EP4055010A1 - Substituierte sulfonylamide zur bekämpfung tierischer schädlinge - Google Patents

Substituierte sulfonylamide zur bekämpfung tierischer schädlinge

Info

Publication number
EP4055010A1
EP4055010A1 EP20799727.1A EP20799727A EP4055010A1 EP 4055010 A1 EP4055010 A1 EP 4055010A1 EP 20799727 A EP20799727 A EP 20799727A EP 4055010 A1 EP4055010 A1 EP 4055010A1
Authority
EP
European Patent Office
Prior art keywords
spp
alkyl
formula
alkoxy
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20799727.1A
Other languages
German (de)
English (en)
French (fr)
Inventor
Martin FÜSSLEIN
Susanne KÜBBELER
Dominik HAGER
Elke Hellwege
Marc LINKA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP4055010A1 publication Critical patent/EP4055010A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/90Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/501,3-Diazoles; Hydrogenated 1,3-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines

Definitions

  • the present application relates to the use of substituted sulfonylamides for controlling animal pests, in particular nematodes, a composition containing substituted sulfonylamides for controlling animal pests, a method for controlling animal pests and an agrochemical formulation containing the substituted sulfonylamides.
  • the invention also relates to new substituted sulfonylamides.
  • sulfonylamides are also known, which can be used as insecticides.
  • the object of the present invention was to provide compounds for use in combating animal pests, by means of which the spectrum of pesticides is supplemented under various aspects.
  • R 1 and R 2 are each independently selected from chlorine and bromine, where R 1 and R 2 do not simultaneously represent chlorine, where D is an unsubstituted or substituted phenyl radical with one or more radicals R 3, the or the substituents R 3 are each independently selected from:
  • D stands for an unsubstituted phenyl radical or a phenyl radical substituted with one or more radicals R 3 , where the substituent or substituents R 3 are each independently selected from:
  • D stands for an unsubstituted phenyl radical or a phenyl radical substituted with one or more radicals R 3 , where the substituent or substituents R 3 are each independently selected from:
  • Halogen (C3-C6) cycloalkyloxy, (C3-C6) cycloalkyl- (C3-Cs) cycloalkyl, (Ci-C6) alkyl- (C3-C6) cycloalkyl, halogen (C3-C6) cycloalkyl, (CYG,) alkyl , (C i -G >) H alogenal ky 1, (Ci-C 6 ) alkoxy- (Ci-C 6 ) alkyl, (Ci-C ö jalkoxy, (C i -C,) H alogenal k xy and (Ci-C 6 ) alkoxy- (Ci-C 6 ) alkoxy.
  • D stands for an unsubstituted phenyl radical or a phenyl radical substituted with one or more radicals R 3 , where the substituent or substituents R 3 are each independently selected from: halogen, (Ci-C4 ) Alkyl, (Ci-C4) alkoxy and (Ci-C4) haloalkoxy.
  • D is a radical of the formulas (VI) to (V7) furthermore preferably of these for a radical (VI), (V2), (V3), (V5) or (V6).
  • the compounds of the formula (G) result where R 1 , R 2 and R 3 have the meanings described above, in particular the meanings described in embodiment (1) or embodiment (2) or embodiment (3) or embodiment (4) or embodiment (5) and x for 0, 1 or 2, preferably 1 or 2 and particularly preferably 1 or 2.
  • the compounds of the formula (1-1 ") or (1-2") result where R 1 , R 2 and R 3 have the meanings described above, in particular the meanings described in embodiment (1) or embodiment (2) or embodiment (3) or embodiment (4) or embodiment (5).
  • the compounds of the formula (1-1 ”) are very particularly preferred.
  • radicals R 1 and R 2 are chosen so that the compounds of the formulas (Ia) to (Ic), particularly preferably (Ia ') to (Ic') and very particularly preferably (I-la ”) to (I -lc ") or (I-2a”) to (I- 2c "), where D and R 3 have the meanings described above, in particular those in the embodiment
  • the compounds of the formulas (I-la ”) to (I-lc”) are particularly preferred. Particularly preferred applies to the compounds of the formula (I) according to embodiments 1 to 5, and also to those of the specific embodiments of the formulas (G), (1-1 "), (1-2"), (Ia) to ( Ic), (Ia ') to (Ic'), (I-la “) to (I-lc“) and (I-2a “) to (I-2c“) that R 3 are each independently selected from Halogen, (Ci-C3) alkyl, (Ci-C3) haloalkyl, (Ci-C3) alkoxy and (Ci-C3) haloalkoxy, highlighted from halogen, (Ci-C3) alkyl, (Ci-C3) alkoxy and ( Ci-C3) haloalkoxy.
  • this particularly preferred embodiment also applies analogously to the special execution forms of the formulas (G), (1-1 "), (1-2"), (Ia) to (Ic), (Ia ') to (Ic') , (I-la “) to (I-lc“) and (I-2a “) to (I-2c“), so that the corresponding enantiomeric mixture of the two mms isomers also results for these formulas.
  • formula (I) also includes the specific embodiments of the formula (G), (I- 1 "), (1-2"), (Ia) to (Ic), (Ia ') to (Ic') , (I-la “) to (I-lc“) and (I-2a “) to (I-2c“).
  • the compounds of the formula (I) are used in accordance with the embodiments and preferred embodiments described above for controlling animal pests, in particular nematodes.
  • the invention further provides a method for combating animal pests, preferably nematodes, in which at least one compound of the formula (I) according to the embodiments and preferred embodiments described above, or an agent according to the invention, is applied to the animal pests, preferably nematodes, and / or let their living space have an impact.
  • the surgical, therapeutic and diagnostic treatment of the human or animal body is excluded.
  • the invention still further provides an agrochemical formulation comprising at least one compound of the formula (I) according to the embodiments and preferred embodiments described above Embodiments, in biologically effective contents of between 0.00000001 and 98% by weight, based on the weight of the agrochemical formulation, as well as extenders and / or surface-active substances.
  • a preferred embodiment of the formulation according to the invention additionally contains a further agrochemical active ingredient.
  • halogen is selected from the series fluorine, chlorine, bromine and iodine, preferably again from the series fluorine, chlorine and bromine.
  • alkyl is a residue of a saturated, aliphatic hydrocarbon group with 1 to 12 Koh understood lenstoffatomen, which can be branched or unbranched.
  • Ci-Ci2-alkyl radicals are methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, neopentyl, tert.
  • Pentyl 1-methylbutyl, 2-methylbutyl, 1-ethylpropyl, 1,2-dimethylpropyl, hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl and n-dodecyl.
  • alkenyl is a linear or branched C2-Ci2-alkenyl radical which has at least one double bond, for example vinyl, allyl , 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,3-butadienyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1,3-pentadienyl, 1 -Hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl and 1,4-hexadienyl.
  • alkynyl either on its own or in combination with other terms, according to the invention is a linear or branched C2-Ci2-alkynyl radical which has at least one triple bond, for example ethynyl, 1- Propynyl and propargyl.
  • the alkynyl radical can also have at least one double bond.
  • cycloalkyl either alone or in combination with other terms, according to the invention is a C; - CV C y c 1 o a 1 k y 1 r c s t understood, for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl, understood.
  • alkoxy either on its own or in combination with other terms, such as haloalkoxy, is understood here to mean an O-alkyl radical, the term “alkyl” having the meaning given above.
  • aryl according to the invention is understood to mean a mono-, bi- or tricyclic radical with 6 to 14 carbon atoms, at least one cycle being aromatic.
  • arylalkyl is understood to mean a combination of “aryl” and “alkyl” radicals defined according to the invention, the radical generally being bonded via the alkyl group.
  • hetaryl means a mono-, bi- or tricyclic heterocyclic group of carbon atoms and at least one heteroatom, at least one cycle being aromatic.
  • the hetaryl group preferably contains 3, 4, 5, 6, 7 or 8 carbon atoms and is selected from the series furyl, thiophenyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1,2,4- Triazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,2, 3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyra
  • hetarylalkyl is understood to mean a combination of “hetaryl” and “alkyl” radicals defined according to the invention, the radical being generally bonded via the alkyl group.
  • Formula scheme 1 describes the preparation of compounds of the formula (I) according to the invention starting from carboxylic acids of the formula (II) by reaction with a coupling reagent and sulfonamides of the formula (III), see for example WO2012 / 80447, WO2006 / 114313, WO2015 / 11082, W02010 / 129500, US2008 / 227769 and W02009 / 67108
  • the sulfonamides required are known or can be prepared by generally known methods.
  • the sulfonamides can be obtained from the corresponding sulfochlorides by reaction with ammonia, see WO2014 / 146490, Eur. J. Med. Chem. 2013, 62, 597-604; Bioorg. Med. Chem. 2005, 13, 7, 2459-2468.
  • 2-Chloro-5- (2,2-difluoroethoxy) benzenesulfonamide is obtained from 2-chloro-5-methoxy-benzenesulfonamide by generally known methods by first cleaving the methyl ether with bromine tribromide in dichloromethane to give the phenol and then with difluoroiodoethane and potassium carbonate is alkylated in acetone.
  • the compounds of the formula (I) can also be present as salts, in particular acid addition salts and metal salt complexes.
  • the compounds of the formula (I) and their acid addition salts and metal salt complexes are highly effective, in particular for combating animal pests.
  • suitable salts of the compounds of the general formula (I) it is possible to name customary non-toxic salts, ie salts with corresponding bases and salts with added acids.
  • salts with inorganic bases such as alkali metal salts, for example sodium, potassium or cesium salts, alkaline earth metal salts, for example calcium or magnesium salts, ammonium salts, salts with organic bases and with inorganic amines, for example triethylammonium, dicyclohexylammonium, N, N'-dibenzylethylenediammonium, pyridinium, picolinium or ethanolammonium salts, salts with inorganic acids, for example hydrochlorides, hydrobromides, dihydrosulfates, trihydrosulfates, or phosphates, salts with organic carboxylic acids or organic sulfonic acids, for example formates, acetates, trifluoroacetates, Tartrates, methanesulfonates, benzenesulfonates or para-toluenesulfonates, salts with basic amino acids, for example arginates, as
  • the compounds of the formula (I) can be present as geometrical and / or optically active isomers or corresponding isomer mixtures in different compositions.
  • These stereoisomers are, for example, enantiomers, diastereomers, atropiso mers or geometric isomers.
  • the invention thus includes both pure stereoisomers and any mixtures of these isomers.
  • the invention also relates to methods of combating animal pests, in which compounds of the formula (I) are allowed to act on animal pests and / or their habitat. Preference is given to combating animal pests in agriculture and forestry and in material protection. This preferably excludes methods for the surgical or therapeutic treatment of the human or animal body and diagnostic methods that are carried out on the human or animal body.
  • the invention also relates to the use of the compounds of the formula (I) as pest control agents, in particular crop protection agents.
  • pesticides always also includes the term pesticides.
  • the compounds of the formula (I) are suitable for protecting plants and plant organs from biotic and abiotic stress factors, for increasing crop yields, improving the quality of the harvested material and for combating animal pests, especially insects, with good plant tolerance, favorable warm-blooded toxicity and good environmental compatibility , Arachnids, helminths, in particular nematodes, and molluscs, which are used in agriculture, horticulture, animal breeding, in Occurrence in aquacultures, in forests, in gardens and leisure facilities, in storage and material protection as well as in the hygiene sector.
  • the term “hygiene” is to be understood to mean that any and all measures, regulations and procedures are meant, the aim of which is to prevent diseases, in particular infectious diseases, and which serve to improve the health of To protect people and animals and / or to protect the environment and / or to maintain cleanliness.
  • this includes in particular measures for cleaning, disinfecting and sterilizing, for example, textiles or hard surfaces, in particular surfaces made of glass, wood, cement, porcelain, ceramic, plastic or metal (s), in order to ensure that they are free from hygiene pests and / or their excretions are.
  • surgical or therapeutic treatment regulations to be applied to the human body or the bodies of animals and diagnostic regulations which are carried out on the human body or the bodies of animals are preferably excluded from the scope of protection of the invention.
  • honeygiene sector thus covers all areas, technical fields and industrial applications in which these hygiene measures, regulations and procedures are important, for example with regard to hygiene in kitchens, bakeries, airports, bathrooms, swimming pools, department stores, Hotels, hospitals, stables, animal facilities, etc.
  • Hygiene pest is therefore to be understood to mean one or more animal pests whose presence in the hygiene sector is problematic, in particular for health reasons. It is therefore a primary objective to avoid or minimize the presence of hygiene pests and / or exposure to them in the hygiene sector. This can be achieved in particular by using a pesticide that can be used both to prevent an infestation and to cope with an existing infestation. It is also possible to use preparations that prevent or reduce exposure to pests.
  • Hygiene pests include, for example, the organisms mentioned below.
  • the compounds of the formula (I) can preferably be used as pesticides. They are effective against normally sensitive and resistant species and against all or individual stages of development.
  • the pests mentioned above include:
  • Pests from the Arthropoda tribe in particular from the Arachnida class, e.g. B. Acarus spp "e.g. B. Acarus siro, Aceria kuko, Aceria sheldoni, Aculops spp “Aculus spp” z.
  • Oligonychus coffeae Oligonychus coniferarum, Oligonychus ilicis, Oligonychus indicus, Oligonychus mangiferus, Oligonychus pratensis, Oligonychus punicae, Oligonychus yothersi, Ornithodorus spp., Ornithonyssus z. Spp.,. B.
  • Panonychus citri Metatetranychus citri
  • Panonychus ulmi Metatetranychus ulmi
  • Phyllocoptruta oleivora Platytetranychus multidigituli
  • Polyphagotarso nemus latus Psoroptes spp.
  • Rhipicephalus spp. Rhipicephalus spp.
  • Rhhipicephalus spp. Rhipicephalus m .
  • Steneotarsonemus spinki Tarsonemus spp.
  • E.g. B. Tarsonemus confusus, Tarsonemus pallidus, Tetranychus spp., E.g. B.
  • Blatta orientalis Blattella asahinai, Blattella germanica, Leucophaea maderae, Loboptera decipiens, Neostylopyga rhombifolia, Panchlora spp., Parcoblatta spp., Periplaneta spp., E.g. B. Periplaneta americana, Periplaneta australasiae, Pycnoscelus surinamensis, Supella longipalpa; from the order of the Coleoptera, for. B.
  • Anoplophora glabripennis Anthonomus spp., E.g. B. Anthonomus grandis, Anthrenus spp., Apion spp., Apogonia spp., Atomaria spp., E.g. B. Atomaria linearis, Attagenus spp., Baris caerulescens, Bruchidius obtectus, Bruchus spp., E.g. B. Bruchus pisorum, Bruchus rufimanus, Cassida spp., Cerotoma trifurcata, Ceutorrhynchus spp., E.g. B.
  • Diabrotica balteata Diabrotica barberi, Diabrotica undecimpunctata howardi, Diabrotica undecimpunctata undecimpunctata, Diabrotica virgifera virgifera, Diabrotica virgifera zeae, Dichocrocis spp., Dicladispa armigera, Diloboderus spp., Epicaerus spp., Epilachna spp., e.g. B. Epilachna borealis, Epilachna varivestis, Epitrix spp., E.g. B.
  • Epitrix cucumeris Epitrix fuscula, Epitrix hirtipennis, Epitrix subcrinita, Epitrix tuberis, Faustinus spp., Gibbium psylloides, Gnathocerus cornutus, Hellula undalis, Heteronychus arator, Heteronyx spp., Hylamorpha elegans postenica, Hylamorpha elegans, Hypothes bajemusecus, Hylamorpha, Hypotheses bajemusec, Hylamorpha spp., e.g. B.
  • hypothenemus hampei Hypothenemus obscurus, Hypothenemus pubescens, Lachnosterna consanguinea, Lasioderma serricorne, Latheticus oryzae, Lathridius spp., Lema spp., Leptinotarsa decemlineata, Leucoptera spp., Z. B.
  • Leucoptera coffeella, Limonius ectypus, Lissorhoptrus oryzophilus, Listronotus ( Hyperodes) spp., Lixus spp., Luperodes spp., Luperomorpha xanthodera, Lyctus spp., Megacyllene spp., Z.
  • Tribolium audax Tribolium castaneum, Tribolium confusum, Trogoderma spp., Tychius spp., Xylotrechus spp., Zabrus spp., E.g. B. Zabrus tenebrioides; from the order of the Dermaptera z.
  • Aedes spp. E.g. B.
  • Delia antiqua Delia coarctata, Delia florilega, Delia platura, Delia radicum, Dermatobia hominis, Droso phila spp., E.g. B. Drosphila melanogaster, Drosophila suzukii, Echinocnemus spp., Euleia heraclei, Fannia spp., Gasterophilus spp., Glossina spp., Haematopota spp., Hydrellia spp., Hydrellia griseola, Hylemya spp., Hippobosca spp., Hypoderma spp., Liriomyza spp., e.g. B.
