo distensiones generalmente en la franja de 16-40% y típicamente de unos 21% en la misma franja de presiones. Las distensiones máximas, es decir la distensión a partir del diámetro nominal y hasta el estallido, de varios materiales de balón pueden ser significativamente mayores que los porcentajes de distensión discutidos anteriormente debido a las resistencias de pared y así las presiones de estallido varían ampliamente entre los materiales de balón. La franja de hinchado de 6-12 atm se utiliza en la presente solicitud para permitir la comparación directa de los atributos de cedencia de varios balones.
La resistencia de los materiales poliméricos utilizados en los balones varía ampliamente. Los balones más resistentes son también los menos elásticos, estando fabricados de polímeros altamente orientables, tales como propileno, tereftalato de polietileno u otros poliésteres o copoliésteres de ftalato y nylons. Las resistencias a la tracción de la pared son comúnmente de 20.000-50.000 psi. Los balones comerciales de angioplastia fabricados de tales materiales con diámetros nominales de la franja de 1,5-4,5 mm tienen distensiones de la franja de no cedente a semicendente y pueden frecuentemente tener presiones nominales de 16 atm o superiores sin peligro de estallido (las presiones reales de estallido pueden superar las 20 atm). Sin embargo, de manera general, a medida que aumenta la cedencia disminuye la resistencia de pared. Otros balones semicedentes y cedentes se fabrican de polímeros menos altamente orientables tales como etileno-acetato de vinilo, cloruro de polivinilo, copolímeros de olefinas y resinas ionómeras. Las resistencias de pared de los balones fabricados a partir de estos materiales menos orientables son aún inferiores que las de los fabricados a partir de los polímeros altamente orientables, comúnmente en la franja de 6.000-15.000 psi originando presiones nominales inferiores de hinchado máximo de 9-10 atm.
Los atributos particulares de distensión y de presión máxima de un balón son también influenciados tanto por el tipo de polímero como por las condiciones por las cuales se hincha el balón. Los balones de angioplastia están convencionalmente fabricados por hinchado de un tubo de material polimérico a una temperatura superior a su temperatura de transición al estado vítreo. Para cualquier material dado de balón, existirá una franja de distensiones logrables según las condiciones elegidas para el soplado o hinchado del balón.
En el documento U.S. 4.906.244 de Pinchuck se describen balones de materiales de nylon (es decir poliamida alifática) tales como nylon 12, nylon 11, nylon 9, nylon 6/9 y nylon 6/6. Como todos los demás materiales poliméricos las distensiones de estos balones pueden determinarse, dentro de una franja, por control de las condiciones de soplado tales como las dimensiones iniciales del tubo, el preestirado, la relación circunferencial y las condiciones de termofijación. Los datos de la referencia demuestran que pueden obtenerse características de cedencia que van desde características de no cedencia a características de semicedencia y que pueden obtenerse resistencias de pared superiores a 15.000. La referencia sugiere que pueden lograrse cedencias superiores con materiales de nylon pero no existe indicación de qué otros nylons u otras condiciones de formación de los balones podrían emplearse para lograrlo.
También se ha sugerido preparar balones de elastómeros termoplásticos en el documento US 4.254.774 de Boretos y se han mencionado elastómeros de poliamidas entre varios posibles materiales de balón sugeridos en el documento US 5.250.069 de Nobuyoshi et al, pero existen muchos de tales polímeros de elastómeros termoplásticos y antes de su invención se ha esperado que las prestaciones de los balones fabricados de estos materiales no serían en general mejores que la cedencia alta o intermedia obtenida a partir de polímeros termoplásticos convencionales tales como yonómero de polietileno, cloruro de polivinilo, polietileno o etileno-acetato de vinilo.
En el documento US 5.290.306, se han propuesto éteres de poliéster y polímeros de polieteresteramida de una dureza de Shore D inferior a 55 para el uso como manguito o capa exterior coextruida para un balón de un material de nylon o de tereftalato de polietileno (PET) orientado biaxialmente, de modo que se proporcionara al balón una mejor blandura y resistencia a los poros y a la abrasión.
En el documento EP 0592885 se describen como materiales de balón copolímeros en bloques de poliuretano que tienen módulo de flexión de unos 190.000 y un alargamiento final a la rotura de 250% y se hace mención al uso además de copolímeros en bloques de poliéster o copolímeros en bloques de poliamidas pero no se sugiere que tales copolímeros alternativos podrían emplearse de manera útil si su módulo de flexión fuese substancialmente inferior o si su alargamiento final fuese substancialmente superior que el de los descritos copolímeros en bloques de poliuretano.
Sumario de la invención
Nuevos balones, que poseen una combinación peculiar de propiedades físicas incluyendo atributos de distensión, semicedente y cedente, buena flexibilidad y alta resistencia a la tracción, se forman a partir de un segmento de tubo de polímero por expansión radial del tubo bajo presión, siendo el polímero un elastómero termoplástico de copolímero en bloques caracterizados como sigue:
\quad
el copolímero en bloques está constituido por dos ó mas segmentos duros de un poliéster o una poliamida y por dos ó más segmentos blandos de poliéter;
\quad
los segmentos duros de poliéster son poliésteres de ácido tereftálico y un diol en C_{2}-C_{4},
\quad
los segmentos duros de poliamida son poliamidas en C_{6} o superiores, preferentemente en C_{10}-C_{12,} ácidos carboxílicos en C_{6} o superiores, preferentemente en C_{10}-C_{12}, diaminas orgánicas en C_{6} o superiores, preferentemente en C_{10}-C_{12}, \omega-amino-\alpha-ácidos alifáticos, y los segmentos duros de poliamida están unidos a los segmentos blandos de poliéter por grupos de éster y los segmentos blandos de poliéter son poliéteres en C_{2}-C_{10}, preferentemente dioles en C_{4}-C_{6};
el copolímero en bloques tiene un módulo de flexión, inferior a unos 150.000 psi, preferentemente inferior a 120.000 psi;
el copolímero en bloques tiene una dureza, escala Shore D mayor de 60; y
el porcentaje en peso del polímero en bloques atribuíble a los segmentos duros es de entre unos 50% y unos 95%, dicho balón que tiene un perfil de distensión de cadencia a semicedencia por el cual cuando la presión de hinchado se incrementa de 6 atm a 12 atm, el balon se expande desde un diámetro nominal a la presión de 6 atm a un diámetro incrementado a la presión de 12 atm que es por lo menos el 7% mayor que dicho diámetro nominal.
A partir de tales polímeros pueden prepararse balones que tengan perfiles de expansión de cedentes a semicedentes con resistencias de pared mayores de 15.000 psi frecuentemente mayores de 20.000 psi. La elevada resistencia de los balones producidos a partir de los polímeros permite la construcción de catéteres de bajo perfil y el bajo módulo de flexión contribuye al tacto más suave que se halla con los balones de la invención en comparación con los fabricados de otros materiales poliméricos de alta resistencia. Los catéteres de bajo perfil fabricados con los balones de la invención tienen un muy buen cruzado inicial, buena capacidad de seguimiento y buen recruzado después del primer hinchado.
Descripción de los dibujos
La Fig. 1 es una gráfica de la distensión desde el diámetro nominal hasta el estallido de varios balones de la invención preparados a partir de un copolímero en bloques de poliéster de poliamida/poliéter utilizando diferentes relaciones circunferenciales para formar el balón.
La Fig. 2 es una gráfica como en la Figura 1 utilizando un copolímero en bloques alternados de poliéster de poliamida/poliéter para formar el balón de la invención.
Descripción detallada de la invención
Los balones preferidos de la invención se fabrican de copolímeros en bloques de poliamida/poliéter. Los copolímeros en bloques de poliamida/poliéter se identifican comúnmente por medio del acrónimo PEBA (amida en bloques de poliéter). Los segmentos de poliamida y de poliéter de estos copolímeros en bloques están unidos a través de uniones éster. Tales copolímeros en bloques de poliéster de poliamida/poliéter se fabrican por medio de una reacción de policondensación en estado fundido de una poliamida dicarboxílica y un diol poliéter. El resultado es un poliéster de cadena corta constituido por bloques de poliamida y poliéter. Los bloques de poliamida y poliéter no son miscibles. Así los materiales se caracterizan por una estructura en dos fases: una es una zona termoplástica que es principalmente poliamida y la otra es una zona elastomérica que es rica en poliéter. Los segmentos de poliamida son semicristalinos a temperatura ambiente. La fórmula química generalizada de estos polímeros de poliéster puede representarse por medio de la siguiente fórmula:
1
en la cual PA es un segmento de poliamida, PE es un segmento de poliéter y el número repetitivo n es de entre 5 y 10.
Los segmentos de poliamida son ventajosamente poliamidas alifáticas, tales como nylons 12, 11, 9, 6, 6/12, 6/11, 6/9 o 6/6. Más preferentemente, son segmentos de nylon 12. Los segmentos de poliamida pueden basarse también en poliamidas aromáticas pero en tal caso deben esperarse características de cedencia significativamente inferior. Los segmentos de poliamida son relativamente de bajo peso molecular, de manera general dentro de la franja de 500-8.000, más preferentemente 2.000-6.000, y con la mayor preferencia de unos 3.000-5.000.
Los segmentos de poliéter son poliéteres alifáticos que tienen por lo menos 2 y no más de 10 átomos de carbono alifáticos saturados lineales entre uniones éter. Más preferentemente, los segmentos de éter tienen 4-6 carbonos entre uniones éter y, con la mayor preferencia, son segmentos de poli(éter de tetrametileno). Los ejemplos de otros poliéteres que pueden emplearse en el lugar de los preferidos segmentos de éter de tetrametileno incluyen polietilenglicol, polipropilenglicol, poli(éter de pentametileno) y poli (éter de hexametileno). Las partes hidrocarbúricas del poliéter pueden estar opcionalmente ramificadas. Un ejemplo es el poliéter de diol de 2-etilhexano. De manera general tales ramificaciones no contendrán más de dos átomos de carbono. El peso molecular de los segmentos de poliéter es ventajosamente de entre unos 400 y 2500, preferentemente de entre 650 y 1.000.
La relación en peso de poliamida a poliéter en los poliésteres de poliamida/poliéter utilizados en la invención debe ser preferentemente de la franja de 50/50 a 95/5, preferentemente entre 60/30 y 92/08 y, más preferentemente, entre 70/30 y 90/10.
Los poliésteres de poliamida/poliéter son vendidos comercialmente bajo la marca PEBAX por Atochem North America, Inc., Philadelphia PA. Los ejemplos de los polímeros adecuados y comercialmente disponibles son los polímeros de la serie PEBAX® 33 con una dureza de 60 y superior, escala Shore D, especialmente Pebax® 7033 y 6333. Estos polímeros están constituidos por segmentos de nylon 12 y segmentos de poli(éter de tetrametileno) en relaciones de unos 90/10 y unos 80/20 en peso, respectivamente. El peso molecular medio de los segmentos individuales de nylon 12 es de la franja de unos 3.000-5.000 gramos/mol y el de los segmentos de poli(éter de tetrametileno) es de la franja de unos 750-1.250 para el polímero 6333 y de unos 500-800 para el polímero 7.033. Las viscosidades inherentes de estos polímeros son de la franja de 1,33 a 1,50 dl/g.
Hablando de manera general, los balones de polímero del tipo Pebax® 7033 presentan un comportamiento límite de no cedencia a semicedencia y los balones de polímero del tipo Pebax® 6333 muestran un comportamiento de distensión de semicedencia a cedencia, según las condiciones de formación del balón.
Si bien los poliésteres de poliamida/poliéter del tipo Pebax® son los más preferidos, también es posible utilizar otros polímeros PEBA con las propiedades físicas especificadas aquí y obtener características de cedencia, resistencia y blandura similares en el balón acabado.
Como alternativa a los elastómeros de poliamida, es también posible utilizar copolímeros en bloques segmentados de poliéster/poliéter y obtener similares propiedades de los balones. Tales polímeros están constituidos por lo menos por dos segmentos de poliéster y por lo menos por dos segmentos de poliéter. Los segmentos de poliéter son iguales que los anteriormente descritos para los copolímeros en bloques de poliamida/poliéter, útiles en la invención. Los segmentos de poliéster son poliésteres de ácido tereftálico y un diol de dos a cuatro carbonos.
Los copolímeros en bloques de poliéster/poliéter preferidos son polímeros de poli(tereftalato de butileno)-bloque-poli(óxido de tetrametileno) tales como Arnitel EM 740, vendido por DSM Engineering Plastics. Los polímeros Hytrel, vendidos por DuPont, que cumplen las especificaciones físicas y químicas indicadas aquí pueden también utilizarse, pero son menos preferidos.
Es importante que los copolímeros en bloques tengan una dureza, de la escala Shore D, de por lo menos 60 y un módulo de flexión de menos de unos 150.000, a fin de obtener la deseable combinación de características de resistencia, cedencia y blandura, que distinguen los balones de la invención. Preferentemente, la dureza Shore D es de la franja de 65-75 y el módulo de flexión es de la franja de 50.000-120.000. Los polímeros preferidos útiles en la invención están también caracterizados por un alargamiento final elevado de unos 300% o superior y de una resistencia final a la tracción de por lo menos 6.000 psi.
