EP4146848B1 - Électrolyte à base d'argent pour le dépôt de couches de dispersion d'argent - Google Patents

Électrolyte à base d'argent pour le dépôt de couches de dispersion d'argent Download PDF

Info

Publication number
EP4146848B1
EP4146848B1 EP22755083.7A EP22755083A EP4146848B1 EP 4146848 B1 EP4146848 B1 EP 4146848B1 EP 22755083 A EP22755083 A EP 22755083A EP 4146848 B1 EP4146848 B1 EP 4146848B1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
silver
amount
graphite
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22755083.7A
Other languages
German (de)
English (en)
Other versions
EP4146848A1 (fr
Inventor
Uwe MANTZ
Alexander Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore Galvanotechnik GmbH
Original Assignee
Umicore Galvanotechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore Galvanotechnik GmbH filed Critical Umicore Galvanotechnik GmbH
Publication of EP4146848A1 publication Critical patent/EP4146848A1/fr
Application granted granted Critical
Publication of EP4146848B1 publication Critical patent/EP4146848B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Definitions

  • the present invention is directed to a silver electrolyte and a corresponding method for the electrodeposition of silver onto conductive substrates.
  • the silver electrolyte as described in claim 1 is characterized by certain additives which help to prevent foaming of the electrolyte without at the same time negatively affecting the electrolytic deposition.
  • Electrical contacts are installed in practically all electrical devices today. Their applications range from simple plug connectors to safety-relevant, sophisticated switching contacts in the communications sector, for the automotive industry or aerospace technology.
  • the contact surfaces are required to have good electrical conductivity, low and long-term stable contact resistance, as well as good corrosion and wear resistance with the lowest possible insertion force.
  • plug contacts are often coated with a hard gold alloy layer consisting of gold-cobalt, gold-nickel or gold-iron. These layers have good wear resistance, good solderability, low and long-term stable contact contact resistance and good corrosion resistance. Due to the rising price of gold, cheaper alternatives are being sought.
  • Silver coating has proven to be an advantageous replacement for hard gold coating.
  • Silver and silver alloys are among the most important contact materials in electrical engineering due to their high electrical conductivity and good oxidation resistance. These silver coatings have similar coating properties to the hard gold coatings or coating combinations used to date, such as palladium-nickel with gold flash. In addition, the price of silver is relatively low compared to other precious metals, particularly hard gold alloys.
  • Special silver electrolytes are used to coat substrates with silver and to produce contact surfaces. These are usually silver-containing or cyanide-free solutions that are used for electrochemical, particularly galvanic, silver plating of surfaces. Silver electrolyte solutions can contain a wide variety of other additives such as grain refiners, dispersants, brighteners or Contain solid components. For applications in the electrical and electronics sector, especially for plugs and plug and switch contacts, the conductivity, contact resistance and friction coefficient are particularly relevant.
  • the electrolyte When depositing silver layers from the electrolyte according to the invention, the electrolyte must be kept constantly in motion in order to prevent sedimentation of the solid components and to ensure the highest possible current density. Foam formation is reliably prevented/largely eliminated with the defoamers. reduced. It is also surprising that the addition of appropriate defoamers does not have a significant negative effect on the layer composition (solid incorporation) and the desired properties of the silver layer, such as the contact resistance.
  • the polyalkylene glycols used, in particular polyethylene glycol have a higher average molecular mass of greater than 200 g/mol, preferably at least 400 g/mol.
  • the average molecular mass of the polyethylene glycols used is very preferably between 1000 and 9000 g/mol and very particularly preferably between 4000 and 8000 g/mol.
  • the amount of defoamer is between 0.2 and 20 g/L, preferably 1 and 10 g/L and very preferably between 1 and 5 g/L.
  • Brighteners in the context of the present invention are substances that shift the grain size of the silver deposit to smaller grain sizes.
  • Arylsulfonic acids such as phenolsulfonic acid and benzenesulfonic acid, toluenesulfonic acid are used here.
  • the brighteners are used in a concentration of 0.2 - 10 g/L, preferably 0.5 - 10 g/L and very preferably 1.0 - 5 g/L in the electrolyte according to the invention. It is particularly advantageous if no naphthalenesulfonic acid, naphthalenesulfonic acid derivatives (e.g.
  • naphthalenesulfonic acid condensation products with aldehydes or mixtures thereof are present in the electrolyte according to the invention.
  • the aryl radical can optionally be substituted.
  • the latter lead to the fact that, despite high current densities and the resulting high electrolyte movement, only little foam occurs and the solid components can be well dispersed in the silver deposit (see examples).
  • solid component means a component that is not present in solution, but is present in the electrolyte as a solid.
  • solid components that are present in the DE102018005352A1 mentioned in this regard.
  • the amount of solid component used is 2-200 g/L, preferably 20-150 g/L and very preferably 80-130 g/L.
  • the average particle diameter (d50 of the Q3 distribution) is measured according to ISO 13320-1 (latest version on the date of filing) using a Tornado dry dispersion module from Beckmann.
  • the mean particle size (d50) indicates that 50% of the particles of a solid component have a smaller diameter than the specified value.
  • Alkyl sulfates are used as wetting agents (see also: Kanani, N: Galvanotechnik; Hanser Verlag, Kunststoff Vienna, 2000; page 84 ff ). Silver coatings deposited using baths equipped in this way are generally white and glossy to high-gloss. The wetting agents result in a pore-free layer.