  • Acyrthosiphon pisum Acrogonia spp., Aeneolamia spp., Agonosca spp., Aleurocanthus spp., Aleyrodes proletella, Aleurolobus barodensis, Aleurothrixus floccosus, Allocaridara malayensis, Amrasca spp., E.g. B. Amrasca bigutulla, Amrasca devastans, Anuraphis cardui, Aonidiella spp., E.g. B.
  • Macrosiphum euphorbiae Macrosiphum lilii, Macrosiphum rosae, Macrosteies facifrons, Mahanarva spp., Melanaphis sacchari, Metcalfiella spp., Metcalfa pruinosa, Metopolophium dirhodum, Monellia costalis, Monelliopsis pecanis, Myzus spp., Z. B.
  • Myzus ascalonicus Myzus cerasi, Myzus ligustri, Myzus ornatus, Myzus persicae, Myzus nicotianae, Nasonovia ribisnigri, Neomaskellia spp., Nephotettix spp., E.g. B.
  • Nephotettix cincticeps Nephotettix nigropictus, Nettigoniclla spectra, Nilaparvata lugens, Oncometopia spp., Orthezia praelonga, Oxya chinensis, Pachypsylla spp., Parabemisia myricae, Paratrioza spp., E.g. B. Paratrioza cockerelli, Parlatoria spp., Pemphigus spp., E.g. B.
  • Pemphigus bursarius Pemphigus populivenae, Peregrinus maidis, Perkinsiella spp., Phenacoccus spp., E.g. B. Phenacoccus madeirensis, Phloeomyzus passerinii, Phorodon humuli, Phylloxera spp., E.g. B. Phylloxera devastatrix, Phylloxera notabilis, Pinnaspis aspidistrae, Planococcus spp., E.g. B.
  • Planococcus citri Pro- sopidopsylla flava, Protopulvinaria pyriformis, Pseudaulacaspis pentagona, Pseudococcus spp., Z.
  • Pseudococcus calceolariae Pseudococcus comstocki, Pseudococcus longispinus, Pseudococcus maritimus, Pseudococcus viburni, Psyllopsis spp., Psylla spp., Z. B.
  • Rhopalosiphum maidis Rhopalosiphum oxyacanthae, Rhopalosiphum padi, Rhopalosiphum rufiabdominale, Saissetia spp., Z. B.
  • Trioza diospyri Typhlocyba spp., Unaspis spp., Viteus vitifolii, Zygina spp .; from the subordination of the Heteroptera z.
  • Aelia spp. Anasa tristis, Antestiopsis spp., Boisea spp., Blissus spp., Calocoris spp., Campylomma livida, Cavelerius spp., Cimex spp., E.g. B.
  • Cimex adjunctus Cimex hemipterus, Cimex lectularius, Cimex pilosellus, Collaria spp., Creontiades dilutus, Dasynus piperis, Dichelops furcatus, Diconocoris hewetti, Dysdercus spp., Euschistus spp., Z. B.
  • Lygus elisus Lygus hesperus, Lygus lineolaris, Macropes excavatus, Megacopta cribraria, Miridae, Monalonion atratum, Nezara spp., Z. B. Nezara viridula, Nysius spp., Oebalus spp., Pentomidae, Piesma quadrata, Piezo- dorus spp., E.g. B.
  • Piezodorus guildinii Psallus spp., Pseudacysta persea, Rhodnius spp., Sahlbergella singularis, Scaptocoris castanea, Scotinophora spp., Stephanitis nashi, Tibraca spp., Triatoma spp .; from the order of the Hymenoptera, for. Acromyrmex spp., Athalia spp., E.g. B. Athalia rosae, Atta spp., Camponotus spp., Dolichovespula spp., Diprion spp., E.g. B.
  • Diprion similis, Hoplocampa spp. E.g. B. Hoplocampa cookei, Hoplocampa testudinea, Lasius spp., Linepithema (Iridiomyrmex) humile, Monomorium pharaonis, Paratrechina spp., Paravespula spp., Plagiolepis spp., Sirex spp., E.g. B. Sirex noctilio, Solenopsis invicta, Tapinoma spp., Technomyrmex albipes, Urocerus spp., Vespa spp., E.g. B.
  • Vespa crabro Wasman- nia auropunctata, Xeris spp. ; from the order of the Isopoda z. B. Armadillidium vulgare, Oniscus asellus, Porcellio scaber; from the order of the Isoptera e.g. B. Coptotermes spp., E.g. B. Coptotermes formosanus, Cornitermes cumulans, Cryptotermes spp., Incisitermes spp., Kalotermes spp., Microtermes obesi, Nasutitermes spp., Odontermes spp., Porotermes spp., Reticulitermes spp., E.g. B.
  • Reticulitermes flavipes Reticulitermes hesperus; from the order of the Lepidoptera, for.
  • Helicoverpa armigera, Helicoverpa zea, Heliothis spp. E.g. B. Heliothis virescens, Hofmannophila pseudospretella, Homoeosoma spp., Homona spp., Hyponomeuta padella, Kakivoria flavofasciata, Lampides spp., Laphygma spp., Laspeyresia molesta, Leucinodes orbonalis, Leucoptera spp., Z. B. Leucoptera coffeella, Lithocolletis spp., E.g. B.
  • Pieris rapae, Platynota stultana, Plodia interpunctella, Plusia spp., Plutella xylostella ( Plutella maculipennis), Po- desia spp., Z. B. Podesia syringae, Prays spp., Prodenia spp., Protoparce spp., Pseudaletia spp., E.g. B. Pseudaletia unipuncta, Pseudoplusia includens, Pyrausta nubilalis, Rachiplusia nu, Schoenobius spp., E.g. B.
  • Scirpophaga spp. E.g. B. Scirpophaga innotata, Ontario segetum, Sesamia spp., E.g. B. Sesamia inferens, Sparganothis spp., Spodoptera spp., E.g. B.
  • Trichoplusia ni Tryporyza incertulas, Tuta absolutea, Virachola spp .; from the order of the Orthoptera or Saltatoria z.
  • B. Acheta domesticus, Dichroplus spp., Gryllotalpa spp., E.g. B. Gryllotalpa gryllotalpa, Hieroglyphus spp., Locusta spp., E.g. B. Locusta migratoria, Melanoplus spp., E.g. B. Melanoplus devastator, Paratlanticus ussuriensis, Schistocerca gregaria; from the order of the Phthiraptera z. B.
  • Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis; from the order of the Thysanoptera, for.
  • Anaphothrips obscurus Basothrips biformis, Chaetanaphothrips leeuweni, Drepanothrips reuteri, Enneothrips flavens, Frankliniella spp., E.g. B.
  • Ctenolepisma spp. Fepisma saccharina, Fepismodes inquilinus, Thermobia domestica; from the class of the Symphyla z.
  • B. Scutigerella spp. E.g. B. Scutigerella immaculata;
  • Pests from the trunk of the Mollusca e.g. B. from the class of Bivalvia, z. B. Dreissena spp .; and from the class of Gastropoda z. B. Arion spp., E.g. B. Arion ater rufus, Biomphalaria spp., Bulinus spp., Deroceras spp., E.g. B. Deroceras laeve, Galba spp., Fymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp .;
  • Pratylenchus penetrans Pseudohalenchus spp., Psilenchus spp., Punctodera spp., Quinisulcius spp., Radopholus spp., E.g. B. Radopholus citrophilus, Radopholus similis, Rotylenchulus spp., Rotylenchus spp., Scutellonema spp., Subanguina spp., Trichodorus spp., E.g. B. Trichodorus obtusus, Trichodorus primitivus, Tylenchorhynchus spp., E.g. B. Tylenchorhynchus annulatus, Tylenchulus spp., E.g. B. Tylenchulus semipenetrans, Xiphinema spp., E.g. B. Xiphinema index.
  • nematodes in the present context includes all species of the Nematoda tribe and in particular species that contain plants or fungi (for example species of the order Aphelenchida, Meloidogyne, Tylenchida and others) or humans and animals (for example species of the order Trichinellida, Tylenchida, Rhabditina and Spirurida) parasitize and cause damage in or on these living beings, as well as other parasitic helminths.
  • plants or fungi for example species of the order Aphelenchida, Meloidogyne, Tylenchida and others
  • humans and animals for example species of the order Trichinellida, Tylenchida, Rhabditina and Spirurida
  • a nematicide in crop protection has the ability to control nematodes.
  • fighting nematodes means killing the nematodes or preventing or hindering their development or growth or preventing or hindering their entry into or their sucking on plant tissue.
  • the effectiveness of the compounds is determined by comparing mortalities, gall formation, cyst formation, nematode density per soil volume, nematode density per root, number of nematode eggs per soil volume, mobility of the nematodes between a plant treated with the compound of formula (I), plant part or the treated soil and an untreated plant, part of a plant or untreated soil (100%).
  • the control of nematodes also includes the control of nematode reproduction (development of cysts and / or eggs).
  • Compounds of the formula (I) can also be used to keep the plants or animals healthy and can be used curatively, preventively or systemically for combating nematodes.
  • Methods are known to the person skilled in the art, such as mortality, gall formation, cyst formation, nematode density per soil volume, nematode density per root, number of nematode eggs per Soil volume and motility of the nematodes can be determined.
  • the use of a compound of the formula (I) can keep the plant healthy and also includes a reduction in the damage caused by nematodes and an increase in the amount harvested.
  • nematodes relates to plant nematodes, which include all nematodes that damage plants.
  • Plant nematodes include plant parasitic nematodes and soil nematodes.
  • the plant-parasitic nematodes include ectoparasites such as Xiphinema spp., Longidorus spp. and Trichodorus spp .; Semi-parasites such as Tylenchulus spp .; migratory endoparasites such as Pratylenchus spp., Radopholus spp.
  • Root-parasitic soil nematodes are, for example, cyst-forming nematodes of the genera He terodera or Globodera, and / or root knot nematodes of the genus Meloidogyne.
  • Harmful species of these genera are, for example, Meloidogyne incognita, Heterodera glycines (soybean cyst nematode), Globodera pallida and Globodera rostochiensis (yellow potato cyst nematode), these species being effectively combated with the compounds described in the present text.
  • the use of the compounds described in the present text is by no means restricted to these genera or species, but extends in the same way to other nematodes.
  • the plant nematodes include z. B. Aglenchus agricola, Anguina tritici, Aphelenchoides arachidis, Aphelenchoides fragaria and the stem and leaf endoparasites Aphelenchoides spp., Belonolaimus gra- cilis, Belonolaimus longicaudatus, Belonolaimus nortoni, Bursac- cus spencho- nus, Bursac- phelus, Bursacophelus, Bursa-phelis, Cursacaphelus, Bursacophelus.
  • Criconemoides ferniae, Criconemoides onoense, Criconemoides ornatum and Criconemoides spp. Dity lenchus destructor, Ditylenchus dipsaci, Ditylenchus myceliophagus as well as the stem and leaf endoparasites Ditylencha pallaoderace, Gloiensboysta, or potato phalaystace (rostrum), Dolichodorus pallorace, or potichodorus ), Globodera solanacearum, Globodera tabacum, Globodera Virginia and the localized cyst-forming parasites Globodera spp., Helicotylenchus digonicus, Helicotylenchus dihystera, Helicotylenchus erythrine, Helicotylenchus multicinctus, Helicotylenus multicinctus, Helicotylenus spp.
  • Hemicycliophora nudata Hemicycliophora parvana, Heterodera avenae, Heterodera cruciferae, Heterodera glycines (soybean cyst nematode), Heterodera oryzae, Heterodera schachtii, Heterodera zeae and the localized cyst-forming parasites Heterodera spella gr acilis, Hirschmaniella oryzae, Hirschmaniella spinicaudata and the stem and leaf endoparasites Hirschmaniella spp., Hoplolaimus aegyptii, Hoplolaimus californicus, Hoplolaimus columbus, Hoplolaimus galeatus, Hoplolaimus indicus, Hoplolaimus magnistylus, Hoplolaimus pararobustus, Lon- gidorus africanus, Longidorus breviannulatus, Longi
  • Meloidogyne artiella Meloidogyne chitwoodi, Meloidogyne coffeicola, Meloidogyne ethiopica, Meloidogyne exigua, Meloidogyne fallax, graminicola Meloidogyne, Meloidogyne graminis, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne incognita acrita, Meloidogyne javanica, kikuyensis Meloidogyne, minor Meloidogyne, naasi Meloidogyne, Melo idogyne paranaensis, Meloidogyne thamesi and the localized parasites Meloidogyne spp., Meloniema spp., Nacobbus aberrans, Neotylench
  • Rotylenchus macro-doratus, Rotylenchus robustus, Rotylenchus uniformis and Rotylenchus spp. Scutellonema brachyurum, Scutellonema bradys, Scutellonema clathricaudatum and the migratory endoparasites Scutellonema spp., Subanguodorus, Trodorodorus prox- odorus, Trodorus dodorus, Trodor- odorus, Trodorusichitiviana, Trodoricusichitiana minor, Trodorusichitiana, Trodorusichotiana, Trodorusichotiana Trichodorus similis, Trichodorus sparsus and ectoparasites Trichodorus spp., Tylenchorhynchus agri, Tylenchorhynchus brassicae, Tylenchorhynchus Clarus, Tylenchorhynchus claytoni, Tylenchorhynchus digitat
  • the nematodes which a compound of the formula (I) can be used to control include nematodes of the genus Meloidogyne such as the Southern Root-Knot Nematode (Meloidogyne incognita), the Javanese Root-Knot Nematode (Meloidogyne javanica), the Northern Root- Knot Nematode (Melo idogyne hapla) and the Peanut Root-Knot Nematode (Meloidogyne arenaria); Nematodes of the genus Ditylenchus such as the potato dross (Ditylenchus destructor) and the stick and stem elbow (Ditylenchus dipsaci); Nematodes of the genus Pratylenchus such as the Cob Root-Lesion Nematode (Praty lenchus penetrans), the Chrysanthemum Root-Lesion Nematode (Pratylenchus fallax), the Coffee
  • the plants which a compound of the formula (I) can be used to protect include plants such as cereals (for example rice, barley, wheat, rye, oats, corn and the like), beans (soybeans, adzuki beans, beans, Broad beans, peas, peanuts and the like), fruit trees / fruits (apples, citrus types, pears, grapes, peaches, Japanese apricots, cherries, walnuts, almonds, bananas, strawberries and the like), vegetables (cabbage, tomato, spinach, broccoli, Lettuce, onion, tubular leek, paprika and the like), root crops (carrot, potato, sweet potato, radish, lotus root, turnip and the like), plants for industrial raw materials (cotton, hemp, paper mulberry, mitsumata, rapeseed, turnip, hops, Sugar cane, sugar beet, olive, rubber, palm trees, coffee, tobacco, tea and the like), cucurbits (pumpkin, cucumber, watermelon,
  • the compounds of the formula (I) are particularly suitable for combating nematodes of coffee, in particular Pratylenchus brachyurus, Pratylenchus coffeae, Meloidogyne exigua, Meloidogyne incognita, Meloidogyne coffeicola, Helicotylenchus spp. and also Meloidogyne paranaensis, Rotylenchus spp., Xiphinema spp., Tylenchorhynchus spp. and Scutellonema spp ..
  • the compounds of the formula (I) are particularly suitable for combating nematodes of the potato, in particular Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus scribneri, Praty lenchus penetrans, Pratylenchus coffeae, Ditylenchus dipsaci, and Pratylenchus, Pratylenchus all, Pratylenchus ceratylenchis Pratylenchus crenatus, Pratylenchus hexincisus, Pratylenchus loosi, Praty lenchus neglectus, Pratylenchus teres, Pratylenchus thornei, Pratylenchus vulnus, Belonolaimus longicau- datus, Trichodorus cylindodorus, Trichodorus cylindodorus, Trichodorus cylindodorus, Parodorodorichus, Parodorodorich
  • the compounds of the formula (I) are particularly suitable for combating tomato nematodes, in particular Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Meloidogyne incognita, Pratylenchus penetrans and also Pratylenchus brachyurus, Pratylenchus coffeae, Pratylenchnerus scatylenchnerus vulnus, Paratrichodorus minor, Meloidogyne exigua, Nacobbus aberrans, Globodera solanacearum, Dolichodorus heterocephalus and Rotylenchulus reniformis.
  • the compounds of the formula (I) are particularly suitable for combating nematodes of cucumber plants, in particular Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Me loidogyne incognita, Rotylenchulus reniformis and Pratylenchus thornei.
  • the compounds of the formula (I) are particularly suitable for combating nematodes of cotton, in particular Belonolaimus longicaudatus, Meloidogyne incognita, Hoplolaimus columbus, Hoplolaimus galeatus and Rotylenchulus reniformis.
  • the compounds of the formula (I) are particularly suitable for controlling maize nematodes, in particular Belonolaimus longicaudatus, Paratrichodorus minor and also Pratylenchus brachyurus, Pratylenchus delattrei, Pratylenchus hexincisus, Pratylenchus penetrans, Pratylenchus zeae, (Be lonolaimus) Beloncilolaimus graffiti , Longidorus breviannulatus, Meloidogyne arenaria, Meloido gyne arenaria thamesi, Meloidogyne graminis, Meloidogyne incognita, Meloidogyne incognita acrita, Me loidogyne javanica, Meloidogyne naasi, Heterodera avenais, Heterodera avenae, Heteroder
  • Tylenchorhynchus clarus Tylenchorhynchus claytoni
  • Tylenchorhynchus maximus Tylen chorhynchus nudus
  • Tylenchorhynchus vulgaris Quinisulcius acutus, Paratylenchus minutus, Hemicycli-ophora parvana, Scuicuticuronachora parvana, Scuicuticonus agricenchoina, Aglenchus agricenchoina, Aglenchoya bricoyina briola, and Anguachoyum.
  • the compounds of the formula (I) are particularly suitable for combating nematodes of the soybean, in particular Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus penetrans, Praty lenchus scribneri, Belonolaimus longicaudatus, Heterodera glycines, Hoplolaimus, Pratylenchus columbus and also Pratylenchus Pratylenchus neglectus, Pratylenchus crenatus, Praty lenchusplastic, Pratylenchus agilis, Pratylenchus zeae, Pratylenchus vulnus, (Belonolaimus gracilis), Me loidogyne arenaria, Meloidogyne incognita, Meloidogyne javanus galaxy, Hoplimus himaplogyneiformis, Meloidogyne javanica, Meloidus
  • the compounds of the formula (I) are particularly suitable for combating tobacco nematodes, in particular Meloidogyne incognita, Meloidogyne javanica and also Pratylenchus brachyurus, Pratylenchus pratensis, Pratylenchus hexincisus, Pratylenchus penetrans, Pratylenchus neglectus, Prenchatylenchatus lenchatus vulnus, Pratylenchus zeae, Longidorus elongatu, Parratrichodorus lobatus, Trichodorus spp., Meloidogyne arenaria, Meloidogyne hapla, Globodera tabacum, Globodera solanacearum, Globodera virginiae, Ditylenchus sp. Rotylenchulus reniformis, Tylenchorhynchus claytoni, Paratylenchus spp. and Tet
  • the compounds of the formula (I) are particularly suitable for combating nematodes of citrus plants, in particular Pratylenchus coffeae and also Pratylenchus brachyurus, Pratylenchus vul nus, Belonolaimus longicaudatus, Paratrichodorus minor, Paratrichodorus porosus, Trichodorogyne, Melo idognita incogno acrita, Meloidogyne javanica, Rotylenchus macrodoratus, Xiphinema americanum, Xiphinema brevicolle, Xiphinema index, Criconemella spp., Flemicriconemoi- des, Radopholus similis and Radopholus citrophilus, Flemicycliophora arenaria.
