WO2017174414A1 - Naphthalin-derivate als schädlingsbekämpfungsmittel - Google Patents

Naphthalin-derivate als schädlingsbekämpfungsmittel Download PDF

Info

Publication number
WO2017174414A1
WO2017174414A1 PCT/EP2017/057397 EP2017057397W WO2017174414A1 WO 2017174414 A1 WO2017174414 A1 WO 2017174414A1 EP 2017057397 W EP2017057397 W EP 2017057397W WO 2017174414 A1 WO2017174414 A1 WO 2017174414A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
spp
cycloalkyl
alkoxy
formula
Prior art date
Application number
PCT/EP2017/057397
Other languages
English (en)
French (fr)
Inventor
Laura HOFFMEISTER
Rüdiger Fischer
David WILCKE
Nina Kausch-Busies
Dominik HAGER
Matthieu WILLOT
Kerstin Ilg
Marc Mosrin
Original Assignee
Bayer Cropscience Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Aktiengesellschaft filed Critical Bayer Cropscience Aktiengesellschaft
Publication of WO2017174414A1 publication Critical patent/WO2017174414A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the present invention relates to novel naphthalene derivatives of the formula (I) or the formula ( ⁇ ), their use as acaricides and / or insecticides for controlling animal pests, especially of arthropods and in particular of insects and arachnids and methods and intermediates for their preparation ,
  • naphthalene derivatives have now been found which have advantages over the already known compounds, e.g. are better biological or ecological properties, broader application methods, better insecticides, acaricidal activity, as well as a good tolerance to crops exemplified.
  • the naphthalene derivatives can be used in combination with other agents for improving the effectiveness in particular against difficult-to-control insects.
  • the present invention therefore relates to novel compounds of the formulas (I) or (II)
  • R 1 is in each case optionally monosubstituted or polysubstituted, identically or differently, by halogen, cyano, nitro, hydroxyl, amino, carboxy, carbamoyl, (C 1 -C 6 ) -alkyl, (C 3 -C 8) -cycloalkyl, (C 1 -C 6 ) -alkoxy , (Ci-C 6 ) haloalkyl, (Ci-C 6 ) haloalkoxy, (Ci-C 6 ) alkylthio, (Ci-C 6 ) alkylsulfinyl, (Ci-C 6 ) alkylsulfonyl, (Ci-C 6 ) alkylsulfimino , (Ci-C 6) Alkylsulfimino- (Ci-C 6) alkyl, (Ci- C6) Alkylsulfimino- (Ci-C 6) alkyl
  • R 2 , R 3 independently of one another represent hydrogen, cyano, halogen, nitro, acetyl, hydroxy, amino, SCN, tri (C 1 -C 6 ) alkylsilyl, (C 3 -C 8 ) cycloalkyl, (C 3 -C 8 ) cycloalkyl - (C3-C8) cycloalkyl, (Ci- C 6) alkyl (C 3 -C 8) cycloalkyl, halo (C 3 -C 8) cycloalkyl, (Ci-C 6) alkyl, (Ci-C 6) haloalkyl, (Ci-Ce) cyanoalkyl, (Ci-Ce) hydroxyalkyl, hydroxycarbonyl (Ci-Ce) alkoxy, (Ci- C 6) alkoxycarbonyl (Ci-C6) alkyl, (Ci-C 6) alkoxy (Ci-C 6) alk
  • C ⁇ ) alkylcarbonylamino or where the substituents can be selected independently of one another from phenyl or a 5- or 6-membered heteroaromatic ring, where phenyl or the ring is optionally mono- or polysubstituted identically or differently by C 1 -C 6 -alkyl, C 2 - C6-alkenyl, C 2 -C 6 alkynyl, C 3 -C 6 cycloalkyl, Ci-C 6 haloalkyl, C 2 -C 6 haloalkenyl, C 2 -C 6 haloalkynyl, C 3 -C 6 halocycloalkyl, Halogen, CN, NO 2 , Ci-C4-alkoxy, Ci-C4-haloalkoxy may be substituted, n is 0, 1 or 2, except
  • the compounds of the formulas (I) or (II) have very good activity as pesticides, preferably as insecticides and / or acaricides, moreover, as a rule, are very well tolerated by plants, in particular with respect to crop plants.
  • Embodiment 2 R 1 is preferably (Ci-C 4) alkyl, (Ci-C 4) hydroxyalkyl, (Ci-C 4) haloalkyl, (CI-C 4) cyanoalkyl, (Ci-C 4) alkoxy (Ci-C 4 ) alkyl, (Ci-C 4) haloalkoxy (Ci-C 4) alkyl, (C 2 - C 4) alkenyl, (C 2 -C 4) alkenyloxy (Ci-C 4) alkyl, (C 2 -C 4) Halogenalkenyloxy- (Ci-C 4) alkyl, (C 2 - C 4) haloalkenyl, (C 2 -C 4) cyanoalkenyl, (C 2 -C 4) alkynyl, (C 2 -C 4) alkynyloxy (C -C 4) alkyl, (C 2 - C 4) Halogenalkin
  • C 4 alkylsulfonylamino, or in each case optionally mono- or disubstituted by identical or different aryl, hetaryl or heterocyclyl (Ci-C) alkyl, (Ci-C) alkoxy, (C 2 -C) alkenyl, (C 2 -C 4 ) alkynyl, (C3-C6) cycloalkyl, wherein aryl, hetaryl or heterocyclyl in each case optionally mono- or disubstituted by identical or different halogen, cyano, carbamoyl, aminosulfonyl, (Ci-C 4 ) alkyl, (C 3 -C 4 ) cycloalkyl , (Ci-C 4) alkoxy, (Ci-C 4) haloalkyl, (CI-C 4) haloalkoxy, (Ci-C 4) alkylthio, (Ci-C 4) alkyl
  • R 2 , R 3 independently of one another preferably represent hydrogen, cyano, halogen, nitro, acetyl, hydroxyl, amino, SCN, tri (C 1 -C 4 ) -alkylsilyl, (C 3 -C 6 ) -cycloalkyl, (C 3 -C 6) cycloalkyl (C 3 - C 6) cycloalkyl, (Ci-C 4) alkyl (C 3 -C 6) cycloalkyl, halo (C 3 -C 6) cycloalkyl, (Ci-C 4) alkyl, (C - C 4) haloalkyl, (Ci-C 4) cyanoalkyl, (Ci-C 4) hydroxyalkyl, (Ci-C 4) alkoxy (Ci-C 4) alkyl, (C 2 - C 4) alkenyl, (C 2 -C 4) haloalkenyl, (C 2
  • R 1 particularly preferably represents (Ci-C4) alkyl, (Ci-C4) hydroxyalkyl, (Ci-C4) haloalkyl, (C 2 - C 4) alkenyl, (C 2 -C 4) haloalkenyl, (C 2 -C 4) alkynyl, (C 2 -C 4) -haloalkynyl, (C 3 -C 6) cycloalkyl, (Ci-C 4) alkylthio (Ci-C 4) alkyl, (Ci-C 4) alkylsulfinyl (Ci-C 4) alkyl or (Ci-C 4) alkylsulfonyl (C 1 -C 4) alkyl,
  • Q particularly preferably represents a heteroaromatic 9-membered or 12-membered fused bicyclic or tricyclic ring system from the series Q1 to Q20,
  • R 4 particularly preferably represents (Ci-C alkyl, (Ci-C 4) haloalkyl, (Ci-C 4) cyanoalkyl, (Ci C 4) hydroxyalkyl, (Ci-C 4) alkoxy (Ci-C 4) alkyl, (Ci-C 4) haloalkoxy (Ci-C 4) alkyl, (C 2 - C 4) alkenyl, (C 2 -C 4) alkenyloxy (Ci-C 4) alkyl, (C 2 -C 4 ) Halogenalkenyloxy- (Ci-C 4) alkyl, (C 2 - C 4) haloalkenyl, (C 2 -C 4) cyanoalkenyl, (C 2 -C 4) alkynyl, (C 2 -C 4) alkynyloxy (Ci- C 4) alkyl, (C 2 - C 4) -haloalkynyl,
  • R 7 particularly preferably represents hydrogen, cyano, fluorine, chlorine, bromine, (Ci-C 4) alkyl, (Ci C 4) haloalkyl, (Ci-C 4) alkoxy or (Ci-C 4) haloalkoxy,
  • R 10 particularly preferably represents hydrogen, cyano, fluorine, chlorine, bromine, (Ci-C 4) alkyl, (Ci C 4) haloalkyl, (Ci-C 4) alkoxy or (Ci-C 4) haloalkoxy,
  • R 11 particularly preferably represents hydrogen, cyano, fluorine, chlorine, bromine, methyl, trifluoromethyl, methoxy or trifluoromethoxy, where at least one of the substituents R 10 or R 11 must be hydrogen, n is particularly preferably 0, 1 or 2.
  • Embodiment 4 is very particularly preferably (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -haloalkyl or (C 3 -C 6 ) -cycloalkyl, R 2, R 3 independently of one another very particularly preferably represents hydrogen, cyano, halogen, (Ci-C 4) alkyl, (Ci-C 4) haloalkyl, (Ci-C 4) haloalkoxy, (Ci-C 4) alkylthio, (CI-C 4) alkylsulfinyl, (Ci-C 4) alkylsulfonyl, (Ci-C4) haloalkylthio, (Ci-C4) haloalkylsulfinyl, (Ci-C4) haloalkylsulfonyl, or NHCO- (Ci-C 4) alkyl ( (C 1 -C 4 ) alkylcarbonylamino),
  • R 4 very particularly preferably represents (Ci-C 4) alkyl or (Ci-C 4) Alkyoxy- (Ci-C 4) alkyl
  • R 5 very particularly preferably represents hydrogen, cyano, halogen, (Ci-C 4) alkyl, (Ci C 4) haloalkyl, (C 3 -C 6) cycloalkyl, (C3-C6) cycloalkyl (C3-C6) cycloalkyl, (Ci-C 4) alkyl (C 3 - C6) cycloalkyl , (Ci-C) alkoxy, (Ci-C) haloalkoxy, (Ci-C) alkoxyimino, (Ci-C) alkylhio, (Ci-C 4 ) haloalkylthio, (Ci-C 4 ) alkylsulfinyl, (Ci-C 4 ) Haloalkylsulfinyl, ( C 4
  • R 6 very particularly preferably represents hydrogen
  • R 7 very particularly preferably represents hydrogen, cyano, fluorine, chlorine, bromine, methyl or trifluoromethyl
  • R 10 very particularly preferably represents hydrogen, cyano, fluorine, chlorine, bromine, methyl or trifluoromethyl
  • R 11 very particularly preferably represents hydrogen, cyano, fluorine, chlorine, bromine, methyl or trifluoromethyl, where at least one of the substituents R 10 or R 11 must be hydrogen, n is very particularly preferably 0, 1 or 2.
  • R 1 is methyl, ethyl, n-propyl, i-propyl, cyclopropyl, n-butyl, i-butyl, tert-butyl, cyclo-butyl, fluoromethyl, difluoromethyl, trifluoromethyl, fluoroethyl, difluoroethyl, trifluoroethyl, tetrafluoroethyl or pentafluoroethyl,
  • R 2 , R 3 independently of one another are hydrogen, fluorine, chlorine, bromine, cyano, methyl, ethyl, methoxy, trifluoromethyl, trifluoromethoxy, trifluoromethylthio, trifluoromethylsulfinyl or trifluoroalkylsulfonyl, stands for a heteroaromatic 9-membered bicyclic fused ring system from the series Q2, Q3, Q10, Q14 or Q16,
  • Q14 Q1 R 4 is methyl, ethyl, i-propyl, methoxymethyl or methoxyethyl,
  • R 5 is fluoro, chloro, bromo, fluoromethyl, difluoromethyl, trifluoromethyl, fluoroethyl (CH 2 CFH 2 , CHFCH 3 ), difluoroethyl (CF 2 CH 3 , CH 2 CHF 2 , CHFCFH 2 ), trifluoroethyl, (CH 2 CF 3 , CHFCHF 2 , CF 2 CFH 2 ), tetrafluoroethyl (CHFCF 3 , CF 2 CHF 2 ), pentafluoroethyl, trifluoromethoxy, difluorochloromethoxy, dichlorofluoromethoxy, trifluoromethylthio,
  • R 6 is hydrogen
  • R 7 stands for hydrogen, fluorine, chlorine or trifluoromethyl
  • R 10 stands for hydrogen, fluorine, chlorine or trifluoromethyl
  • R 11 stands for hydrogen, fluorine, chlorine or trifluoromethyl
  • Q is in particular a heteroaromatic 9-membered fused bicyclic ring system from the series Q3, R 4 is in particular methyl,
  • R 5 is especially trifluoromethyl
  • R 6 is in particular hydrogen
  • R 7 in particular stands for hydrogen
  • n stands for 0 or 2 in particular.
  • R 2 is especially hydrogen
  • R 3 is especially hydrogen
  • Q is in particular a Q3 heteroaromatic 9-membered fused bicyclic ring system
  • R 4 is especially methyl
  • R 5 is especially trifluoromethyl
  • R 6 is in particular hydrogen
  • R 10 is especially hydrogen
  • R 11 is in particular hydrogen, n in particular stands for 2.
  • the invention relates to compounds of the formula ( ⁇ ),
  • R 1 , R 2 , R 3 , R 10 , R 11 , Q and n in the embodiment (1) or configuration (2) or configuration (3) or design (4) or configuration (5) or configuration (7 ) have given meanings.
  • the invention relates to compounds of the formula (I), wherein
  • R 2 is chlorine
  • R 3 is hydrogen
  • R 7 is hydrogen, preferably giving the following structure: and Q, R 1 and n have the meanings given in embodiment (1) or design (2) or design (3) or design (4) or design (5) or design (6).
  • the invention relates to compounds of formula (I) wherein R 1 , R 2 , R 3 , R 7 , Q and n have the meanings given in embodiment (1) or embodiment (2).
  • the invention relates to compounds of the formula (I) in which R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , Q and n are those of the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of the formula ( ⁇ ) in which R 1 , R 2 , R 3 , R 10 , R 11 , Q and n have the meanings given in embodiment (1) or (2).
  • the invention relates to compounds of formula ( ⁇ ), wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 10 , R 11 , Q and n in the embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of formula (I) wherein Q is Ql and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) have given meanings.
  • the invention relates to compounds of formula (I) wherein Q is Q 2 and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) have given meanings.