Los balones de la invención se fabrican utilizando técnicas conocidas para formar balones de catéter. Para balones de catéter de angioplastia coronaria (diámetros del balón de unos 1,5-4,0 mm), pueden obtenerse fácilmente grosores de una sola pared de menos de 0,001 pulgada, preferentemente menos de 0,0007 pulgada. Las resistencias de pared para tales balones son superiores a 15.000, típicamente por lo menos de 18.000 psi, y en la mayor parte de los casos de la franja de unos 20.000 a 32.000 psi. Para angioplastia periférica, pueden utilizarse balones de hasta 10 mm de diámetro y en tales casos pueden emplearse paredes algo más gruesas. Incluso con un balón de 10 mm, pueden emplearse grosores de pared de unos 0,0015 mm o menos para proporcionar balones con presiones de estallido de por lo menos 10 atm. Ventajosamente, los balones se forman por expansión de tubo a una relación circunferencial (diámetro del molde/diámetro interior del tubo) de entre 3 y 8, preferentemente de entre 4 y 7.
Los siguientes ejemplos ilustran la preparación y las propiedades peculiares de los balones de la invención.
Ejemplos Extrusión de tubo
En los ejemplos 1-9, 11 y 13, todos los materiales de tubo se fabricaron a partir de Atochem Pebax® 7033 y Pebax® 6333 por extrusión. Los gránulos de polímero se secaron a menos de 0,10% en peso de contenido de humedad antes de la extrusión. Se extruyó tubo a temperaturas de la mezcla plastificada del orden de 200ºC a 220ºC por alimentación en caliente a través de siete zonas de extrusora con temperaturas controladas. Las condiciones de extrusión se basaron en las condiciones de procesado del polímero recomendadas por el fabricante. Después de extruirse el material polimérico de la matriz en forma de tubo se hizo pasar a través de un pequeño intersticio de aire y se enfrió en un baño de agua desionizada mantenido a unos 65ºF. Se utilizó un arrastrador para arrastrar el tubo a través del baño de agua. Después de pasar a través del arrastrador, el tubo extruido se cortó en trozos de 8 pulgadas o se arrolló. Por medio de este método se fabricaron varios tamaños de tubo.
Ejemplo 1
El producto de este ejemplo es un balón de 2,25 mm fabricado a partir de Pebax® 7033. Este polímero tenía una dureza Shore D de 69, un módulo de flexión de 67.000, una resistencia al final de tracción de 8.300 psi y un alargamiento final de 400%. Los tramos de tubo tenían un diámetro exterior de 0,0270 pulgada y un diámetro interior de 0,0179 pulgada. A fin de formar un balón de 2,25 mm, con una longitud de cuerpo de 20 mm, se utilizó un molde que tenía dimensiones que permitían que el tubo se soplara al tamaño de cuerpo y a los diámetros interiores de conexión del balón apropiados.
Después de haber fijado el tramo de tubo dentro del molde, el molde se colocó en un soporte. El tramo de tubo se extendía hacia afuera de la parte superior del molde y se alimentó en una mordaza Touhy a través de la cual se aplicó nitrógeno gaseoso en el orificio interior del tubo a 280 psi con una tracción aplicada al tubo. El tramo de tubo en el fondo del molde se sujetó de modo que la presión se mantuviera dentro del tramo de tubo. Entonces el molde se sumergió gradualmente en un baño de agua caliente desionizada mantenido a 90ºC (\pm 1ºC) hasta un punto justamente por encima de la parte de conexión proximal del molde de una manera controlada. Se formó un balón por expansión radial con presión interna utilizando una relación circunferencial de 5,1. Después de haber formado el balón, el molde se sacó del baño de agua caliente y se enfrió durante aproximadamente 10 s en un baño de agua desionizada mantenido a unos 10ºC.
Unos balones preparados de esta manera se sometieron a ensayos normales de estallido por medición del grosor de doble pared del balón deshinchado, hinchando el balón a presiones crecientes a incrementos y midiendo el diámetro exterior a cada incremento hasta el estallido del balón. De los datos obtenidos se calcularon la resistencia al estallido, la distensión y la resistencia de la pared del balón. Los resultados medios se dan en la Tabla 1.
Ejemplo 2
El producto de este ejemplo es un balón de 3,00 mm fabricado a partir de Pebax® 7033. Los tramos de tubo tenían un diámetro exterior de 0,0290 pulgada y un diámetro interior de 0,0179 pulgada. Se utilizó un molde del tamaño de 3,00 mm para producir los balones. Estos balones de 3,00 mm se fabricaron por medio del mismo proceso utilizado en el ejemplo 1, excepto en cuanto a la temperatura de los baños de agua y a la presión de soplado interno. La temperatura del baño de agua y la presión se mantuvieron a 95ºC y 300 psi, respectivamente. La relación circunferencial del balón fue de 6,2. Los resultados de ensayo en cuanto a estallido, distensión y resistencia de pared se indican también en la Tabla 1.
Ejemplo 3
(Comparativo)
El producto de este ejemplo es un balón de 3,00 mm fabricado a partir de Pebax® 7033. Los tramos de tubo tenían un diámetro exterior de 0,0316 pulgada y un diámetro interior de 0,0179 pulgada. Se utilizó un molde de tamaño correspondiente para moldear los balones. En este ejemplo, se utilizaron un baño de agua a 90ºC y una presión de hinchado interno de 400 psi. Los resultados de ensayo proporcionados en la Tabla 1 muestran que estos balones dieron una presión de estallido superior que la de los ejemplos anteriores.
Ejemplo 4
El producto de este ejemplo es un balón de 3,00 mm fabricado a partir de Pebax® 7033. Los tramos de tubo tenían un diámetro exterior de 0,0320 pulgada y un diámetro interior de 0,0215 pulgada. Se utilizó un molde de tamaño de 3,00 mm para producir los balones. Se utilizaron las mismas condiciones de moldeo que las descritas en el ejemplo 2 excepto que el tubo se preestiró a temperatura ambiente antes de moldear los balones. La relación \lambda de preestirado/estirado era de 1,5 en este ejemplo. Los resultados de ensayo de este ejemplo se indican en la Tabla 1.
\vskip1.000000\baselineskip
TABLA 1
2
\vskip1.000000\baselineskip
Ejemplo 5
Se prepararon balones que tenían diámetros de 2,0-3,0 mm a partir de Pebax® 7033 utilizando relaciones circunferenciales de 4,6, 5,1 y 6,7. Los balones se expansionaron incrementalmente a 37ºC hasta que estallaron. Los resultados, punteados en la Figura 1, muestran curvas de semicedencia con resistencias muy elevadas al estallido que van de 15 a 18 atm y distensiones máximas al estallido de 24%-45%.
\vskip1.000000\baselineskip
Ejemplo 6
En este ejemplo, se fabricaron balones a partir de Pebax® 6333. Este polímero tiene una dureza Shore D de 63, un módulo de flexión de 49.000, una resistencia final a la tracción de 8.100 psi y un alargamiento final de 300%. Se utilizó el mismo proceso de formación de los balones que en el ejemplo 1, excepto en lo que se indica en lo que sigue. El producto de este ejemplo es un balón de 2,5 mm. Los tramos de tubo tenían un diámetro exterior de 0,0316 pulgada y un diámetro interior de 0,0179 pulgada. Se utilizó un molde de un tamaño de 2,5 mm, para producir los balones. En este ejemplo, se utilizaron un baño de agua a 95ºC y una presión de soplado interno de 300 psi. La relación circunferencial para el soplado del balón fue de 5,5. Los resultados de estallido, distensión y resistencia de pared se muestran en la Tabla 2.
\vskip1.000000\baselineskip
Ejemplo 7
Se utilizó tubo de Pebax® 6333 con un diámetro exterior de 0,0310 pulgada y un diámetro interior de 0,0170 pulgada para producir un balón de 3,0 mm. La temperatura del baño de agua fue de 90ºC y la presión de soplado interno fue de 300 psi. La relación circunferencial para el soplado del balón fue de 6,9. Los resultados de ensayo se muestran en la Tabla 2.
TABLA 2
3
Ejemplo 8
Se prepararon balones que tenían diámetros de 2,25-3,0 mm a partir de Pebax® 6333 utilizando relaciones circunferenciales de 4,2, 5,5 y 6,9. Los balones se expandieron incrementalmente a 37ºC hasta que estallaron. Los resultados, punteados en la Figura 2, muestran curvas de semicedencia y de cedencia con resistencias de estallido de 11,5-14 atm y distensiones al estallido de 23%-69%.
Ejemplo 9
Los productos de este ejemplo fueron balones de 3,00 mm fabricados de Pebax® 6333. Los tramos de tubo tenían un diámetro exterior de 0,0350 pulgada y un diámetro interior de 0,0190 pulgada. Se utilizó un molde de un tamaño de 3,00 mm para producir los balones. Se preestiraron partes de los tramos de tubo a una relación de estirado de 2 (\lambda=2) antes del moldeo de los balones. Las partes preestiradas se hallaban a cada lado de una parte central no estirada de 8 mm protegida durante la operación de preestirado mediante una mordaza. La parte central no estirada recibió entonces la forma de un cuerpo de balón de 20 mm de longitud, 3,0 mm de diámetro por expansión bajo presión en un molde como en los ejemplos anteriores. La temperatura del baño de agua fue de 95ºC y la presión de expansión fue de 340 psi. Los balones fabricados de esta manera tenían una relación circunferencial de 6,2, un grosor de pared única de cuerpo de entre 0,0006 y 0,0007 pulgadas, un grosor de pared de conexión distal de entre 0,0014 y 0,0021 pulgadas, un grosor de pared de conexión proximal de entre 0,0014 y 0,0018 pulgadas. La presión de estallido de los balones fue de unas 270 psi. La distensión de los balones era semicedente.
Ejemplo 10
El material utilizado en este ejemplo era Arnitel EM 740 vendido por DSM Engineering Plastics. Este polímero tenía una dureza Shore de 74D, un módulo de flexión de 120.000 psi, una resistencia final de tracción de 6.400 psi y un alargamiento final de 340%. Se prepararon balones de 2,25 mm a partir de tubo de unas dimensiones de diámetro exterior = 0,0270 pulgada y de diámetro interior = 0,0179 pulgada. El tubo se estranguló por dos extremos y la parte de cuerpo del balón no estaba estirada, como se ha descrito en el Ejemplo 9. La temperatura de moldeo fue de 80ºC. La presión de moldeo fue de 290 psi. La tracción de moldeo fue de 50 gramos. Las propiedades de los balones se dan en la Tabla 3.
TABLA 3
4
Ejemplo 11
(Comparativo)
El material utilizado en este ejemplo era Pebax 7033. La temperatura de moldeo fue de 95ºC. La presión de moldeo fue de 500 psi. Se prepararon balones de 2,00 mm a partir de segmentos de tubo como se indica en lo que sigue. Todos los segmentos de tubo se estiraron a temperatura ambiente con diferentes relaciones de estirado y dimensiones del tubo de partida. La unidad de diámetro interior y de diámetro exterior es en pulgadas.
5
\vskip1.000000\baselineskip
Las propiedades de los balones resultantes se indican en la Tabla 4.
\vskip1.000000\baselineskip
TABLA 4
6
\vskip1.000000\baselineskip
Ejemplo 12
El material utilizado en este ejemplo era Arnitel EM740 poli(tereftalato de butileno)-bloque-poli(óxido de tetrametileno). Se prepararon balones de 2,75 mm a partir de tubo de las dimensiones: diámetro exterior = 0,0390 pulgada y diámetro interior = 0,0230 pulgada. El tubo se estiró a temperatura ambiente a \lambda = 4,8. Las dimensiones del tubo estirado eran: diámetro exterior = 0,0250 pulgada y diámetro interior = 0,0200 pulgada. La temperatura de moldeo fue de 80ºC. La presión de moldeo fue de 490 psi. La tracción de moldeo fue de 30 gramos. Las propiedades de los balones resultantes se indican en la Tabla 5.
TABLA 5
7
\vskip1.000000\baselineskip
Ejemplo 13
Se estiran tubos de Pebax 7033 con dimensiones de 0,0198 pulgada de diámetro exterior y de 0,0339 pulgada de diámetro interior, a temperatura ambiente, con una zona central protegida por un hipotubo insertado de aproximadamente 0,018 pulgada de diámetro y 1,0 pulgada de longitud. El tubo se estiró hasta que quedó una zona central no estirada de 8 mm. Se fabricaron diez balones esterilizados (3,0 mm de diámetro y 20 mm de longitud) con un grosor medio de doble pared de 0,00142 pulgada, por expansión radial de la parte central de tubo de 8 mm a 95ºC. La presión de estallido resultante es de 270-280 psi y la distensión es del 9% en la franja de 88-176 psi y del 16% en la franja de 88-235 psi.
\vskip1.000000\baselineskip
Ejemplos comparativos
Ejemplos comparativos A-C
El material utilizado en este ejemplo era Pebax 3533. Este polímero tiene una dureza Shore D de 35 y un módulo de flexión de 2.800. Se fabricaron balones por expansión de tubos de diámetro interior = 0,0330 pulgada y diámetro exterior = 0,0480 pulgada. La temperatura de moldeo fue de 66ºC. La presión de molde fue de 80 psi. La distensión y el estallido se realizaron a temperatura ambiente (22ºC). Las propiedades de los balones se indican en la Tabla 6.
\vskip1.000000\baselineskip
TABLA 6
8
\vskip1.000000\baselineskip
Ejemplo comparativo D
El material utilizado en este ejemplo era Pebax 5533. Este polímero tiene una dureza Shore D de 55 y un módulo de flexión de 29.000. Se prepararon balones de 3,00 mm a partir de tramos de tubo que tenían un diámetro interior de 0,0190 pulgada y un diámetro exterior de 0,0360 pulgada. La temperatura de moldeo fue de 87,5ºC. La presión de moldeo fue de 300 psi. Se preestiraron partes de los tramos de tubo a una relación de estirado de 2 (\lambda = 2) antes de moldear los balones. Las partes preestiradas se hallaban a cada lado de una parte central no estirada de 8 mm protegida durante la operación de preestirado por un hipotubo como en el ejemplo 13. La parte central no estirada recibía entonces la forma de un cuerpo de balón de 20 mm de longitud y 3,0 mm de diámetro por expansión bajo presión en un molde. Las propiedades de los balones se indican en la Tabla 7.
TABLA 7
9
Ejemplos comparativos E-G
El material utilizado en este ejemplo era Riteflex 640 poli(tereftalato de butileno)-bloque-poli(óxido de tetrametileno). Este polímero tenía una dureza Shore D de 40 y un módulo de flexión de 12.300. Se fabricaron balones por expansión de tubos de un diámetro interior = 0,0360 pulgada y un diámetro exterior = 0,0430 pulgada. La temperatura de moldeo fue de 80ºC. La presión de moldeo fue de 80 psi. Las propiedades de los balones se indican en la Tabla 8.
\vskip1.000000\baselineskip
TABLA 8
10