  • the compounds of the formula (I) are particularly suitable for combating nematodes of bananas, in particular Pratylenchus coffeae, Radopholus similis and also Pratylenchus giibbicaudatus, Praty lenchus loosi, Meloidogyne spp., Flelicotylenchus multicinctus, Flelicotylenchus spp.
  • the compounds of the formula (I) are particularly suitable for combating pineapple nematodes, in particular Pratylenchus zeae, Pratylenchus pratensis, Pratylenchus brachyurus, Pratylenchus goodeyi., Meloidogyne spp., Rotylenchulus reniformis and also Longidorus elongatus, Longidorus laevichodorus, Longidorus laevichodorus primitivus, Trichodorus minor, Fleterodera spp., Ditylenchus myceliophagus, Floplolaimus californicus, Floplolaimus pararobustus, Floplolaimus indicus, Flelicotylenchus dihystera, Flelicotylenchus nannus, Flelicotylenchus multicinctus, erythrine Flelicotylenchus
  • the compounds of the formula (I) are particularly suitable for combating nematodes of grapes, in particular Pratylenchus vulnus, Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne ja vanica, Xiphinema americanum, Xiphinema index and also Pratylenchus pratensis, Pratylenchus scrleib- neri, Pratylenchus scrleib- neri, Pratylenchus scrleib- neri, Pratylenchus scrleib- neri , Pratylenchus brachyurus, Pratylenchus thornei and Tylenchulus semipenet rans.
  • Pratylenchus vulnus Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne ja vanica, Xiphinema americanum, Xiphinem
  • the compounds of the formula (I) are particularly suitable for combating nematodes of Tree crops - pome fruit, in particular of Pratylenchus penetrans and also Pratylenchus vulnus, Longidorus elongatus, Meloidogyne incognita and Meloidogyne hapla.
  • the compounds of the formula (I) are particularly suitable for combating nematodes of tree crops - stone fruits, in particular Pratylenchus penetrans, Pratylenchus vulnus, Meloidogyne arenaria, Meloidogyne hapla, Meloidogyne javanica, Meloidogyne incognita, Criconemella cognatenchyne, Pratenchyne brenchatus brenchurus brenchurus , Pratylenchus scribneri, Pratylenchus zeae, Belonolaimus longicaudatus, Helicotylenchus dihystera, Xiphinema americanum, Criconemella curvata, Tylenchorhynchus claytoni, Paratylenchus hamatus, Paratylenchus projectus, Scutellonema galeatus brachyurum and Hoplolaimus.
  • the compounds of the formula (I) are particularly suitable for combating nematodes in tree crops, sugar cane and rice, in particular Trichodorus spp., Criconemella spp. and also Praty lenchus spp., Paratrichodorus spp., Meloidogyne spp., Flelicotylenchus spp., Tylenchorhynchus spp., A-phelenchoides spp., Fleterodera spp, Xiphinema spp. and Cacopaurus pestis.
  • the compounds of the formula (I) can optionally also be used in certain concentrations or application quantities as flerbicides, safeners, growth regulators or agents for improving the plant properties, as microbicides or gametocides, for example as fungicides, antimycotics, bactericides, viricides (including agents against viroids ) or as a remedy against MLO (Mycoplasma-like-organism) and RLO (Rickettsia-like-organism). If appropriate, they can also be used as intermediates or precursors for the synthesis of further active ingredients.
  • the present invention further relates to formulations, in particular formulations for controlling undesired animal pests.
  • the formulation can be applied to the animal pest and / or in its habitat.
  • the formulation according to the invention can be provided to the end user as a ready-to-use "application form", i.e. the formulations can be applied directly to the plants or seeds by means of a suitable device such as a spray or dust device.
  • the formulations can be provided to the end user in the form of concentrates to be diluted, preferably with water, before use.
  • formulation denotes such a concentrate
  • application form denotes a ready-to-use solution for the end user, i.e. usually such a diluted formulation.
  • the formulation according to the invention can be prepared in a conventional manner, for example by mixing the compound according to the invention with one or more suitable excipients such as e.g. the one disclosed here.
  • the formulation comprises at least one compound according to the invention and at least one commercially useful adjuvant, e.g. carrier and / or surfactant (s).
  • a commercially useful adjuvant e.g. carrier and / or surfactant (s).
  • a carrier is a solid or liquid, natural or synthetic, organic or inorganic substance that is generally inert.
  • the carrier generally improves the application of the compounds, for example to plants, parts of plants or seeds.
  • suitable solid supports include, but are not limiting, ammonium salts, in particular ammonium sulfates, ammonium phosphates and ammonium nitrates, ground natural rock such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite and diatomaceous earth, silica gel, and ground synthetic Rocks such as finely divided silica, alumina and silicates.
  • suitable solid carriers for the production of granules include, but are not limited to, cracked and fractionated natural rocks such as calcite, marble, pumice stone, sepiolite and dolomite, synthetic granules of inorganic and organic flours and granules of organic materials such as paper , Sawdust, coconut shells, corn on the cob and tobacco stalks.
  • suitable liquid carriers include, but are not limited to, water, organic solvents, and combinations thereof.
  • suitable solvents include polar and non-polar organic chemical liquids, for example from the classes of aromatic and non-aromatic hydrocarbons (such as cyclohexane, paraffins, alkylbenzenes, xylene, toluene, tetrahydronaphthalene, alkylnaphthalene, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes , Chloroethylene or methylene chloride), alcohols and polyols (which can also be substituted, etherified and / or esterified, such as ethanol, propanol, butanol, benzyl alcohol, cyclohexanol or glycol), ketones (such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone or cyclohexanone ), Esters (including fats and oils) and (poly) ethers, unsubstituted and substituted
  • the carrier can also be a liquefied gaseous extender, i.e. a liquid which is gaseous at normal temperature and under normal pressure, for example aerosol propellants such as halogenated hydrocarbons, butane, propane, nitrogen and carbon dioxide.
  • a liquefied gaseous extender i.e. a liquid which is gaseous at normal temperature and under normal pressure
  • aerosol propellants such as halogenated hydrocarbons, butane, propane, nitrogen and carbon dioxide.
  • Preferred solid supports are selected from clays, talc and silica.
  • Preferred liquid carriers are selected from water, fatty acid amides and esters thereof, aromatic and non-aromatic hydrocarbons, lactams, lactones, carbonic acid esters, ketones and (poly) ethers.
  • the amount of carrier is typically in the range from 1 to 99.99% by weight, preferably from 5 to 99.9% by weight, more preferably from 10 to 99.5% by weight and most preferably from 20 to 99% by weight. -% of the formulation.
  • Liquid carriers are typically present in a range of 20 to 90% by weight, for example 30 to 80% by weight of the formulation.
  • Solid carriers are typically present in a range of 0 to 50%, preferably 5 to 45%, for example 10 to 30% by weight of the formulation.
  • the areas outlined relate to the total amount of carrier.
  • the surfactant can be an ionic (cationic or anionic), amphoteric or nonionic surfactant such as ionic or nonionic emulsifiers, foaming agents, dispersants, wetting agents, penetration promoters and any mixtures thereof.
  • surfactants include, although this is not limiting, salts of polyacrylic acid, ethoxylated poly (alpha-substituted) acrylate derivatives, salts of lignosulfonic acid (such as sodium lignosulfonate), salts of phenolsulfonic acid or naphthalenesulfonic acid, polycondensates of ethylene oxide and / or propylene oxide with or without alcohols, fatty acids or fatty amines (for example polyoxyethylene fatty acid esters such as castor oil ethoxylate, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers), substituted phenols (preferably alkylphenols or arylphenols), salts of sulfosuccinic acid esters or taurine derivatives (preferably alkylethoxylated alcohols of polyols), phosphorous derivatives (preferably alkylethoxylated alcohols of polyolates), phosphorus derivatives , F
  • Preferred surfactants are selected from ethoxylated poly (alpha-substituted) acrylate derivatives, polycondensates of ethylene oxide and / or propylene oxide with alcohols, polyoxyethylene fatty acid esters, alkylbenzenesulfonates, sulfonated polymers of naphthalene / formaldehyde, polyoxyethylene fatty acid esters such as ricinus oil ethoxylate, sodium lignosulfonate, sodium lignosulfonate.
  • the amount of surfactant typically ranges from 5 to 40%, for example 10 to 20%, by weight of the formulation.
  • suitable fillers include water-repellent substances, drying agents, binders (adhesives, adhesives, fixing agents such as carboxymethyl cellulose, natural and synthetic polymers in the form of powders, granules or fatices, such as gum arabic, polyvinyl alcohol and Polyvinyl acetate, natural phospholipids such as cephalins and lecithins and synthetic phospholipids, polyvinylpyrrolidone and tylose), thickeners and secondary thickeners (such as cellulose ethers, acrylic acid derivatives, xanthan gum, modified clays, e.g. the products available under the name Bentone, and finely divided silicon dioxide), stabilizers (e.g.
  • cold stabilizers preservatives (e.g. dichlorophon, benzyl alcohol hemiformal, l, 2-benzisothiazolin-3-one, 2-methyl-4-isothiazolin-3-one), antioxidants, light stabilizers, especially UV protection agents, and other agents that affect the chemical and / or improve physical stability), dyes or pigments (such as inorganic pigments, e.g. iron oxide, titanium oxide and Prussian blue; organic dyes, e.g. alizarin, azo and metal phthalocyanine dyes), anti-foam agents (e.g.
  • silicone antifoam and magnesium stearate silicone antifoam and magnesium stearate
  • antifreeze Glues, gibberellins and processing aids
  • mineral and vegetable oils oils fragrances, waxes, nutrients (including trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc), protective colloids, thixotropic substances, penetrants, sequestering agents and complexing agents.
  • auxiliaries depends on the intended use of the compound according to the invention and / or on the physical properties of the compound (s). Furthermore, auxiliaries can be selected so that they impart certain properties (technical, physical and / or biological properties) to the formulations or the application forms produced therefrom. The selection of auxiliaries may make it possible to adapt the formulations to specific needs.
  • the formulation comprises an insecticidally / acaricidally / nematicidically effective amount of the compound (s) according to the invention.
  • effective amount denotes an amount which is sufficient to control harmful insects / mites / nematodes on cultivated plants or for material protection and which does not significantly damage the treated plants. Such an amount can vary within a wide range and depends on various factors such as the insect / mite / nematode species to be controlled, the cultivated plant or material treated, the climatic conditions and the particular compound according to the invention used.
  • the formulation according to the invention usually contains 0.01 to 99% by weight, preferably 0.05 to 98% by weight, particularly preferably 0.1 to 95% by weight, even more preferably 0.5 to 90% by weight %, most preferably 1 to 80% by weight of the compound according to the invention. It is possible for a formulation to comprise two or more compounds according to the invention. In such a case, the outlined areas relate to the total of the compounds of the present invention.
  • the formulation according to the invention can be in any conventional formulation type, such as solutions (e.g. aqueous solutions), emulsions, water- and oil-based suspensions, powders (e.g. wettable powders, soluble powders), dusts, pastes, granules (e.g. soluble granules, granules) ), Suspoemulsion concentrates, natural or synthetic products impregnated with the compound according to the invention, fertilizers and also microencapsulations in polymeric substances.
  • the compound according to the invention can be in suspended, emulsified or dissolved form. Examples of certain suitable formulation types are solutions, water-soluble concentrates (e.g.
  • SL, LS dispersion concentrates
  • DC suspensions and suspension concentrates
  • emulsion concentrates e.g. EC
  • emulsions e.g. EW, EO, ES , ME, SE
  • capsules e.g. CS, ZC
  • pastes lozenges, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressed parts (e.g. BR, TB, DT), granulates (e.g. WG, SG , GR, FG, GG, MG), insecticidal articles (e.g.
  • the formulation according to the invention is preferably in the form of one of the following types: EC, SC, FS, SE, OD, WG, WP, CS, particularly preferably EC, SC, OD, WG, CS.
  • surfactant e.g. a mixture of calcium dodecylbenzenesulfonate and castor oil ethoxylate
  • organic solvent e.g. aromatic hydrocarbon or fatty acid amide
  • additional water-soluble solvent dissolved so that one can Total amount comes from 100 wt .-%.
  • An emulsion is obtained by diluting with water. iv) emulsions (EW, EO, ES)
  • wt .-% of at least one compound according to the invention and 1-10 wt .-% surfactant e.g. a mixture of calcium dodecylbenzenesulfonate and castor oil ethoxylate, or polycondensates of ethylene oxide and / or propylene oxide with or without alcohols
  • surfactant e.g. a mixture of calcium dodecylbenzenesulfonate and castor oil ethoxylate, or polycondensates of ethylene oxide and / or propylene oxide with or without alcohols
  • water-insoluble organic solvent e.g. aromatic hydrocarbon
  • a suitable grinding device e.g. B. a ball mill
  • 20-60 wt .-% of at least one inventive compound with the addition of 2-10 wt .-% surfactant (eg sodium lignosulfonate and polyoxyethylene fatty alcohol ether), 0.1-2 wt .-% thickener (eg Xanthan gum) and water to form a fine active ingredient suspension.
  • the water is added in such an amount that a total amount of 100% by weight is obtained.
  • a stable suspension of the active ingredient is obtained by diluting with water.
  • binders e.g. polyvinyl alcohol
  • a suitable grinding device for example a ball mill, 20-60% by weight of at least one compound according to the invention with the addition of 2-10% by weight of surfactant (e.g. sodium lignosulfonate and polyoxyethylene fatty alcohol ether), 0.1-2% by weight % Thickener (eg modified clay, especially bentone, or silicon dioxide) and an organic carrier comminuted to a fine active ingredient-oil suspension.
  • surfactant e.g. sodium lignosulfonate and polyoxyethylene fatty alcohol ether
  • Thickener eg modified clay, especially bentone, or silicon dioxide
  • an organic carrier comminuted to a fine active ingredient-oil suspension.
  • the organic vehicle is added in such an amount that the total amount is 100% by weight.
  • a stable dispersion of the active ingredient is obtained by diluting with water.
  • ком ⁇ онент 1-90% by weight, preferably 20-80% by weight, most preferably 50-80% by weight, of at least one compound according to the invention are finely ground with the addition of a surfactant (eg sodium lignosulfonate and sodium alkylnaphthylsulfonate) and optionally carrier material and converted into water-dispersible or water-soluble granules by means of typical technical applications such as extrusion, spray drying, fluidized bed granulation.
  • surfactant and carrier material are used in such an amount that a total amount of 100% by weight is obtained. By diluting with water a stable dispersion or solution of the active ingredient is obtained.
  • WP, SP, WS Water-dispersible powders and water-soluble powders
  • a rotor-stator mill with 1-20% by weight of surfactant (e.g. sodium lignosulphonate, sodium alkylnaphthylsulphonate) and such an amount of solid support, e.g. silica gel, that a total of 100% by weight is obtained, ground.
  • surfactant e.g. sodium lignosulphonate, sodium alkylnaphthylsulphonate
  • solid support e.g. silica gel
  • a ball mill 5-25% by weight of at least one compound according to the invention with the addition of 3-10% by weight surfactant (eg sodium lignosulfonate), 1-5% by weight binder (eg carboxymethyl cellulose) and such an amount of water so that a total amount of 100% by weight is broken up.
  • surfactant eg sodium lignosulfonate
  • binder eg carboxymethyl cellulose
  • ME microemulsion
  • At least one compound according to the invention becomes 5-30% by weight of organic solvent mixture (e.g. fatty acid dimethylamide and cyclohexanone), 10-25% by weight of surfactant mixture (e.g. polyoxyethylene fatty alcohol ether and arylphenol ethoxylate) and such an amount of water that one comes to a total amount of 100 wt .-%, given.
  • organic solvent mixture e.g. fatty acid dimethylamide and cyclohexanone
  • surfactant mixture e.g. polyoxyethylene fatty alcohol ether and arylphenol ethoxylate
  • An oil phase with 5-50% by weight of at least one compound according to the invention, 0-40% by weight of water-insoluble organic solvent (eg aromatic hydrocarbon), 2-15% by weight of acrylic monomers (eg methyl methacrylate, methacrylic acid and a Di- or triacrylate) are dispersed in an aqueous solution of a protective colloid (eg polyvinyl alcohol).