  • the invention relates to compounds of formula (I) wherein Q is Q3 and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) have given meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q4 and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q5 and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or Embodiment (5) or embodiment (6) have given meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q 6 and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q7 and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q8 and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q9 and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q10 and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of the formula (I) in which Q is QU and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q12 and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q13 and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q14 and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q15 and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of formula (I) wherein Q is Q16 and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) have given meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q17 and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q18 and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q19 and R 1 , R 2 , R 3 , R 4 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of the formula (I) in which Q is Q20 and R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n are those in the embodiment (3) or (4) or embodiment (5) or embodiment (6) have specified meanings.
  • the invention relates to compounds of formula ( ⁇ ), wherein Q is Ql and R 1, R 2, R 3, R 4, R 5, R 6, R 10, R 11 and n (in Embodiment 3 ) or design (4) or design (5) or design (6) or design (7) have given meanings.
  • the invention relates to compounds of the formula ( ⁇ ) in which Q is Q 2 and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 10 , R 11 and n which are in the configuration (3 ) or design (4) or design (5) or design (6) or design (7) have given meanings.
  • the invention relates to compounds of the formula ( ⁇ ) in which Q is Q 3 and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 10 , R 11 and n which are in the configuration (3 ) or design (4) or design (5) or design (6) or design (7) have given meanings.
  • the invention relates to compounds of the formula ( ⁇ ) wherein Q is Q4 and R 1 , R 2 , R 3 , R 5 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of the formula ( ⁇ ) wherein Q is Q5 and R 1 , R 2 , R 3 , R 5 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of formula ( ⁇ ) wherein Q is Q6 and R 1 , R 2 , R 3 , R 5 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or Embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of formula ( ⁇ ) wherein Q is Q7 and R 1 , R 2 , R 3 , R 5 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of the formula ( ⁇ ) wherein Q is Q8 and R 1 , R 2 , R 3 , R 5 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of formula ( ⁇ ) wherein Q is Q9 and R 1 , R 2 , R 3 , R 5 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of the formula ( ⁇ ) wherein Q is Q10 and R 1 , R 2 , R 3 , R 5 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of formula ( ⁇ ) wherein Q is QU and R 1 , R 2 , R 3 , R 5 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of the formula ( ⁇ ) wherein Q is Q12 and R 1 , R 2 , R 3 , R 5 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of the formula ( ⁇ ) wherein Q is Q13 and R 1 , R 2 , R 3 , R 5 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of the formula ( ⁇ ) wherein Q is Q14 and R 1 , R 2 , R 3 , R 5 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of formula ( ⁇ ) wherein Q is Q15 and R 1 , R 2 , R 3 , R 5 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of the formula ( ⁇ ) in which Q is Q16 and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 10 , R 11 and n are in the configuration (3 ) or design (4) or design (5) or design (6) or design (7) have given meanings.
  • the invention relates to compounds of formula ( ⁇ ) wherein Q is Q17 and R 1 , R 2 , R 3 , R 5 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of the formula ( ⁇ ) wherein Q is Q18 and R 1 , R 2 , R 3 , R 5 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of the formula ( ⁇ ) wherein Q is Q19 and R 1 , R 2 , R 3 , R 4 , R 6 , R 10 , R 11 and n are those in embodiment (3) or embodiment (4) or embodiment (5) or embodiment (6) or embodiment (7) have given meanings.
  • the invention relates to compounds of the formula ( ⁇ ) in which Q is Q20 and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 10 , R 11 and n which are in the configuration (3 ) or design (4) or design (5) or design (6) or design (7) have given meanings.
  • Halogen selected from the group fluorine, chlorine, bromine and iodine, preferably again from the series fluorine, chlorine and bromine,
  • Halogen selected from the group fluorine, chlorine, bromine and iodine, preferably again from the series fluorine, chlorine and bromine,
  • alkyl either alone or in combination with other terms, such as, for example, haloalkyl, in the context of the present invention means a radical of a saturated, aliphatic hydrocarbon group having 1 to 12 carbon atoms, which may be branched or unbranched Examples of C 1 -C 2 -alkyl radicals are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, neopentyl, tert-pentyl, 1-methylbutyl, 2-methylbutyl, 1-ethylpropyl, 1,2-dimethylpropyl, hexyl n -heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl and n
  • alkenyl either alone or in combination with other terms, according to the invention a linear or branched C 2 -C 2 -alkenyl radical having at least one double bond, for example vinyl, allyl , 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,3-butadienyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1,3-pentadienyl, 1-hexenyl , 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl and 1, 4-hexadienyl, preferred are C 2 -C 6 -alkenyl radicals and particularly preferred are C 2 -C 4 -alkenyl radicals.
  • alkynyl either alone or in combination with other terms, according to the invention a linear or branched C 2 -C 2 alkynyl having at least one triple bond, for example ethynyl, 1 Preferred are C 3 -C 6 -alkynyl radicals and particularly preferred are C 3 -C 4 -alkynyl radicals
  • the alkynyl radical may also have at least one double bond.
  • cycloalkyl either alone or in combination with other terms, according to the invention a C3-C8-cycloalkyl understood, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl, understood Preferred of these are C 3 -C 6 -cycloalkyl radicals.
  • alkoxy either alone or in combination with other terms, such as, for example, haloalkoxy, is understood herein to mean a radical O-alkyl, the term “alkyl” having the meaning given above.
  • Halogen is fluorine, chlorine, bromine or iodine, in particular fluorine, chlorine or bromine.
  • optionally substituted radicals may be monosubstituted or polysubstituted, with multiple substituents the substituents being the same or different.
  • Very particularly preferably used according to the invention are compounds of the formulas (I) or (II) which contain a combination of the meanings given above as being very particularly preferred.
  • the compounds of the formulas (I) or (II) can be present as geometrical and / or as optically active isomers or corresponding isomer mixtures in different compositions.
  • These stereoisomers are, for example, enantiomers, diastereomers, atropisomers or geometric isomers.
  • the invention thus comprises pure stereoisomers as well as any mixtures of these isomers.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n have the meanings described above.
  • a 2 and A 3 are CH or N.
  • a 4 is O, S or NR 4 .
  • Step a) The compounds of the formula (IV) can be prepared in analogy to the process described in US Pat. No. 5,573,335 by reacting compounds of the formula (II) with carboxylic acids of the formula (III) in the presence of a condensing agent.
  • Carboxylic acids of the formula (III) are either commercially available or can be prepared by known methods, for example analogously to the methods I and J.
  • reaction of the compounds of the formula (II) with carboxylic acids of the formula (III) can be carried out in bulk or in a solvent, preferably the reaction is carried out in a solvent which is selected from conventional solvents which are inert under the prevailing reaction conditions.
  • ethers such as diisopropyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane or chlorobenzene; Nitriles, such as acetonitrile or propionitrile; aromatic hydrocarbons such as toluene or xylene; aprotic polar solvents such as N, N-dimethylformamide or N-methylpyrrolidone or nitrogen-containing compounds such as pyridine.
  • halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane or chlorobenzene
  • Nitriles such as acetonitrile or propionitrile
  • aromatic hydrocarbons such as toluene or xylene
  • aprotic polar solvents such as N, N-
  • Suitable condensing agents are, for example, carbodiimides such as 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDCI) or 1,3-dicyclohexylcarbodiimide.
  • EDCI 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride
  • 1,3-dicyclohexylcarbodiimide 1,3-dicyclohexylcarbodiimide.
  • the compounds of formula (I) can be prepared by condensation of the compounds of formula (IV) e.g. analogously to the process described in US2003 / 69257, WO2006 / 65703, WO2009 / 131237, WO2010 / 125985, WO2011 / 043404, WO2011 / 040629, WO2012 / 86848, WO2015 / 000715 or WO2015 / 121136.
  • the reaction to give compounds of the formula (I) can be carried out in bulk or in a solvent, preferably the reaction is carried out in a solvent which is selected from conventional solvents which are inert under the prevailing reaction conditions.
  • ethers for example diisopropyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, tert-butylmethyl ether; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane or chlorobenzene; Nitriles, such as acetonitrile or propionitrile; aromatic hydrocarbons such as toluene or xylene; aprotic polar solvents such as N, N-dimethylformamide or N-methylpyrrolidone or nitrogen-containing compounds such as pyridine.
  • the reaction can be carried out in the presence of a condensing agent, an acid, a base or a chlorinating agent.
  • suitable condensing agents are carbodiimides such as 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDCI) or 1,3-dicyclohexylcarbodiimide;
  • Anhydrides such as acetic anhydride, trifluoroacetic anhydride; a mixture of triphenylphosphine, a base and carbon tetrachloride or a mixture of triphenylphosphine and an azodiester such as diethylazodicarboxylic acid.
  • acids examples include sulfonic acids such as para-toluenesulfonic acid; Carboxylic acids such as acetic acid or polyphosphoric acids.
  • suitable bases are nitrogen-containing heterocycles such as pyridine, picoline, 2,6-lutidine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU); tertiary amines such as triethylamine and N, N-diisopropylethylamine; inorganic bases such as potassium phosphate, potassium carbonate and sodium hydride.
  • nitrogen-containing heterocycles such as pyridine, picoline, 2,6-lutidine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU); tertiary amines such as triethylamine and N, N-diisopropylethylamine; inorganic bases such as potassium phosphate, potassium carbonate and sodium hydride.
  • DBU 1,8-diazabicyclo [5.4.0] -7-undecene
  • tertiary amines such as triethylamine and N, N
  • An example of a suitable chlorinating agent is phosphorus oxychloride.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n have the meanings described above.
  • a 2 and A 3 are CH or N.
  • a 4 is O, S or NR 4 .
  • compounds of formula (IV) can be prepared by the reaction of compounds of formula (II) with carboxylic acid chlorides of the formula (V) in the presence of a condensing agent.
  • Carboxylic acid chlorides of the formula (V) are either commercially available or can be prepared by known methods, for example analogously to the processes described in US2010 / 234603 or US2010 / 234604.
  • the reaction of the compounds of the formula (II) with carboxylic acid chlorides of the formula (V) can be carried out in bulk or in a solvent, preferably the reaction is carried out in a solvent which is selected from conventional solvents which are inert under the prevailing reaction conditions.
  • ethers such as diisopropyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane or chlorobenzene; aliphatic hydrocarbons such as hexane, heptane or octane; aromatic hydrocarbons such as toluene or xylene; Nitriles, such as acetonitrile or propionitrile; aprotic polar solvents such as N, N-dimethylformamide or N-methylpyrrolidone or nitrogen-containing compounds such as pyridine.
  • halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane or chlorobenzene
  • aliphatic hydrocarbons such as hexane, heptane or
  • the reaction is preferably carried out in the presence of a base.
  • Suitable bases are inorganic bases which are commonly used in such reactions.
  • bases are used which are selected by way of example from the group consisting of acetates, phosphates, carbonates and bicarbonates of alkali or alkaline earth metals. Particularly preferred are sodium acetate, sodium phosphate, potassium phosphate, cesium carbonate, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate.
  • Suitable bases are tertiary amines such as triethylamine and ⁇ , ⁇ -diisopropylethylamine and nitrogen-containing heterocycles such as pyridine, picoline, 2,6-lutidine, 4-dimethylaminopyridine and l, 8-diazabicyclo [5.4.0] -7-undecene (DBU).
  • the reaction can be carried out in vacuo, under normal pressure or under overpressure and at temperatures of from -20.degree. C. to 100.degree. C., preferably the reaction is carried out under atmospheric pressure and at temperatures from 0.degree. C. to 80.degree.
  • radicals R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n have the meanings described above.
  • a 2 and A 3 are CH or N.
  • a 4 is O, S or NR 4 .
  • compounds of formula (I) can be prepared in a one-step process from the intermediates of formulas (II) and (III) in the presence of a condensing agent.
  • the reaction to give compounds of the formula (I) can be carried out in bulk or in a solvent, preferably the reaction is carried out in a solvent which is selected from conventional solvents which are inert under the prevailing reaction conditions.
  • ethers such as diisopropyl ether, dioxane, tetrahydrofuran, 1, 2-dimethoxyethane, tert-butyl methyl ether; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane or chlorobenzene; Alcohols such as methanol, ethanol or isopropanol; Nitriles, such as acetonitrile or propionitrile; aromatic hydrocarbons such as toluene or xylene; aprotic polar solvents such as N, N-dimethylformamide or N-methylpyrrolidone or nitrogen-containing compounds such as pyridine.
  • suitable condensing agents are carbodiimides such as 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDCI) or 1,3-dicyclohexylcarbodiimide; Anhydrides such as acetic anhydride, trifluoroacetic anhydride; a mixture of triphenylphosphine, a base and carbon tetrachloride or a mixture of triphenylphosphine and an azo diester such as e.g. Diethylazodicarbonklare.
  • carbodiimides such as 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDCI) or 1,3-dicyclohexylcarbodiimide
  • Anhydrides such as acetic anhydride, trifluoroacetic anhydride; a mixture of triphenylphosphine, a base and carbon tetrachlor
  • the reaction can be carried out in the presence of an acid or a base.
  • Examples of an acid which can be used in the reaction described are sulfonic acids such as methanesulfonic acid or para-toluenesulfonic acid; Carboxylic acids such as acetic acid or polyphosphoric acids.
  • suitable bases are nitrogen-containing heterocycles such as pyridine, picoline, 2,6-lutidine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU); tertiary amines such as triethylamine and N, N-diisopropylethylamine; inorganic bases such as potassium phosphate, potassium carbonate and sodium hydride.
  • DBU 1,8-diazabicyclo [5.4.0] -7-undecene
  • tertiary amines such as triethylamine and N, N-diisopropylethylamine
  • inorganic bases such as potassium phosphate, potassium carbonate and sodium hydride.
  • the reaction may be carried out in the presence of a suitable catalyst such as 1-hydroxybenzotriazole.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n have the meanings described above.
  • a 2 and A 3 are CH or N.
  • a 4 is O, S or NR 4 .
  • compounds of formula (I) can be prepared in a one-step process from the intermediate compounds of formulas (II) and (V).
  • the reaction to give compounds of the formula (I) can be carried out in bulk or in a solvent, preferably the reaction is carried out in a solvent which is selected from conventional solvents which are inert under the prevailing reaction conditions.
  • ethers such as diisopropyl ether, dioxane, tetrahydrofuran, 1, 2-dimethoxyethane, tert-butyl methyl ether; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane or chlorobenzene; Alcohols such as methanol, ethanol or isopropanol; Nitriles, such as acetonitrile or propionitrile; aromatic hydrocarbons such as toluene or xylene; aprotic polar solvents such as N, N-dimethylformamide or N-methylpyrrolidone or nitrogen-containing compounds such as pyridine.