Claims (20)

1. Un balón para un dispositivo médico formado a partir de un segmento de tubo de polímero por expansión radial del tubo bajo presión, siendo el polímero un elastómero termoplástico de copolímero en bloques caracterizado como sigue:
\quad
el copolímero en bloques comprende dos o más segmentos duros de un poliéster o poliamida y dos o más segmentos blandos de poliéter;
\quad
los segmentos duros de poliéster son poliésteres de ácido tereftálico y un diol en C_{2}-C_{4},
\quad
los segmentos duros de poliamida son poliamidas en C_{6} o superiores y ácidos carboxílicos en C_{6} o superiores y diaminas orgánicas en C_{6} o superiores o de \omega-amino-\alpha-ácidos alifáticos en C_{6} o superiores, y los segmentos duros de poliamida están unidos a los segmentos blandos de poliéter por grupos de éster, y los segmentos blandos de poliéter son poliéteres de dioles en C_{2}-C_{10},
\quad
el copolímero en bloques tiene un módulo de flexión inferior a unos 150.000 psi;
\quad
el copolímero en bloques tiene una dureza, escala Shore D mayor de 60; y
\quad
el porcentaje en peso del polímero en bloques atribuíble a los segmentos duros es de entre unos 50% y unos 95%,
\quad
dicho balón que tiene un perfil de distensión de cadencia a semicedencia por el cual cuando la presión de hinchado se incrementa de 6 atm a 12 atm, el balon se expande desde un diámetro nominal a la presión de 6 atm a un diámetro incrementado a la presión de 12 atm que es por lo menos el 7% mayor que dicho diámetro nominal.
2. Un balón según la reivindicación 1, caracterizado porque el copolímero en bloques tiene una dureza Shore D de la franja de 65-75 y un módulo de flexión de la franja de 50.000-120.000 psi.
3. Un balón según la reivindicación 1, caracterizado porque los segmentos duros del copolímero en bloques son segmentos de poliamida.
4. Un balón según la reivindicación 3, caracterizado porque el copolímero en bloques se representa por medio de la fórmula:
11
en la cual PA es un segmento de poliamida de un peso molecular de la franja de 500-8.000; PE es un segmento de poliéter de un peso molecular de la franja de 500-2.500 y el número repetitivo n es de entre 5 y 10.
5. Un balón según la reivindicación 4, caracterizado porque el segmento de copolímero en bloques, PA, es una poliamida alifática de uno o más ácidos alifáticos en C_{10}-C_{12} y una o más diaminas alifáticas en C_{10}-C_{12} o de un \omega-amino-\alpha-ácido alifático en C_{10}-C_{12}.
6. Un balón según la reivindicación 4, caracterizado porque el segmento de poliamida, PA, se selecciona del grupo compuesto por nylon 12, nylon 11, nylon 9, nylon 6, nylon 6/12, nylon 6/11, nylon 6/9 y nylon 6/6.
7. Un balón según la reivindicación 4, caracterizado porque el segmento de poliamida, PA, es nylon 12 de un peso molecular de 3.000-5.000 y el segmento de poliéter, PE, es poli(éter de tetrametileno) de un peso molecular de entre 500 y 1.250.
8. Un balón según la reivindicación 4, caracterizado porque los segmentos de poliamida, PA, comprenden entre 80 y 90% en peso del poliéster de poliamida/poliéter.
9. Un balón según la reivindicación 1, caracterizado porque dicho segmento de poliéter se elige del grupo formado por poli(éter de tetrametileno), poli(éter de pentametileno) y poli(éter de hexametileno).
10. Un balón según la reivindicación 1, caracterizado porque la resistencia de pared del balón es de por lo menos 15.000 psi.
11. Un balón según la reivindicación 10, caracterizado porque el grosor de pared, en base a una sola pared, no es superior a 0,0015 pulgada y dicha resistencia de pared es mayor de 18.000 psi.
12. Un balón según la reivindicación 11, caracterizado porque dicho grosor de pared no es mayor de 0,0009 pulgada.
13. Un balón según la reivindicación 10, caracterizado porque dicha resistencia de pared es mayor de 20.000 psi.
14. Un balón según la reivindicación 1, caracterizado porque el diámetro incrementado a 12 atm es por lo menos el 10% mayor que dicho diámetro nominal.
15. Un balón según la reivindicación 1, caracterizado porque el diámetro incrementado es por lo menos el 16% mayor que dicho diámetro nominal.
16. Un balón según la reivindicación 1, caracterizado porque tiene un diámetro nominal de entre 1,5 mm y 4,0 mm, teniendo el balón una presión de estallido de por lo menos 12 atm.
17. Un balón según la reivindicación 1, caracterizado porque los segmentos duros del copolímero en bloques son segmentos de poliéster.
18. Un balón según la reivindicación 1, caracterizado porque el copolímero en bloques es poli(tereftalato de butileno)-bloque-poli(óxido de tetrametileno).
19. Un balón según la reivindicación 1, caracterizado porque el copolímero en bloques está además caracterizado por una resistencia final de tracción de por lo menos 6.000 psi y un alargamiento final de por lo menos 300%.
20. Un catéter de dilatación que tiene un cuerpo tubular alargado, un balón montado en un extremo distal del mismo y medios para el hinchado del balón, caracterizado porque el balón es un balón como en la reivindicación 1.
ES95913555T 1994-03-02 1995-03-02 Balones de elastomero de copolimero en bloques para cateter. Expired - Lifetime ES2141928T5 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US20455494A 1994-03-02 1994-03-02
US204554 1994-03-02