  • a radical polymerization initiated with a radical initiator leads to the formation of poly (methy) acrylate microcapsules.
  • a 5-50% by weight of at least one compound according to the invention, 0-40% by weight of water-insoluble organic solvent (for example aromatic hydrocarbon) and an isocyanate monomer (for example diphenylmethene-4,4'-diisocyanate) is used in an aqueous oil phase Solution of a protective colloid (e.g. polyvinyl alcohol) dispersed, this leads to the formation of polyurea microcapsules.
  • a protective colloid e.g. polyvinyl alcohol
  • a polyamine eg hexamethylenediamine
  • the monomers make up 1-10% by weight of the total CS formulation.
  • At least one compound according to the invention is finely ground and intimately mixed with such an amount of solid carrier, e.g. finely divided kaolin, that a total amount of 100% by weight is obtained.
  • solid carrier e.g. finely divided kaolin
  • Formulation types i) to xiii) can contain further auxiliaries such as 0.1-1% by weight of preservatives, 0.1-1% by weight of antifoam agents, 0.1-1% by weight of dyes and / or pigments and 5- 10 wt .-% include antifreeze.
  • the compounds of the formula (I) can also be used as a mixture with one or more suitable Fungi cides, bactericides, acaricides, molluscicides, nematicides, insecticides, microbiologicals, beneficials, herbicides, fertilizers, bird repellants, phytotonics, sterilants, safeners, semiochemicals and / or the Plant growth regulators can be used so as to e.g. B. to broaden the spectrum of action, to extend the duration of action, to increase the speed of action, to prevent repellancy or to prevent the development of resistance. Furthermore, such active ingredient combinations can promote plant growth and / or tolerance to abiotic factors such. B.
  • the flowering and fruiting behavior can also be improved, germination and rooting can be optimized, harvesting easier and yield increased, ripening can be influenced, the quality and / or nutritional value of the harvested products can be increased, the shelf life can be extended and / or the workability of the harvested products can be improved .
  • the compounds of the formula (I) can be present as a mixture with further active ingredients or semi-chemicals, such as attractants and / or bird repellants and / or plant activators and / or growth regulators and / or fertilizers.
  • the compounds of the formula (I) can also be used to improve the plant properties such as, for example, growth, yield and quality of the harvested material can be used.
  • the compounds of the formula (I) are in the formulations or in the use forms prepared from these formulations as a mixture with further compounds, preferably those as described below.
  • the active ingredients named here with their “Common Name” are known and described, for example, in the pesticide manual (“The Pesticide Manual” 16th Ed “British Crop Protection Council 2012) or can be researched on the Internet (e.g. http: //www.alanwood. net / pesticides).
  • the classification is based on the IRAC Mode of Action Classification Scheme valid at the time of filing this patent application.
  • Acetylcholinesterase (AChE) inhibitors preferably carbamates selected from alanycarb, aldi-carb, bendiocarb, benfuracarb, butocarboxime, butoxycarboxime, carbaryl, carbofuran, carbosulfane, ethiofencarb, fenobucarb, metethocarbomide, isopathiocarbomide, isopathiocarbomide Oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, trimethacarb, XMC and xylylcarb, or organophosphates selected from acephate, azamethiphos, azinphos-ethyl, azinphos-methyl, cadusafos, chlorpyraphos-methyl, chlorpyraphos-methyl, chlorpyrfenifvinosphos, Cyanophos,
  • GABA-controlled chloride channel blockers preferably cyclodiene organochlorines selected from chlordane and endosulfan, or phenylpyrazoles (fiprole) selected from ethiprole and fipronil.
  • Sodium channel modulators preferably pyrethroids selected from acrinathrin, allethrin, d-cis-trans-allethrin, d-trans-allethrin, bifenthrin, bioallethrin, bioallethrin-S-cyclopentenyl isomer, bioresmethrin, cycloprothrin, cyfluthrin , beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, Cyphenothrin [(lR) -trans isomer], deltamethrin, empenthrin [(EZ) - (lR) -isomer], e
  • nAChR nicotinic acetylcholine receptor
  • neonicotinoids selected from acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam, or nicotine
  • sulfoximines selected from sulfupoxaflide, or sulfoximines
  • mesoionics selected from triflumezopyrim.
  • Allosteric modulators of the nicotinic acetylcholine receptor preferably Spinosynes selected from Spinetoram and Spinosad.
  • Allosteric modulators of the glutamate-dependent chloride channel preferably avermectins / milbemycins selected from abamectin, emamectin benzoate, lepimectin and milbemectin.
  • Juvenile hormone mimetics preferably juvenile hormone analogs selected from hydroprene, kinoprene and methoprene, or fenoxycarb or pyriproxyfen.
  • Various non-specific (multi-site) inhibitors preferably alkyl halides selected from methyl bromide and other alkyl halides, or chloropicrin or sulfuryl fluoride or borax or tartrate or methyl isocyanate producers selected from diazomet and metam.
  • TRPV channel modulators of chordotonal organs preferably pyridinazomethanes, selected from pymetrozine and pyrifluquinazone or pyropenes selected from afidopyropene.
  • CHS1-related mite growth inhibitors selected from clofentezine, hexythiazox, diflovidazine and etoxazole.
  • Microbial disruptors of the insect intestinal membrane selected from Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis and B.t. -Plant proteins selected from CrylAb, CrylAc, CrylFa, CrylA.105, Cry2Ab, VIP3A, mCry3A, Cry3Ab, Cry3Bb and Cry34Ab 1/35 Abi.
  • Inhibitors of mitochondrial ATP synthase preferably ATP disruptors selected from di-afenthiuron, or organotin compounds selected from azocyclotine, cyhexatin and fenbutatin oxide, or propargite or tetradifon.
  • Blockers of the nicotinic acetylcholine receptor channel selected from bensultap, cartap hydrochloride, thiocyclam and thiosultap sodium.
  • CHS1-related inhibitors of chitin biosynthesis preferably benzoylureas, selected from Bistrifluron, Chlorfluazuron, Diflubenzuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Lufenuron, Novaluron, Noviflumuron, Teflubenzuron and Triflubenzuron.
  • Inhibitors of chitin biosynthesis type 1 selected from buprofezin.
  • molting disruptor especially in diptera, i.e. bifurcated selected from cyromazine.
  • Ecdysone receptor agonists preferably diacylhydrazines, selected from chromafenozide, halofenozide, methoxyfenozide and tebufenozide.
  • Octopamine receptor agonists selected from amitraz.
  • Mitochondrial complex III electron transport inhibitors selected from hydramethylnone, acequinocyl, fluacrypyrim, and bifenazate.
  • Mitochondrial complex I electron transport inhibitors preferably METI acaricides and insecticides selected from fenazaquin, fenpyroximate, pyrimidifene, pyridaben, tebufenpyrad and tolfenpyrad, or Rotenone (Derris).
  • Blockers of the voltage-dependent sodium channel preferably oxadiazines selected from indoxacarb or semicarbazones selected from metaflumizone.
  • Inhibitors of acetyl-CoA carboxylase preferably tetronic and tetramic acid derivatives, selected from Spirodiclofen, Spiromesifen, Spiropidion and Spirotetramat.
  • Inhibitors of mitochondrial complex IV electron transport preferably phosphides selected from aluminum phosphide, calcium phosphide, phosphine and zinc phosphide, or cyanides selected from calcium cyanide, potassium cyanide and sodium cyanide.
  • Inhibitors of mitochondrial complex II electron transport preferably beta-ketonitrile derivatives selected from cyenopyrafen and cyflumetofen, or carboxanilides selected from pyflubumide.
  • Ryanodine receptor modulators preferably diamides selected from chlorantraniliprole, cyantraniliprole, cyclaniliprole, flubendiamide and tetraniliprole.
  • Baculoviruses preferably granuloviruses (GVs) selected from Cydia pomonella GV and Thaumatotibia leucotreta (GV) or nucleopolyhedro viruses (NPVs) selected from Anticar sia gemmatalis MNPV and Helicoverpa armigera NPV.
  • GVs granuloviruses
  • NPVs nucleopolyhedro viruses
  • Allosteric modulators (position II) of the nicotini see acetylcholine receptor selected from GS-omega / kappa-HXTX-Hv 1 a peptide.
  • Fungicides The active ingredients specified here with their “Common Name” are known and described, for example, in the “Pesticide Manual” (16th edition. British Crop Protection Council) or described in the Internet (for example: www.alanwood.net/pesticides).
  • Inhibitors of ergosterol biosynthesis for example (1.001) cyproconazole, (1.002) difenoconazole, (1.003) epoxiconazole, (1.004) fenhexamide, (1.005) fenpropidine, (1.006) fenpropimorph, (1.007) fenpyrazamine, (1.008) fluquinconazole, (1.009) flutriafol, (1.010) imazalil, (1.011) imazalil sulfate, (1.012) ipconazole, (1.013) metconazole, (1.014) myclobutanil, (1.015) paclobutrazole, (1.016) prochloraz, (1.017) propiconazole, ( 1.018) prothioconazole, (1.019) pyrisoxazole, (1.020) spiroxamine, (1.021) tebuconazole, (1.022) tetraconazole, (1.023) triad
  • Inhibitors of the respiratory chain at complex I or II for example (2.001) benzovindiflupyr, (2.002) bixafen, (2.003) boscalid, (2.004) carboxin, (2.005) fluopyram, (2.006) flutolanil, (2.007) fluxapyroxad, (2.008 ) furametpyr, (2.009) isofetamide, (2.010) isopyrazam (anti-epimeric enantiomer 1R, 4S, 9S), (2.011) isopyrazam (anti-epimeric enantiomer 1S, 4R, 9R), (2.012) isopyrazam (anti-epimeric racemate 1RS , 4SR, 9SR), (2.013) isopyrazam (mixture of syn-epimeric racemate 1RS, 4SR, 9RS and anti-epimeric racemate 1RS, 4SR, 9SR), (2.014) isopyrazam (syn-epimeric enantiomer 1R
  • inhibitors of the respiratory chain at complex III for example (3.001) ametoctradin, (3.002) amisulbrom,
  • Inhibitors of mitosis and cell division for example (4.001) carbendazim, (4.002) diethofencarb, (4.003) ethaboxam, (4.004) fluopicolide, (4.005) pencycuron, (4.006) thiabendazole, (4.007) thiophanate-methyl, (4.008) zoxamid, (4,009) 3-chloro-4- (2,6-difluorophenyl) -6-methyl-5-phenylpyridazine, (4,010) 3-chloro-5- (4-chlorophenyl) -4- (2,6-difluorophenyl ) -6-methylpyridazine, (4.011) 3-chloro-5- (6-chloropyridin-3-yl) -6-methyl-4- (2,4,6-trifluorophenyl) pyridazine, (4.012) 4- (2- bromo-4-fluorophenyl) -N- (2,6-did
  • Inhibitors of amino acid and / or protein biosynthesis for example (7.001) cyprodinil, (7.002) kasugamycin, (7.003) kasugamycin hydrochloride hydrate, (7.004) oxytetracycline, (7.005) pyrimethanil, (7.006) 3- (5-fluoro- 3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl) quinoline.
  • Inhibitors of ATP production for example (8.001) Silthiofam.
  • Inhibitors of cell wall synthesis for example (9.001) benthiavalicarb, (9.002) dimethomorph, (9.003) flumorph, (9.004) iprovalicarb, (9.005) mandipropamid, (9.006) pyrimorph, (9.007) valifenalat, (9.008) (2E) - 3- (4-tert-butylphenyl) -3- (2-chloropyridin-4-yl) -1- (morpholin-4-yl) prop-2-en-1-one, (9.009) (2Z) -3 - (4-tert-Butylphenyl) -3- (2-chloropyridin-4-yl) -1- (morpholin-4-yl) prop-2-en-1-one.
  • Inhibitors of lipid and membrane synthesis for example (10.001) propamocarb, (10.002) propamocarb hydrochloride, (10.003) tolclofos-methyl.
  • Inhibitors of melanin biosynthesis for example (11.001) tricyclazole, (11.002) ⁇ 3-methyl-1- [(4-methylbenzoyl) amino] butan-2-yl ⁇ carbamic acid 2,2,2-trifluoroethyl ester.
  • Inhibitors of nucleic acid synthesis for example (12.001) benalaxyl, (12.002) benalaxyl-M (kiralaxyl), (12.003) metalaxyl, (12.004) metalaxyl-M (mefenoxam).
  • Inhibitors of signal transmission for example (13.001) fludioxonil, (13.002) iprodione, (13.003) procymidone, (13.004) procinazid, (13.005) quinoxyfen, (13.006) vinclozoline.
  • Compounds that can act as decouplers for example (14.001) fluazinam, (14.002) metyldinocap.
  • fungicides selected from the group consisting of (15.001) abscisic acid, (15.002) benthiazole, (15.003) bethoxazine, (15.004) capsimycin, (15.005) carvone, (15.006) quinomethionate, (15.007) cufraneb, (15.008) cyflufenamid, (15.009) cymoxanil, (15.010) cyprosulfamid, (15.011) flutianil, (15.012) fosetyl-aluminum, (15.013) fosetyl-calcium, (15.014) fosetyl-sodium, (15.015) methyl isothiocyanate, (15.016) metrafenone, (15.017) mildiomycin, (15.018) natamycin, (15.019) nickel-dimethyldithiocarbamate, (15.020) nitrothal-isopropyl, (15.021) oxamocarb, (15.022) oxathiapipro
  • the compounds of formula (I) can be combined with biological pesticides.
  • Biological pest control agents include, in particular, bacteria, fungi, yeasts, plant extracts and those products that were formed by microorganisms, including proteins and secondary metabolic products.
  • Biological pest control agents include bacteria such as spore-forming bacteria, root-settling bacteria, and bacteria that act as biological insecticides, fungicides or nematicides.
  • Bacillus amyloliquefaciens strain FZB42 (DSM 231179), or Bacillus cereus, in particular B. cereus strain CNCM 1-1562 or Bacillus firmus, strain 1-1582 (Accession number CNCM 1-1582) or Bacillus pumilus, in particular strain GB34 (Accession No. ATCC 700814) and strain QST2808 (Accession No. NRRL B-30087), or Bacillus subtilis, in particular strain GB03 (Accession No. ATCC SD-1397), or Bacillus subtilis strain QST713 (Accession No. NRRL B-21661) or Bacillus subtilis strain OST 30002 (Accession No.
  • NRRL B-50421 Bacillus thuringiensis, in particular B. thuringiensis subspecies israelensis (serotype H-14), strain AM65-52 (Accession No. ATCC 1276), or B. thurin giensis subsp. aizawai, especially strain ABTS-1857 (SD-1372), or B. thuringiensis subsp. kurstaki strain HD-1, or B. thuringiensis subsp. tenebrionis strain NB 176 (SD-5428), Pasteuria penetrans, Pasteuria spp.
  • fungi and yeasts that are or can be used as biological pesticides are:
  • Beauveria bassiana especially strain ATCC 74040, Coniothyrium minitans, especially strain CON / M / 91-8 (Accession No. DSM-9660), Lecanicillium spp., In particular strain HRO LEC 12, Le canicillium lecanii (formerly known as Verticillium lecanii), in particular strain KV01, Metarhizium anisopliae, in particular strain F52 (DSM3884 / ATCC 90448), Metschnikowiafructicola, especially strain NRRL Y-30752, Paecilomyces fumosoroseus (new: Isaria fumosorosea), especially strain IFPC 200613, or strain Apopka 97 (Accesion No.
  • Paecilomyces lilacinus especially strain P. lilacinus 251 (AGAF 89/030550), Talaromyces flavus, in particular strain VI 17b, Trichoderma atroviride, in particular strain SCI (Accession Number CBS 122089), Trichoderma harzianum, in particular T. harzianum rifai T39. (Accession Number CNCM 1-952).
  • viruses that are or can be used as biological pesticides are:
  • Adoxophyes orana (apple peel moth) Granulosevirus (GV), Cydia pomonella (codling moth) Granulosevirus (GV), Helicoverpa armigera (cotton bollworm) Nuclear Polyhedrosis Virus (NPV), Spodoptera exigua (Sugar beet owl) mNPerwurm (HeVerda frug) Spodoptera littoralis (African cotton worm) NPV.
  • Bacteria and fungi are also included, which are added to plants or parts of plants or plant organs as inoculants and which, thanks to their special properties, promote plant growth and plant health. Examples are:
  • Agrobacterium spp. Azorhizobium caulinodans, Azospirillum spp., Azotobacter spp., Bradyrhizobium spp., Burkholderia spp., In particular Burkholderia cepacia (formerly known as Pseudomonas cepacici), Gigaspora spp., Glaspora spp., Or Gigaspora monospora spp., Or Gigaspora spp.
  • Lactobacillus buchneri Paraglomus spp., Pisolithus tinctorus, Pseudomonas spp., Rhizobium spp., In particular Rhizobium trifolii, Rhizopogon spp., Scleroderma spp., Suillus spp., Streptomyces spp ..
  • plant extracts and such products that were formed by microorganisms including proteins and secondary metabolic products that are or can be used as biological pesticides are:
  • the compounds of the formula (I) can be combined with safeners, such as, for example, benoxacor, cloquintocet (-mexyl), cyometrinil, cyprosulfamide, dichlormid, fenchlorazole (-ethyl), fenclorim, fluorazole, fluxofenim, furilazole, isoxadifen (-ethyl) ), Mefenpyr (diethyl), naphthalic anhydride, oxab- etrinil, 2-methoxy-N - ( ⁇ 4 - [(methylcarbamoyl) amino] phenyl ⁇ sulfonyl) benzamide (CAS 129531-12-0), 4- (dichloroacetyl) - l-oxa-4-azaspiro [4.5] decane (CAS 71526-07-3), 2,2,5-trimethyl-3- (dichloroacetyl) -l, 3-
  • Plants are understood here as meaning all plants and parts of plants such as desired and undesired wild plants or cultivated plants (including naturally occurring crop plants), for example cereals (wheat, rice, triticale, barley, rye, oats), maize, soy, potato, sugar beet, sugar cane , Tomatoes, peppers, cucumbers, melons, carrots, watermelons, onions, lettuce, spinach, leeks, beans, Brassica oleracea (e.g. cabbage) and other vegetables, cotton, tobacco, rape, and fruit plants (with the fruits apples , Pears, citrus fruits and grapes).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant cultivars that can or cannot be protected by plant breeders' rights.
  • Plants are to be understood as meaning all stages of development such as seeds, cuttings, young (immature) plants up to mature plants.
  • Plant parts are to be understood as meaning all aboveground and subterranean parts and organs of plants such as shoot, leaf, flower and root, with leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds as well as roots, tubers and rhizomes being listed as examples.