  • the reaction is preferably carried out in the presence of a base.
  • Suitable bases are inorganic bases which are commonly used in such reactions.
  • bases are used which are selected by way of example from the group consisting of acetates, phosphates, hydroxides, carbonates and bicarbonates of alkali or alkaline earth metals. Cesium carbonate, sodium carbonate, potassium carbonate, sodium hydroxide and potassium hydroxide are preferred.
  • Suitable bases are tertiary amines such as triethylamine and ⁇ , ⁇ -diisopropylethylamine, nitrogen-containing heterocycles such as pyridine, picoline, 2,6-lutidine, 4-dimethylaminopyridine and l, 8-diazabicyclo [5.4.0] -7-undecene (DBU).
  • tertiary amines such as triethylamine and ⁇ , ⁇ -diisopropylethylamine
  • nitrogen-containing heterocycles such as pyridine, picoline, 2,6-lutidine, 4-dimethylaminopyridine and l, 8-diazabicyclo [5.4.0] -7-undecene (DBU).
  • DBU 8-diazabicyclo [5.4.0] -7-undecene
  • the compounds of the formula (I) in which Q is Q1 to Q9 or Q16 or Q19 can be prepared by known methods, for example analogously to WO2009 / 131237, WO2010 / 125985, WO2011 / 043404, WO2011 / 040629, WO2012 / 086848, WO2013 / 018928, WO2015 / 000715, WO2015 / 121136 and WO2016 / 039441.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 have the meanings described above, A 2 and A 3 are CH or N, A 4 is O, S or NR 4 and X 1 is halogen.
  • M is an alkali metal (preferably sodium or potassium).
  • the compounds of formula (VII) can be prepared in analogy to that described in US5576335 Process can be prepared by the reaction of compounds of formula (II) with carboxylic acids of formula (VI) in the presence of a condensing agent or a base.
  • Carboxylic acids of the formula (VI) are either commercially available or can be prepared by known methods. Possible preparation routes are described in method I.
  • reaction of the compounds of the formula (II) with carboxylic acids of the formula (VI) can be carried out in bulk or in a solvent, preferably the reaction is carried out in a solvent which is selected from conventional solvents which are inert under the prevailing reaction conditions.
  • ethers such as diisopropyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane or chlorobenzene; Nitriles, such as acetonitrile or propionitrile; aromatic hydrocarbons such as toluene or xylene; aprotic polar solvents such as N, N-dimethylformamide or N-methylpyrrolidone or nitrogen-containing compounds such as pyridine.
  • halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane or chlorobenzene
  • Nitriles such as acetonitrile or propionitrile
  • aromatic hydrocarbons such as toluene or xylene
  • aprotic polar solvents such as N, N-
  • Suitable condensing agents are, for example, carbodiimides such as 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDCI) or 1,3-dicyclohexylcarbodiimide.
  • Suitable bases are inorganic bases which are commonly used in such reactions.
  • bases are used which are selected by way of example from the group consisting of acetates, phosphates, carbonates and bicarbonates of alkali or alkaline earth metals. Particularly preferred are sodium acetate, sodium phosphate, potassium phosphate, cesium carbonate, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate.
  • the reaction can be carried out in vacuo, under normal pressure or under excess pressure and at temperatures of 0 ° C to 180 ° C, preferably the reaction is carried out at atmospheric pressure and temperatures of 20 to 140 ° C.
  • the compounds of formula (VIII) can be prepared by condensation of the compounds of formula (VII) e.g. analogously to the process described in WO2009 / 131237, WO2010 / 125985, WO2011 / 043404, WO2011 / 040629, WO2012 / 086848, WO2013 / 018928, WO2015 / 000715 and WO2015 / 121136.
  • the reaction to give compounds of the formula (VIII) can be carried out in bulk or in a solvent preferably, the reaction is carried out in a solvent which is selected from conventional, inert in the prevailing reaction conditions solvents.
  • ethers such as diisopropyl ether, dioxane, tetrahydrofuran, 1, 2-dimethoxyethane, tert-butyl methyl ether; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane or chlorobenzene; Nitriles, such as acetonitrile or propionitrile; aromatic hydrocarbons such as toluene or xylene; aprotic polar solvents such as N, N-dimethylformamide or N-methylpyrrolidone or nitrogen-containing compounds such as pyridine.
  • the reaction can be carried out in the presence of a condensing agent, an acid, a base or a chlorinating agent.
  • suitable condensing agents are carbodiimides such as 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDCI) or 1,3-dicyclohexylcarbodiimide; Anhydrides such as acetic anhydride, trifluoroacetic anhydride; a mixture of triphenylphosphine, a base and carbon tetrachloride or a mixture of triphenylphosphine and an azo diester such as e.g. Diethylazodicarbonklare.
  • carbodiimides such as 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDCI) or 1,3-dicyclohexylcarbodiimide
  • Anhydrides such as acetic anhydride, trifluoroacetic anhydride; a mixture of triphenylphosphine, a base and carbon tetrachlor
  • acids examples include sulfonic acids such as para-toluenesulfonic acid; Carboxylic acids such as acetic acid or polyphosphoric acids.
  • suitable bases are nitrogen-containing heterocycles such as pyridine, picoline, 2,6-lutidine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU); tertiary amines such as triethylamine and N, N-diisopropylethylamine; inorganic bases such as potassium phosphate, potassium carbonate and sodium hydride.
  • nitrogen-containing heterocycles such as pyridine, picoline, 2,6-lutidine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU); tertiary amines such as triethylamine and N, N-diisopropylethylamine; inorganic bases such as potassium phosphate, potassium carbonate and sodium hydride.
  • DBU 1,8-diazabicyclo [5.4.0] -7-undecene
  • tertiary amines such as triethylamine and N, N
  • An example of a suitable chlorinating agent is phosphorus oxychloride.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • Step c) The compounds of the formula (I) wherein n is 0 can be prepared by reacting the compounds of the formula (VIII) with the compounds of the formula (IXa) in the presence of a base.
  • Mercaptan derivatives of the formula (IXa), such as, for example, methylmercaptan, ethylmercaptan or isopropylmercaptan are either commercially available or can be prepared by known methods, for example analogously to US2006 / 25633, US2006 / 111591, US2820062, Chemical Communications, 13 (2000), 1163-1164 or Journal of the American Chemical Society, 44 (1922), p. 1329 described method.
  • the reaction to give compound of formula (I) wherein n is 0 may be in bulk or in one Solvents are preferably carried out, the reaction is carried out in a solvent which is selected from conventional, inert in the prevailing reaction conditions solvents.
  • solvents for example diisopropyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, tert-butyl methyl ether; Nitriles, such as acetonitrile or propionitrile; aromatic hydrocarbons such as toluene or xylene; aprotic polar solvents such as N, N-dimethylformamide, N-methylpyrrolidone or dimethyl sulfoxide.
  • suitable bases are inorganic bases from the group consisting of acetates, phosphates and carbonates of alkali or alkaline earth metals. Cesium carbonate, sodium carbonate and potassium carbonate are preferred. Other suitable bases are alkali metal hydrides, e.g. Sodium hydride.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • X 1 is preferably a fluorine or chlorine atom.
  • Step d) The compounds of formula (I) wherein n is 1 can be prepared by oxidation of the compounds of formula (I) wherein n is 0.
  • the oxidation is generally carried out in a solvent selected from conventional solvents which are inert under the prevailing reaction conditions. Preference is given to halogenated hydrocarbons such as, for example, dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane or chlorobenzene; Alcohols such as methanol or ethanol; Formic acid, acetic acid. Propionic acid or water.
  • Suitable oxidizing agents are hydrogen peroxide, meta-chloroperbenzoic acid or sodium periodate.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under excess pressure and at temperatures of -20 ° C ° C to 120 ° C. Steps)
  • the compounds of formula (I) wherein n is 2 may be prepared by oxidation of the compounds of formula (I) wherein n is 1.
  • the oxidation is generally carried out in a solvent.
  • Preference is given to halogenated hydrocarbons such as, for example, dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane or chlorobenzene; Alcohols such as methanol or ethanol; Formic acid, acetic acid. Propionic acid or water.
  • Suitable oxidizing agents are hydrogen peroxide and meta-chloroperbenzoic acid.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under excess pressure and at temperatures of -20 ° C ° C to 120 ° C.
  • the compounds of the formula (I) wherein n is 2 can also be prepared in a one-step process by oxidation of the compounds of the formula (I) where n is 0.
  • the oxidation is generally carried out in a solvent.
  • Preference is given to halogenated hydrocarbons such as, for example, dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane or chlorobenzene; Alcohols such as methanol or ethanol; Formic acid, acetic acid. Propionic acid or water.
  • Suitable oxidizing agents are hydrogen peroxide and meta-chloroperbenzoic acid.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under excess pressure and at temperatures of -20 ° C ° C to 120 ° C.
  • compounds of formula (I) wherein n is 2 may also be prepared in a one-step process, for example, by analogy to the methods described in Journal of Organic Chemistry 2005, 70, 2696-2700, by a halogen-sulfone substitution a compound of formula (IXb) starting from compounds of formula (VIII).
  • the exchange is generally carried out in a solvent. Preference is given to using polar aprotic solvents, for example dimethyl sulfoxide and N, N-dimethylformamide.
  • Suitable sulfur reagents are salts of sulfinic acid.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under excess pressure and at temperatures of -20 ° C ° C to 120 ° C.
  • the compounds of the formula (I) in which Q is Q10, QU, Q14 or Q15 can be prepared by known methods, for example analogously to those described in US2009 / 203705, US2012 / 258951, WO2013 / 3298 or J. Med. Chem. 31, (1988) 1590-1595.
  • R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and n have the meanings described above.
  • a 2 , A 3 , A 4 and A 5 are CH or N (wherein A 2 , A 3 , A 4 and A 5 are not simultaneously N) and X 1 is halo.
  • M is an alkali metal (preferably sodium or potassium).
  • Carboxylic acids of the formula (VI) are converted into Weinreb amides of the formula (X) in analogy to the process described in WO2011 / 75643 or EP2671582 in the presence of ⁇ , ⁇ -dimethylhydroxylamine hydrochloride.
  • Carboxylic acids of the formula (VI) are either commercially available or can be prepared by known methods. Possible preparation routes are described in method J. Step b, c)
  • the compounds of the formula (XIV) can be prepared by cyclization of the compounds of the formula (XII) with amines of the formula (XIII).
  • the cyclization is carried out, for example, in ethanol, acetonitrile or N, N-dimethylformamide by known methods analogously to, for example, WO2005 / 66177, WO2012 / 88411, WO2013 / 3298, US2009 / 203705, US2012 / 258951, WO2012 / 168733, WO2014 / 187762 or J. Med. Chem. 31 (1988) 1590-1595.
  • Step e) The compounds of the formula (I) wherein n is 0 can be prepared by reacting the compounds of the formula (XIV) with the compounds of the formula (IXa) in the presence of a base.
  • Mercaptan derivatives of the formula (IXa) such as, for example, methylmercaptan, ethylmercaptan or isopropylmercaptan, are either commercially available or can be prepared by known methods, for example analogously to US2006 / 25633, US2006 / 111591, US2820062, Chemical Communications, 13 (2000), 1163-1164 or Journal of the American Chemical Society, 44 (1922), p. 1329 described method.
  • the compounds of formula (I) wherein n is 1 may be prepared by oxidation of the compounds of formula (I) wherein n is 0.
  • the oxidation is carried out by known methods with a suitable oxidizing agent such recordable as hydrogen peroxide, meta-chloroperbenzoic acid or sodium periodate.
  • the compounds of formula (I) wherein n is 2 may be prepared by oxidation of the compounds of formula (I) wherein n is 1.
  • the oxidation is generally carried out in a solvent.
  • halogenated hydrocarbons such as, for example, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane or chlorobenzene; Alcohols such as methanol or ethanol; Formic acid, acetic acid. Propionic acid or water.
  • suitable oxidizing agents are hydrogen peroxide and meta Chloroperbenzoic.
  • the compounds of the formula (I) wherein n is 2 can also be prepared in a one-step process by oxidation of the compounds of the formula (I) where n is 0.
  • the oxidation is generally carried out in a solvent.
  • halogenated hydrocarbons such as, for example, dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane or chlorobenzene; Alcohols such as methanol or ethanol; Formic acid, acetic acid. Propionic acid or water.
  • suitable oxidizing agents are hydrogen peroxide and meta-chloroperbenzoic acid.
  • compounds of formula (I) wherein n is 2 may also be prepared in a one-step process, for example, by analogy to the methods described in Journal of Organic Chemistry 2005, 70, 2696-2700, by a halogen-sulfone substitution a compound of formula (IXb) starting from compounds of formula (XIV).
  • the exchange is generally carried out in a solvent. Preference is given to using polar aprotic solvents, for example dimethyl sulfoxide and N, N-dimethylformamide.
  • Suitable sulfur reagents are salts of sulfinic acid.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under excess pressure and at temperatures of -20 ° C ° C to 120 ° C.
  • the compounds of the formula ( ⁇ ) in which Q is Q10, QU, Q14 or Q15 can likewise be prepared analogously to process F.
  • the compounds of the formula (I) in which Q is Q16 can be prepared by known methods, for example analogously to the processes described in WO2014 / 142292.
  • the compounds of formula (XV) can be prepared in analogy to the process described in US5374646 or Bioorganic and Medicinal Chemistry Letters 2003, 13, 1093-1096 by reacting compounds of formula (VI) with an ammonia source in the presence of a condensing agent.
  • Carboxylic acids of the formula (VI) are either commercially available or can be prepared by known methods. Possible preparation routes are described in method I.
  • the reaction of the compounds of the formula (VI) with the source of ammonia is preferably carried out in a solvent which is selected from conventional solvents which are inert under the prevailing reaction conditions. Preference is given to ethers such as, for example, dioxane or tetrahydrofuran.
  • a suitable condensing agent is, for example, carbonyldiimidazole.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure. Preferably, the reaction is carried out at atmospheric pressure and temperatures of 20 to 70 ° C.
  • the compounds of the formula (XVII) can be prepared in analogy to the process described in WO2014 / 142292 by reacting compounds of the formula (XV) with compounds of the formula (XVI) in the presence of a palladium catalyst in basic.