  • the alkyl sulfates can be linear or branched-chain alkyl sulfates with C 1 -C 25 alkyl radicals and preferably linear or branched-chain alkyl sulfates with C 2 -C 20 alkyl radicals, which can be unsubstituted or optionally substituted.
  • the wetting agent contains a linear or branched-chain alkyl sulfate with C 3 -Cis alkyl radicals, which can be unsubstituted or optionally substituted, and more preferably a linear or branched-chain alkyl sulfate with C 3 -C 12 alkyl radicals, which unsubstituted or optionally substituted.
  • the wetting agents can also be present in the form of their salts, e.g. sodium salt, potassium salt.
  • Particularly preferred in this context are those selected from the group consisting of 2-ethylhexyl sulfate Na salt, lauryl ether sulfate Na salt, sodium monoalkyl sulfates, such as sodium tetradecyl sulfate, sodium dodecyl sulfate, sodium ethylhexyl sulfate, sodium decyl sulfate, sodium octyl sulfate, and mixtures thereof.
  • the content of the at least one wetting agent is between 0.1 and 15 ml/L, preferably between 0.2 and 10 ml/L, more preferably between 0.5 and 7 ml/L and even more preferably between 1 and 6 ml/L.
  • salts containing Se or Te can also be present in the electrolyte.
  • the selenium or tellurium compound used in the electrolyte can be selected accordingly by the person skilled in the art. Suitable selenium and tellurium compounds are those in which selenium or tellurium is present in the oxidation states +4 or +6 in the form of an anion. Selenium and tellurium compounds in which selenium or tellurium is present in the oxidation state +4 are advantageously used in the electrolyte.
  • the selenium and tellurium compounds are particularly preferably selected from tellurites, selenites, tellurous acid, selenous acid, telluric acid, selenic acid, selenocyanates, tellurocyanates and selenate as well as tellurate.
  • the use of selenium compounds is generally preferred over tellurium compounds.
  • the addition of selenium to the electrolyte in the form of a salt of selenous acid, e.g. in the form of potassium selenite, is particularly preferred. Addition as potassium selenocyanate is extremely preferred.
  • the amount of these compounds in the electrolyte can be selected according to the expert's specifications. It will be in the range of 0.1 mg - 500 mg/L, preferably 0.5 mg - 100 mg and very preferably between 0.5 mg - 10 mg/L based on selenium or tellurium.
  • the electrolyte also contains a certain amount of free cyanide.
  • This is preferably added to the electrolyte in the form of a water-soluble salt of hydrocyanic acid.
  • Alkali salts are advantageous, and potassium cyanide is particularly preferred.
  • the amount of free cyanide in the electrolyte can be adjusted according to values known to those skilled in the art. As a rule, the free cyanides are present in the electrolyte in a concentration of 20 - 200 g/L, preferably 80 - 180 g/L and very preferably 100 - 150 g/L (each based on the CN ion).
  • the cyanide salt used can also serve as a conducting salt.
  • Another essential component of the electrolyte is the silver to be deposited in dissolved form.
  • This can be deposited in the form of a water-soluble salts are introduced into the electrolyte.
  • a water-soluble salts include those from the group consisting of silver methanesulfonate, silver carbonate, silver phosphate, silver pyrophosphate, silver nitrate, silver oxide, silver lactate, silver fluoride, silver bromide, silver chloride, silver iodide, silver thiocyanate, silver thiosulfate, silver hydantoins, silver sulfate, silver cyanide and alkali silver cyanide. Potassium silver cyanide is particularly advantageous in this context.
  • the silver salts are used in an initial concentration in the electrolyte which is between 2 - 200 g/L, preferably 10 - 100 g/L and most preferably 20 - 50 g/L (each based on the Ag metal).
  • ions can also be present in low concentrations dissolved in the electrolyte. These are in particular those that lead to a harder layer compared to the deposition of a pure silver layer (so-called hard silver). These are ions selected from the group consisting of Sb, Bi, In, Sn, W, Mo, Pb, As, Cu, Ni. These are generally present in a concentration of 0.001 - 30 g/L, preferably 0.01 - 20 g/L and very preferably 0.1 - 10 g/L (in each case based on the corresponding metal).
  • the present invention also relates to a process for the galvanic deposition of silver layers on conductive substrates, in which an electrically conductive substrate is immersed in the electrolyte according to the invention and a current flow is established between an anode in contact with the electrolyte and the substrate as cathode, the electrolyte being constantly kept in motion and the pH value being constantly adjusted to a value >8 during the electrolysis.
  • the temperature that prevails during the deposition of the dispersion layer can be chosen by the expert as desired, or the temperature is automatically set due to external influences (frictional heat from dispersion modules).
  • the expert will be guided by a sufficient deposition rate and the applicable current density range on the one hand and by economic aspects or the stability of the electrolyte on the other. It is advantageous to set the electrolyte temperature at 10°C to 70°C, preferably 15°C to 40°C and particularly preferably 20°C to 30°C.
  • the pH value of the electrolyte is >8 and can in principle be adjusted according to the expert's requirements. However, he will be guided by the idea of introducing as few additional substances as possible into the electrolyte that could negatively influence the deposition of the corresponding layer. In a particularly In the preferred embodiment, the pH is therefore adjusted solely by adding a base.
  • the person skilled in the art can use any compound suitable for a corresponding application. Preferably, alkali hydroxides, oxides or carbonates are used. Optimum results can be achieved with pH values in the electrolyte of >8 - 13, more preferably 9 - 11. It is possible that fluctuations occur in the pH of the electrolyte during electrolysis. In a preferred embodiment of the present process, the person skilled in the art therefore proceeds by checking the pH during electrolysis and, if necessary, adjusting it to the target value. The person skilled in the art knows how to proceed here.