  • the plant parts also include harvested plants or harvested plant parts and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, cuttings and seeds.
  • the treatment according to the invention of the plants and parts of plants with the compounds of the formula (I) is carried out directly or by the action of the compounds on the environment, the habitat or the eagle area by the customary treatment methods, e.g. B. by immersion, spraying, evaporation, misting Ver, scattering, brushing on, injecting and with propagation material, especially in the case of seeds, further through single or multilayer wrapping.
  • customary treatment methods e.g. B. by immersion, spraying, evaporation, misting Ver, scattering, brushing on, injecting and with propagation material, especially in the case of seeds, further through single or multilayer wrapping.
  • plants and their parts can be treated according to the invention.
  • plant species and plant cultivars occurring in the wild or obtained by conventional biological breeding methods such as crossing or protoplast fusion, as well as their parts are treated.
  • transgenic plants and plant cultivars which are obtained by genetic engineering methods, optionally in combination with conventional methods were obtained (Genetically Modified Organisms) and their parts treated.
  • the term “parts” or “parts of plants” or “plant parts” has been explained above.
  • plants of the plant varieties which are commercially available or in use are treated with particular preference.
  • Plant varieties are plants with new properties (“traits”) that have been obtained through conventional breeding, mutagenesis or recombinant DNA techniques. These can be varieties, races, bio and genotypes.
  • the compounds of the formula (I) can advantageously be used for treating transgenic plants, plant cultivars or plant parts which have received genetic material which gives these plants, plant cultivars or plant parts advantageous and / or useful properties (traits). It is therefore contemplated to combine the present invention with one or more recombinant traits or transgenic events, or a combination thereof.
  • the insertion of a specific recombinant DNA molecule into a specific position (locus) in the chromosome of the plant genome leads to a transgenic event.
  • the insertion creates a new DNA sequence, which is referred to as an "event" and which is identified by the inserted recombinant DNA molecule and a certain amount of genomic DNA immediately adjacent to the inserted DNA / the inserted DNA flanking at both ends .
  • traits or transgenic events include, but are not limiting, pest resistance, water use efficiency, yield performance, drought tolerance, seed quality, improved nutrient quality, hybrid seed production, and herbicide tolerance, the trait being related to a plant that is subject to such a trait or transgenic event. such a transgenic event is missing, is measured.
  • Such advantageous and / or useful properties are better plant growth, vitality, stress tolerance, stability, resistance to storage, nutrient uptake, plant nutrition and / or yield, in particular improved growth, increased tolerance to high or low temperatures, increased tolerance against drought or water or soil salt content, increased flowering performance, easier harvest, acceleration of ripeness, higher yields, higher quality and / or higher nutritional value of the harvested products, better shelf life and / or workability of the harvested products and increased resistance or tolerance towards animal and microbial Pests such as against insects, arachnids, nematodes, mites and snails.
  • Bt-Cry or VIP proteins which include CrylA, CrylAb, CrylAc, CryllA, CrylllA, CryIIIB2, Cry9c, Cry2Ab, Cry3Bb and CrylF proteins or toxic fragments thereof, and also hybrids or combinations thereof, in particular the CrylF protein or hybrids derived from a CrylF protein (e.g. hybrid CrylA-CrylF proteins or toxic fragments thereof), the proteins of the CrylA type or toxic fragments thereof, preferably the CrylAc- Protein or hybrids derived from the CrylAc protein (e.g.
  • hybrid CrylAb-CrylAc proteins or the CrylAb or Bt2 protein or toxic fragments thereof, the Cry2Ae, Cry2Af or Cry2Ag proteins or toxic fragments thereof, the CrylA.105 Protein or a toxic fragment thereof, the VIP3Aal9 protein, the VIP3Aa20 protein, the VIP3A proteins produced at the COT202 or COT203 cotton events, the VIP3Aa protein or a toxic fragment thereof, as in Estruch et al. (1996), Proc Natl Acad Sci US A.
  • cry proteins as described in WO2001 / 47952, the insecticidal proteins from Xenorhabdus (as described in WO98 / 50427), Serratia (in particular from S. entomophila) or strands of the Photorhabdus species, such as Tc proteins from Photorhabdus, as described in WO98 / 08932.
  • Serratia in particular from S. entomophila
  • Tc proteins from Photorhabdus
  • This also includes all variants or mutants of one of these proteins which differ in some amino acids (1-10, preferably 1-5) from any of the above-mentioned sequences, in particular the sequence of their toxic fragment, or which are linked to a transit peptide such as a plastid transit peptide or other protein or peptide are fused.
  • herbicides for example imidazolinones, sulphonylureas, glyphosate or phosphinothricin.
  • DNA sequences coding for proteins that give the transformed plant cells and plants tolerance properties towards certain herbicides in particular the bar or PAT gene or the Streptomyces coelicolor gene, which is described in WO2009 / 152359, and tolerance against glufonsine herbicides confers, a gene that codes for a suitable EPSPS (5-enolpyruvylshikimate-3-phosphate synthase), the tolerance to herbicides with EPSPS as a target, in particular herbicides such as glyphosate and its salts, confers, a for glyphosate N-acetyltransferase coding gene or a gene coding for glyphosate oxoreductase may be mentioned.
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • herbicide tolerance traits include at least one ALS (acetolactate synthase) inhibitor (e.g. WO2007 / 024782), a mutated Arabidopsis ALS / AHAS gene (e.g. US Pat. No. 6,855,533), genes coding for 2,4-D-monooxygenases, tolerance to 2,4-D (2,4-dichlorophenoxyacetic acid), and genes coding for dicamba monooxygenases that confer tolerance to dicamba (3,6-dichloro-2-methoxybenzoic acid).
  • ALS acetolactate synthase
  • a mutated Arabidopsis ALS / AHAS gene e.g. US Pat. No. 6,855,533
  • genes coding for dicamba monooxygenases that confer tolerance to dicamba (3,6-d
  • Particularly useful transgenic events in transgenic plants or plant cultivars which can preferably be treated according to the invention include Event 531 / PV-GHBK04 (cotton, insect control, described in WO2002 / 040677), Event 1143-14A (cotton, insect control, not stored, described in WO2006 / 128569); Event 1143-51B (cotton, insect control, not deposited, described in WO2006 / 128570); Event 1445 (cotton, herbicide tolerance, not backed up, described in US-A 2002-120964 or WO2002 / 034946); Event 17053 (rice, herbicide tolerance, deposited as PTA-9843, described in WO2010 / 117737); Event 17314 (rice, herbicide tolerance, deposited as PTA-9844, described in WO2010 / 117735); Event 281-24-236 (cotton, insect control - herbicide tolerance, deposited as PTA-6233, described in WO2005 / 103266 or US-A 2005-216969); Event 3006-2
  • Event BLR1 rape, restoration of male sterility, deposited as NCIMB 41193, described in WO2005 / 074671
  • Event CE43-67B cotton, insect control, deposited as DSM ACC2724, described in US-A 2009-217423 or WO2006 / 128573
  • Event CE44-69D cotton, insect control, not deposited, described in US-A 2010- 0024077
  • Event CE44-69D cotton, insect control, not deposited, described in WO2006 / 128571
  • Event CE46-02A cotton, insect control, not deposited, described in WO2006 / 128572
  • Event COT102 cotton, insect control, not deposited, described in US-A 2006-130175 or WO2004 / 039986
  • Event COT202 cotton, insect control, not deposited, described in US-A 2007-067868 or WO2005 / 054479
  • Event COT203 cotton, insect, insect control, not deposited, described in US-A 2007
  • PTA-11041) optionally stacked with Event EE-GM1 / LL27 or Event EE-GM2 / LL55 (WO2011 / 063413A2), Event DAS-68416-4 (soybean, herbicide tolerance, ATCC accession no. PTA-10442, W02011 / 066360A1), event DAS-68416-4 (soybean, herbicide tolerance, ATCC accession no. PTA- 10442, WO2011 / 066384A1), Event DP-040416-8 (maize, insect control, ATCC accession no. PTA-11508, WO2011 / 075593A1), Event DP-043A47-3 (maize, insect control, ATCC accession no.
  • transgenic plants which confer the desired characteristics in question can also be present in combinations with one another in the transgenic plants.
  • transgenic plants that can be mentioned are important crops such as cereals (wheat, rice, triticale, barley, rye, oats), corn, soybeans, potatoes, sugar beet, sugar cane, tomatoes, peas and other types of vegetables, cotton, Tobacco, rapeseed and also fruit plants (with the fruits apples, pears, citrus fruits and grapes), with corn, soybeans, wheat, rice, potatoes, cotton, sugar cane, tobacco and rapeseed being particularly emphasized.
  • Traits that are particularly emphasized are the increased resistance of the plants to insects, arachnids, nematodes and snails as well as the increased resistance of the plants to one or more herbicides.
  • plants, plant parts or plant seeds which can preferably be treated according to the invention, include commercially available products such as plant seeds, which come under the GENUITY®, DROUGHTGARD®, SMARTSTAX®, RIB COMPLETE®, ROUNDUP READY ®-, VT DOUBLE PRO®-, VT TRIPLE PRO®-, BOLLGARD II®-, ROUNDUP READY 2 YIELD®-, YIELDGARD®-, ROUNDUP READY® 2 XTEN D TM -, INTACTA RR2 PRO®-, VISTIVE GOLD®- and / or XTENDFLEX TM trade names are sold or distributed.
  • plant seeds which come under the GENUITY®, DROUGHTGARD®, SMARTSTAX®, RIB COMPLETE®, ROUNDUP READY ®-, VT DOUBLE PRO®-, VT TRIPLE PRO®-, BOLLGARD II®-, ROUNDUP READY 2
  • the treatment of the plants and plant parts with the compounds of the formula (I) takes place directly or by affecting their surroundings, living space or storage room according to the usual treatment methods, e.g. B. by dipping, spraying, spraying, sprinkling, vaporizing, atomizing, atomizing, scattering, foaming, brushing, spreading, injecting, pouring (drenching), drip irrigation and in the case of propagation material, especially in the case of seeds, furthermore by dry dressing, wet dressing, slurry dressing, Encrusting, single or multi-layer coating, etc. It is also possible to apply the compounds of the Lormel (I) using the ultra-low-volume method or the application form or the compound of the Lormel (I) itself into the soil inject.
  • a preferred direct treatment of the plants is foliar application; H. the compounds of Lormel (I) are applied to the foliage, the frequency of treatment and the amount applied should be tailored to the pressure of the infestation of the pest in question.
  • the compounds of Lormel (I) also get into the plants via the root system.
  • the plants are then treated by the action of the compounds of Lormel (I) on the plant's habitat.
  • This can be, for example, by drenching, mixing in the soil or the nutrient solution, i. H. the location of the plant (e.g. soil or hydroponic systems) is soaked with a liquid Lorm of the compounds of Lormel (I), or through the soil application, d. H.
  • the compounds of the Lormel (I) according to the invention are introduced into the location of the plants in solid Lorm (for example in Lorm of a granulate) or by drop application (often also referred to as "chemistry"), ie the Lormel compounds according to the invention (I) are introduced by means of surface or underground drip pipes over certain periods of time together with varying amounts of water at defined locations near the plants. In the case of water rice cultures, this can also be done by metering the compound of the Lormel (I) in a solid application form (e.g. as granules) into a flooded rice field.
  • a solid application form e.g. as granules
  • the compounds according to the invention can be used in combination with, for example, models embedded in computer programs for site-specific crop management, satellite farming, precision farming or precision farming.
  • models support the site-specific management of agricultural facilities with data from various sources such as soils, weather, crops (e.g. type, growth stage, plant health), weeds (e.g. type, growth stage), diseases, pests, nutrients, water, luminosity, biomass, Satellite data, yield, etc., with the aim of optimizing profitability, sustainability and environmental protection.
  • such models can help optimize agronomic decisions, control the precision of pesticide applications and record the work carried out.
  • the compounds according to the invention can be applied to a crop plant in accordance with a corresponding application protocol if the model modulates the occurrence of a pest and calculates that a threshold has been reached at which it is recommended that Apply the compound of the invention to the crop.
  • the compounds according to the invention can also be used in combination with a smart sprayer such as a device for spot spraying or precision spraying, which is attached to a farm vehicle such as a tractor, a robot, a helicopter, an aircraft, an unmanned aerial vehicle (UAV) such as a drone is attached or housed.
  • a smart sprayer such as a device for spot spraying or precision spraying, which is attached to a farm vehicle such as a tractor, a robot, a helicopter, an aircraft, an unmanned aerial vehicle (UAV) such as a drone is attached or housed.
  • a smart sprayer such as a device for spot spraying or precision spraying, which is attached to a farm vehicle such as a tractor, a robot, a helicopter, an aircraft, an unmanned aerial vehicle (UAV) such as a drone is attached or housed.
  • Such a device usually comprises input sensors (such as a camera) and a processing unit which is responsible for analyzing the input data and providing a decision based on the analysis of the input data
  • pests can be detected from images captured by a camera.
  • the pests can be identified and / or classified based on these images.
  • algorithms for image processing can be used.
  • image processing algorithms can use machine learning algorithms such as artificial neural networks, decision trees, and artificial intelligence algorithms. In this way it is possible to use the connections described here only where they are needed.
  • methods for treating seeds should also include the intrinsic insecticidal or nematicidal properties of pest-resistant or -tolerant transgenic plants in order to provide optimal protection of the seeds and also the germinating plants with a minimal use of pesticides to reach.
  • the present invention therefore also relates in particular to a method for protecting seeds and germinating plants from attack by pests by treating the seeds with one of the compounds of the formula (I).
  • the method according to the invention for protecting seeds and germinating plants from attack by pests further comprises a method in which the seed is treated simultaneously in one operation or sequentially with a compound of the formula (I) and a mixture component. It also includes a method in which the seed is treated at different times with a compound of the formula (I) and a mixture component.
  • the invention also relates to the use of the compounds of the formula (I) for treating seeds to protect the seeds and the resulting plants from animal pests.
  • the invention further relates to seed which has been treated with a compound of the formula (I) according to the invention for protection against animal pests.
  • the invention also relates to seeds which have been treated at the same time with a compound of the formula (I) and a mixture component.
  • the invention further relates to seeds which have been treated at different times with a compound of the formula (I) and a mixture component.
  • the individual substances can be well present in different layers on the seed.
  • the layers which contain a compound of the formula (I) and mixing components can optionally be separated by an intermediate layer.
  • the invention also relates to seeds in which a compound of the formula (I) and a mixture component are applied as a constituent of a coating or as a further layer or layers in addition to a coating.
  • the invention further relates to seed which, after treatment with a compound of the formula (I), is subjected to a film coating process in order to avoid dust abrasion on the seed.
  • compounds of the formula (I) can also be used, in particular, in the case of transgenic seeds.
  • Compounds of the formula (I) can also be used in combination with compositions or compounds of signal technology, as a result of which better colonization with symbionts, such as rhizobia, mycorrhiza and / or endophytic bacteria or fungi, takes place and / or there is an optimized nitrogen fixation .
  • the compounds of the formula (I) are suitable for protecting seeds of any type of plant which is used in agriculture, in the greenhouse, in forests or in horticulture.
  • these are grains (e.g. wheat, barley, rye, millet and oats), maize, cotton, soy, rice, potatoes, sunflower, coffee, tobacco, canola, rapeseed, beet (e.g. Sugar beet and fodder beet), peanuts, vegetables (e.g. tomatoes, cucumbers, beans, cabbage plants, onions and lettuce), fruit plants, lawns and ornamental plants.