  • Compounds of the formula (XVI) can be prepared, for example, analogously to the processes described in WO2014 / 142292.
  • [1,1'-bis (diphenylphosphino) ferrocene] dichloropalladium (II) can be used as the palladiumunic catalyst.
  • Inorganic bases such as potassium tert-butoxide are frequently used as the base. The reaction takes place in a solvent. Often, toluene is used.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure. Preferably, the reaction is carried out at atmospheric pressure and temperatures of 20 to 110 ° C.
  • the compounds of the formula (I) in which Q is Q12, Q13, Q17, Q18 or Q20 can be prepared by known methods, for example analogously to the processes described in WO2010 / 091310, WO 2012/66061 or WO2013 / 099041.
  • R 2 , R 3 , R 5 , R 6 and R 7 have the meanings described above.
  • a 2 , A 3 and A 6 are CH or N.
  • X 1 and X 2 are halogen.
  • the compounds of the formula (XXIII) can be prepared by reacting compounds of the formula (XXI) with compounds of the formula (XXII) under basic conditions, for example analogously to WO2010 / 091310, WO 2012/66061, WO2013 / 099041 or Tetrahedron 1993, 49, 10997-11008.
  • Compounds of the formula (XXI) are either commercially available or can be prepared by known methods, for example analogously to the method described in WO2005 / 100353, WO 2012/66061 or in European Journal of Medicinal Chemistry 2010, 45, 2214-2222.
  • the bases used are usually inorganic bases such as sodium hydride, potassium carbonate or cesium carbonate.
  • reaction to give compounds of the formula (XXIII) is usually carried out in a solvent, preferably in a nitrile, such as, for example, acetonitrile or propionitrile, or in an aprotic, polar solvent, such as ⁇ , ⁇ -dimethylformamide or N-methylpyrrolidone.
  • a solvent preferably in a nitrile, such as, for example, acetonitrile or propionitrile, or in an aprotic, polar solvent, such as ⁇ , ⁇ -dimethylformamide or N-methylpyrrolidone.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • reaction of compounds of formula (XXI) with compounds of formula (XXII) to give compounds of formula (XXIII) may also be by palladium-catalyzed N-arylation, e.g. analogous to that in Angewandte Chemie Int. Ed. 2011, 50, 8944-8947.
  • R 2 and R 3 have the meaning described above.
  • R 7 is hydrogen.
  • X 1 , X 2 and X 3 are halogen and
  • R 8 is C 1 -C 4 alkyl.
  • the compounds of the formula (XXXII) can be followed in analogy to the processes described in Journal of Organic Chemistry 1993, 58, 6429-6437 from o-alkenyl- ⁇ -diazopropiophenone derivatives of the formula (XXIV) under photochemical or thermal conditions via a Wolff rearrangement be synthesized by an intramolecular cyclization.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • the ⁇ -naphthol derivatives of the formula (XXXII) can alternatively be prepared analogously to the method described in Angewandte Chemie, International Edition 2014, 53, 8980-8984 from a ketene surrogate of the formula (XXV) and o-vinylaryl iodides of the formula (XXVI ) via a Sonogashira coupling (step b) followed by rearrangement to the corresponding o-vinylarylketene, which then undergoes a sigmatropic rearrangement (step c).
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • tert-butoxyacetylene (XXV) is commercially available and o-vinylaryliodides of formula (XXVI) are also either commercially available or can be prepared by known methods, for example via a Wittig reaction from the corresponding aldehydes in analogy to those described in Angewandte Chemie International Edition 2016, 55, 413-417, Organic Letters 2015, 17, 4180-4183 or Chemistry - An Asian Journal 2015, 10, 1618-1621.
  • ⁇ -naphthol derivatives of the formula (XXXII) can alternatively be prepared in analogy to the method described in Journal of Organic Chemistry 2011, 76, 10068-10077, for example via an intramolecular Heck reaction of compounds of the formula (XXVII).
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • ⁇ -naphthoic acid derivatives of the formula (XXXIII) can be prepared analogously to the process described in Tetrahedron Letters 2004, 45, 5653-5656 via a transition metal-catalyzed tandem Heck aldol reaction of 2-halobenzaldehydes of the formula (XXIX) and But 3-enoic acid of the formula (XXVIII).
  • reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • Compounds of formula (XXIX) are either commercially available or can be prepared by known methods, for example as described in Tetrahedron 2015, 71, 6744-6748, RCS Advances 2015, 5, 79699-79702, WO2014 / 0163257, Journal of Organic Chemistry 2014, 79, 1529-1541, Journal of Fluorine Chemistry 2013, 156, 9-14 or Organic Reaction (Hoboken, NJ, United States) 2008, 71, 1-737.
  • the ⁇ -naphthoic acid derivatives of the formula (XXXIII) can alternatively be prepared in analogy to the method described in ChemMedChem 2010, 5, 65-78 via a multi-stage synthesis route.
  • 2-Halobenzaldehyde derivatives of formula (XXXI) can be prepared in the presence of an amine base, e.g. B. DABCO, with an alkyl acrylate of formula (XXX) in a Baylis-Hillman adduct, which is acylated in the next step in the presence of an amine base with a suitable carboxylic acid chloride.
  • an amine base e.g. B. DABCO
  • an alkyl acrylate of formula (XXX) in a Baylis-Hillman adduct
  • a carbonate base such as cesium carbonate and nitromethane as the nucleophile
  • a Benzannelierung take place.
  • the ⁇ -naphthoic acid esters obtained can be converted into the ⁇ -naphthoic acid derivatives of the formula (XXXIII) by saponification with hydroxide bases.
  • the individual reactions can each be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures from 0 ° C. to 200 ° C.
  • 3-Hydroxy-2-naphthocarboxylic acid derivatives of the formula (XXXIV) are either commercially available or can be prepared according to the methods described in CN2015 / 104447302, Angewandte Chemie, International Edition 2015, 54, 2255-2259, Green Processing and Synthesis 2015, 4, 91- 96 can be prepared via carboxylation in the ortho position of the hydroxy function of ß-naphthol derivatives of the formula (XXXII).
  • the functionalization may take place under transition metal catalyzed or uncatalyzed conditions, with carbon dioxide or metal alkyl carbonates as electrophiles.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • ⁇ -naphthol derivatives of formula (XXXII) can be prepared as described under method a-d).
  • 3-hydroxy-2-naphthocarboxylic acid derivatives of formula (XXXIV) may be prepared by the methods described in WO2011 / 037929 via hydroxylation of ⁇ -naphthoic acid derivatives of formula (XXXIII).
  • oxidant z. B. (air) oxygen can be used as the oxidant z. B. (air) oxygen can be used.
  • the functionalization can be carried out with or without metal catalyst, at room temperature or under thermal conditions.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • ß-naphthoic acid derivatives of the formula (XXXIII) can, for. B. as described in step ei). Step 1)
  • 3-Amino-2-naphthocarboxylic acid derivatives of the formula (XXXV) are either commercially available or, in analogy to the processes described in Heterocycles 2012, 86, 425-433, Tetrahedron Letters 2003, 44, 7613-7615, can be prepared from the corresponding Hydroxy-2-naphthocarboxylic acid derivatives of the formula (XXXIV) can be obtained via a nucleophilic aromatic substitution.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • the 3-halo-2-naphthocarboxylic acid derivatives of formula (VI) are either commercially available or can be prepared according to the methods described in Angewandte Chemie, International Edition 2014, 53, 9860-9864, Journal of the American Chemical Society 2014, 136, 15414-15421 described method eg be synthesized via a Sandmeyer reaction from the corresponding 3-amino-2-naphthocarboxylic acid derivatives of the formula (XXXV).
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • Procedure .T
  • R 2 and R 3 have the meaning described above.
  • R 10 and R 11 are hydrogen.
  • X 1 and X 2 are halogen.
  • the 2-halonaphthalene derivatives of the formula (XXXVI) are either commercially available or can be prepared in analogy to those described in Huaxue Shiji 2012, 34, 571-573, Journal of the American Chemical Society 2014, 136, 2236-2239, e.g. B. from the ß-naphthol derivatives of the formula (XXXII) with triphenylphosphine, bromine or the corresponding N-halosuccinimide as halogenating reagent.
  • the nucleophilic aromatic substitution can be carried out using trialkyl or triarylphosphine.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • ⁇ -naphthol derivatives of the formula (XXXII) can be prepared as described in process I (step a-d). Step b)
  • 2-Methylnaphthalene derivatives of the formula (XLII) are either commercially available or can be prepared from compounds of the formula ## STR1 ## in analogy to the processes described in Chemical Communications 2006, 1, 97-99, Applied Catalysis, A: General 2010, 381, 161-168 (XXXVI) by means of a transition metal-catalyzed cross-coupling reaction using, for. As aluminum or tin organyls be synthesized. The reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • 2-methylnaphthalene derivatives of the formula (XLII) can be prepared from alkenylbenzaldehyde derivatives of the formula (XXXVII) in analogy to the processes described in Organic Letters 2015, 17, 4654-4657, Journal of Organic Chemistry 2011, 76, 7204-7215 an intramolecular Lewis or Bronsted acid catalyzed cyclization can be made.
  • Lewis acids could z.
  • gold or silver salts can be used.
  • the reaction can be carried out at room temperature or under thermal conditions. Protic and aprotic solvents can be used.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • Alkenylbenzaldehyde derivatives of the formula (XXXVII) are either commercially available or can be prepared in analogy to those described in Organic Letters 2015, 17, 4654-4657, Angewandte Chemie International Edition 2012, 51, 10812-10815, Journal of Organic Chemistry 2003, 68, 6238 -6250 or Journal of the American Chemical Society 2009, 131, 2056-2057.
  • 2-methylnaphthalene derivatives of the formula (XLII) can be prepared by analogy with the methods described in Helvetica Chimica Acta 2012, 95, 1953-1969 from the corresponding alkenylbenzaldehyde derivatives of the formula (XXXVIII) via intramolecular acid-catalyzed cyclization.
  • Compounds of the formula (XXXVIII) are isomeric to the compounds of the formula (XXXVII) and the reaction conditions described in steps c) and d) can be used for both educts of the formulas (XXXVII) and (XXXVIII).
  • Alkenylbenzaldehyde derivatives of the formula (XXXVIII) are either commercially available or can be prepared analogously to those described in Journal of the American Chemical Society 2006, 128, 9340-9341, Organic Letters 1999, 1, 1415-1417, Journal of Organic Chemistry 2011, 76 , 7204-7215 and Organic Letters 2015, 17, 4654-4657.
  • 2-methylnaphthalene derivatives of the formula (XLII) can be prepared from 1-ethynyl-2 - [(E) -propl-enyl] benzene derivatives of the formula ## STR5 ## analogously to the processes described in Science of Synthesis 2010, 45b, 745-854 (XXXIX) are prepared by electrocyclic ring closure reaction.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • 2-methylnaphthalene derivatives of formula (XLII) can be synthesized via cycloaromatization in analogy to the methods described in Tetrahedron 1991, 47, 3499-3510 from benzyl chloride derivatives of formula (XLI) and ⁇ -oxo-ketene dithioacetal (XL) , It can be z.
  • ⁇ -Oxo-ketene dithioacetal (XL) can be obtained from the corresponding ketene acetal by 1,4-reduction with sodium borohydride.
  • Benzyl chlorides of formula (XLI) are either commercially available or can be prepared analogously to those described in European Journal of Inorganic Chemistry 2014, 5, 888-895, International Journal of Organic Chemistry 2013, 3, 1-7 and Chinese Journal of Chemistry 2012, 30, 1647 -1657.
  • Step g) 1-Halo-2-methylnaphthalene derivatives of the formula (XLIII) can be prepared analogously to those described in Journal of Materials Chemistry A: Materials for Energy and Sustainability 2014, 2, 13905-13915, Hubei Daxue Xuebao, Ziran Kexueban 2010, 32, 62-64 are obtained from the 2-methylnaphthalene derivatives of the formula (XLII) via an electrophilic aromatic halogenation.
  • the halogenating reagent for example, bromine, N-bromosuccinimide, N-chlorosuccinimide, N-iodosuccinimide can be used.
  • the solvent halogenated alkanes, e.g. Carbon tetrachloride used.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • l-Halonaphthalene-2-carboxylic acids of the formula (VT) are either commercially available or can be prepared in analogy to those described in Chemistry-A European Journal 2015, 21, 7030-7034, Journal of Materials Chemistry A: Materials for Energy and Sustainability 2014, 2, 13905-13915, WO2010 / 114262, Hubei Daxue Xuebao, Ziran Kexueban 2010, 32, 62-64, Chemical & Pharmaceutical Bulletin 2005, 53, 1540-1546, Synthesis 2000, 12 , 1677-1680, can be prepared from the corresponding 1-halo-2-methylnaphthalene derivatives of formula (XLIII).
  • the benzylic position can first be halogenated under free-radical conditions via a two-stage process, for example using N-bromosuccinimide and dibenzoyl peroxide. Subsequently, the carboxylic acid can be obtained under oxidative conditions.
  • benzylic oxidation may be carried out using, for example, potassium permanganate or atmospheric oxygen and in the presence of a transition metal catalyst to obtain the 1-halonaphthalene-2-carboxylic acid derivatives of formula (VT).
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • the compounds of the formula (III) can be prepared by the following methods:
  • R 1 , R 2 , R 3 and R 7 have the meaning described above.
  • X 1 and X 2 are halogen and R 9 is C 1 -C 4 alkyl.
  • M is an alkali metal (preferably sodium or potassium).
  • the reaction can be carried out in vacuo, under normal pressure or under excess pressure and at temperatures of 0 ° C to 180 ° C, preferably the reaction is carried out at atmospheric pressure and temperatures of 20 to 140 ° C.
  • Step b) Compounds of the formula (XLV) wherein n is 0 can be prepared by reacting the compounds of the formula (XLIV) with the compounds of the formula (IXa) in the presence of a base.
  • Mercaptan derivatives of the formula (IXa), such as, for example, methylmercaptan, ethylmercaptan or isopropylmercaptan are either commercially available or can be prepared by known methods, for example analogously to US2006 / 25633, US2006 / 111591, US2820062, Chemical Communications, 13 (2000), 1163-1164 or Journal of the American Chemical Society, 44 (1922), p. 1329 described method.
  • the reaction to give compound of formula (XLV) wherein n is 0 may be carried out in bulk or in a solvent, preferably the reaction is carried out in a solvent selected from conventional solvents which are inert under the prevailing reaction conditions.