Publications (2)

Publication Number Publication Date
ES2141928T3 ES2141928T3 (es) 2000-04-01
ES2141928T5 true ES2141928T5 (es) 2009-04-16

Family

ID=22758397

Family Applications (1)

Application Number Title Priority Date Filing Date
ES95913555T Expired - Lifetime ES2141928T5 (es) 1994-03-02 1995-03-02 Balones de elastomero de copolimero en bloques para cateter.

Country Status (10)

Country Link
US (1) US5556383A (es)
EP (1) EP0748232B8 (es)
JP (1) JP3494654B2 (es)
AT (1) ATE189402T1 (es)
DE (1) DE69514910T3 (es)
DK (1) DK0748232T4 (es)
ES (1) ES2141928T5 (es)
GR (1) GR3033196T3 (es)
PT (1) PT748232E (es)
WO (1) WO1995023619A1 (es)

Families Citing this family (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500180A (en) 1992-09-30 1996-03-19 C. R. Bard, Inc. Method of making a distensible dilatation balloon using a block copolymer
US6896842B1 (en) * 1993-10-01 2005-05-24 Boston Scientific Corporation Medical device balloons containing thermoplastic elastomers
WO1995009667A1 (en) 1993-10-01 1995-04-13 Boston Scientific Corporation Medical device balloons containing thermoplastic elastomers
US6146356A (en) * 1994-03-02 2000-11-14 Scimed Life Systems, Inc. Block copolymer elastomer catheter balloons
US5951941A (en) * 1994-03-02 1999-09-14 Scimed Life Systems, Inc. Block copolymer elastomer catheter balloons
US7163522B1 (en) 1994-03-02 2007-01-16 Scimed Life Systems, Inc. Block copolymer elastomer catheter balloons
US6171278B1 (en) 1994-03-02 2001-01-09 Scimed Life Systems, Inc. Block copolymer elastomer catheter balloons
US7108826B2 (en) * 1994-03-02 2006-09-19 Boston Scientific Scimed, Inc. High compliance, high strength catheter balloons useful for treatment of gastrointestinal lesions
US6406457B1 (en) 1994-03-02 2002-06-18 Scimed Life Systems, Inc. Block copolymer elastomer catheter balloons
US5554120A (en) 1994-07-25 1996-09-10 Advanced Cardiovascular Systems, Inc. Polymer blends for use in making medical devices including catheters and balloons for dilatation catheters
US5749851A (en) * 1995-03-02 1998-05-12 Scimed Life Systems, Inc. Stent installation method using balloon catheter having stepped compliance curve
WO1996037240A1 (en) * 1995-05-24 1996-11-28 Schneider (Usa) Inc. Dilatation balloons containing polyesteretheramide copolymer
US5645789A (en) * 1995-07-20 1997-07-08 Navius Corporation Distensible pet balloon and method of manufacture
ES2153984T3 (es) * 1995-11-08 2001-03-16 Scimed Life Systems Inc Procedimiento de formacion de balon mediante estrechamiento por estirado en frio.
DE69732836T2 (de) * 1996-01-16 2006-04-13 Advanced Cardiovascular Systems, Inc., Santa Clara Gleitfähiger leicht haftbarer katheterschaft
US6217547B1 (en) * 1996-01-16 2001-04-17 Advanced Cardiovascular Systems, Inc. Lubricous and readily bondable catheter shaft
US5908406A (en) * 1996-01-31 1999-06-01 E. I. Du Pont De Nemours And Company Dilatation catheter balloons with improved puncture resistance
US5871468A (en) * 1996-04-24 1999-02-16 Medtronic, Inc. Medical catheter with a high pressure/low compliant balloon
US5868705A (en) * 1996-05-20 1999-02-09 Percusurge Inc Pre-stretched catheter balloon
SE9602529D0 (sv) * 1996-06-26 1996-06-26 Astra Ab Medical device
JP3597868B2 (ja) 1996-07-23 2004-12-08 シメッド ライフ システムズ インコーポレイテッド 胃腸病巣処置に好適なカテーテル用高コンプライアンス高強度バルーン
CN1055705C (zh) * 1996-09-20 2000-08-23 中国科学院化学研究所 一种聚酯-聚醚多嵌段共聚物及其制法和用途
US5900444A (en) * 1996-10-08 1999-05-04 Zamore; Alan Irradiation conversion of thermoplastic to thermoset polyurethane
US6656550B1 (en) 1996-10-08 2003-12-02 Alan M. Zamore Dilatation device of uniform outer diameter
US7749585B2 (en) 1996-10-08 2010-07-06 Alan Zamore Reduced profile medical balloon element
US6596818B1 (en) 1996-10-08 2003-07-22 Alan M. Zamore Irradiation conversion of thermoplastic to thermoset polymers
US7341598B2 (en) * 1999-01-13 2008-03-11 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US5769817A (en) * 1997-02-28 1998-06-23 Schneider (Usa) Inc. Coextruded balloon and method of making same
US6152944A (en) * 1997-03-05 2000-11-28 Scimed Life Systems, Inc. Catheter with removable balloon protector and stent delivery system with removable stent protector
US5893868A (en) * 1997-03-05 1999-04-13 Scimed Life Systems, Inc. Catheter with removable balloon protector and stent delivery system with removable stent protector
US6554795B2 (en) 1997-03-06 2003-04-29 Medtronic Ave, Inc. Balloon catheter and method of manufacture
CA2232250C (en) 1997-05-14 2007-06-26 Navius Corporation Balloon for a dilation catheter and method for manufacturing a balloon
US20010008661A1 (en) 1997-05-14 2001-07-19 Eugene J. Jung Jr Balloon for a dilation catheter and method for manufacturing a balloon
US6221467B1 (en) 1997-06-03 2001-04-24 Scimed Life Systems, Inc. Coating gradient for lubricious coatings on balloon catheters
US6306166B1 (en) * 1997-08-13 2001-10-23 Scimed Life Systems, Inc. Loading and release of water-insoluble drugs
US6242063B1 (en) 1997-09-10 2001-06-05 Scimed Life Systems, Inc. Balloons made from liquid crystal polymer blends
US7101597B2 (en) 1997-09-10 2006-09-05 Boston Scientific Scimed, Inc. Medical devices made from polymer blends containing low melting temperature liquid crystal polymers
US6358227B1 (en) 1997-09-10 2002-03-19 Scimed Life Systems, Inc. Dilatation catheter balloon made from pen based homopolymer or random copolymer
US6284333B1 (en) 1997-09-10 2001-09-04 Scimed Life Systems, Inc. Medical devices made from polymer blends containing low melting temperature liquid crystal polymers
JP2001516621A (ja) * 1997-09-17 2001-10-02 アドヴァンスト カーディオヴァスキュラー システムズ インコーポレーテッド ポリエーテルブロックアミドカテーテルバルーン
US6048338A (en) 1997-10-15 2000-04-11 Scimed Life Systems, Inc. Catheter with spiral cut transition member
US6093463A (en) * 1997-12-12 2000-07-25 Intella Interventional Systems, Inc. Medical devices made from improved polymer blends
US6099926A (en) * 1997-12-12 2000-08-08 Intella Interventional Systems, Inc. Aliphatic polyketone compositions and medical devices
US5948345A (en) * 1998-01-05 1999-09-07 Medtronic, Inc. Method for making medical balloon catheter
JP4345229B2 (ja) * 1998-01-30 2009-10-14 株式会社カネカ バルーンカテーテル及びそれに用いるカテーテルシャフトとバルーンとの製造方法
US6319229B1 (en) 1998-02-19 2001-11-20 Medtronic Percusurge, Inc. Balloon catheter and method of manufacture
DE69914882T2 (de) * 1998-03-04 2004-12-16 Boston Scientific Ltd., St. Michael Zusammensetzung und verfahren zur herstellung von pbt-katheterballons
US20010001113A1 (en) 1998-04-21 2001-05-10 Florencia Lim Balloon catheter
US6287314B1 (en) * 1998-04-21 2001-09-11 Advanced Cardiovascular Systems, Inc. Stent deploying catheter system
US6193738B1 (en) * 1998-05-11 2001-02-27 Scimed Life Systems, Inc. Balloon cones and waists thinning methodology
US6024752A (en) * 1998-05-11 2000-02-15 Scimed Life Systems, Inc. Soft flexible tipped balloon
US6287506B1 (en) 1998-07-09 2001-09-11 Schneider (Usa) Inc. Method for reducing dilation balloon cone stiffness
JP2000217924A (ja) * 1999-02-01 2000-08-08 Kanegafuchi Chem Ind Co Ltd 拡張カテーテル用拡張体およびその製造方法
WO2000020063A1 (fr) * 1998-10-05 2000-04-13 Kaneka Corporation Catheter a ballonnet et procede de production
DE19852192C2 (de) * 1998-11-12 2003-04-24 Bayer Ag Wirkstoffhaltige aromatische Copolyester
JP2002529587A (ja) * 1998-11-12 2002-09-10 バイエル アクチェンゲゼルシャフト 活性成分含有ポリエーテルブロックアミド
US6905743B1 (en) 1999-02-25 2005-06-14 Boston Scientific Scimed, Inc. Dimensionally stable balloons
WO2000051660A1 (en) 1999-03-05 2000-09-08 Medtronic, Inc. Polyurethane balloon catheter
US6673053B2 (en) 1999-05-07 2004-01-06 Scimed Life Systems, Inc. Hydrophilic lubricity coating for medical devices comprising an antiblock agent
JP4883433B2 (ja) * 1999-05-16 2012-02-22 株式会社ワイエス・メディカル バルーンカテーテルおよびその製造方法並びにカテーテルチューブへのバルーンの装着方法
AUPQ197899A0 (en) * 1999-08-02 1999-08-26 Commonwealth Scientific And Industrial Research Organisation Biomedical compositions
US6592550B1 (en) 1999-09-17 2003-07-15 Cook Incorporated Medical device including improved expandable balloon
US6977103B2 (en) 1999-10-25 2005-12-20 Boston Scientific Scimed, Inc. Dimensionally stable balloons
US6579940B1 (en) 1999-10-28 2003-06-17 Edwards Lifesciences Corporation Thermoplastic elastomeric material as a replacement for natural rubber latex
US6620127B2 (en) * 1999-12-01 2003-09-16 Advanced Cardiovascular Systems, Inc. Medical device balloon
US6527741B1 (en) 1999-12-21 2003-03-04 Advanced Cardiovascular Systems, Inc. Angioplasty catheter system with adjustable balloon length
US6641694B1 (en) * 1999-12-22 2003-11-04 Advanced Cardiovascular Systems, Inc. Angioplasty balloon with thin-walled taper and method of making the same
US6719774B1 (en) * 1999-12-23 2004-04-13 Advanced Cardiovascular Systems, Inc. Method for forming low profile balloon and low profile balloon for use with a catheter
US7479128B1 (en) 2000-01-04 2009-01-20 Boston Scientific Scimed, Inc. Protective coatings for medical devices