  • the treatment of the seeds of cereals (such as wheat, barley, rye and oats), maize, soy, cotton, canola, rapeseed, vegetables and rice is of particular importance.
  • transgenic seeds with a compound of the formula (I) are also of particular importance.
  • the heterologous genes in transgenic seeds can come from microorganisms such as Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • the present invention is particularly suitable for the treatment of transgenic seeds which contain at least one heterologous gene derived from Bacillus sp. originates. It is particularly preferably a heterologous gene which originates from Bacillus thurin- giensis.
  • the compound of the formula (I) is applied to the seed.
  • the seed is preferably treated in a state in which it is so stable that no damage occurs during the treatment.
  • the seed can be treated at any point between harvest and sowing.
  • seeds are used that have been separated from the plant and freed from cobs, peels, stems, coats, wool or pulp.
  • seeds can be used that have been harvested, cleaned and dried to a storable moisture content.
  • seeds can be used, which after drying z. B. treated with water and then dried again, for example priming.
  • the compounds of the formula (I) are generally applied to the seed in the form of a suitable formulation.
  • suitable formulations and methods for seed treatment are known to those skilled in the art.
  • the compounds of the formula (I) can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seeds, and also UFV formulations.
  • formulations are prepared in a known manner by mixing the compounds of the formula (I) with customary additives, such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives , Gibberellins and also water.
  • customary additives such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives , Gibberellins and also water.
  • Suitable dyes which can be contained in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both pigments which are sparingly soluble in water and dyes which are soluble in water can be used here. Examples are those under the names Rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1 known dyes.
  • Suitable wetting agents which can be contained in the seed dressing formulations which can be used according to the invention are all substances which are customary for the formulation of agrochemical active ingredients and which promote wetting.
  • Alkylnaphthalene sulfonates such as diisopropyl or diisobutyl naphthalene sulfonates, can preferably be used.
  • Suitable dispersants and / or emulsifiers which can be contained in the seed dressing formulations which can be used according to the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemical active ingredients.
  • Nonionic or anionic dispersants or mixtures of nonionic or ionic dispersants can preferably be used.
  • Suitable nonionic dispersants are, in particular, ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are, in particular, fignin sulfonates, polyacrylic acid salts and aryl sulfonate-formaldehyde condensates.
  • All foam-inhibiting substances customary for the formulation of agrochemical active ingredients can be contained as defoamers in the seed dressing formulations which can be used according to the invention.
  • silicone defoamers and magnesium stearate can be used.
  • All substances which can be used in agrochemical agents for such purposes can be present as preservatives in the seed dressing formulations which can be used according to the invention.
  • Cited as an example be dichlorophene and benzyl alcohol hemiformal.
  • Secondary thickening agents which can be contained in the seed dressing formulations which can be used according to the invention are all substances which can be used in agrochemical agents for such purposes. Cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and highly disperse silicic acid are preferred.
  • Suitable adhesives which can be contained in the seed dressing formulations which can be used according to the invention are all conventional binders which can be used in seed dressings.
  • Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose may be mentioned as preferred.
  • the gibberellins are known (see R. Wegler “Chemistry of Plant Protection and Pest Control Agents”, Vol. 2, Springer Verlag, 1970, pp. 401-412).
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for treating seeds of the most varied of types.
  • the concentrates or the preparations obtainable from them by diluting them with water can be used to dress the seeds of grain such as wheat, barley, rye, oats and triticale, as well as the seeds of maize, rice, rape, peas, beans, Cotton, sunflowers, soy and beet or vegetable seeds of the most varied nature.
  • the seed dressing formulations which can be used according to the invention or their diluted application forms can also be used for dressing seeds of transgenic plants.
  • the procedure for dressing is to put the seed in a mixer in batch or continuous operation, add the desired amount of dressing formulations either as such or after prior dilution with water and until the formulation is evenly distributed the seed mixes. If necessary, this is followed by a drying process.
  • the application rate of the seed dressing formulations which can be used according to the invention can be varied within a relatively wide range. It depends on the particular content of the compounds of the formula (I) in the formulations and on the seeds.
  • the application rates of the compound of the formula (I) are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 15 g per kilogram of seed.
  • Animal health is generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 15 g per kilogram of seed.
  • the compounds of the formula (I) are active against animal parasites, in particular ectoparasites or endoparasites.
  • animal parasites in particular ectoparasites or endoparasites.
  • endoparasit includes in particular helminths and protozoa such as coccidia.
  • Ectoparasites are typically and preferably arthropods, especially insects or acarids.
  • the compounds of the formula (I), which have a favorable toxicity to warm-blooded animals, are suitable for combating parasites which occur in animal breeding and keeping in farm animals, breeding animals, zoo animals, laboratory animals, test animals and domestic animals. th. They are effective against all or individual stages of development of the parasites.
  • the farm animals include, for example, mammals such as sheep, goats, horses, donkeys, camels, buffalo, rabbits, reindeer, fallow deer and, in particular, cattle and pigs; or poultry such as turkeys, ducks, geese and especially chickens; or fish or crustaceans, e.g. B. in aqua culture, or possibly insects such as bees.
  • mammals such as sheep, goats, horses, donkeys, camels, buffalo, rabbits, reindeer, fallow deer and, in particular, cattle and pigs
  • poultry such as turkeys, ducks, geese and especially chickens
  • fish or crustaceans e.g. B. in aqua culture, or possibly insects such as bees.
  • Domestic animals include, for example, mammals such as hamsters, guinea pigs, rats, mice, chin chillas, ferrets and, in particular, dogs, cats, housebirds; Reptiles, amphibians or aquarium fish.
  • the compounds of the formula (I) are administered to mammals.
  • the compounds of the formula (I) are administered to birds, namely house birds or, in particular, poultry.
  • control or “control” in the present context means that the compounds of the formula (I) effectively prevent the occurrence of the respective parasite in an animal which is infected with such parasites to a harmless extent , is reduced. More precisely, “combating” in the present context means that the compounds of the formula (I) kill the respective parasite, prevent its growth or prevent its reproduction.
  • the arthropods include, for example, without being limited to from the order Anoplurida, for example, Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp .; from the order Mallophagida and the suborders Amblycerina and Ischnocerina, for example Bovicola spp., Damalina spp., Felicola spp .; Lepikentron spp., Menopon spp., Trichodectes spp., Tri- menopon spp., Trinoton spp., Werneckiella spp; from the order Diptera and the suborders Nematocerina and Brachycerina, for example Aedes spp., Anopheles spp., Atylotus spp., Braula spp., Calliphora spp., Chry
  • Melophagus spp. Melophagus spp., Morellia spp., Musca spp., Odagmia spp., Oestrus spp., Philipomyia spp., Phlebotomus spp., Rhinoestrus spp., Sarcophaga spp., Simulium spp., Stomoxys spp., Tabanus spp., Tipula spp., Wilhelmia spp., Wohlfahrtia spp .; from the order Siphonaptrida, for example Ceratophyllus spp., Ctenocephalides spp., Pulex spp., Tunga spp., Xenopsylla spp .; from the order Heteropterida, for example Cimex spp., Panstrongylus spp., Rhodnius spp., Triatoma spp .; as well as pests
  • Metastigmata From the subclass Akari (Acarina) and the order Metastigmata, for example from the family Argasidae, such as Argas spp., Ornithodorus spp., Otobius spp., From the family Ixodidae, such as Amblyomma spp., Dermacentor spp., Haemaphysalis spp ., Hyalomma spp., Ixodes spp., Rhipicephalus (Boophilus) spp., Rhipicephalus spp.
  • Argasidae such as Argas spp., Ornithodorus spp., Otobius spp.
  • Ixodidae such as Amblyomma spp., Dermacentor spp., Haemaphysalis spp ., Hyalomma spp., Ixodes spp.,
  • parasitic protozoa examples include, but are not limited to:
  • Mastigophora such as:
  • Metamonada from the order Vaccinonadida, for example Giardia spp., Spironucleus spp.
  • Parabasala from the order Trichomonadida, for example Histomonas spp., Pentatrichomonas spp., Tetrichomonas spp., Trichomonas spp., Tritrichomonas spp.
  • Euglenozoa from the order Trypanosomatida, for example Leishmania spp., Trypanosoma spp.
  • Sarcomastigophora such as Entamoebidae, for example Entamoeba spp., Centramoebidae, for example Acanthamoeba sp., Euamoebidae, e.g. B. Hartmanella sp.
  • Alveolata such as Apicomplexa (Sporozoa): e.g. B. Cryptosporidium spp .; from the order Eimeriida, for example, Besnoitia spp., Cystoisospora spp., Eimeria spp., Hammondia spp., Isospora spp., Neospora spp., Sarcocystis spp., Toxoplasma spp .; from the order Adeleida e.g. B. Hepatozoon spp., Klossiella spp .; from the order Haemosporida e.g. B.
  • Leucocytozoon spp. Plasmodium spp .; from the order Piroplasmida e.g. B. Babesia spp., Ciliophora spp., Echinozoon spp., Theileria spp .; from the order Vesibuliferida e.g. B. Balantidium spp., Buxtonella spp.
  • Microspora such as Encephalitozoon spp., Enterocytozoon spp., Globidium spp., Nosema spp., And also e.g. B. Myxozoa spp.
  • the helminths pathogenic for humans or animals include, for example, Acanthocephala, Nematodes, Pentastoma and Platyhelminths (e.g. Monogenea, Cestodes and Trematodes).
  • Exemplary helminths include, but are not limited to:
  • Monogenea e.g. For example: Dactylogyrus spp., Gyrodactylus spp., Microbothrium spp., Polystoma spp., Troglecephalus spp .;
  • Cestodes from the order Pseudophyllidea for example: Bothridium spp., Diphyllobothrium spp., Diplogonoporus spp. Ichthyobothrium spp., Ligula spp., Schistocephalus spp., Spirometra spp.
  • Cyclophyllida for example: Andyra spp., Anoplocephala spp., Avitellina spp., Bertiella spp., Cittotaenia spp., Davainea spp., Diorchis spp., Diplopylidium spp., Dipylidium spp., Echinococcus spp., Echinocotyle.
  • Echinolepis spp. Hydatigera spp., Hymenolepis spp., Joyeuxiella spp., Mesocestoides spp., Moniezia spp., Paranoplocephala spp., Raillietina spp., Stilesia spp., Taenia spp., Thysaniezia spp., Thysanosoma spp.
  • Trematodes from the class Digenea for example: Austrobilharzia spp., Brachylaima spp., Calicophoron spp., Catatropis spp., Clonorchis spp. Collyriclum spp., Cotylophoron spp., Cyclocoelum spp., Dicrocoelium spp., Diplostomum spp., Echinochasmus spp., Echinoparyphium spp., Echinostoma spp., Eurytrema spp., Fasciola spp., Fasciolides spp., Fasciolides spp ., Gastrothylacus spp., Gigantobilharzia spp., Gigantocotyle spp., Heterophyes spp., Hypoderaeum spp., Leucochloridium s
  • Nematodes from the order Trichinellida, for example: Capillaria spp., Eucoleus spp., Paracapillaria spp., Trichinella spp., Trichomosoides spp., Trichuris spp.
  • Rhabditina From the order Rhabditina, for example: Aelurostrongylus spp., Amidostomum spp., Ancylostoma spp., Angiostrongylus spp., Bronchonema spp., Bunostomum spp., Chabertia spp., Cooperia spp., Cooperioides spp., Crenosoma spp spp., Cyclococercus spp., Cyclodontostomum spp., Cylicocyclus spp., Cylicostephanus spp., Cylindropharynx spp., Cystocaulus spp., Dictyocaulus spp., Elaphostongylus sppphalus., Filaroides spp., Globocephalus sppaloium spp., Haemonchus spp., Helig
  • Oesophagodontus spp. Oesophagostomum spp., Ollulanus spp .
  • Ornithostrongylus spp. Oslerus spp., Ostertagia spp., Paracooperia spp., Paracrenosoma spp., Parafilaroides spp., Parelaphostrongylus spp., Pneumocaulus spp., Pneumostrongylus spp., Poteriaulostomum sppyl., Protostrongylus sppyl ., Strongylus spp., Syngamus spp., Teladorsagia spp., Trichonema spp., Trichostrongylus spp., Triodontophorus spp., Troglostrongylus spp., Uncinaria spp.
  • Spirurida for example: Acanthocheilonema spp., Anisakis spp., Ascaridia spp .; Ascaris spp., Ascarops spp., Aspiculuris spp., Baylisascaris spp., Brugia spp., Cercopithifilaria spp., Crassicauda spp., Dipetalonema spp., Dirofilaria spp., Dracunculus spp .; Draschia spp., Enterobius spp., Filaria spp., Gnathostoma spp., Gongylonema spp., Habronema spp., Heterakis spp .; Litomosoides spp., Loa spp., Onchocerca spp., Oxyuris spp., Parabronema spp., Parafilaria
  • Acanthocephala from the order Oligacanthorhynchida, for example: Macracanthorhynchus spp., Prosthenorchis spp .; from the order Moniliformida, for example: Moniliformis spp.,
  • Pentastoma from the order Porocephalida, for example Linguatula spp.
  • the compounds of the formula (I) are administered by methods generally known in the art, such as enteral, parenteral, dermal or nasal, in the form of suitable preparations. Administration can be prophylactic; metaphylactic or therapeutic respectively.
  • one embodiment of the present invention relates to the compounds of the formula (I) for use as medicaments.
  • Another aspect relates to the compounds of the formula (I) for use as an anti-endoparic drug.
  • Another special aspect relates to the compounds of the formula (I) for use as an antihelminthicide, in particular for use as a nematicide, platymelminthicide, acanthocephalicide or penastomicide.
  • Another special aspect relates to the compounds of the formula (I) for use as an antiprotozoal.
  • Another aspect relates to the compounds of the formula (I) for use as an anti-parasitic agent, in particular an arthropodicide, very particularly an insecticide or an acaricide.
  • veterinary formulations which comprise an effective amount of at least one compound of the formula (I) and at least one of the following: a pharmaceutically acceptable excipient (e.g. solid or liquid diluent), a pharmaceutically acceptable auxiliary (e.g. surfactants), in particular a pharmaceutically acceptable excipient conventionally used in veterinary medical formulations and / or a pharmaceutically acceptable auxiliary agent conventionally used in veterinary medical formulations.
  • a pharmaceutically acceptable excipient e.g. solid or liquid diluent
  • auxiliary e.g. surfactants
  • a related aspect of the invention is a process for the preparation of a veterinary formulation as described herein, which comprises the step of mixing at least one compound of the formula (I) with pharmaceutically acceptable excipients and / or auxiliaries, in particular with pharmaceuticals conventionally used in veterinary formulations includes safe excipients and / or auxiliaries.
  • Another special aspect of the invention is veterinary formulations selected from the group of ectoparasiticidal and endoparasiticidal formulations, in particular selected from the group of anthelmintic, antiprotozolic and arthropodicidal formulations, particularly selected from the group of nematicidal, platyhelminthicidal, acanthocephalicidal, insecticidal and pentastomicidal formulations according to the aspects mentioned, as well as processes for their preparation.
  • Another aspect relates to a method for treating a parasitic infection, in particular an infection by a parasite selected from the group of the ectoparasites and endoparasites mentioned here, by applying an effective amount of a compound of the formula (I) to one Animal, especially a non-human animal, in need of it.
  • Another aspect relates to a method for the treatment of a parasitic infection, in particular an infection by a parasite selected from the group of the ectoparasites and endoparasites mentioned here, by applying a veterinary formulation as defined here in an animal, in particular a non-human animal, which that needs.
  • Another aspect relates to the use of the compounds of the formula (I) in the treatment of a parasite infection, in particular an infection by a parasite selected from the group of the ectoparasites and endoparasites mentioned here, in an animal, in particular a non-human animal.
  • treatment includes prophylactic, metaphylactic and therapeutic treatment.