  • ethers for example diisopropyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, tert-butyl methyl ether; Nitriles, such as acetonitrile or propionitrile; aromatic hydrocarbons such as toluene or xylene; aprotic polar solvents such as ⁇ , ⁇ -dimethylformamide, N-methylpyrrolidone or dimethyl sulfoxide.
  • suitable bases are inorganic bases from the group consisting of acetates, phosphates and carbonates of alkali or alkaline earth metals. Cesium carbonate, sodium carbonate and potassium carbonate are preferred. Other suitable bases are alkali metal hydrides such as sodium hydride.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • X 1 is preferably a fluorine or chlorine atom.
  • Step c), d) The compounds of formula (XLV) wherein n is 1 can be prepared by oxidation of the compounds of formula (XLV) wherein n is 0. The oxidation takes place by known methods with a suitable oxidizing agent such as hydrogen peroxide, meta-chloroperbenzoic acid or sodium periodate.
  • a suitable oxidizing agent such as hydrogen peroxide, meta-chloroperbenzoic acid or sodium periodate.
  • the compounds of formula (XLV) wherein n is 2 can be prepared by oxidation of the compounds of formula (XLV) wherein n is 1.
  • the oxidation is generally carried out in a solvent.
  • halogenated hydrocarbons such as, for example, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane or chlorobenzene; Alcohols such as methanol or ethanol; Formic acid, acetic acid. Propionic acid or water.
  • suitable oxidizing agents are hydrogen peroxide and meta-chloroperbenzoic acid.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under excess pressure and at temperatures of -20 ° C ° C to 120 ° C.
  • compounds of formula (XLV) wherein n is 2 may also be prepared in a one-step process, for example, by analogy to the methods described in Journal of Organic Chemistry 2005, 70, 2696-2700, by a halogen-sulfone substitution a compound of formula (IXb) starting from compounds of formula (XIV).
  • the exchange is generally carried out in a solvent. Preference is given to using polar aprotic solvents, for example dimethyl sulfoxide and N, N-dimethylformamide. Examples of suitable sulfur reagents are salts of sulfinic acid.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under excess pressure and at temperatures of -20 ° C ° C to 120 ° C.
  • the compounds of the formula (III) can be prepared analogously to the process described in Synthesis 1987, 6, 586-587, Tetrahedron Letters 2006, 47, 565-567 or ChemMedChem 2010, 5, 65-78 by saponification from the compounds of the formula (XLV ) are synthesized.
  • geeginete bases are, for example, lithium hydroxide or sodium hydroxide.
  • solvent polar aprotic and protic solvents and mixtures of these can be used, for example, ethanol, tetrahydrofuran or water.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under excess pressure and at temperatures of -20 ° C ° C to 120 ° C.
  • the compounds of the formula ( ⁇ ) can likewise be prepared analogously to process K from compounds of the formula (VF).
  • Compounds of formula (VF) are either commercially available or prepared according to methods J and M.
  • the compounds of the formula (VI) can be prepared by the following methods:
  • X 1 is halogen.
  • Step a) 3-Hydroxy-2-naphthocarboxylic acid derivatives of the formula (XXXIV) are either commercially available or can be prepared according to the methods described in CN2015 / 104447302, Angewandte Chemie, International Edition 2015, 54, 2255-2259, Green Processing and Synthesis 2015, 4 , 91-96, via carboxylation in the ortho position of the hydroxy function of ⁇ -naphthol derivatives of the formula (XXXII).
  • the functionalization may take place under transition metal catalyzed or uncatalyzed conditions, with carbon dioxide or metal alkyl carbonates as electrophiles.
  • reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • 3-Amino-2-naphthocarboxylic acid derivatives of the formula (XXXV) are either commercially available or, in analogy to the processes described in Heterocycles 2012, 86, 425-433, Tetrahedron Letters 2003, 44, 7613-7615, can be prepared from the corresponding Hydroxy-2-naphthocarboxylic acid derivatives of the formula (XXXIV) can be obtained via a nucleophilic aromatic substitution.
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • the 3-halo-2-naphthocarboxylic acid derivatives of formula (VI) are either commercially available or can be prepared according to the methods described in Angewandte Chemie, International Edition 2014, 53, 9860-9864, Journal of the American Chemical Society 2014, 136, 15414-15421 described method eg be synthesized via a Sandmeyer reaction from the corresponding 3-amino-2-naphthocarboxylic acid derivatives of the formula (XXXV).
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • the compounds of the formula (VF) can be prepared by the following methods:
  • X 1 is halogen.
  • Step a) l-Halo-2-methylnaphthalene derivatives of the formula (XLIII) can be prepared in analogy to those described in Journal of Materials Chemistry A: Materials for Energy and Sustainability 2014, 2, 13905-13915, Hubei Daxue Xuebao, Ziran Kexueban 2010, 32, 62-64 are obtained from the 2-methylnaphthalene derivatives of the formula (XLII) via an electrophilic aromatic halogenation.
  • halogenating reagent for example, bromine, N-bromosuccinimide, N-chlorosuccinimide, N-iodosuccinimide can be used.
  • the solvents used are halogenated alkanes, such as carbon tetrachloride.
  • reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • l-Halonaphthalene-2-carboxylic acids of the formula (VT) are either commercially available or can be prepared in analogy to the methods described in Chemistry - A European Journal 2015, 21, 7030-7034, Journal of Materials Chemistry A: Materials for Energy and Sustainability 2014, 2 , 13205-13915, WO2010 / 114262, Hubei Daxue Xuebao, Ziran Kexueban 2010, 32, 62-64, Chemical & Pharmaceutical Bulletin 2005, 53, 1540-1546, Synthesis 2000, 12, 1677-1680.
  • Halo-2-methylnaphthalene derivatives of the formula (XLIII) are prepared.
  • the benzylic position can first be halogenated under free-radical conditions via a two-stage process, for example using N-bromosuccinimide and dibenzoyl peroxide. Subsequently, the carboxylic acid can be obtained under oxidative conditions.
  • benzylic oxidation may be carried out using, for example, potassium permanganate or atmospheric oxygen and in the presence of a transition metal catalyst to obtain the 1-halonaphthalene-2-carboxylic acid derivatives of formula (VT).
  • the reaction can be carried out in vacuo, at atmospheric pressure or under overpressure and at temperatures of 0 ° C to 200 ° C.
  • the invention also relates to methods for controlling animal pests, wherein compounds of formula (I) or formula (T) are allowed to act on animal pests and / or their habitat. Preference is given to the control of animal pests in agriculture and forestry and in the protection of materials. Excluded therefor are preferably methods for the surgical or therapeutic treatment of the human or animal body and diagnostic methods that are performed on the human or animal body.
  • the invention further relates to the use of the compounds of the formula (I) or of the formula (T) as pesticides, in particular pesticides.
  • pest control always always includes the term pesticides.
  • the compounds of the formula (I) or of the formula (T) are suitable for plant protection, favorable toxicity to warm-blooded animals and good environmental compatibility for protecting plants and plant organs against biotic and abiotic stress factors, for increasing crop yields, improving the quality of the crop and for controlling animal pests, in particular insects, arachnids, helminths, in particular nematodes, and molluscs found in agriculture, horticulture, animal breeding, aquaculture, forestry, gardens and recreational facilities, in the protection of stored products and in the sanitary sector.
  • the term "hygiene” is to be understood as meaning any and all measures, rules and procedures whose purpose is to prevent diseases, in particular infectious diseases, and which serve to protect human health and / or to maintain cleanliness According to the invention, this includes, in particular, measures for the cleaning, disinfection and sterilization of, for example, textiles or hard surfaces, in particular surfaces of glass, wood, cement, porcelain, ceramics, Plastic or also metal (s) to ensure that they are free of hygiene pests and / or their excretions.
  • measures for the cleaning, disinfection and sterilization of, for example, textiles or hard surfaces, in particular surfaces of glass, wood, cement, porcelain, ceramics, Plastic or also metal (s) to ensure that they are free of hygiene pests and / or their excretions Preferably excluded from the scope of the invention in this regard are surgical or therapeutic, to be applied to the human body or the body of animals treatment regulations and diagnostic Regulations that are carried out on the human body or the bodies of animals.
  • honeygiene sector covers all areas, technical fields and industrial applications in which these hygiene measures, regulations and procedures are important, for example with regard to hygiene in kitchens, bakeries, airports, bathrooms, swimming pools, department stores, hotels, Hospitals, stables, animal husbandry etc.
  • honeygiene pest should therefore be understood as referring to one or more animal pests whose presence in the hygiene sector is problematic, in particular for health reasons, and it is therefore a primary objective to determine the presence of and / or exposure to hygiene pests in the hygiene sector This can be achieved, in particular, by the use of a pesticide which can be used both to prevent infestation and to prevent an existing infestation, or to use preparations which prevent exposure to pests
  • hygiene pests include the organisms mentioned below
  • the term “hygiene protection” thus covers all actions that maintain and / or improve these hygiene measures, rules and procedures.
  • the compounds of the formula (I) or the formula (II) can be preferably used as pesticides. They are effective against normally sensitive and resistant species as well as against all or individual stages of development.
  • the above mentioned pests include:
  • Pests from the strain of Arthropoda in particular from the class of Arachnida z. Acarus spp., E.g. Acarus siro, Aceria kuko, Aceria sheldoni, Aculops spp., Aculus spp., E.g. Aculus fockeui, Aculus badendali, Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., E.g. B.
  • Oligonychus coffeae Oligonychus coniferarum, Oligonychus ilicis, Oligonychus indicus, Oligonychus mangiferus, Oligonychus pratensis, Oligonychus punicae, Oligonychus yothersi, Ornithodorus spp., Ornithonyssus spp., Panonychus spp., E.g.
  • Panonychus citri Metatetranychus citri
  • Panonychus ulmi Metatetranychus ulmi
  • Phyllocoptruta oleivora Platytetranychus multidigituli
  • Polyphagotarsonemus latus Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Scorpio maurus, Steneotarsonemus spp. Steneotarsonemus spinki, Tarsonemus spp. Tarsonemus confusus, Tarsonemus pallidus, Tetranychus spp., E.g.
  • Blatta orientalis Blattella asahinai, Blattella germanica, Leucophaea maderae, Loboptera decipiens, Neostylopyga rhombifolia, Panchlora spp., Parcoblatta spp., Periplaneta spp., E.g. Periplaneta americana, Periplaneta australasiae, Pycnoscelus surinamensis, Supella longipalpa; from the order of Coleoptera z.
  • Diabrotica balteata Diabrotica barberi, Diabrotica undecimpunctata howardi, Diabrotica undecimpunctata undecimpunctata, Diabrotica virgifera virgifera, Diabrotica virgifera zeae, Dichocrocis spp., Dicladispa armigera, Diloboderus spp., Epicaerus spp., Epilachna spp., E.g. Epilachna borealis, Epilachna varivestis, Epitrix spp., e.g.
  • Epitrix cucumeris Epitrix fuscula, Epitrix hirtipennis, Epitrix subcrinita, Epitrix tuberis, Faustinus spp., Gibbium psylloides, Gnathocerus cornutus, Hellula and alis, Heteronychus arator, Heteronyx spp., Hylamorpha elegans, Hylotrupes b Camillus, Hypera postica, Hypomeces squamosus, Hypothenemus spp., z.
  • hypothenemus hampei Hypothenemus obscurus, Hypothenemus pubescens, Lachnosterna consanguinea, Lasioderma serricorne, Latheticus oryzae, Lathridius spp., Lema spp., Leptinotarsa decemlineata, Leucoptera spp., E.g. B.
  • Melolontha melolontha Melolontha melolontha, Migdolus spp., Monochamus spp., Naupactus xanthographus, Necrobia spp., Neogalerucella spp., Niptus hololeucus, Oryctes rhinoceros, Oryzaephilus surinamensis, Oryzaphagus oryzae, Otiorhynchus spp., E.g.
  • Otiorhynchus cribricollis Otiorhynchus ligustici, Otiorhynchus ovatus, Otiorhynchus rugosostriarus, Otiorhynchus sulcatus, Oulema spp., E.g. Oulema melanopus, Oulema oryzae, Oxycetonia jucunda, Phaedon cochleariae, Phyllophaga spp., Phyllophaga helleri, Phyllotreta spp., E.g.
  • Phyllotreta armoraciae Phyllotreta pusilla, Phyllotreta ramosa, Phyllotreta striolata, Popillia japonica, Premnotrypes spp., Prostephanus truncatus, Psylliodes spp., E.g.
  • Tanymecus spp. E.g. Tanymecus dilaticollis, Tanymecus indicus, Tanymecus palliatus, Tenebrio molitor, Tenebrioides mauretanicus, Tribolium spp., E.g. Tribolium audax, Tribolium castaneum, Tribolium confusum, Trogoderma spp., Tychius spp., Xylotrechus spp., Zabrus spp., E.g. Zabrus tenebrioides; from the order of Dermaptera z. B.
  • Delia antiqua Delia coarctata, Delia llorilega, Delia platura, Delia radicum, Dermatobia hominis, Drosophila spp., E.g. Drosophila melanogaster, Drosophila suzukii, Echinocnemus spp., Euleia heraclei, Fannia spp., Gasterophilus spp., Glossina spp., Haematopota spp., Hydrellia spp., Hydrellia griseola, Hylemya spp., Hippobosca spp., Hypoderma spp. Liriomyza spp., E.g. B.
  • Acyrthosiphon pisum Acrogonia spp., Aeneolamia spp., Agonoscena spp., Aleurocanthus spp., Aleyrodes proletella, Aleurolobus barodensis, Aleurothrixus lloccosus, Allocaridara malayensis, Amrasca spp., E.g. Amrasca bigutulla, Amrasca devastans, Anuraphis cardui, Aonidiella spp.
  • Aspidiella spp. Aspidiella spp., Aspidiotus spp., E.g. Aspidiotus nerii, Atanus spp., Aulacorthum solani, Bemisia tabaci, Blastopsylla occidentalis, Boreioglycaspis melaleucae, Brachycaudus helichrysi, Brachycolus spp., Brevicoryne brassicae, Cacopsylla spp., E.g.
  • Icerya purchasi Idiocerus spp., Idioscopus spp., Laodelphax striatellus, Lecanium spp., E.g.
  • B. Lecanium corni ( Parthenolecanium corni), Lepidosaphes spp., Z. Lepidosaphes ulmi, Lipaphis erysimi, Lopholeucaspis japonica, Lycorma americanula, Macrosiphum spp., E.g.