US6572813B1 (en) * 2000-01-13 2003-06-03 Advanced Cardiovascular Systems, Inc. Balloon forming process
US7947059B2 (en) * 2000-03-02 2011-05-24 Boston Scientific Scimed, Inc. Multilayer medical device
US6881209B2 (en) 2000-05-25 2005-04-19 Cook Incorporated Medical device including unitary, continuous portion of varying durometer
US6613067B1 (en) * 2000-06-06 2003-09-02 Scimed Life Systems, Inc. Balloon protector
US6613838B1 (en) 2000-08-30 2003-09-02 Edwards Lifesciences Corporation Synthetic rubber elastomers as replacements for natural rubber latex
US6635078B1 (en) 2000-09-22 2003-10-21 Scimed Life Systems, Inc. Coated stents with better gripping ability
US6733520B2 (en) 2000-09-22 2004-05-11 Scimed Life Systems, Inc. Sandwich striped sleeve for stent delivery
US6863861B1 (en) 2000-09-28 2005-03-08 Boston Scientific Scimed, Inc. Process for forming a medical device balloon
US6620128B1 (en) * 2000-10-20 2003-09-16 Advanced Cardiovascular Systems, Inc. Balloon blowing process with metered volumetric inflation
US6444324B1 (en) 2000-12-01 2002-09-03 Scimed Life Systems, Inc. Lubricated catheter balloon
US7037318B2 (en) * 2000-12-18 2006-05-02 Boston Scientific Scimed, Inc. Catheter for controlled stent delivery
US6764504B2 (en) * 2001-01-04 2004-07-20 Scimed Life Systems, Inc. Combined shaped balloon and stent protector
US6673302B2 (en) 2001-01-24 2004-01-06 Scimed Life Systems, Inc. Wet processing method for catheter balloons
US20020161376A1 (en) * 2001-04-27 2002-10-31 Barry James J. Method and system for delivery of coated implants
JP4922498B2 (ja) * 2001-05-11 2012-04-25 株式会社カネカ バルーン用パリソン
US6863678B2 (en) 2001-09-19 2005-03-08 Advanced Cardiovascular Systems, Inc. Catheter with a multilayered shaft section having a polyimide layer
US7150853B2 (en) * 2001-11-01 2006-12-19 Advanced Cardiovascular Systems, Inc. Method of sterilizing a medical device
US7005097B2 (en) * 2002-01-23 2006-02-28 Boston Scientific Scimed, Inc. Medical devices employing chain extended polymers
US6730377B2 (en) 2002-01-23 2004-05-04 Scimed Life Systems, Inc. Balloons made from liquid crystal polymer blends
US7029732B2 (en) * 2002-02-28 2006-04-18 Boston Scientific Scimed, Inc. Medical device balloons with improved strength properties and processes for producing same
US6863852B1 (en) 2002-05-30 2005-03-08 Zeus Industrial Products, Inc. Fluoropolymer extrusions based on novel combinations of process parameters and clay minerals
AU2002950469A0 (en) * 2002-07-30 2002-09-12 Commonwealth Scientific And Industrial Research Organisation Improved biomedical compositions
JP2005536310A (ja) * 2002-08-22 2005-12-02 セント ジュード メディカル エーティージー, インコーポレイテッド あつらえられた柔軟性を有する高強度バルーン
US8337968B2 (en) 2002-09-11 2012-12-25 Boston Scientific Scimed, Inc. Radiation sterilized medical devices comprising radiation sensitive polymers
US7226472B2 (en) * 2002-10-15 2007-06-05 Boston Scientific Scimed, Inc. Catheter balloon with advantageous cone design
US7488339B2 (en) 2002-10-21 2009-02-10 Boston Scientific Scimed, Inc. Multilayer medical device
US6951675B2 (en) * 2003-01-27 2005-10-04 Scimed Life Systems, Inc. Multilayer balloon catheter
WO2004091471A2 (en) 2003-04-04 2004-10-28 Berger, Constance, F. Apparatus for heating bottles and method of manufacturing same
US7727442B2 (en) * 2003-07-10 2010-06-01 Boston Scientific Scimed, Inc. Medical device tubing with discrete orientation regions
US8293349B1 (en) 2003-07-18 2012-10-23 Boston Scientific Scimed, Inc. Balloon forming process and balloons made therefrom
EP1508348A1 (en) * 2003-08-18 2005-02-23 Medtronic Vascular, Inc. A process for producing a hyper-elastic, high strength dilation balloon made from multi-block copolymers
US7597702B2 (en) * 2003-09-17 2009-10-06 Boston Scientific Scimed, Inc. Balloon assembly with a torque
DK1673114T3 (da) * 2003-10-17 2008-10-06 Invatec Srl Katerterballon
US20050127561A1 (en) * 2003-12-16 2005-06-16 Scimed Life Systems, Inc. Method of making expandable-collapsible bodies by temperature gradient expansion molding
US7413558B2 (en) * 2003-12-19 2008-08-19 Boston Scientific Scimed, Inc. Elastically distensible folding member
US7601285B2 (en) * 2003-12-31 2009-10-13 Boston Scientific Scimed, Inc. Medical device with varying physical properties and method for forming same
US7264458B2 (en) * 2004-01-07 2007-09-04 Boston Scientific Scimed, Inc. Process and apparatus for forming medical device balloons
JP4713573B2 (ja) * 2004-03-31 2011-06-29 クック・インコーポレイテッド ステント展開装置
US20050228428A1 (en) * 2004-04-07 2005-10-13 Afsar Ali Balloon catheters and methods for manufacturing balloons for balloon catheters
JP2005319289A (ja) * 2004-04-08 2005-11-17 Kaneka Corp カテーテルバルーン
US7713233B2 (en) * 2004-04-12 2010-05-11 Boston Scientific Scimed, Inc. Balloons having a crosslinkable layer
US7892478B2 (en) * 2004-04-19 2011-02-22 Boston Scientific Scimed, Inc. Catheter balloon mold form and molding process
US7070576B2 (en) * 2004-04-30 2006-07-04 Boston Scientific Scimed, Inc. Directional cutting balloon
EP1753369B1 (en) * 2004-06-08 2013-05-29 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US7635510B2 (en) * 2004-07-07 2009-12-22 Boston Scientific Scimed, Inc. High performance balloon catheter/component
US20060079863A1 (en) * 2004-10-08 2006-04-13 Scimed Life Systems, Inc. Medical devices coated with diamond-like carbon
US20060116700A1 (en) * 2004-11-29 2006-06-01 Crow Loren M Aortic stenosis cutting balloon blade
US7736375B2 (en) * 2004-11-29 2010-06-15 Boston Scientific Scimed, Inc. Balloon catheter with controller depth incising blade
US20060122560A1 (en) * 2004-12-07 2006-06-08 Robert Burgmeier Medical devices and processes for preparing same
US8070718B2 (en) * 2004-12-13 2011-12-06 Boston Scientific Scimed, Inc. Medical devices formed with a sacrificial structure and processes of forming the same
US8550985B2 (en) * 2004-12-14 2013-10-08 Boston Scientific Scimed, Inc. Applications of LIPSS in polymer medical devices
US20060135725A1 (en) * 2004-12-21 2006-06-22 Scimed Life Systems, Inc. New balloon materials
US7850645B2 (en) * 2005-02-11 2010-12-14 Boston Scientific Scimed, Inc. Internal medical devices for delivery of therapeutic agent in conjunction with a source of electrical power
US20060182907A1 (en) * 2005-02-11 2006-08-17 Boston Scientific Scimed, Inc. Novel microfibrillar reinforced polymer-polymer composites for use in medical devices
US20060224115A1 (en) * 2005-03-30 2006-10-05 Boston Scientific Scimed, Inc. Balloon catheter with expandable wire lumen
US9125968B2 (en) * 2005-03-30 2015-09-08 Boston Scientific Scimed, Inc. Polymeric/ceramic composite materials for use in medical devices
US7967836B2 (en) 2005-06-17 2011-06-28 Abbott Laboratories Dilatation balloon having reduced rigidity
WO2007011708A2 (en) 2005-07-15 2007-01-25 Micell Technologies, Inc. Stent with polymer coating containing amorphous rapamycin
EP1909973B1 (en) 2005-07-15 2018-08-22 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US7365126B2 (en) * 2005-09-16 2008-04-29 Boston Scientific Scimed, Inc. Medical device articles formed from polymer-inorganic hybrids prepared by ester-alkoxy transesterification reaction during melt processing
US20070073328A1 (en) * 2005-09-26 2007-03-29 Wilson-Cook Medical Inc., Incrementally expandable balloon
US8008395B2 (en) * 2005-09-27 2011-08-30 Boston Scientific Scimed, Inc. Organic-inorganic hybrid particle material and polymer compositions containing same
US7645498B2 (en) * 2005-10-07 2010-01-12 Ev3 Inc. Balloon catheter formed of random copolymerized nylons
US8876763B2 (en) * 2005-11-01 2014-11-04 Boston Scientific Scimed, Inc. Composite balloon
US9440003B2 (en) * 2005-11-04 2016-09-13 Boston Scientific Scimed, Inc. Medical devices having particle-containing regions with diamond-like coatings
US7766893B2 (en) * 2005-12-07 2010-08-03 Boston Scientific Scimed, Inc. Tapered multi-chamber balloon
US7828766B2 (en) 2005-12-20 2010-11-09 Advanced Cardiovascular Systems, Inc. Non-compliant multilayered balloon for a catheter
US7540881B2 (en) * 2005-12-22 2009-06-02 Boston Scientific Scimed, Inc. Bifurcation stent pattern
US9526814B2 (en) * 2006-02-16 2016-12-27 Boston Scientific Scimed, Inc. Medical balloons and methods of making the same
US20070191931A1 (en) * 2006-02-16 2007-08-16 Jan Weber Bioerodible endoprostheses and methods of making the same
US7465777B2 (en) * 2006-03-02 2008-12-16 Boston Scientific Scimed, Inc. Hybrid polymer materials from reactive extrusion for medical devices
US20070205539A1 (en) * 2006-03-03 2007-09-06 Boston Scientific Scimed, Inc. Balloon mold design
US20070207182A1 (en) * 2006-03-06 2007-09-06 Jan Weber Medical devices having electrically aligned elongated particles
US8858855B2 (en) 2006-04-20 2014-10-14 Boston Scientific Scimed, Inc. High pressure balloon
US8852625B2 (en) 2006-04-26 2014-10-07 Micell Technologies, Inc. Coatings containing multiple drugs