  • this provides mixtures of at least one compound of the formula (I) with other active ingredients, in particular with endo- and ectoparasiticides, for the veterinary field.
  • mixture not only means that two (or more) different active ingredients are formulated in a common formulation and are used together accordingly, but also refers to products that comprise separate formulations for each active ingredient. Accordingly, if more than two active ingredients are to be used, all active ingredients can be formulated in a common formulation or all active ingredients can be formulated in separate formulations; Mixed forms are also conceivable, in which some of the active ingredients are formulated together and some of the active ingredients are formulated separately. Separate formulations allow separate or sequential use of the active ingredients in question.
  • active ingredients from the group of ectoparasiticides as mixing partners include, without this being intended to represent a restriction, the insecticides and acaricides listed in detail above. Further active ingredients that can be used are listed below according to the above-mentioned classification, which is based on the current IRAC Mode of Action Classification Scheme: (1) acetylcholinesterase (AChE) inhibitors; (2) GABA-gated chloride channel blockers; (3) sodium channel modulators; (4) competitive modulators of the nicotinic acetylcholine receptor (nAChR); (5) allosteric modulators of the nicotinic acetylcholine receptor (nAChR); (6) allosteric modulators of the glutamate-dependent chloride channel (GluCl); (7) juvenile hormone mimetics; (8) various non-specific (multi-site) Inhibitors; (9) modulators of chordotonal organs; (10) mite growth inhibitors; (12) inhibitors of mitochondrial ATP synthas
  • Active ingredients with unknown or non-specific mechanisms of action e.g. B. Fentrifanil, Fenoxacrim, Cycloprene, Chlorobenzilat, Chlordimeform, Flubenzimin, Dicyclanil, Amidoflumet, Quinomethionat, Triarathen, Clothiazoben, Tetrasul, Potassium Oleate, Petroleum, Metoxadiazon, Gossyplur, Flutenzin, Cryopropylat;
  • Organochlorine compounds e.g. B. Camphechlor, Findan, Heptachlor; or phenylpyrazoles, e.g. B. acetoprole, pyrafluprole, pyriprole, vaniliprole, sisapronil; or isoxazolines, e.g. B. Sarolaner, Afoxolaner, Fotilaner, FIuralaner;
  • Pyrethroids e.g. B. (cis-, trans-) metofluthrin, profluthrin, flufenprox, flubrocythrinate, fubfenprox, fenfluthrin, protrifenbut, pyresmethrin, RU15525, terallethrin, cis-resmethrin, heptafluthrin, cyanopermethrin, cyanopermethrin, cyanopermethrin, cyanopermethrin., -Permethrin, Clocythrin, Cyhalothrin (lambda-), Chlovaporthrin, or halogenated hydrocarbon compounds (HCHs),
  • Neonicotinoids e.g. B. nithiazine
  • Dicloromezotiaz, triflumezopyrim macrocyclic factones e.g. B. nemadectin, ivermectin, fatidectin, moxidectin, selamectin, eprinomectin, doramectin, emamectin benzoate; Milbemycin oxime
  • Dinitrophenols e.g. B. Dinocap, Dinobuton, Binapacryl;
  • Benzoylureas e.g. B. Fluazuron, Penfluron,
  • Amidine derivatives e.g. B. Chlormebuform, Cymiazol, Demiditraz
  • Beehive varroa acaricides for example organic acids, e.g. formic acid, oxalic acid.
  • Exemplary active ingredients from the group of endoparasiticides, as mixing partners, include, without being limited thereto, anthelmintic active ingredients and antiprotozoal active ingredients.
  • the anthelmintic active ingredients include, without being limited thereto, the following nematicidal, trematicidal and / or cestocidal active ingredients: from the class of macrocyclic lactones, for example: eprinomectin, abamectin, nemadectin, moxidectin, doramectin, selamectin, lepimectin, latemidectin, Ivermectin, emamectin, milemycin; from the class of benzimidazoles and probenzimidazoles, for example: oxibendazole, mebendazole, triclabendazole, thiophanate, parbendazole, oxfendazole, netobimin, fenbendazole, febantel, thiabendazole, cyclobendazole, cambendazole, albendazole sulfoxide, albendazole; from the class of the
  • Antiprotozoal active ingredients including, but not limited to, the following active ingredients: from the class of the triazines, for example: diclazuril, ponazuril, letrazuril, toltrazuril; from the class of polyetherionophore, for example: Monensin, Salinomycin, Maduramicin, Narasin; from the class of the macrocyclic lactones, for example: milbemycin, erythromycin; from the class of the quinolones, for example: enrofloxacin, pradofloxacin; from the quinine class, for example: chloroquine; from the class of the pyrimidines, for example: pyrimethamine; from the class of the sulfonamides, for example: sulfachinoxaline, trimethoprim, sulfaclozine; from the class of the thiamines, for example: Amprolium; from the class of the lincosamides, for example
  • a vector within the meaning of the present invention is an arthropod, in particular an insect or arachnid, which is able to remove pathogens such as, for. B. Viruses, worms, protozoa and bacteria from a reservoir (plant, animal, human, etc.) to a host.
  • the pathogens can either be transmitted mechanically (e.g. trachoma by non-stinging flies) to a host, or after injection (e.g. malaria parasites by mosquitoes) into a host.
  • Anopheles malaria, filariasis
  • flies sleeping sickness (trypanosomiasis); Cholera, other bacterial diseases;
  • Ticks Borellioses such as Borrelia bungdorferi sensu lato., Borrelia duttoni, early summer meningoencephalitis, Q fever (Coxiella burnetii), Babesia (Babesia canis canis), Ehrlichiosis.
  • vectors for the purposes of the present invention are insects, for example aphids, flies, cicadas or thrips, which can transmit plant viruses to plants.
  • Other vectors that can transmit plant viruses are spider mites, lice, beetles and nematodes.
  • vectors for the purposes of the present invention are insects and arachnids such as Mosquitoes, especially of the genera Aedes, Anopheles, z. BA gambiae, A. arabiensis, A. funestus, A. dirus (malaria) and Culex, psychodids such as Phlebotomus, Lutzomyia, lice, fleas, flies, mites and ticks, which can transmit pathogens to animals and / or humans.
  • insects and arachnids such as Mosquitoes, especially of the genera Aedes, Anopheles, z. BA gambiae, A. arabiensis, A. funestus, A. dirus (malaria) and Culex, psychodids such as Phlebotomus, Lutzomyia, lice, fleas, flies, mites and ticks, which can transmit pathogens to animals and / or humans.
  • Compounds of formula (I) are suitable for use in the prevention of diseases and / or pathogens which are transmitted by vectors.
  • another aspect of the present invention is the use of compounds of formula (I) for vector control, e.g. B. in agriculture, in horticulture, in gardens and leisure facilities as well as in storage and material protection.
  • the compounds of the formula (I) are suitable for protecting industrial materials against attack or destruction by insects, e.g. B. from the orders Coleoptera, Flymenoptera, Isoptera, Lepidoptera, Psocoptera and Zygentoma.
  • non-living materials such as, preferably, plastics, adhesives, glues, paper and cardboard, leather, wood, wood processing products and paints.
  • non-living materials such as, preferably, plastics, adhesives, glues, paper and cardboard, leather, wood, wood processing products and paints.
  • the use of the invention to protect wood is particularly preferred.
  • the compounds of the formula (I) are used together with at least one further insecticide and / or at least one fungicide.
  • the compounds of the formula (I) are in the form of a ready-to-use pesticide, i. E. That is, they can be applied to the corresponding material without further changes.
  • a ready-to-use pesticide i. E. That is, they can be applied to the corresponding material without further changes.
  • insecticides or fungicides those mentioned above are particularly suitable.
  • the compounds of the formula (I) can be used to protect against growth on objects, in particular ship hulls, screens, nets, structures, quays and signal systems which come into contact with sea or brackish water.
  • the compounds of the formula (I) can be used as antifouling agents alone or in combination with other active ingredients.
  • the compounds of the formula (I) are suitable for combating animal pests in the hygiene sector.
  • the invention can be used in household, hygiene and storage protection are mainly used to control insects, arachnids, ticks and mites that occur in closed spaces such as apartments, factory buildings, offices, vehicle cabins, animal breeding facilities.
  • the compounds of the formula (I) are used alone or in combination with other active ingredients and / or excipients. They are preferably used in household insecticide products.
  • the compounds of the formula (I) are active against sensitive and resistant species and against all stages of development.
  • pests from the class Arachnida from the orders Scorpiones, Araneae and Opiliones, from the classes Chilopoda and Diplopoda, from the class Insecta the order Blattodea, from the orders Coleoptera, Dermaptera, Diptera, Fieteroptera, Hymenoptera, Isoptera, Lepidoptera, Phthiraptera, Psocoptera, Saltatoria or Orthoptera, Siphonaptera and Zygentoma and from the class Malacostraca the order Isopoda.
  • LC-MS3 Waters UPLC with SQD2 mass spectrometer and SampIeManager sample changer. Linear gradient 0.0 to 1.70 minutes from 10% acetonitrile to 95% acetonitrile, from 1.70 to 2.40 minutes constant 95% acetonitrile, flow 0.85 ml / min.
  • LC-MS6 and LC-MS7 Agilent 1290 LC, Agilent MSD, HTS PAL sample changer. Linear gradient 0.0 to 1.80 minutes from 10% acetonitrile to 95% acetonitrile, from 1.80 to 2.50 minutes constant 95% acetonitrile, flow 1.0 ml / min.
  • LC-MS4 Waters IClass Acquity with QDA mass spectrometer and FTN sample changer (column Waters Acquity 1.7 pm 50 mm * 2.1 mm, oven temperature 45 ° C). Linear gradient 0.0 to 2.10 minutes from 10% acetonitrile to 95% acetonitrile, from 2.10 to 3.00 minutes constant 95% acetonitrile, flow 0.7 ml / min.
  • LC-MS5 Agilent 1100 LC system with MSD mass spectrometer and F1TS PAL sample changer (column: Zorbax XDB C18 1.8 pm 50 mm * 4.6 mm, oven temperature 55 ° C). Linear gradient 0.0 to 4.25 minutes from 10% acetonitrile to 95% acetonitrile, from 4.25 to 5.80 minutes constant 95% acetonitrile, flow 2.0 ml / min.
  • the retention time indices were determined in all cases according to a homologous series of straight-chain alkanones with 3 to 16 carbons, with the index of the first alkanone set to 300, that of the last to 1600 and linear interpolation between the values of successive alkanones .
  • the measurements of the 1 H-NMR spectra were carried out with a Bruker Avance III 400 MHz spectrometer, equipped with a 1.7 mm TCI probe head, with tetramethylsilane as the standard (0.00 ppm) and the measurements were recorded, as a rule, from solutions in the solvents CD 3 CN, CDCL or d 6 -DMSO.
  • a Bruker Avance III 600 MHz spectrometer equipped with a 5 mm CPNMP probe head or a Bruker Avance NEO 600 MHz spectrometer equipped with a 5 mm TCI probe head was used for the measurements.
  • the measurements were carried out at a probe head temperature of 298 K. If other measuring temperatures were used, this will be noted separately.
  • the 'H-NMR data of selected examples are presented in the form of' H-NMR-Pcaklistcn. For each signal peak, first the d-value in ppm and then the signal intensity are listed in round brackets. The d-value - signal intensity number pairs are listed separated from each other by semicolons.
  • the peak list of an example therefore has the form: di (intensity i); 82 (intensity 2); . ; d, (intensity i); . ; d h (intensity n )
  • the intensity of sharp signals correlates with the height of the signals in a printed representation of a 1 H-NMR spectrum in cm and shows the real relationships between the signal intensities. With broad signals, multiple peaks or the center of the signal and their relative intensity compared to the most intense signal in the spectrum can be shown.
  • Tetramethylsilane is used to calibrate the chemical shift of 'H-NMR spectra or the chemical shift of the solvent if the sample does not contain tetramethylsilane. Therefore, the 'H-NMR-Pcaklistcn may contain the tetramethylsilane peak.
  • peaks of stereoisomers of the compounds according to the invention and / or peaks of impurities usually have a lower intensity than the peaks of the compounds according to the invention (for example at a purity of> 90%).
  • Such stereoisomers and / or impurities can be typical of the particular manufacturing process. Your peaks can thus help to identify the reproduction of a manufacturing process based on “by-product fingerprints”.
  • An expert who calculates the peaks of the target compounds with known methods can identify the peaks of the target compounds as required, with additional intensity filters being used if necessary. This identification is equivalent to the relevant list of peaks in the classical 'H-NMR interpretation.
  • the solvent used can be read from the JCAMP file with the parameter “solvent”, the measuring frequency of the spectrometer with “observe frequency” and the spectrometer model with “spectrometer / data system”.
  • 13 C-NMR data are analogous to the ⁇ -NMR data as peak lists from broadband decoupled 13 C- NMR spectra given.
  • 13 C-NMR solvent signals and tetramethylsilane are removed from the relative intensity calibration because these signals can have very high intensity values.
  • logP values were determined in accordance with EEC Directive 79/831 Annex V.A8 by HPLC (High Performance Liquid Chromatography) on a phase reversal column (CI 8) using the following methods:
  • the logP value is determined by LC-UV measurement in the acidic range, with 0.9 ml / l formic acid in water and 1.0 ml / l formic acid in acetonitrile as eluents (linear gradient from 10% acetonitrile to 95% acetonitrile ).
  • the logP value is determined by LC-UV measurement in the neutral range, with 0.001 molar ammonium acetate solution in water and acetonitrile as eluents (linear gradient from 10% acetonitrile to 95% acetonitrile).
  • the calibration was carried out with straight-chain alkan-2-ones (with 3 to 16 carbon atoms) with known logP values. The values between successive alkanones are determined by linear regression.
  • Solvent 125.0 parts by weight of acetone To produce a suitable preparation of active ingredient, 1 part by weight of active ingredient is mixed with the stated amount of solvent and the concentrate is diluted with water to the desired concentration.
  • Vessels are filled with sand, active ingredient solution, an egg-larva suspension of the southern root gall elbow (Meloidogyne incognita) and lettuce seeds.
  • the lettuce seeds germinate and the plants develop.
  • the galls develop at the roots.
  • the nematicidal effect is determined based on the gall formation in%. 100% means that no galls were found; 0% means that the number of galls on the treated plants corresponds to the untreated control.
  • Emulsifier 2.5 parts by weight of alkylaryl polyglycol ether
  • active ingredient 1 part by weight of active ingredient is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration, taking into account the volume of soil in which it is drenched. It must be ensured that a concentration of 20 ppm emulsifier in the soil is not exceeded. To produce further test concentrations, it is diluted with water.
  • Pots filled with earth are poured with the active ingredient solution.
  • An egg-larva suspension of the southern root knot (Meloidogyne incognita) is added, the surface of the earth is sprinkled with lettuce seeds and covered with quartz sand. The lettuce seeds germinate and the plants develop. The galls develop at the roots.
  • the nematicidal effect is determined based on the gall formation in%. 100% means that no galls were found; 0% means that the number of galls on the treated plants corresponds to that of the untreated control.
  • Emulsifier 2.5 parts by weight of alkylaryl polyglycol ether
  • 1 part by weight of active ingredient is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration, taking into account the volume of soil into which it is drilled. It must be ensured that a concentration of 20 ppm emulsifier in the soil is not exceeded.
  • it is diluted with water. Pots filled with earth (loamy sand) are poured with the active ingredient solution.
  • An egg-larva suspension of the southern root knot (Meloidogyne incognita) is added, the surface of the earth is sprinkled with lettuce seeds and covered with quartz sand. The lettuce seeds germinate and the plants develop. The galls develop at the roots.
  • the nematicidal effect is determined based on the gall formation in%. 100% means that no galls were found; 0% means that the number of galls to the treated
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active ingredient 1 part by weight of active ingredient is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • This active ingredient preparation is mixed with earth (loamy sand).
  • cysts of the white potato nematode (Heterodera pallida, 250-275 larvae / cyst) are placed in 500 ml of this active substance and mixed. The mixture is filled into pots and planted with a one week old potato sprout (Solanum tuberosum).
EP20799727.1A 2019-11-07 2020-11-05 Substituierte sulfonylamide zur bekämpfung tierischer schädlinge Withdrawn EP4055010A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19207677 2019-11-07
PCT/EP2020/081068 WO2021089673A1 (de) 2019-11-07 2020-11-05 Substituierte sulfonylamide zur bekämpfung tierischer schädlinge