  • Macrosiphum euphorbiae Macrosiphum lilii, Macrosiphum rosae, Macrosteies facifrons, Mahanarva spp., Melanaphis sacchari, Metcalfiella spp., Metealfa pruinosa, Metopolophium dirhodum, Monellia costalis, Monelliopsis pecanis, Myzus spp., E.g.
  • Myzus ascalonicus Myzus cerasi, Myzus ligustri, Myzus ornatus, Myzus persicae, Myzus nicotianae, Nasonovia ribisnigri, Neomaskellia spp., Nephotettix spp., E.g. B.
  • Nephotettix cincticeps Nephotettix nigropictus, Nettigoniclla spectra, Nilaparvata lugens, Oncometopia spp., Orthezia praelonga, Oxya chinensis, Pachypsylla spp., Parabemisia myricae, Paratrioza spp., e.g. Paratrioza cockerelli, Parlatoria spp., Pemphigus spp., E.g. B. Pemphigus bursarius, Pemphigus populivenae, Peregrinus maidis, Perkinsiella spp., Phenacoccus spp., Z.
  • Pseudococcus calceolariae Pseudococcus comstocki, Pseudococcus longispinus, Pseudococcus maritimus, Pseudococcus viburni, Psyllopsis spp., Psylla spp., E.g. Psylla buxi, Psylla mali, Psylla pyri, Pteromalus spp., Pulvinaria spp., Pyrilla spp., Quadraspidiotus spp., E.g.
  • Quadraspidiotus juglansregiae Quadraspidiotus ostreaeformis, Quadraspidiotus perniciosus, Quesada gigas, Rastrococcus spp., Rhopalosiphum spp., E.g. Rhopalosiphum maidis, Rhopalosiphum oxyacanthae, Rhopalosiphum padi, Rhopalosiphum rufiabdominal, Saissetia spp., E.g.
  • Trioza spp. E.g. Trioza diospyri, Typhlocyba spp., Unaspis spp., Viteus vitifolii, Zygina spp .; from the subordination of Heteroptera z.
  • Aelia spp. Anasa tristis, Antestiopsis spp., Boisea spp., Blissus spp., Calocoris spp., Campylomma livida, Cavelerius spp., Cimex spp., E.g.
  • Cimex adjunctus Cimex hemipterus, Cimex lectularius, Cimex pilosellus, Collaria spp., Creontiades dilutus, Dasynus piperis, Dichelops furcatus, Diconocoris hewetti, Dysdercus spp., Euschistus spp., E.g.
  • Lygus elisus Lygus hesperus, Lygus lineolaris, Macropes excavatus, Megacopta cribraria, Miridae, Monaionion atratum, Nezara spp., Z. Nezara viridula, Nysius spp., Oebalus spp., Pentomidae, Piesma quadrata, Piezodorus spp., E.g.
  • Hoplocampa cookei Hoplocampa testudinea, Lasius spp., Linepithema (Iridiomyrmex) humile, Monomorium pharaonis, Paratrechina spp., Paravespula spp., Plagiolepis spp., Sirex spp., Solenopsis invicta, Tapinoma spp., Technomyrmex albipes, Urocerus spp. , Vespa spp., Z. Vespa crabro, Wasmannia auropunctata, Xeris spp .; from the order of Isopoda z.
  • Cydia nigricana Cydia pomonella, Dalaca noctuides, Diaphania spp., Diparopsis spp., Diatraea saccharalis, Earias spp., Ecdytolopha aurantium, Elasmopalpus lignosellus, Eidana saccharina, Ephestia spp., E.g.
  • Grapholita molesta Grapholita prunivora, Hedylepta spp., Helicoverpa spp., Z. Helicoverpa armigera, Helicoverpa zea, Heliothis spp.
  • Heliothis virescens Hofmannophila pseudospretella Homoeosoma spp., Homona spp., Hyponomeuta padella, Kakivoria ilavofasciata, Lampides spp., Laphygma spp., Laspeyresia molesta, Leucinodes orbonalis, Leucoptera spp., E.g. B.
  • Leucoptera coffeella Lithocolletis spp., Z. B. Lithocolletis blancardella, Lithophane antennata, Lobesia spp., Z. Lobesia botrana, Loxagrotis albicosta, Lymantria spp., E.g. B. Lymantria dispar, Lyonetia spp., Z. B.
  • Pieris rapae, Platynota stultana, Plodia interpunctella, Plusia spp., Plutella xylostella ( Plutella maculipennis), Prays spp., Prodenia spp., Protoparce spp., Pseudaletia spp., E.g. B. Pseudaletia unipuncta, Pseudoplusia includens, Pyrausta nubilalis, Rachiplusia nu, Schoenobius spp., Z. Schoenobius bipunctifer, Scirpophaga spp., E.g.
  • Trichoplusia ni Tryporyza incertulas, Tuta absolutea, Virachola spp .; from the order of Orthoptera or Saltatoria z.
  • Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis; from the order of Thysanoptera z.
  • Ctenolepisma spp. Lepisma saccharina, Lepismodes inquilinus, Thermobia domestica; from the class of Symphyla z. B. Scutigerella spp., Z. B. Scutigerella immaculata; Pests of the strain of Mollusca, z. B. from the class of Bivalvia, z. B. Dreissena spp .; and from the class of Gastropoda z. B. Arion spp., Z. B. Arion ater rufus, Biomphalaria spp., Bulinus spp., Deroceras spp., Z. B. Deroceras laeve, Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp .;
  • Bursaphelenchus cocophilus, Bursaphelenchus eremus, Bursaphelenchus xylophilus, Cacopaurus spp., E.g. Cacopaurus pestis, Criconemella spp., E.g. Criconemella curvata, Criconemella onoensis, Criconemella ornata, Criconemella rusium, Criconemella xenoplax ( Mesocriconema xenoplax), Criconemoides spp., E.g. Criconemoides ferniae, Criconemoides onoense, Criconemoides ornatum, Ditylenchus spp., E.g.
  • Meloidogyne spp. Longidorus africanus, Meloidogyne spp., E.g. Meloidogyne chitwoodi, Meloidogyne fallax, Meloidogyne hapla, Meloidogyne incognita, Meloinema spp., Nacobbus spp., Neotylenchus spp., Paralongidorus spp., Paraphelenchus spp., Paratrichodorus spp., E.g. Paratrichodorus minor, Paratylenchus spp., Pratylenchus spp., E.g.
  • Pratylenchus penetrans Pseudohalenchus spp., Psilenchus spp., Punctodera spp., Quinisulcius spp., Radopholus spp., E.g. Radopholus citrophilus, Radopholus similis, Rotylenchulus spp., Rotylenchus spp., Scutellonema spp., Subanguina spp., Trichodorus spp., E.g. Trichodorus obtusus, Trichodorus primitivus, Tylenchorhynchus spp., E.g. Tylenchorhynchus annulatus, Tylenchulus spp., E.g. B. Tylenchulus semipenetrans, Xiphinema spp., Z. B. Xiphinema index.
  • the compounds of the formula (I) or of the formula (II) may optionally also be used in certain concentrations or application rates as herbicides, safeners, growth regulators or agents for improving plant properties, as microbicides or gametocides, for example as fungicides, antimycotics, bactericides, viricides (including agents against viroids) or as agents against MLO (Mycoplasma-like-organism) and RLO (Rickettsia-like-organism). If appropriate, they can also be used as intermediates or precursors for the synthesis of further active ingredients. formulations
  • the present invention further relates to formulations and application forms prepared therefrom as pesticides such.
  • B. drench, drip and spray comprising at least one compound of formula (I) or formula ( ⁇ ).
  • the uses include other pesticides and / or effect-improving adjuvants such as penetration enhancers, e.g. As vegetable oils such as rapeseed oil, sunflower oil, mineral oils such as paraffin oils, alkyl esters of fatty acids such as rapeseed oil or soybean oil or alkanol alkoxylates and / or spreading agents such as alkyl siloxanes and / or salts, eg.
  • organic or inorganic ammonium or phosphonium salts such as ammonium sulfate or diammonium hydrogen phosphate and / or retention-promoting agents such.
  • organic or inorganic ammonium or phosphonium salts such as ammonium sulfate or diammonium hydrogen phosphate and / or retention-promoting agents such.
  • dioctyl sulfosuccinate or hydroxypropyl guar polymers and / or humectants such.
  • glycerol and / or fertilizers such as ammonium, potassium or phosphorus-containing fertilizer.
  • Typical formulations are, for example, water-soluble liquids (SL), emulsion concentrates (EC), emulsions in water (EW), suspension concentrates (SC, SE, FS, OD), water-dispersible granules (WG), granules (GR) and capsule concentrates (CS). ; these and other possible Formulation types are described, for example, by Crop Life International and in Pesticide Specifications, Manual on development and use of FAO and WHO specifications for pesticides, FAO Plant Production and Protection Papers - 173, prepared by the FAO / WHO Joint Meeting on Pesticide Specifications, 2004, ISBN: 9251048576 described. If appropriate, the formulations contain, in addition to one or more compounds of the formula (I) or of the formula (II), further agrochemical active compounds.
  • auxiliaries such as extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, antifreeze agents, biocides, thickeners and / or further auxiliaries, for example adjuvants.
  • An adjuvant in this context is a component that enhances the biological effect of the formulation without the component itself having a biological effect.
  • Examples of adjuvants are agents that promote retention, spreading behavior, adherence to the leaf surface, or penetration.
  • formulations are prepared in a known manner, for. Example by mixing the compounds of formula (I) or the formula ( ⁇ ) with excipients such as extenders, solvents and / or solid carriers and / or other excipients such as surface-active substances.
  • excipients such as extenders, solvents and / or solid carriers and / or other excipients such as surface-active substances.
  • the preparation of the formulations is carried out either in suitable systems or before or during use.
  • Suitable extenders z As water, polar and nonpolar organic chemical liquids such. B. from the classes of aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), alcohols and polyols (which may also be substituted, etherified and / or esterified), the ketones (such as acetone, cyclohexanone ), Esters (including fats and oils) and (poly) ethers, simple and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, sulfones and sulfoxides (such as dimethylsulfoxide).
  • aromatic and non-aromatic hydrocarbons such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes
  • alcohols and polyols which may also be substituted, etherified and / or
  • Suitable liquid solvents are essentially: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, eg.
  • Suitable solvents are, for example, aromatic hydrocarbons such. As xylene, toluene or alkylnaphthalenes, chlorinated aromatic or chlorinated aliphatic hydrocarbons such. As chlorobenzene, chloroethylene, or methylene chloride, aliphatic hydrocarbons such. As cyclohexane, paraffins, petroleum fractions, mineral and vegetable oils, alcohols such. As methanol, ethanol, iso-propanol, butanol or glycol and their ethers and esters, ketones such.
  • acetone methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strong polar solvents such as dimethyl sulfoxide and water.
  • all suitable carriers can be used.
  • carriers are in particular question: z.
  • ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic minerals such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes and / or solid fertilizers. Mixtures of such carriers can also be used.
  • Suitable carriers for granules are: z.
  • liquefied gaseous diluents or solvents can be used.
  • extenders or carriers which are gaseous at normal temperature and under atmospheric pressure, for.
  • aerosol propellants such as halogenated hydrocarbons and butane, propane, nitrogen and carbon dioxide.
  • Examples of emulsifying and / or foaming agents, dispersants or wetting agents having ionic or non-ionic properties or mixtures of these surfactants are salts of polyacrylic acid, salts of lignosulfonic acid, salts of phenolsulfonic acid or naphthalenesulfonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, with substituted phenols (preferably alkylphenols or arylphenols), salts of sulfosuccinic acid esters, taurine derivatives (preferably alkyl taurates), phosphoric acid esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols and derivatives of the compounds containing sulfates, sulfonates and phosphates, e.g.
  • alkylaryl polyglycol ethers alkylsulfonates, alkyl sulfates, arylsulfonates, protein hydrolysates, lignin-Sulphatablaugen and methylcellulose.
  • a surfactant is advantageous when one of the compounds of formula (I) or formula (II) and / or one of the inert carriers is not soluble in water and when applied in water.
  • dyes such as inorganic pigments, eg.
  • iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and Metallphthalocyaninfarbstoffe and nutrient and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc may be present.
  • Stabilizers such as cold stabilizers, preservatives, antioxidants, light stabilizers or other chemical and / or physical stability-improving agents may also be present. It may also contain foam-forming agents or defoamers.
  • formulations and the use forms derived therefrom may also contain, as additional auxiliaries, adhesives such as carboxymethylcellulose, natural and synthetic powdery, granular or latex-containing polymers such as gum arabic, polyvinyl alcohol, polyvinyl acetate and natural phospholipids such as cephalins and lecithins and synthetic phospholipids.
  • additional auxiliaries may be mineral and vegetable oils.
  • auxiliaries may be present in the formulations and in the use forms derived therefrom.
  • additives are, for example, perfumes, protective colloids, binders, adhesives, thickeners, thixotropic substances, penetration promoters, retention promoters, stabilizers, sequestrants, complexing agents, humectants, spreading agents.
  • the compounds of formula (I) or formula (II) may be combined with any solid or liquid additive commonly used for formulation purposes.
  • Retentionsiörderer are all those substances that reduce the dynamic surface tension such as dioctylsulfosuccinate or increase the visco-elasticity such as hydroxypropyl guar polymers.
  • Suitable penetration promoters in the present context are all those substances which are usually used to improve the penetration of agrochemical active substances into plants.
  • Penetration promoters are in this context defined by the fact that they can penetrate from the (usually aqueous) application broth and / or from the spray coating into the cuticle of the plant and thereby increase the mobility of the active ingredients in the cuticle.
  • the method described in the literature can be used to determine this property.
  • Examples include alcohol alkoxylates such as Kokosiettethoxylat (10) or Isotridecylethoxylat (12), fatty acid esters such as rapeseed oil or soybean oil, Fettaminalkoxylate such as tallowamine ethoxylate (15) or ammonium and / or phosphonium salts such as ammonium sulfate or diammonium hydrogen phosphate.
  • alcohol alkoxylates such as Kokosiettethoxylat (10) or Isotridecylethoxylat (12)
  • fatty acid esters such as rapeseed oil or soybean oil
  • Fettaminalkoxylate such as tallowamine ethoxylate (15) or ammonium and / or phosphonium salts such as ammonium sulfate or diammonium hydrogen phosphate.