EP2020970A4 (en) 2006-05-03 2013-11-13 Vision Crc Ltd TREATMENT OF THE EYE
CN101437876B (zh) * 2006-05-03 2012-07-04 视力Crc有限公司 生物聚硅氧烷
US7943221B2 (en) * 2006-05-22 2011-05-17 Boston Scientific Scimed, Inc. Hinged compliance fiber braid balloon
US7906066B2 (en) 2006-06-30 2011-03-15 Abbott Cardiovascular Systems, Inc. Method of making a balloon catheter shaft having high strength and flexibility
US8382738B2 (en) 2006-06-30 2013-02-26 Abbott Cardiovascular Systems, Inc. Balloon catheter tapered shaft having high strength and flexibility and method of making same
US7654264B2 (en) 2006-07-18 2010-02-02 Nellcor Puritan Bennett Llc Medical tube including an inflatable cuff having a notched collar
US8177829B2 (en) 2006-08-23 2012-05-15 Boston Scientific Scimed, Inc. Auxiliary balloon catheter
US8609016B2 (en) 2006-08-28 2013-12-17 Boston Scientific Scimed, Inc. Refoldable balloon and method of making and using the same
US8216267B2 (en) 2006-09-12 2012-07-10 Boston Scientific Scimed, Inc. Multilayer balloon for bifurcated stent delivery and methods of making and using the same
US7963942B2 (en) * 2006-09-20 2011-06-21 Boston Scientific Scimed, Inc. Medical balloons with modified surfaces
US7951191B2 (en) * 2006-10-10 2011-05-31 Boston Scientific Scimed, Inc. Bifurcated stent with entire circumferential petal
US8088100B2 (en) * 2006-10-20 2012-01-03 Boston Scientific Scimed, Inc. Reinforced rewrappable balloon
CA2667228C (en) 2006-10-23 2015-07-14 Micell Technologies, Inc. Holder for electrically charging a substrate during coating
US8414611B2 (en) * 2006-11-03 2013-04-09 Boston Scientific Scimed, Inc. Main vessel constraining side-branch access balloon
US8398695B2 (en) * 2006-11-03 2013-03-19 Boston Scientific Scimed, Inc. Side branch stenting system using a main vessel constraining side branch access balloon and side branching stent
US7842082B2 (en) * 2006-11-16 2010-11-30 Boston Scientific Scimed, Inc. Bifurcated stent
US11426494B2 (en) 2007-01-08 2022-08-30 MT Acquisition Holdings LLC Stents having biodegradable layers
CN101711137B (zh) 2007-01-08 2014-10-22 米歇尔技术公司 具有可生物降解层的支架
CN101972492B (zh) 2007-01-21 2014-12-10 汉莫堤克股份有限公司 治疗体通道狭窄和预防危险的再狭窄的医学产品
US9433516B2 (en) 2007-04-17 2016-09-06 Micell Technologies, Inc. Stents having controlled elution
WO2008148013A1 (en) 2007-05-25 2008-12-04 Micell Technologies, Inc. Polymer films for medical device coating
US9192697B2 (en) 2007-07-03 2015-11-24 Hemoteq Ag Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis
US9216101B2 (en) * 2007-07-10 2015-12-22 Boston Scientific Scime, Inc. Dual taper stent protector
US20090018635A1 (en) * 2007-07-10 2009-01-15 Boston Scientific Scimed, Inc. Stent protector
US20090018633A1 (en) * 2007-07-10 2009-01-15 Boston Scientific Scimed, Inc. Protector for an insertable or implantable medical device
US7942661B2 (en) * 2007-07-18 2011-05-17 Boston Scientific Scimed, Inc. Bifurcated balloon folding method and apparatus
US20090069878A1 (en) * 2007-08-27 2009-03-12 Boston Scientific Scimed, Inc. Bifurcation post-dilatation balloon and methods
US8333795B2 (en) * 2007-08-27 2012-12-18 Boston Scientific Scimed, Inc. Bulging balloon for bifurcation catheter assembly and methods
EP2842582B1 (en) 2007-09-06 2018-06-20 Boston Scientific Limited Medical devices containing silicate and carbon particles
US7959669B2 (en) * 2007-09-12 2011-06-14 Boston Scientific Scimed, Inc. Bifurcated stent with open ended side branch support
US8046897B2 (en) 2007-09-28 2011-11-01 Abbott Cardiovascular Systems Inc. Method and apparatus for stent retention on a balloon catheter
US7833266B2 (en) 2007-11-28 2010-11-16 Boston Scientific Scimed, Inc. Bifurcated stent with drug wells for specific ostial, carina, and side branch treatment
US8403885B2 (en) 2007-12-17 2013-03-26 Abbott Cardiovascular Systems Inc. Catheter having transitioning shaft segments
EP2095795A1 (en) * 2007-12-21 2009-09-02 Abbott Laboratories Vascular Enterprises Limited Double layered balloons in medical devices
US8277501B2 (en) * 2007-12-21 2012-10-02 Boston Scientific Scimed, Inc. Bi-stable bifurcated stent petal geometry
EP2072065A1 (en) 2007-12-21 2009-06-24 Abbott Laboratories Vascular Enterprises Limited Strengthening textures in medical devices
US20090240318A1 (en) * 2008-03-19 2009-09-24 Boston Scientific Scimed, Inc. Stent expansion column, strut and connector slit design
US8951545B2 (en) 2008-03-28 2015-02-10 Surmodics, Inc. Insertable medical devices having microparticulate-associated elastic substrates and methods for drug delivery
CA2721832C (en) 2008-04-17 2018-08-07 Micell Technologies, Inc. Stents having bioabsorbable layers
US8932340B2 (en) * 2008-05-29 2015-01-13 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
US20090318863A1 (en) * 2008-06-18 2009-12-24 Boston Scientific Scimed, Inc. Functional Balloon With Built in Lubricity or Drug Delivery System
US9510856B2 (en) 2008-07-17 2016-12-06 Micell Technologies, Inc. Drug delivery medical device
JP2011528275A (ja) 2008-07-17 2011-11-17 ミセル テクノロジーズ,インク. 薬物送達医療デバイス
US9265918B2 (en) 2008-09-03 2016-02-23 Boston Scientific Scimed, Inc. Multilayer medical balloon
US8052638B2 (en) * 2008-11-26 2011-11-08 Abbott Cardiovascular Systems, Inc. Robust multi-layer balloon
US8444608B2 (en) 2008-11-26 2013-05-21 Abbott Cardivascular Systems, Inc. Robust catheter tubing
US8070719B2 (en) * 2008-11-26 2011-12-06 Abbott Cardiovascular Systems, Inc. Low compliant catheter tubing
US8834913B2 (en) 2008-12-26 2014-09-16 Battelle Memorial Institute Medical implants and methods of making medical implants
EP2411083A4 (en) 2009-03-23 2013-11-13 Micell Technologies Inc MEDICAL DEVICE FOR DELIVERY OF MEDICAMENT
CN102481195B (zh) 2009-04-01 2015-03-25 米歇尔技术公司 涂覆支架
WO2010124098A2 (en) * 2009-04-24 2010-10-28 Boston Scientific Scimed, Inc. Use of drug polymorphs to achieve controlled drug delivery from a coated medical device
SG175373A1 (en) * 2009-04-28 2011-11-28 Surmodics Inc Devices and methods for delivery of bioactive agents
EP3064230B1 (en) 2009-07-10 2019-04-10 Boston Scientific Scimed, Inc. Use of nanocrystals for a drug delivery balloon
JP5933434B2 (ja) 2009-07-17 2016-06-08 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 薬剤送達バルーンの製造方法
EP2531140B1 (en) 2010-02-02 2017-11-01 Micell Technologies, Inc. Stent and stent delivery system with improved deliverability
US8795762B2 (en) 2010-03-26 2014-08-05 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
WO2011133655A1 (en) 2010-04-22 2011-10-27 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
EP2569023B1 (en) 2010-05-10 2015-10-21 SurModics, Inc. Glycerol ester active agent delivery systems and methods
CA2803361C (en) 2010-06-30 2020-07-21 Surmodics, Inc. Lipid coating for medical devices delivering bioactive agent
EP2593039B1 (en) 2010-07-16 2022-11-30 Micell Technologies, Inc. Drug delivery medical device
WO2012031236A1 (en) 2010-09-02 2012-03-08 Boston Scientific Scimed, Inc. Coating process for drug delivery balloons using heat-induced rewrap memory
US8703260B2 (en) 2010-09-14 2014-04-22 Abbott Cardiovascular Systems Inc. Catheter balloon and method for forming same
EP2629832A1 (en) 2010-10-18 2013-08-28 Boston Scientific Scimed, Inc. Drug eluting medical device utilizing bioadhesives
US8177742B1 (en) * 2010-12-23 2012-05-15 Kimberly-Clark Wordwide, Inc. Inflatable retention system for an enteral feeding device
WO2012092504A2 (en) 2010-12-30 2012-07-05 Micell Technologies, Inc. Nanoparticle and surface-modified particulate coatings, coated balloons, and methods therefore
WO2012096787A1 (en) 2010-12-30 2012-07-19 Surmodics, Inc. Double wall catheter for delivering therapeutic agent
WO2012092421A2 (en) 2010-12-30 2012-07-05 Surmodics, Inc. Composition for intravascular delivery of therapeutic composition
US20120310210A1 (en) 2011-03-04 2012-12-06 Campbell Carey V Eluting medical devices
US9415193B2 (en) 2011-03-04 2016-08-16 W. L. Gore & Associates, Inc. Eluting medical devices
US9028444B2 (en) 2011-04-15 2015-05-12 W. L. Gore & Associates, Inc. Pivoting ring seal
US9757497B2 (en) 2011-05-20 2017-09-12 Surmodics, Inc. Delivery of coated hydrophobic active agent particles
US10213529B2 (en) 2011-05-20 2019-02-26 Surmodics, Inc. Delivery of coated hydrophobic active agent particles
US9861727B2 (en) 2011-05-20 2018-01-09 Surmodics, Inc. Delivery of hydrophobic active agent particles
CN107007921B (zh) 2011-05-26 2020-01-21 雅培心血管系统有限公司 导管的贯通顶端
WO2012166819A1 (en) 2011-05-31 2012-12-06 Micell Technologies, Inc. System and process for formation of a time-released, drug-eluting transferable coating
US9370647B2 (en) 2011-07-14 2016-06-21 W. L. Gore & Associates, Inc. Expandable medical devices
CA2841360A1 (en) 2011-07-15 2013-01-24 Micell Technologies, Inc. Drug delivery medical device
DE112012003104T5 (de) * 2011-07-25 2014-04-10 Terumo K.K. Behandlungsvorrichtung