Publications (1)

Publication Number Publication Date
EP4055010A1 true EP4055010A1 (de) 2022-09-14

Family

ID=68502895

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20799727.1A Withdrawn EP4055010A1 (de) 2019-11-07 2020-11-05 Substituierte sulfonylamide zur bekämpfung tierischer schädlinge

Country Status (7)

Country Link
US (1) US20220380318A1 (zh)
EP (1) EP4055010A1 (zh)
JP (1) JP2023501978A (zh)
KR (1) KR20220098170A (zh)
CN (1) CN114641467A (zh)
BR (1) BR112022008883A2 (zh)
WO (1) WO2021089673A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023144711A1 (en) * 2022-01-27 2023-08-03 Pi Industries Ltd. 1,2,3-triazole carbonyl sulfonylamide compounds and use thereof

Family Cites Families (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US137395A (en) 1873-04-01 Improvement in nuts
US2009A (en) 1841-03-18 Improvement in machines for boring war-rockets
DE4020052A1 (de) 1990-06-23 1992-01-02 Bayer Ag Verfahren zur herstellung von 2-chlor-5-methyl-pyridin
US6395966B1 (en) 1990-08-09 2002-05-28 Dekalb Genetics Corp. Fertile transgenic maize plants containing a gene encoding the pat protein
ATE342968T1 (de) 1995-04-20 2006-11-15 Basf Ag Auf basis ihrer struktur entworfene herbizid resistente produkte
RO121280B1 (ro) 1995-11-06 2007-02-28 Wisconsin Alumini Research Foundation Toxine proteice insecticide din photorhabdus
IL128590A0 (en) 1996-08-29 2000-01-31 Dow Agro Sciences Llc Insecticidal protein toxins from photorhabdus
CA2888685C (en) 1997-04-03 2017-05-09 T. Michael Spencer Glyphosate resistant maize lines
CN1137137C (zh) 1997-05-05 2004-02-04 道农业科学公司 来自致病杆菌的杀昆虫蛋白毒素
US6333449B1 (en) 1998-11-03 2001-12-25 Plant Genetic Systems, N.V. Glufosinate tolerant rice
AU1336200A (en) 1998-11-03 2000-05-22 Aventis Cropscience N.V. Glufosinate tolerant rice
US6509516B1 (en) 1999-10-29 2003-01-21 Plant Genetic Systems N.V. Male-sterile brassica plants and methods for producing same
US6506963B1 (en) 1999-12-08 2003-01-14 Plant Genetic Systems, N.V. Hybrid winter oilseed rape and methods for producing same
ATE421973T1 (de) 1999-12-28 2009-02-15 Bayer Bioscience Nv Inzektizide proteinen von bacillus thuringiensis
US6395485B1 (en) 2000-01-11 2002-05-28 Aventis Cropscience N.V. Methods and kits for identifying elite event GAT-ZM1 in biological samples
BRPI0100752B1 (pt) 2000-06-22 2015-10-13 Monsanto Co moléculas e pares de moléculas de dna, processos para detectar molécula de dna e para criar um traço tolerante a glifosato em plantas de milho, bem como kit de detecção de dna
US6713259B2 (en) 2000-09-13 2004-03-30 Monsanto Technology Llc Corn event MON810 and compositions and methods for detection thereof
EP1322773A2 (en) 2000-09-29 2003-07-02 Monsanto Technology LLC Glyphosate tolerant wheat plant 33391 and compositions and methods for detection thereof
AU1536302A (en) 2000-10-25 2002-05-06 Monsanto Technology Llc Cotton event pv-ghgt07(1445) and compositions and methods for detection thereof
EP1417318B1 (en) 2000-10-30 2011-05-11 Monsanto Technology LLC Canola event pv-bngt04(rt73) and compositions and methods for detection thereof
AU2002236442A1 (en) 2000-11-20 2002-05-27 Monsanto Technology Llc Cotton event pv-ghbk04 (531) and compositions and methods for detection thereof
AU2002218413A1 (en) 2000-11-30 2002-06-11 Ses Europe N.V. Glyphosate resistant transgenic sugar beet characterised by a specific transgene insertion (t227-1), methods and primers for the detection of said insertion
EG26529A (en) 2001-06-11 2014-01-27 مونسانتو تكنولوجى ل ل سى Prefixes for detection of DNA molecule in cotton plant MON15985 which gives resistance to damage caused by insect of squamous lepidoptera
US6818807B2 (en) 2001-08-06 2004-11-16 Bayer Bioscience N.V. Herbicide tolerant cotton plants having event EE-GH1
HN2002000266A (es) 2001-09-24 2003-11-16 Bayer Corp Preparacion y uso de derivados de imidazol para el tratamiento de la obesidad.
AU2002361696A1 (en) 2001-12-17 2003-06-30 Syngenta Participations Ag Novel corn event
GB0213715D0 (en) 2002-06-14 2002-07-24 Syngenta Ltd Chemical compounds
US7705216B2 (en) 2002-07-29 2010-04-27 Monsanto Technology Llc Corn event PV-ZMIR13 (MON863) plants and compositions and methods for detection thereof
GB0225129D0 (en) 2002-10-29 2002-12-11 Syngenta Participations Ag Improvements in or relating to organic compounds
US7569747B2 (en) 2002-12-05 2009-08-04 Monsanto Technology Llc Bentgrass event ASR-368 and compositions and methods for detection thereof
ATE553203T1 (de) 2003-02-12 2012-04-15 Monsanto Technology Llc Baumwolle ereignis mon 88913 und verbindungen und methoden zur detektion davon
US7335816B2 (en) 2003-02-28 2008-02-26 Kws Saat Ag Glyphosate tolerant sugar beet
EP1597373B1 (de) 2003-02-20 2012-07-18 KWS Saat AG Glyphosat-tolerante Zuckerrübe
MXPA05011795A (es) 2003-05-02 2006-02-17 Dow Agrosciences Llc Evidencia de maiz tc1507 y metodos para deteccion del mismo.
TWI312272B (en) 2003-05-12 2009-07-21 Sumitomo Chemical Co Pyrimidine compound and pests controlling composition containing the same
WO2005054480A2 (en) 2003-12-01 2005-06-16 Syngenta Participations Ag Insect resistant cotton plants and methods of detecting the same
BRPI0416472A (pt) 2003-12-01 2007-03-06 Syngenta Participations Ag plantas de algodão resistentes a insetos e métodos de detecção das mesmas
US7157281B2 (en) 2003-12-11 2007-01-02 Monsanto Technology Llc High lysine maize compositions and event LY038 maize plants
WO2005059103A2 (en) 2003-12-15 2005-06-30 Monsanto Technology Llc Corn plant mon88017 and compositions and methods for detection thereof
GB0402106D0 (en) 2004-01-30 2004-03-03 Syngenta Participations Ag Improved fertility restoration for ogura cytoplasmic male sterile brassica and method
WO2005099705A2 (en) 2004-03-24 2005-10-27 Bayer Pharmaceuticals Corporation Preparation of imidazole derivatives and methods of use
EP2289311B1 (en) 2004-03-25 2016-02-10 Syngenta Participations AG. Corn event MIR604
EP1737964A1 (en) 2004-03-26 2007-01-03 Dow AgroSciences LLC Cry1f and cry1ac transgenic cotton lines and event-specific identification thereof
GB0414438D0 (en) 2004-06-28 2004-07-28 Syngenta Participations Ag Chemical compounds
AR050891A1 (es) 2004-09-29 2006-11-29 Du Pont Evento das-59122-7 de maiz y metodos para su deteccion
RU2394819C2 (ru) 2004-10-20 2010-07-20 Кумиай Кемикал Индастри Ко., Лтд. Инсектицид, акарицид и нематоцид, содержащие в качестве активного компонента производное 3-триазолилфенилсульфида
DE102005009458A1 (de) * 2005-03-02 2006-09-07 Bayer Cropscience Ag Pyrazolylcarboxanilide
EP1868426B1 (en) 2005-03-16 2018-02-21 Syngenta Participations AG Corn event 3272 and methods of detection thereof
ES2388548T3 (es) 2005-04-08 2012-10-16 Bayer Cropscience Nv Suceso de élite A2704-12 y métodos y estuches para identificar a dicho suceso en muestras biológicas
DK1871901T3 (da) 2005-04-11 2011-10-17 Bayer Bioscience Nv Elitebegivenhed A5547-127 samt fremgangsmåder og sæt til identifikation af en sådan begivenhed i biologiske prøver
GB0508472D0 (en) 2005-04-26 2005-06-01 Glaxo Group Ltd Compounds
AP2693A (en) 2005-05-27 2013-07-16 Monsanto Technology Llc Soybean event MON89788 and methods for detection thereof
AU2006254493B2 (en) 2005-06-02 2010-12-09 Syngenta Participations Ag CE43- 67B, insecticidal transgenic cotton expressing CRY1AB
WO2006128570A1 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag 1143-51b insecticidal cotton
WO2006128571A2 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag Ce44-69d , insecticidal transgenic cotton expressing cry1ab
WO2006128568A2 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag T342-142, insecticidal transgenic cotton expressing cry1ab
WO2006128572A1 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag Ce46-02a insecticidal cotton
WO2006128569A2 (en) 2005-06-02 2006-12-07 Syngenta Participations Ag 1143-14a, insecticidal transgenic cotton expressing cry1ab
EP1922409B1 (en) 2005-08-08 2017-11-08 Bayer CropScience NV Herbicide tolerant cotton plants and methods for identifying same
ATE544861T1 (de) 2005-08-24 2012-02-15 Pioneer Hi Bred Int Verfahren und zusammensetzungen für den ausdruck eines polynukleotid von interesse
EA014057B1 (ru) 2005-10-06 2010-08-30 Ниппон Сода Ко., Лтд. Поперечно связанные соединения циклических аминов и средства для борьбы с вредителями
TR200805941T2 (tr) 2006-02-10 2009-02-23 Maharashtra Hybrid Seeds Company Limited (Mahyco) Transgenik brinjal (solanum melongena) içeren EE-1 olgusu
EA022829B1 (ru) 2006-05-26 2016-03-31 Монсанто Текнолоджи, Ллс Трансгенное растение или его часть, обладающие устойчивостью к насекомым отряда lepidoptera
EP2468902B1 (en) 2006-06-03 2015-06-17 Syngenta Participations AG Corn event MIR162
US7951995B2 (en) 2006-06-28 2011-05-31 Pioneer Hi-Bred International, Inc. Soybean event 3560.4.3.5 and compositions and methods for the identification and detection thereof
US7928295B2 (en) 2006-08-24 2011-04-19 Bayer Bioscience N.V. Herbicide tolerant rice plants and methods for identifying same
US20080064032A1 (en) 2006-09-13 2008-03-13 Syngenta Participations Ag Polynucleotides and uses thereof
US7928296B2 (en) 2006-10-30 2011-04-19 Pioneer Hi-Bred International, Inc. Maize event DP-098140-6 and compositions and methods for the identification and/or detection thereof
BRPI0716347B8 (pt) 2006-10-31 2022-12-06 Du Pont Polinuleotídeo isolado, métodos para identificar se uma amostra biológica compreende um polinucleotídeo, para detectar a presença de um polinucleotídeo, para detectar a presença de uma sequência, para selecionar sementes e para produzir um vegetal tolerante ao inibidor de als, pares de primers de dna e construção de um dna de expressão
WO2008059368A2 (en) 2006-11-17 2008-05-22 Pfizer Products Inc. Fused 2-amino pyrimidine compounds and their use for the treatment of cancer
US7547690B2 (en) 2007-03-14 2009-06-16 Bristol-Myers Squibb Company Compounds for the treatment of Hepatitis C
WO2008114282A2 (en) 2007-03-19 2008-09-25 Maharashtra Hybrid Seeds Company Limited Transgenic rice (oryza sativa) comprising pe-7 event and method of detection thereof
BRPI0810786B1 (pt) 2007-04-05 2018-10-30 Bayer Bioscience Nv " método para produção de uma planta de algodão ou semente compreendendo um evento elite, dna genômico de algodão, kit par identificação do evento elite, par de iniciadores, sonda específica, molécula de ácido nucleico isolada, fragmento de ácido nucleico isolado, método para seleção e detecção de sementes com relação à presença do evento elite, método para determinação do estado de zigosidade de uma planta, material de planta ou semente compreendendo o evento elite".
AP3195A (en) 2007-06-11 2015-03-31 Bayer Cropscience Nv Insect resistant cotton plants and methods for identifying same
AU2008321220A1 (en) 2007-11-15 2009-05-22 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event MON87701 and methods for detection thereof
PL2209789T3 (pl) 2007-11-20 2012-04-30 Bristol Myers Squibb Co Skondensowane z cyklopropylem indolobenzoazepinowe inhibitory NS5B HCV
US8273535B2 (en) 2008-02-08 2012-09-25 Dow Agrosciences, Llc Methods for detection of corn event DAS-59132
MX2010008977A (es) 2008-02-14 2010-11-22 Pioneer Hi Brend International Inc Adn genomico vegetal flanqueador de evento spt y metodos para identificar el evento spt.
CA2712445C (en) 2008-02-15 2018-11-06 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87769 and methods for detection thereof
EP2092824A1 (de) 2008-02-25 2009-08-26 Bayer CropScience AG Heterocyclyl-Pyrimidine
HUE029544T2 (en) 2008-02-29 2017-03-28 Monsanto Technology Llc MON87460 maize plant event and preparations and methods for detecting it
BRPI0915154A2 (pt) 2008-06-11 2017-06-13 Dow Agrosciences Llc construtos para expressão de genes de tolerância a herbicida, plantas relacionadas e combinações de traços relacionados
JP5268461B2 (ja) 2008-07-14 2013-08-21 Meiji Seikaファルマ株式会社 Pf1364物質、その製造方法、生産菌株、及び、それを有効成分とする農園芸用殺虫剤
CN101337937B (zh) 2008-08-12 2010-12-22 国家农药创制工程技术研究中心 具有杀虫活性的n-苯基-5-取代氨基吡唑类化合物
CN101337940B (zh) 2008-08-12 2012-05-02 国家农药创制工程技术研究中心 具杀虫活性的含氮杂环二氯烯丙醚类化合物
WO2010024976A1 (en) 2008-08-29 2010-03-04 Monsanto Technology Llc Soybean plant and seed corresponding to transgenic event mon87754 and methods for detection thereof
CA2738474C (en) 2008-09-29 2020-05-12 Monsanto Technology Llc Soybean transgenic event mon87705 and methods for detection thereof
CN101715774A (zh) 2008-10-09 2010-06-02 浙江化工科技集团有限公司 一个具有杀虫活性化合物制备及用途
EP2184273A1 (de) 2008-11-05 2010-05-12 Bayer CropScience AG Halogen-substituierte Verbindungen als Pestizide
GB0820344D0 (en) 2008-11-06 2008-12-17 Syngenta Ltd Herbicidal compositions
CN102245028B (zh) 2008-12-12 2014-12-31 先正达参股股份有限公司 用作农药的螺杂环n-氧基哌啶
UA110320C2 (en) 2008-12-16 2015-12-25 Syngenta Participations Ag Corn event 5307
UA106061C2 (uk) 2008-12-19 2014-07-25 Сінгента Партісіпейшнс Аг Трансгенний варіант цукрового буряку gm rz13
CA2748973A1 (en) 2009-01-07 2010-07-15 Basf Agrochemical Products B.V. Soybean event 127 and methods related thereto
KR101818775B1 (ko) 2009-03-30 2018-01-15 몬산토 테크놀로지 엘엘씨 벼의 17053 트랜스제닉 사건 및 이의 이용 방법
US8618360B2 (en) 2009-03-30 2013-12-31 Monsanto Technology Llc Rice transgenic event 17314 and methods of use thereof
TWI482771B (zh) 2009-05-04 2015-05-01 Du Pont 磺醯胺殺線蟲劑
JP2013526832A (ja) 2009-08-19 2013-06-27 ダウ アグロサイエンシィズ エルエルシー Aad−1イベントdas−40278−9、関連するトランスジェニックトウモロコシ系統およびそのイベント特異的同定
ES2866126T3 (es) 2009-09-17 2021-10-19 Monsanto Technology Llc Evento transgénico de soja MON 87708 y procedimientos de uso del mismo
PL2503873T3 (pl) 2009-11-23 2017-09-29 Bayer Cropscience Nv Rośliny soi tolerujące herbicyd i sposoby ich identyfikowania
RU2764586C2 (ru) 2009-11-23 2022-01-18 Монсанто Текнолоджи Ллс Трансгенное событие mon 87427 маиса и относительная шкала развития
BR112012012511A2 (pt) 2009-11-24 2015-09-15 Dow Agrosciences Llc evento 416 do gene aad-12, relacionado a linhagens de soja transgênica , e sua identificação específica de evento
US8581046B2 (en) 2010-11-24 2013-11-12 Pioneer Hi-Bred International, Inc. Brassica gat event DP-073496-4 and compositions and methods for the identification and/or detection thereof
BR112012012494A2 (pt) 2009-11-24 2020-11-03 Dow Agrosciences Llc detecção de evento de soja aad-12 416
TWI487486B (zh) 2009-12-01 2015-06-11 Syngenta Participations Ag 以異唑啉衍生物為主之殺蟲化合物
US20110154525A1 (en) 2009-12-17 2011-06-23 Pioneer Hi-Bred International, Inc. Maize event DP-040416-8 and methods for detection thereof
PL2512226T3 (pl) 2009-12-17 2019-10-31 Pioneer Hi Bred Int Modyfikacja DP-004114-3 kukurydzy i sposoby jej wykrywania
US20110154526A1 (en) 2009-12-17 2011-06-23 Pioneer Hi-Bred International, Inc. Maize event DP-043A47-3 and methods for detection thereof
US20110154524A1 (en) 2009-12-17 2011-06-23 Pioneer Hi-Bred International, Inc. Maize event DP-032316-8 and methods for detection thereof
WO2011085575A1 (zh) 2010-01-15 2011-07-21 江苏省农药研究所股份有限公司 邻杂环甲酰苯胺类化合物及其合成方法和应用
KR20130080485A (ko) 2010-05-31 2013-07-12 신젠타 파티서페이션즈 아게 작물 강화 방법
KR101941297B1 (ko) 2010-06-04 2019-01-22 몬산토 테크놀로지 엘엘씨 유전자 이식 브라씨카의 사건 mon 88302 및 이것의 사용방법
BR112013005431A2 (pt) 2010-09-08 2016-06-07 Dow Agrosciences Llc "evento 1606 de aad-12 e linhagens de soja transgênica relacionadas".
CN101967139B (zh) 2010-09-14 2013-06-05 中化蓝天集团有限公司 一种含一氟甲氧基吡唑的邻甲酰氨基苯甲酰胺类化合物、其合成方法及应用
BR112013009001A2 (pt) 2010-10-12 2016-07-05 Monsanto Technology Llc planta e semente de soja correspondendo a evento transgênico mon87712 e métodos para deteção das mesmas
AU2011318398B2 (en) 2010-10-18 2015-09-10 E. I. Du Pont De Nemours And Company Nematocidal sulfonamides
WO2012071039A1 (en) 2010-11-24 2012-05-31 Pioner Hi-Bred International, Inc. Brassica gat event dp-061061-7 and compositions and methods for the identification and/or detection thereof
US9540656B2 (en) 2010-12-03 2017-01-10 Dow Agrosciences Llc Stacked herbicide tolerance event 8291.45.36.2, related transgenic soybean lines, and detection thereof
EP3382028A1 (en) 2010-12-03 2018-10-03 Dow AgroSciences LLC Stacked herbicide tolerance event 8264.44.06.1, related transgenic soybean lines, and detection thereof
TWI667347B (zh) 2010-12-15 2019-08-01 瑞士商先正達合夥公司 大豆品種syht0h2及偵測其之組合物及方法
TWI515187B (zh) 2010-12-16 2016-01-01 健生科學愛爾蘭無限公司 作為呼吸道融合病毒抗病毒劑之吲哚類
MX350121B (es) * 2011-03-18 2017-08-28 Bayer Ip Gmbh Derivados de n-(3-carbamoilfenil)-1h-pirazol-5-carboxamida y el uso de los mismos para el control de plagas de animales.
CN103597079B (zh) 2011-03-30 2017-04-05 孟山都技术公司 棉花转基因事件mon88701及其使用方法
AU2012275393B2 (en) 2011-06-30 2017-06-08 Forage Genetics International, Llc Alfalfa plant and seed corresponding to transgenic event KK 179-2 and methods for detection thereof
TW201317353A (zh) 2011-07-13 2013-05-01 Dow Agrosciences Llc 具疊加除草劑耐受性之品件8264.42.32.1,相關基因轉殖大豆品系以及測定該品件的方法
WO2013012643A1 (en) 2011-07-15 2013-01-24 Syngenta Participations Ag Polynucleotides encoding trehalose-6-phosphate phosphatase and methods of use thereof
WO2013050317A1 (en) 2011-10-03 2013-04-11 Syngenta Limited Polymorphs of an isoxazoline derivative
US20140243375A1 (en) 2011-10-03 2014-08-28 Syngenta Participations Ag Isoxazoline derivatives as insecticidal compounds
TWI577286B (zh) 2011-10-13 2017-04-11 杜邦股份有限公司 殺線蟲磺醯胺之固體形態
CN102391261A (zh) 2011-10-14 2012-03-28 上海交通大学 一种n-取代噁二嗪类化合物及其制备方法和应用
TWI566701B (zh) 2012-02-01 2017-01-21 日本農藥股份有限公司 芳烷氧基嘧啶衍生物及包含該衍生物作為有效成分的農園藝用殺蟲劑及其使用方法
MX2014011829A (es) 2012-03-30 2015-03-19 Basf Se Compuestos de piridinilideno n-sustituidos y derivados para combatir plagas de animales.
EP2647626A1 (en) 2012-04-03 2013-10-09 Syngenta Participations AG. 1-Aza-spiro[4.5]dec-3-ene and 1,8-diaza-spiro[4.5]dec-3-ene derivatives as pesticides
US9282739B2 (en) 2012-04-27 2016-03-15 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
US20130291227A1 (en) 2012-04-27 2013-10-31 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
JO3215B1 (ar) 2012-08-09 2018-03-08 Phenex Pharmaceuticals Ag حلقات غير متجانسة بها 5 ذرات تحتوي على النيتروجين بها استبدال بكربوكساميد أو سلفوناميد كمعدلات لمستقبل نووي غير محمي RORy
UA117359C2 (uk) 2012-11-14 2018-07-25 Тейдзін Фарма Лімітед Похідне піридину
TWI605045B (zh) 2013-01-14 2017-11-11 杜邦股份有限公司 殺線蟲磺醯胺之製備
CN103109816B (zh) 2013-01-25 2014-09-10 青岛科技大学 硫代苯甲酰胺类化合物及其应用
CN103232431B (zh) 2013-01-25 2014-11-05 青岛科技大学 一种二卤代吡唑酰胺类化合物及其应用
US20140275503A1 (en) 2013-03-13 2014-09-18 Dow Agrosciences Llc Process for the preparation of certain triaryl rhamnose carbamates
WO2014146246A1 (en) 2013-03-19 2014-09-25 Merck Sharp & Dohme Corp. Cycloalkyl nitrile pyrazolo pyridones as janus kinase inhibitors
CN105228448B (zh) 2013-05-23 2019-03-01 先正达参股股份有限公司 桶混配制品
CN103265527B (zh) 2013-06-07 2014-08-13 江苏省农用激素工程技术研究中心有限公司 邻氨基苯甲酰胺化合物及其制备方法和应用
EP3021673A1 (en) 2013-07-17 2016-05-25 Bayer CropScience Aktiengesellschaft Heterocyclic sulfonylamino(thio)carbonyl-derivatives with nematicidal properties
BR112016000965B1 (pt) 2013-07-23 2020-11-24 Bayer Cropscience Aktiengesellschaft Compostos imidazotia(dia)zol sulfonamidas, composiçao, usos dos mesmos, metodos para o controle de um nematodeo parasitico e para a proteqao de uma semente e semente
CN103524422B (zh) 2013-10-11 2015-05-27 中国农业科学院植物保护研究所 苯并咪唑衍生物及其制备方法和用途
CN105636440A (zh) 2013-10-17 2016-06-01 美国陶氏益农公司 制备杀虫化合物的方法
EP3057430A4 (en) 2013-10-17 2017-09-13 Dow AgroSciences LLC Processes for the preparation of pesticidal compounds
AU2015257746B2 (en) 2014-05-08 2018-11-22 Bayer Cropscience Aktiengesellschaft Pyrazolopyridine sulfonamides as nematicides
MX2018011214A (es) * 2016-03-15 2019-03-28 Bayer Cropscience Ag Sulfonamidas sustituidas para controlar plagas animales.
TW201822637A (zh) 2016-11-07 2018-07-01 德商拜耳廠股份有限公司 用於控制動物害蟲的經取代磺醯胺類

Also Published As

Publication number Publication date
US20220380318A1 (en) 2022-12-01
JP2023501978A (ja) 2023-01-20
CN114641467A (zh) 2022-06-17
BR112022008883A2 (pt) 2022-08-23
WO2021089673A1 (de) 2021-05-14
KR20220098170A (ko) 2022-07-11

Similar Documents

Publication Publication Date Title
EP3515921B1 (de) Pyrazolo[1,5-a]pyridin- derivative und ihre verwendung als schädlingsbekämpfungsmittel
EP3568392B1 (de) Imidazol-derivate als schädlingsbekämpfungsmittel
EP3429355B1 (de) Substituierte sulfonylamide zur bekämpfung tierischer schädlinge
EP3402797B1 (de) Heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2018095953A1 (de) 2-[3-(alkylsulfonyl)-2h-indazol-2-yl]-3h-imidazo[4,5-b]pyridin-derivate und ähnliche verbindungen als schädlingsbekämpfungsmittel
EP3577113A1 (de) Aryl- oder heteroaryl-substituierte imidazopyridinderivate und deren anwendung als schädlingsbekämpfungsmittel
WO2017125340A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2020173861A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2018015289A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2017144341A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2017174414A1 (de) Naphthalin-derivate als schädlingsbekämpfungsmittel
EP3619212B1 (de) 2-(het)aryl-substituierte kondensierte heterocyclen-derivate als schädlingsbekämpfungsmittel
EP3241830A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
EP3305786A2 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2020002082A1 (de) Heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2021213978A1 (de) 2-(het)aryl-substituierte kondensierte heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2018202494A1 (de) 2-(het)aryl-substituierte kondensierte heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2019201921A1 (de) Heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2022033991A1 (de) 5-amino substituierte triazole als schädlingsbekämpfungsmittel
EP4055010A1 (de) Substituierte sulfonylamide zur bekämpfung tierischer schädlinge
EP3369320A1 (de) Wirkstoff zur bekämpfung von wanzen
EP4003966A1 (de) 5-amino substituierte pyrazole und triazole als schädlingsbekämpfungsmittel
EP4337661A1 (de) 2-(het)aryl-substituierte kondensierte heterocyclen-derivate als schädlingsbekämpfungsmittel
EP4175961A1 (de) Heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2020229398A1 (de) (1-alkenyl)-substituierte pyrazole und triazole als schädlingsbekämpfungsmittel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230103