  • the current density that is established between the cathode and the anode in the electrolyte according to the invention during the deposition process according to the invention can be selected by the person skilled in the art depending on the efficiency and quality of the deposition.
  • the current density in the electrolyte is advantageously set to 0.2 to 100 A/dm 2 depending on the application and type of coating system. If necessary, the current densities can be increased or reduced by adjusting the system parameters such as the structure of the coating cell, flow rates, anode and cathode ratios, etc.
  • a current density of 0.2 - 50 A/dm 2 is advantageous, preferably 1 - 10 A/dm 2 and very particularly preferably 1 - 5 A/dm 2 .
  • pulsed direct current or reverse pulse plating can also be used.
  • the current flow is interrupted for a certain period of time (pulse plating) or the current flow is reversed.
  • pulse plating in the form of current interruptions and reverse pulse plating for silver graphite dispersion deposition is described in the literature ( Arnet, R. et al, Silver dispersion layers with self-lubricating properties, Galvanotechnik 2021, Vol. 1, p. 21 ff .).
  • the electrolyte according to the invention and the method according to the invention can be used for the galvanic deposition of silver layers, preferably for technical applications, for example electrical connectors and circuit boards.
  • coating in continuous systems can also be used.
  • Layer thicknesses in the range of 0.1 to 100 ⁇ m are typically deposited in rack operation, especially for technical applications with current densities in the range of 0.5 to 50 A/dm 2.
  • current densities are in the range given above.
  • anodes When using the electrolyte, different anodes can be used. Soluble or insoluble anodes are just as suitable as the combination of soluble and insoluble anodes. If a soluble anode is used, it is particularly preferred if a silver anode is used ( DE1228887 , Practical electroplating, 5th edition, Eugen G. Leuze Verlag, p. 342f, 1997 ).
  • Insoluble anodes are preferably those made of a material selected from the group consisting of platinized titanium, graphite, stainless steel, mixed metal oxides, glassy carbon anodes and special carbon material ("Diamond Like Carbon" DLC) or combinations of these anodes.
  • Insoluble anodes made of platinized titanium or titanium coated with mixed metal oxides are advantageous, the mixed metal oxides preferably being selected from iridium oxide, ruthenium oxide, tantalum oxide and mixtures thereof.
  • Iridium-transition metal oxide mixed oxide anodes particularly preferably mixed oxide anodes made of iridium-ruthenium mixed oxide, iridium-ruthenium-titanium mixed oxide or iridium-tantalum mixed oxide are also advantageously used to carry out the invention. Others can be found in Cobley, AJ et al. (The use of insoluble anodes in acid sulphate copper electrodeposition solutions, Trans IMF, 2001,79(3), pp. 113 and 114 ) being found.
  • Suitable electrically conductive substrates are those that can be coated with the electrolyte according to the invention in the basic pH range. These are preferably substrates containing precious metals or less noble substrates, such as nickel or copper surfaces. According to the invention, the silver layer is preferably deposited on a nickel or nickel alloy layer or a copper or copper alloy layer.
  • Suitable substrate materials that are advantageously used here are copper-based materials such as pure copper, brass, bronze (e.g. CuSn, CuSnZn) or special copper alloys for connectors such as alloys with silicon, beryllium, tellurium, phosphorus or iron-based materials such as iron or stainless steel or nickel or a nickel alloy such as NiP, NiW, NiB, gold or silver.
  • the substrate materials can also be multi-layer systems that have been coated galvanically or using another coating technique. This also applies, for example, to iron materials that have been nickel- or copper-plated and then optionally gold-plated, pre-palladinized, pre-platinum-plated or coated with pre-silver.
  • the Intermediate layers for nickel or copper plating can also be made from corresponding alloy electrolytes - e.g. NiP, NiW, NiMo, NiCo, NiB, Cu, CuSn, CuSnZn, CuZn, etc.
  • Another substrate material can be a wax core that has been pre-coated with conductive silver varnish (electroforming).
  • electrolyte refers to the aqueous solution which is placed in a corresponding vessel and used for electrolysis with an anode and a cathode under current flow.
  • the solid component used is the solid component used.
  • the electrolyte according to the invention is aqueous. With the exception of the added solid components and any insoluble heterogeneous defoamers, the compounds used in the electrolyte are soluble in the electrolyte.
  • the term "soluble" refers to compounds that dissolve in the electrolyte at working temperature. The working temperature is the temperature at which the electrolytic deposition takes place. In the context of the present invention, a substance is considered soluble if at least 1 mg/l of this substance dissolves in the electrolyte at working temperature.
  • the electrolyte according to the invention is stable over the long term.
  • coatings suitable for the described application are obtained. These have sufficiently low contact resistances and, moreover, retain an astonishingly high level of surface integrity and thus low contact resistances even after many plugging and rubbing processes in contact circuits. This was not to be expected from the available state of the art.
  • Electrolyte composition aqueous A
  • the graphite incorporation is not negatively influenced by the addition of the defoaming component.
  • Electrolyte composition aqueous B
  • the graphite incorporation is not negatively influenced by the addition of the defoaming component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Claims (5)