US8669360B2 (en) 2011-08-05 2014-03-11 Boston Scientific Scimed, Inc. Methods of converting amorphous drug substance into crystalline form
US10213329B2 (en) 2011-08-12 2019-02-26 W. L. Gore & Associates, Inc. Evertable sheath devices, systems, and methods
US9056152B2 (en) 2011-08-25 2015-06-16 Boston Scientific Scimed, Inc. Medical device with crystalline drug coating
JP5873674B2 (ja) * 2011-09-29 2016-03-01 テルモ株式会社 カテーテル用バルーンおよびバルーンカテーテル
US10188772B2 (en) 2011-10-18 2019-01-29 Micell Technologies, Inc. Drug delivery medical device
WO2013059509A1 (en) 2011-10-18 2013-04-25 Micell Technologies, Inc. Drug delivery medical device
JP2015500054A (ja) * 2011-12-02 2015-01-05 シル ヴァスキュラー リミテッド バルーンカテーテルシステム
US9084857B2 (en) 2012-04-16 2015-07-21 W. L. Gore & Associates, Inc. Single access flow-reversal catheter devices and methods
US9283100B2 (en) 2012-05-16 2016-03-15 Abbott Cardiovascular Systems Inc. Polymer scaffold with multi-pleated balloon
US9381326B2 (en) 2012-06-15 2016-07-05 W. L. Gore & Associates, Inc. Vascular occlusion and drug delivery devices, systems, and methods
US8684963B2 (en) 2012-07-05 2014-04-01 Abbott Cardiovascular Systems Inc. Catheter with a dual lumen monolithic shaft
US9901715B2 (en) 2012-09-05 2018-02-27 W. L. Gore Associates, Inc. Retractable sheath devices, systems, and methods
US9724219B2 (en) 2012-10-04 2017-08-08 Abbott Cardiovascular Systems Inc. Method of uniform crimping and expansion of medical devices
JP6438406B2 (ja) 2012-11-05 2018-12-12 サーモディクス,インコーポレイテッド 疎水性生理活性物質を送達するための組成物および方法
US11246963B2 (en) 2012-11-05 2022-02-15 Surmodics, Inc. Compositions and methods for delivery of hydrophobic active agents
US9132259B2 (en) 2012-11-19 2015-09-15 Abbott Cardiovascular Systems Inc. Multilayer balloon for a catheter
WO2014165264A1 (en) 2013-03-12 2014-10-09 Micell Technologies, Inc. Bioabsorbable biomedical implants
US9844383B2 (en) 2013-05-08 2017-12-19 Embolx, Inc. Devices and methods for low pressure tumor embolization
JP6401781B2 (ja) 2013-05-08 2018-10-10 エンボルクス, インク.Embolx, Inc. 一体型流量調整による経血管的腫瘍塞栓形成の装置及び方法
KR102079613B1 (ko) 2013-05-15 2020-02-20 미셀 테크놀로지즈, 인코포레이티드 생흡수성 생체의학적 임플란트
CA2912690C (en) 2013-05-16 2022-05-03 Surmodics, Inc. Compositions and methods for delivery of hydrophobic active agents
US9539692B2 (en) 2014-08-15 2017-01-10 Covidien Lp Material removal from balloon cone
CA2974962C (en) 2015-01-29 2024-01-09 Surmodics, Inc. Delivery of hydrophobic active agent particles
US11464948B2 (en) 2016-02-16 2022-10-11 Embolx, Inc. Balloon catheters and methods of manufacture and use
US10350382B1 (en) 2018-06-08 2019-07-16 Embolx, Inc. High torque catheter and methods of manufacture
US9550046B1 (en) 2016-02-16 2017-01-24 Embolx, Inc. Balloon catheter and methods of fabrication and use
JP6718979B2 (ja) 2016-04-12 2020-07-08 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 医療用バルーン
US10849629B2 (en) 2016-12-13 2020-12-01 Boston Scientific Scimed, Inc. Medical balloon
US11123459B2 (en) 2016-12-16 2021-09-21 Surmodics, Inc. Hydrophobic active agent particle coatings and methods for treatment
US10898446B2 (en) 2016-12-20 2021-01-26 Surmodics, Inc. Delivery of hydrophobic active agents from hydrophilic polyether block amide copolymer surfaces
US10660773B2 (en) 2017-02-14 2020-05-26 Abbott Cardiovascular Systems Inc. Crimping methods for thin-walled scaffolds
WO2018200661A1 (en) 2017-04-25 2018-11-01 Boston Scientific Scimed, Inc. Medical balloon
US10555825B2 (en) 2017-11-09 2020-02-11 Abbott Cardiovascular Systems Inc. Rotation of a medical device during crimping
US10967556B2 (en) 2018-06-11 2021-04-06 Abbott Cardiovascular Systems Inc. Uniform expansion of thin-walled scaffolds
EP3760411A1 (de) * 2019-07-02 2021-01-06 Biotronik Ag Verfahren zum modifizieren einer oberfläche eines ballons für einen ballonkatheter
US20210379329A1 (en) * 2020-06-08 2021-12-09 White Swell Medical Ltd Non-thrombogenic devices for treating edema
CN115926155A (zh) * 2022-11-11 2023-04-07 万华化学集团股份有限公司 一种双熔点热塑性弹性体及其制备方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2273021B1 (es) * 1974-05-31 1977-03-11 Ato Chimie
US4154244A (en) * 1977-11-21 1979-05-15 Baxter Travenol Laboratories, Inc. Balloon-type catheter
US4254774A (en) * 1979-02-14 1981-03-10 The United States Of America As Represented By The Department Of Health, Education And Welfare Balloon catheter and technique for the manufacture thereof
FR2466478B2 (fr) * 1979-10-02 1986-03-14 Ato Chimie Procede de preparation de copolyetheresteramides aliphatiques elastomeres
US4675361A (en) * 1980-02-29 1987-06-23 Thoratec Laboratories Corp. Polymer systems suitable for blood-contacting surfaces of a biomedical device, and methods for forming
US4385635A (en) * 1980-04-25 1983-05-31 Ruiz Oscar F Angiographic catheter with soft tip end
US4413989A (en) * 1980-09-08 1983-11-08 Angiomedics Corporation Expandable occlusion apparatus
DE3381238D1 (de) * 1982-10-08 1990-04-05 David Hardcastle Ballon-katheter und verfahren fuer dessen herstellung.
US4563181A (en) * 1983-02-18 1986-01-07 Mallinckrodt, Inc. Fused flexible tip catheter
US4490421A (en) * 1983-07-05 1984-12-25 E. I. Du Pont De Nemours And Company Balloon and manufacture thereof
US4786556A (en) * 1986-03-24 1988-11-22 Becton, Dickinson And Company Polymeric articles having enhanced antithrombogenic activity
US4886506A (en) * 1986-12-23 1989-12-12 Baxter Travenol Laboratories, Inc. Soft tip catheter
US5358486A (en) * 1987-01-09 1994-10-25 C. R. Bard, Inc. Multiple layer high strength balloon for dilatation catheter
EP0274411A3 (en) * 1987-01-09 1988-11-30 C.R. Bard, Inc. Thin wall high strength balloon and method of manufacture
JPS63212373A (ja) * 1987-02-27 1988-09-05 テルモ株式会社 拡張体付カテ−テル
US5250069A (en) * 1987-02-27 1993-10-05 Terumo Kabushiki Kaisha Catheter equipped with expansible member and production method thereof
US4917667A (en) * 1988-02-11 1990-04-17 Retroperfusion Systems, Inc. Retroperfusion balloon catheter and method
US4952357A (en) * 1988-08-08 1990-08-28 Scimed Life Systems, Inc. Method of making a polyimide balloon catheter
US4950239A (en) * 1988-08-09 1990-08-21 Worldwide Medical Plastics Inc. Angioplasty balloons and balloon catheters
US4898591A (en) * 1988-08-09 1990-02-06 Mallinckrodt, Inc. Nylon-PEBA copolymer catheter
US4950257A (en) * 1988-09-15 1990-08-21 Mallinckrodt, Inc. Catheter introducer with flexible tip
US4938676A (en) * 1988-10-04 1990-07-03 Cordis Corporation Apparatus for manufacturing balloons for medical devices
US4906244A (en) * 1988-10-04 1990-03-06 Cordis Corporation Balloons for medical devices and fabrication thereof
US5335675A (en) * 1988-11-15 1994-08-09 Family Health International Stress-softened elastomeric films, articles, and method and apparatus for making such films and articles
FR2651681B1 (fr) * 1989-09-11 1991-12-13 Medicorp Research Lab Catheter.
ES2043289T3 (es) * 1989-09-25 1993-12-16 Schneider Usa Inc La extrusion de capas multiples como procedimiento para hacer balones de angioplastia.
US5290306A (en) * 1989-11-29 1994-03-01 Cordis Corporation Puncture resistant balloon catheter
JP2528011B2 (ja) * 1989-12-20 1996-08-28 テルモ株式会社 カテ―テル
EP0974370B1 (en) * 1990-11-09 2006-04-19 Boston Scientific Corporation Balloon for medical catheter
JP2555298B2 (ja) * 1990-11-10 1996-11-20 テルモ株式会社 カテーテル用バルーン、カテーテル用バルーンの製造方法およびバルーンカテーテル
US5295978A (en) * 1990-12-28 1994-03-22 Union Carbide Chemicals & Plastics Technology Corporation Biocompatible hydrophilic complexes and process for preparation and use
US5195969A (en) * 1991-04-26 1993-03-23 Boston Scientific Corporation Co-extruded medical balloons and catheter using such balloons
EP0513459A1 (en) * 1991-05-16 1992-11-19 Terumo Kabushiki Kaisha Indwelling catheter
US5264260A (en) * 1991-06-20 1993-11-23 Saab Mark A Dilatation balloon fabricated from low molecular weight polymers
JPH05192408A (ja) * 1991-09-06 1993-08-03 C R Bard Inc 膨張バルーン製造方法
EP0972535B1 (en) * 1991-09-12 2005-12-28 Advanced Cardiovascular Systems, Inc. Inflatable member having elastic expansion with limited range
JP3053029B2 (ja) * 1991-10-08 2000-06-19 テルモ株式会社 血管拡張用カテーテルバルーン
US5304134A (en) * 1992-01-17 1994-04-19 Danforth Biomedical, Inc. Lubricious yet bondable catheter channel sleeve for over-the-wire catheters
US5344400A (en) * 1992-04-06 1994-09-06 Terumo Kabushiki Kaisha Balloon catheters containing molded polyarylenesulfide material
EP0566755B1 (en) * 1992-04-21 1996-06-19 Cordis Corporation Polyetheramide tubing for medical devices
US5281677A (en) * 1992-09-03 1994-01-25 Becton, Dickinson And Company Thermoplastic polyurethane blends
US5348538A (en) * 1992-09-29 1994-09-20 Scimed Life Systems, Inc. Shrinking balloon catheter having nonlinear or hybrid compliance curve
US5500180A (en) * 1992-09-30 1996-03-19 C. R. Bard, Inc. Method of making a distensible dilatation balloon using a block copolymer
US5300048A (en) * 1993-05-12 1994-04-05 Sabin Corporation Flexible, highly radiopaque plastic material catheter