  • the formulations preferably contain between 0.00000001 and 98% by weight of the compound of the formula (I) or of the formula (II), particularly preferably between 0.01 and 95% by weight of the compound of the formula (I) or of the formula (II ), very particularly preferably between 0.5 and 90% by weight of the compound of the formula (I) or of the formula (II), based on the weight of the formulation.
  • the content of the compound of the formula (I) or the formula (II) in the forms of application prepared from the formulations (in particular pesticides) can vary within wide ranges.
  • the concentration of the compound of the formula (I) or the formula (II) in the use forms may usually be between 0.00000001 and 95% by weight of the compound of the formula (I) or the formula (II), preferably between 0.00001 and 1 Weight, based on the weight of the application form lie.
  • the application is done in a custom forms adapted to the application.
  • the compounds of formula (I) or formula ( ⁇ ) can also be mixed with one or more suitable fungicides, bactericides, acaricides, molluscicides, nematicides, insecticides, Mikrobiologika, beneficial insects, herbicides, fertilizers, bird repellants, Phytotonics, sterilizing agents, safeners, Semiochemicals and / or plant growth regulators are used to z. B. to broaden the spectrum of action, to extend the duration of action, to increase the rate of action, to prevent repellence or to prevent development of resistance. Furthermore, such drug combinations, plant growth and / or tolerance to abiotic factors such. As high or low temperatures, improve against dryness or increased water or Bodensalzgehalt.
  • the compounds of the formula (I) or of the formula (II) may be present in admixture with other active substances or semiochemicals such as attractants and / or avian repellents and / or plant activators and / or growth regulators and / or fertilizers.
  • the compounds of formula (I) or formula ( ⁇ ) can be used to improve plant properties such as growth, yield and quality of the crop.
  • the compounds of the formula (I) or of the formula (II) are present in formulations or in the formulations prepared from these formulations in admixture with other compounds, preferably those as described below. If one of the following compounds can occur in different tautomeric forms, these forms are also included, even if they were not explicitly mentioned in each case. In addition, if they are capable of doing so on the basis of their functional groups, all said mixing partners can optionally form salts with suitable bases or acids.
  • Acetylcholinesterase (AChE) inhibitors such as carbamates, e.g. B. alanycarb, aldicarb, bendiocarb, benfuracarb, butocarboxime, butoxycarboxime, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, trimethacarb, XMC and xylylcarb or organophosphates, e.g.
  • carbamates e.g. B. alanycarb, aldicarb, bendiocarb, benfuracarb, butocarboxime, butoxycarboxime, carbaryl, carbofuran, carbosul
  • GABA-controlled chloride channel B loosened such as cyclodiene organochlorines, e.g. As chlordane and endosulfan or Phenylpyrazole (Fiprole), z. Ethiprol and fipronil.
  • cyclodiene organochlorines e.g. As chlordane and endosulfan or Phenylpyrazole (Fiprole), z. Ethiprol and fipronil.
  • sodium channel modulators such as pyrethroids, e.g. A-rinathrin, allethrin, d-cis-trans-allethrin, d-trans-allethrin, bifenthrin, bioallethrin, bioallethrin-S-cyclopentenyl isomer, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma Cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin [(lR) -trans isomer], deltamethrin, empenthrin [(EZ) - (IR) isomer], est
  • nAChR nicotinic acetylcholine receptor
  • neonicotinoids e.g. Acetaminopride, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam or nicotine or sulfoxalor or flupyradifurone.
  • AUotic nicotinic acetylcholine receptor (nAChR) modulators such as spinosyn, e.g. B. spinetoram and spinosad.
  • AUosteric modulators of the glutamate-dependent chloride channel such as avermectins / milbemycins, e.g. Abamectin, emamectin benzoate, lepimectin and milbemectin.
  • juvenile hormone mimetics such as juvenile hormone analogs, e.g. As hydroprene, kinoprene and methoprene or fenoxycarb or pyriproxyfen.
  • Various non-specific (multi-site) inhibitors such as alkyl halides, e.g. Methyl bromide and other alkyl halides; or chloropicrin or sulfuryl fluoride or borax or crushing tartar or methyl isocyanate producers, e.g. Diazomet and Metam.
  • modulators of chordotonic organs e.g. As pymetrozine or flonicamide.
  • mite growth inhibitors such as. Clofentezine, hexythiazox and dillovidazine or etoxazole.
  • Microbial disruptors of insect intestinal membrane such.
  • inhibitors of mitochondrial ATP synthase such as ATP disruptors such as diafenthiuron or organotin compounds, e.g. As azocyclotine, cyhexatin and fenbutatin oxide or propargite or tetradifone.
  • Blockers of the nicotinic acetylcholine receptor channel such as Bensultap, Cartap hydrochloride, thiocyclam and thiosultap sodium.
  • Type 0 inhibitors of chitin biosynthesis such as bistrifluron, chlorofluorazuron, dillubenzuron, flucycloxuron, flufenoxuron, hexallumuron, lufenuron, novaluron, novillumuron, teflubenzuron and triflumuron.
  • inhibitors of chitin biosynthesis type 1, such as buprofezin.
  • Skinning disruptor especially in dipterans, i.e., two-winged, such as cyromazine.
  • ecdysone receptor agonists such as chromafenozide, halofenozide, methoxyfenozide and tebufenozide.
  • octopamine receptor agonists such as amitraz.
  • Electron Transport Inhibitors such as METI acaricides, e.g. Fenazaquin, Fenpyroximate, Pyrimidia, Pyridaben, Tebufenpyrad and Tolfenpyrad or Rotenone (Derris).
  • METI acaricides e.g. Fenazaquin, Fenpyroximate, Pyrimidia, Pyridaben, Tebufenpyrad and Tolfenpyrad or Rotenone (Derris).
  • (23) inhibitors of acetyl-CoA carboxylase such as tetronic and tetramic acid derivatives, e.g. Spirodiclofen, spiromesifen and spirotetramat.
  • inhibitors of mitochondrial complex IV electron transport such as phosphines, e.g. As aluminum phosphide, calcium phosphide, phosphine and zinc phosphide or cyanides,
  • inhibitors of mitochondrial complex II electron transport such as beta-ketonitrile derivatives, e.g. Cyenopyrafen and Cyflumetofen and carboxanilides such as Pyflubumid.
  • ryanodine receptor modulators such as diamides, e.g. B.
  • All of the above-mentioned mixture partners of classes (1) to (15), if they are capable of doing so on the basis of their functional groups, may optionally form salts with suitable bases or acids.
  • All of the mentioned fungicidal mixture partners of classes (1) to (15) may optionally include tautomeric forms.
  • inhibitors of ergosterol biosynthesis for example, (1,001) cyproconazole, (1,002) difenoconazole, (1,003) epoxiconazole, (1,004) fenhexamide, (1,005) fenpropidin, (1,006) fenpropimorph, (1,007) fenpyrazamine, (1,008) fluquinconazole, ( 1,009) flutriafol, (1,010) imazalil, (1,011) imazalil sulfate, (1,012) ipconazole, (1,013) metconazole, (1,014) myclobutanil, (1,015) paclobutrazole, (1,016) prochlorazole, (1,017) propiconazole, (1,018) prothioconazole, (1.019) pyrisoxazole, (1.020) spiroxamine, (1.021) tebuconazole, (1.022) tetracon
  • inhibitors of the respiratory chain on complex I or II for example (2.001) benzovindiflupyr, (2.002) bixafen, (2.003) boscalid, (2.004) carboxin, (2.005) fluopyram, (2.006) flutolanil, (2.007) fluxapyroxad, (2.008) furametpyr , (2.009) isofetamide, (2.010) isopyrazam (anti-epimeric enantiomer 1R, 4S, 9S), (2.011) isopyrazam (anti-epimeric enantiomer 1S, 4R, 9R), (2.012) isopyrazam (anti- epimeric racemate 1RS, 4SR , 9SR), (2.013) isopyrazam (mixture of the syn-epimeric racemate 1RS, 4SR, 9RS and the anti-epimeric racemate 1RS, 4SR, 9SR), (2.014) isopyrazam (syn-epimeric enantiomer 1R, 4
  • 3) respiratory chain inhibitors on complex III for example, (3,001) ametoctradine, (3,002) amisulbrom, (3,003) azoxystrobin, (3,004) coumethoxystrobin, (3,005) coumoxystrobin, (3,006) cyazofamide, (3,007) dimoxystrobin, (3,008) enoxastrobin, (3,009) famoxadone, (3,010) fenamidone, (3,011) flufenoxystrobin, (3,012) fluoxastrobin, (3,013) kresoxime methyl, (3,014) metominostrobin, (3,015) orysastrobin, (3,016) picoxystrobin, (3,017) pyraclostrobin, (3,018) Pyrametostrobin, (3.019) Pyraoxystrobin, (3.020) Trifloxystrobin (3.021) (2E) -2- ⁇ 2 - [( ⁇ [(IE)
  • inhibitors of mitosis and cell division for example (4,001) carbendazim, (4,002) diethofencarb, (4,003) ethaboxam, (4,004) fluopicolide, (4,005) pencycuron, (4,006) thiabendazole, (4,007)
  • Inhibitors of ATP production for example, (8,001) silthiofam.
  • inhibitors of cell wall synthesis for example (9.001) benthiavalicarb, (9.002) dimethomorph, (9.003) flumorph, (9.004) iprovalicarb, (9.005) mandipropamide, (9.006) pyrimorph, (9.007) Valifenalate, (9.008) (2 ⁇ ) -3- (4- ⁇ .- ⁇ 1 ⁇ 1 ⁇ 6 ⁇ 1) -3- (2- ⁇ 1 ⁇ 1 ⁇ ⁇ ( ⁇ -4- ⁇ 1) -1- ( ⁇ 1 ⁇ 1 ⁇ -4- ⁇ 1) ⁇ -2-6 ⁇ - 1-one, (9,009) (2 ⁇ ) -3- (4- ⁇ .- ⁇ 1 ⁇ 1 ⁇ 6 ⁇ 1) -3- (2- ⁇ 1 ⁇ 1 ⁇ ( ⁇ -4- ⁇ 1) -1- ( ⁇ 1 ⁇ 1 ⁇ -4- ⁇ 1) ⁇ -2- 6 ⁇ -1 ⁇ .
  • Inhibitors of lipid and membrane synthesis for example (10,001) propamocarb, (10,002) propamocarb hydrochloride, (10,003) tolclofos-methyl.
  • Inhibitors of melanin biosynthesis for example, (11.001) tricyclazole, (11.002) 2,2,2-trifluoroethyl ⁇ 3-methyl-1 - [(4-methylbenzoyl) amino] butan-2-yl ⁇ carbamate.
  • inhibitors of signal transduction for example, (13.001) fludioxonil, (13.002) iprodione, (13.003) procymidone, (13.004) proquinazide, (13.005) quinoxyfen, (13.006) vinclozolin.
  • the compounds of the formula (I) or the formula (II) can be combined with biological pesticides.
  • biological pesticides include, in particular, bacteria, fungi, yeasts, plant extracts and those products formed by microorganisms, including proteins and secondary metabolites.
  • Biological pesticides include bacteria such as spore-forming bacteria, root-colonizing bacteria and bacteria that act as biological insecticides, fungicides or nematicides.
  • Bacillus amyloliquefaciens strain FZB42 (DSM 231179), or Bacillus cereus, in particular B. cereus strain CNCM 1-1562 or Bacillus firmus, strain 1-1582 (Accession number CNCM 1-1582) or Bacillus pumilus, especially strain GB34 (Accession no. ATCC 700814) and strain QST2808 (Accession No. NRRL B-30087), or Bacillus subtilis, especially strain GB03 (Accession No. ATCC SD-1397), or Bacillus subtilis strain QST713 (Accession No. NRRL B-21661) or Bacillus subtilis Strain OST 30002 (Accession No.
  • NRRL B-50421 Bacillus thuringiensis, in particular B. thuringiensis subspecies israelensis (serotype H-14), strain AM65-52 (Accession No. ATCC 1276), or B. thuringiensis subsp. aizawai, in particular strain ABTS-1857 (SD-1372), or B. thuringiensis subsp. kurstaki strain HD-1, or B. thuringiensis subsp. tenebrionis strain NB 176 (SD-5428), Pasteuria penetrans, Pasteuria spp.
  • B. thuringiensis subspecies israelensis serotype H-14
  • strain AM65-52 accesion No. ATCC 1276
  • B. thuringiensis subsp. aizawai in particular strain ABTS-1857 (SD-1372)
  • B. thuringiensis subsp. kurstaki strain HD-1 or B. thuringiensis subs
  • fungi and yeasts which can be used as biological pesticides are:
  • Beauveria bassiana in particular strain ATCC 74040, coniothyrium minitans, in particular strain CON / M / 91-8 (Accession No. DSM-9660), Lecanicillium spp., In particular strain HRO LEC 12, Lecanicillium lecanii (formerly known as Verticillium lecanii), in particular Strain KV01, Metarhizium anisopliae, in particular strain F52 (DSM3884 / ATCC 90448), Metschnikowia fructicola, in particular strain NRRL Y-30752, Paecilomyces fumosoroseus (new: Isaria fumosorosea), in particular strain IFPC 200613, or strain Apopka 97 (Accesion No.
  • Paecilomyces lilacinus in particular P. lilacinus strain 251 (AGAL 89/030550), Talaromyces flavus, in particular strain VI 17b, Trichoderma atroviride, in particular strain SCI (Accession Number CBS 122089), Trichoderma harzianum, in particular T. harzianum rifai T39. (Accession Number CNCM 1-952).
  • viruses that can be used or used as biological pesticides are:
  • Adoxophyes orana Apple peel wrapper
  • Granulosis virus GV
  • Cydia pomonella codling moth
  • Granulosis virus GV
  • Helicoverpa armiger a cotton capsule worm
  • Nuclear polyhedrosis virus NPV
  • Spodoptera exigua mNPV Spodoptera frugiperda (armyworm) mNPV
  • Spodoptera littoralis Africann cotton worm
  • bacteria and fungi which are added as Jnokulant 'plants or plant parts or plant organs and promote by their special properties, plant growth and plant health. Examples are:
  • Agrobacterium spp. Azorhizobium caulinodans, Azospirillum spp., Azotobacter spp., Bradyrhizobium spp., Burkholderia spp., In particular Burkholderia cepacia (formerly known as Pseudomonas cepacia), Gigaspora spp., Or Gigaspora monosporum, Glomus spp., Laccaria spp., Lactobacillus buchneri, Paraglomus spp., Pisolithus tinctorus, Pseudomonas spp., Rhizobium spp., Especially Rhizobium trifolii, Rhizopogon spp., Scleroderma spp., Suillus spp., Streptomyces spp.