  1. Électrolyte aqueux d'argent destiné au dépôt de manière galvanique de couches d'argent sur des substrats conducteurs, présentant :
    a) au moins un composé soluble d'argent en une quantité comprise entre 2 et 200 g/l, par rapport à l'Ag métallique ;
    b) du cyanure libre en une quantité allant de 20 à 200 g/l ;
    c) au moins un brillanteur du groupe constitué d'acides arylsulfoniques en une quantité allant de 0,2 à 10 g/l ;
    d) au moins un agent mouillant choisi dans le groupe des sulfates d'alkyle en une quantité allant de 0,1 à 15 ml/l ;
    e) au moins un constituant solide choisi dans le groupe constitué de graphite, fluorure de graphite, oxyde de graphite, diamant, graphite enveloppé d'Al2O3 ou de leurs mélanges en une quantité allant de 2 à 200 g/l ;
    l'électrolyte présentant en outre :
    f) au moins un antimousse en une quantité allant de 0,2 à 20 g/l,
    caractérisé en ce que
    l'antimousse est choisi dans le groupe des polyalkylèneglycols, qui présentent une masse molaire moyenne d'au moins 200 g/mol.
  2. Électrolyte selon la revendication 1,
    caractérisé en ce que
    celui-ci présente en outre au moins 0,1 à 500 mg/l d'un sel d'un anion de Se ou de Te, par rapport au sélénium ou au tellure.
  3. Procédé permettant le dépôt de manière galvanique de couches d'argent sur des substrats conducteurs,
    caractérisé en ce que
    on plonge un substrat électriquement conducteur dans l'électrolyte des revendications 1 à 2 et on établit un flux de courant entre une anode en contact avec l'électrolyte et le substrat en tant que cathode, l'électrolyte étant maintenu constamment en mouvement et le pH pendant l'électrolyse étant réglé constamment à une valeur > 8.
  4. Procédé selon la revendication 3,
    caractérisé en ce que
    la température de l'électrolyte va de 20 à 90 °C.
  5. Procédé selon la revendication 3 ou 4,
    caractérisé en ce que
    la densité de courant pendant l'électrolyse se situe entre 0,2 et 100 A/dm2.
EP22755083.7A 2021-07-21 2022-07-20 Électrolyte à base d'argent pour le dépôt de couches de dispersion d'argent Active EP4146848B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021118820.2A DE102021118820A1 (de) 2021-07-21 2021-07-21 Silber-Elektrolyt
PCT/EP2022/070294 WO2023001868A1 (fr) 2021-07-21 2022-07-20 Électrolyte à base d'argent pour le dépôt de couches de dispersion d'argent