Also Published As

Publication number Publication date
ES2141928T3 (es) 2000-04-01
WO1995023619A1 (en) 1995-09-08
GR3033196T3 (en) 2000-08-31
US5556383A (en) 1996-09-17
DE69514910T3 (de) 2009-09-24
EP0748232B8 (en) 2009-03-25
DE69514910D1 (de) 2000-03-09
JP3494654B2 (ja) 2004-02-09
DK0748232T3 (da) 2000-05-01
JPH09509860A (ja) 1997-10-07
EP0748232A1 (en) 1996-12-18
EP0748232B1 (en) 2000-02-02
DK0748232T4 (da) 2009-01-19
DE69514910T2 (de) 2000-06-29
EP0748232B2 (en) 2008-10-29
ATE189402T1 (de) 2000-02-15
PT748232E (pt) 2000-07-31

Similar Documents

Publication Publication Date Title
ES2141928T5 (es) Balones de elastomero de copolimero en bloques para cateter.
US7618696B2 (en) Block copolymer elastomer catheter balloons
US5830182A (en) Block copolymer elastomer catheter balloons
US5951941A (en) Block copolymer elastomer catheter balloons
US6146356A (en) Block copolymer elastomer catheter balloons
ES2297924T3 (es) Balon con punta blanda flexible.
JP3597868B2 (ja) 胃腸病巣処置に好適なカテーテル用高コンプライアンス高強度バルーン
EP0888145B1 (en) Process for forming a laminate catheter balloon
US5620649A (en) Puncture resistant balloon catheter
US6495090B1 (en) Method of manufacture of semi-compliant catheter balloons
US6585688B2 (en) Dilatation catheter balloon made from PEN based homopolymer or random copolymer
US20070142772A1 (en) Dual-Layer Medical Balloon
JPH09506008A (ja) 熱可塑性エラストマーから成る医療装置用バルーン
US20090264822A1 (en) Method of Making a Zero-Fold Balloon With Variable Inflation Volume
ES2309337T3 (es) Balones de cateter.
JP2009519778A (ja) 2層式の医療用バルーン
ES2674427T3 (es) Mezcla polimérica de poliamida/polivinilpirrolidona (PA/PVP) como material de catéteres
JP4815657B2 (ja) 医療用ポリマーブレンド材料およびこの材料を用いた医療用バルーン
CA2184383C (en) Block copolymer elastomer catheter balloons
US7645498B2 (en) Balloon catheter formed of random copolymerized nylons
JP3684890B2 (ja) 拡張カテーテル用拡張体

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 748232

Country of ref document: ES