Publications (2)

Publication Number Publication Date
EP4146848A1 EP4146848A1 (fr) 2023-03-15
EP4146848B1 true EP4146848B1 (fr) 2024-04-10

Family

ID=82939917

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22755083.7A Active EP4146848B1 (fr) 2021-07-21 2022-07-20 Électrolyte à base d'argent pour le dépôt de couches de dispersion d'argent

Country Status (5)

Country Link
EP (1) EP4146848B1 (fr)
KR (1) KR20240031423A (fr)
CN (1) CN117677733A (fr)
DE (1) DE102021118820A1 (fr)
WO (1) WO2023001868A1 (fr)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1228887B (de) 1961-10-26 1966-11-17 Riedel & Co Verfahren zum galvanischen Abscheiden von Silber-Antimon- oder Silber-Wismut-Legierungen hoher Haerte
DE2543082C3 (de) 1975-09-26 1979-06-28 Siemens Ag, 1000 Berlin Und 8000 Muenchen Cyanidischer Silberelektrolyt und Verfahren zur galvanischen Abscheidung von Silber-Graphit-Dispersionsüberzügen und seine Anwendung
DE4010346A1 (de) 1990-03-28 1991-10-02 Siemens Ag Verfahren zum aufbringen von silber-graphit-dispersionsueberzuegen
CN1692182A (zh) * 2002-11-28 2005-11-02 新光电气工业株式会社 银电镀液
DE10346206A1 (de) 2003-10-06 2005-04-28 Bosch Gmbh Robert Kontaktoberflächen für elektrische Kontakte
DE102008030988B4 (de) 2008-06-27 2010-04-01 Siemens Aktiengesellschaft Bauteil mit einer Schicht, in die CNT (Carbon Nanotubes) eingebaut sind und Verfahren zu dessen Herstellung
DE102015102453A1 (de) 2015-02-20 2016-08-25 Heraeus Deutschland GmbH & Co. KG Bandförmiges Substrat zur Herstellung von Chipkartenmodulen, Chipkartenmodul, elektronische Einrichtung mit einem derartigen Chipkartenmodul und Verfahren zur Herstellung eines Substrates
CN105297095A (zh) 2015-12-14 2016-02-03 南昌航空大学 一种纯银层/银石墨复合层的功能性镀层及制备方法
DE102018005352A1 (de) 2018-07-05 2020-01-09 Dr.-Ing. Max Schlötter GmbH & Co KG Silberelektrolyt zur Abscheidung von Dispersions-Silberschichten und Kontaktoberflächen mit Dispersions-Silberschichten

Also Published As

Publication number Publication date
CN117677733A (zh) 2024-03-08
WO2023001868A1 (fr) 2023-01-26
EP4146848A1 (fr) 2023-03-15
KR20240031423A (ko) 2024-03-07
DE102021118820A1 (de) 2023-01-26

Similar Documents

Publication Publication Date Title
EP2116634B1 (fr) Electrolyte de cuivre-zinc modifié et procédé de déposition de couches de bronze
DE2643758C3 (de) Verfahren zur kathodischen Abscheidung von Polyfluorkohlenstoffharz-Partikel enthaltenden Metallbeschichtungen
EP2283170B1 (fr) Bains d'électrolyte au pd et au pd-ni
DE102013215476B3 (de) Elektrolyt zur elektrolytischen Abscheidung von Silber-Palladium-Legierungen und Verfahren zu deren Abscheidung
EP0862665A1 (fr) Procede de depot de couches metalliques par voie electrolytique
AT514818B1 (de) Abscheidung von Cu, Sn, Zn-Beschichtungen auf metallischen Substraten
EP3159435B1 (fr) Supplement pour electrolyte d'alliage argent-palladium
EP1408141B1 (fr) Methode et électrolyte pour la deposition galvanique des bronzes
DE102008050135A1 (de) Verfahren zur Abscheidung von Platin-Rhodiumschichten mit verbesserter Helligkeit
EP0143919B1 (fr) Bain alcalin de cyanure pour le dépôt électrolytique de couches à base d'alliage cuivre-étain
DE102018126174B3 (de) Thermisch stabile Silberlegierungsschichten, Verfahren zur Abscheidung und Verwendung
DE2747955A1 (de) Verfahren zum elektrolytischen beschichten von metallischen gegenstaenden mit einer palladium-nickel- legierung
EP4146848B1 (fr) Électrolyte à base d'argent pour le dépôt de couches de dispersion d'argent
AT516876B1 (de) Abscheidung von dekorativen Palladium-Eisen-Legierungsbeschichtungen auf metallischen Substanzen
EP4259856A1 (fr) Électrolyte argent-bismuth pour le dépôt de couches d'argent dures
DE2930035A1 (de) Waessriges galvanisches bad
EP0126921B1 (fr) Bain de dépôt galvanique d'alliages d'or
EP3964610A1 (fr) Bain d'électrodéposition pour revêtements palladium-ruthénium
DE2439656C2 (de) Wäßriges saures Bad zur galvanischen Abscheidung einer Zinn-Nickel-Legierung
EP3047051A1 (fr) Bain galvanique
EP4314396A1 (fr) Électrolyte en platine
EP4251792A1 (fr) Couche d'alliage de ruthénium et ses combinaisons de couches
CH717789B1 (de) Verfahren zur galvanischen Vergoldung von Kontaktelementen für Steck­verbinder und mit Hilfe dieses Verfahrens vergoldete Kontaktelemente.
CH717790B1 (de) Verfahren zur galvanischen Versilberung von Kontaktelementen für Steckverbinder und mit Hilfe dieses Verfahrens versilberte Kontaktelemente.
DE10060127B4 (de) Elektrolytisches Eisenabscheidungsbad und Verfahren zum elektrolytischen Abscheiden von Eisen und Anwendungen des Verfahrens

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231006

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20240201

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502022000740

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240409

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8