  • plant extracts and those products formed by microorganisms, including proteins and secondary metabolites, which can be used as biological pesticides are:
  • the compounds of the formula (I) or of the formula (II) can be combined with safeners, for example Benoxacor, Cloquintocet (-mexyl), Cyometrinil, Cyprosulfamide, Dichlormid, Fenchlorazole (-ethyl), Fenclorim, Flurazole, Fluxofenim, Furilazole, Isoxadifen (-ethyl), mefenpyr (-diethyl), naphthalic anhydrides, oxabetrinil, 2-methoxy-N - ( ⁇ 4-
  • safeners for example Benoxacor, Cloquintocet (-mexyl), Cyometrinil, Cyprosulfamide, Dichlormid, Fenchlorazole (-ethyl), Fenclorim, Flurazole, Fluxofenim, Furilazole, Isoxadifen (-ethyl), mefenpyr (-diethyl), naphthalic
  • plants and parts of plants can be treated.
  • Plants are understood to mean all plants and plant populations, such as desirable and unwanted wild plants or crops (including naturally occurring crops), for example cereals (wheat, rice, triticale, barley, rye, oats), corn, soybeans, potatoes, sugar beets, sugarcane, tomatoes , Paprika, cucumber, melon, carrot, watermelon, onion, lettuce, spinach, leek, beans, Brassica oleracea (eg cabbage) and other vegetables, cotton, tobacco, rapeseed, as well as fruit plants (with the fruits apples, pears, Citrus fruits and grapes).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can or can not be protected by plant breeders' rights.
  • Plants are to be understood as meaning all stages of development, such as seeds, cuttings, young (unripe) plants and mature plants.
  • Plant parts are understood to mean all aboveground and subterranean parts and organs of plants such as shoot, leaf, flower and root, examples of which include leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds, and roots, tubers and rhizomes.
  • the plant parts also include harvested plants or harvested plant parts as well as vegetative and generative propagation material, for example cuttings, tubers, rhizomes, offshoots and seeds.
  • the treatment according to the invention of the plants and plant parts with the compounds of the formula (I) or of the formula (II) is carried out directly or by the action of the compounds on the environment Habitat or storage room according to the usual treatment methods, eg. B. by immersion, spraying, evaporation, nebulization, scattering, brushing, injecting and propagating material, especially in seeds, further by single or multi-layer wrapping.
  • plants and their parts can be treated.
  • wild-type or plant species and plant varieties obtained by conventional biological breeding methods such as crossing or protoplast fusion and parts thereof are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering, if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated.
  • the term "parts” or “parts of plants” or “parts of plants” has been explained above.
  • Propes of the respective commercially available or in use plant varieties are particularly preferably treated according to the invention.
  • PV plants are understood as meaning plants with new properties (“traits”) have been obtained by conventional breeding, by mutagenesis or by recombinant DNA techniques. These may be varieties, breeds, biotypes and genotypes.
  • the preferred plants or plant varieties to be treated according to the invention to be treated include all plants which, as a result of the genetic engineering modification, obtained genetic material which gives these plants particularly advantageous valuable properties ("traits").
  • traits are better plant growth, increased tolerance to high or low temperatures, increased tolerance to dryness or to bottoms salt, increased flowering, easier harvesting, acceleration of ripeness, higher crop yields, higher quality and / or higher nutritional value of the harvested products , higher shelf life and / or workability of the harvested products.
  • Further and particularly emphasized examples of such properties are an increased resistance of the plants against animal and microbial pests, such as insects, arachnids, nematodes, mites, snails, causes z.
  • toxins produced in the plants in particular those produced by the genetic material from Bacillus thuringiensis (for example by the genes CrylA (a), CrylA (b), CrylA (c), CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CrylF and their combinations) are produced in the plants, further increased resistance of the plants against plant pathogenic fungi, bacteria and / or viruses, causes z.
  • systemically acquired resistance SAR
  • systemin phytoalexins
  • elicitors elicitors
  • resistance genes and correspondingly expressed proteins and toxins as well as an increased tolerance of the plants to certain herbicidal active compounds, for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (eg "PAT "-Gene).
  • herbicidal active compounds for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (eg "PAT "-Gene).
  • PAT phosphinotricin
  • transgenic plants are the important crops, such as cereals (Wheat, rice, triticale, barley, rye, oats), corn, soy, potato, sugar beets, sugar cane, tomatoes, peas and other vegetables, cotton, tobacco, rape, as well as fruit plants (with the fruits apples, pears, citrus fruits and grapes ), with particular emphasis on corn, soy, wheat, rice, potato, cotton, sugarcane, tobacco and oilseed rape. Traits that are particularly emphasized are the increased resistance of the plants to insects, arachnids, nematodes and snails.
  • the treatment of the plants and plant parts with the compounds of the formula (I) or the formula ( ⁇ ) is carried out directly or by acting on their environment, habitat or storage space according to the usual treatment methods, eg. B. by dipping, spraying, spraying, sprinkling, vaporizing, atomizing, atomizing, scattering, foaming, brushing, spreading, injecting, pouring (drenchen), drip irrigation and propagating material, especially in seeds, further by dry pickling, wet pickling, slurry pickling, encrusting It is also possible to apply the compounds of the formula (I) or the formula (II) by the ultra-low-volume method or the use form or the compound of the formula (I) or the Inject formula ( ⁇ ) itself into the soil.
  • a preferred direct treatment of the plants is foliar application, i. H. the compounds of the formula (I) or of the formula (II) are applied to the foliage, wherein the treatment frequency and the application rate should be adjusted to the infestation pressure of the respective pest.
  • the compounds of the formula (I) or of the formula (II) also enter the plants via the root system.
  • the treatment of the plants is then carried out by the action of the compounds of formula (I) or formula ( ⁇ ) on the habitat of the plant. This can be, for example, by drenching, mixing into the soil or the nutrient solution, d. H.
  • the location of the plant e.g., soil or hydroponic systems
  • a liquid form of the compounds of formula (I) or formula (II) or by the soil application, i. H.
  • the compounds of the formula (I) or of the formula (II) according to the invention are introduced in solid form (for example in the form of a granulate) into the location of the plants or the formula (II). In water rice crops, this may also be by metered addition of the compound of formula (I) or formula (II) in a solid form (eg as granules) into a flooded paddy field. seed treatment
  • seed treatment methods should also include the intrinsic insecticidal properties of pest-resistant transgenic plants in order to achieve optimum protection of the seed and also of the germinating plant with minimal pest control effort.
  • the present invention therefore more particularly relates to a method of protecting seeds and germinating plants from attack by pests by treating the seed with one of the compounds of formula (I) or formula (II).
  • the method according to the invention for the protection of seeds and germinating plants from infestation by pests further comprises a method in which the seed is treated simultaneously in one operation or sequentially with a compound of formula (I) or formula (II) and a mixture component. It also further comprises a method in which the seed is treated at different times with a compound of the formula (I) or the formula (II) and a mixture component.
  • the invention also relates to the use of the compounds of the formula (I) or of the formula (II) for the treatment of seed for the protection of the seed and the resulting plant from animal pests.
  • the invention relates to seed which has been treated for protection against animal pests with a compound of the formula (I) or the formula ( ⁇ ) according to the invention.
  • the invention also relates to seed treated at the same time with a compound of formula (I) or formula (II) and a mixture component.
  • the invention further relates to seed which has been treated at different times with a compound of the formula (I) or the formula (II) and a mixture component.
  • the individual substances may be present in different layers on the seed.
  • the layers which comprise a compound of the formula (I) or of the formula (II) and of the mixture components may optionally be separated by an intermediate layer.
  • the invention also relates to seed in which a compound of the formula (I) or the formula (II) and a mixture component are applied as a constituent of an envelope or as a further layer or further layers in addition to an envelope. Furthermore, the invention relates to seed which, after treatment with a compound of the formula (I) or the formula (II), is subjected to a film coating process in order to avoid dust abrasion on the seed.
  • Another advantage is the fact that by treating the seed with a compound of formula (I) or the formula ( ⁇ ) germination and emergence of the treated seed can be promoted.
  • Compounds of formula (I) or formula (II) may also be used in combination with signal technology agents whereby better colonization with symbionts such as rhizobia, mycorrhiza and / or endophytic bacteria or fungi takes place and / or occurs an optimized nitrogen fixation comes.
  • symbionts such as rhizobia, mycorrhiza and / or endophytic bacteria or fungi takes place and / or occurs an optimized nitrogen fixation comes.
  • the compounds of the formula (I) or of the formula (II) are suitable for the protection of seed of any plant variety used in agriculture, in the greenhouse, in forests or in horticulture.
  • these are seeds of cereals (eg wheat, barley, rye, millet and oats), corn, cotton, soy, rice, potatoes, sunflower, coffee, tobacco, canola, rape, turnip (eg Sugar beet and fodder beet), peanut, vegetables (eg tomato, cucumber, bean, cabbage, onions and lettuce), fruit plants, turf and ornamental plants.
  • cereals eg wheat, barley, rye and oats
  • corn, soybean, cotton, canola, oilseed rape, vegetables and rice are examples of seeds of cereals (such as wheat, barley, rye and oats), corn, soybean, cotton, canola, oilseed rape, vegetables and rice.
  • transgenic seed with a compound of the formula (I) or the formula (II) is also of particular importance.
  • the heterologous genes in transgenic seed can come from microorganisms such as Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • the present invention is particularly useful for the treatment of transgenic seed containing at least one heterologous gene derived from Bacillus sp. comes.
  • the compound of the formula (I) or the formula (II) is applied to the seed.
  • the seed is treated in a state where it is so stable that no damage occurs during the treatment.
  • the treatment of the seed can be done at any time between harvesting and sowing.
  • seed is used which has been separated from the plant and freed from flasks, shells, stems, hulls, wool or pulp.
  • seed may be used that has been harvested, cleaned and dried to a moisture content that is storable.
  • seed can be used, which after drying z. B. was treated with water and then dried again, for example, priming.
  • care must be taken in the treatment of seed to ensure that the amount of compound of formula (I) u or formula ( ⁇ ) and / or other additives applied to the seed is not such as to affect germination of the seed the resulting plant is not damaged. This is especially important for active ingredients, which can show phytotoxic effects in certain application rates.
  • the compounds of the formula (I) or of the formula (II) are generally applied to the seed in the form of a suitable formulation. Suitable formulations and methods for seed treatment are known to those skilled in the art.
  • the compounds of the formula (I) or of the formula (II) can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other seed coating compositions, as well as ULV formulations.
  • formulations are prepared in a known manner by mixing the compounds of formula (I) or formula ( ⁇ ) with conventional additives, such as conventional extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives , secondary thickeners, glues, gibberellins and even water.
  • conventional additives such as conventional extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives , secondary thickeners, glues, gibberellins and even water.
  • Dyes which may be present in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both water-insoluble pigments and water-soluble dyes are useful in this case. Examples which may be mentioned under the names rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1 known dyes.
  • Suitable wetting agents which may be present in the seed dressing formulations which can be used according to the invention are all wetting agents customary for the formulation of agrochemical active compounds promoting substances in question.
  • Preferably used are alkylnaphthalenesulfonates such as diisopropyl or diisobutylnaphthalenesulfonates.
  • Suitable dispersants and / or emulsifiers which may be present in the seed dressing formulations which can be used according to the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemical active compounds. Preference is given to using nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants.
  • Particularly suitable nonionic dispersants are, in particular, ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers and tri-stryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are in particular lignosulfonates, polyacrylic acid salts and arylsulfonate-formaldehyde condensates.
  • Defoamers which may be present in the seed-dressing formulations which can be used according to the invention are all foam-inhibiting substances customary for the formulation of agrochemical active compounds.
  • Defoamers which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Examples include dichlorophen and Benzylalkoholhemiformal.
  • Suitable secondary thickeners which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and finely divided silica.
  • Suitable adhesives which may be present in the seed dressing formulations which can be used according to the invention are all customary binders which can be used in pickling agents.
  • polyvinylpyrrolidone polyvinyl acetate, polyvinyl alcohol and Tylose.
  • the gibberellins are known (see R. Wegler "Chemie der convinced- und Swdlingsbekungsstoff", Vol 2, Springer Verlag, 1970, pages 401-412).
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water
  • the concentrates or the preparations obtainable therefrom by dilution with water may be used for dressing the seeds of cereals such as wheat, barley, rye, oats and Triticale, as well as the seeds of corn, rice, oilseed rape, peas, beans, cotton, sunflower, soy and beets or vegetable seed of various nature.
  • the seed dressing formulations which can be used according to the invention or their dilute application forms can also be used for pickling seeds of transgenic plants.
  • the seed dressing formulations which can be used according to the invention or the use forms prepared therefrom by the addition of water
  • all mixing devices which can usually be used for the dressing can be considered.
  • the seed is placed in a batch or continuous mixer, adding either desired amount of seed dressing formulations, either as such or after prior dilution with water, and until the formulation is evenly distributed mix the seed.
  • a drying process follows.
  • the application rate of the seed dressing formulations which can be used according to the invention can be varied within a relatively wide range. It depends on the particular content of the compounds of the formula (I) or of the formula (II) in the formulations and according to the seed.
  • the application rates in the compound of the formula (I) or of the formula (II) are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 15 g per kilogram of seed.
  • the compounds of formula (I) or of formula (II) are active against animal parasites, in particular ectoparasites or endoparasites.
  • the term endoparasite includes in particular helminths and protozoa such as coccidia.
  • Ectoparasites are typically and preferably arthropods, especially insects or acarids.
  • the compounds of the formula (I) or of the formula (I), which have a favorable toxicity to warm-blooded animals, are suitable for the control of parasites used in livestock and animal husbandry in livestock, breeding animals, zoo animals, laboratory animals, Experimental animals and pets occur. They are effective against all or individual stages of parasite development.
  • Farm animals include, for example, mammals such as sheep, goats, horses, donkeys, camels, buffaloes, rabbits, reindeer, fallow deer, and especially cattle and pigs; or poultry such as turkeys, ducks, geese and, in particular, chickens; or fish or shellfish, e.g. As in aquaculture, or optionally insects such as bees.
  • the domestic animals include, for example, mammals such as hamsters, guinea pigs, rats, mice, chinchillas, ferrets, and especially dogs, cats, caged birds; Reptiles, amphibians or aquarium fish.
  • the compounds of the formula (I) or the formula (II) are administered to mammals.
  • the compounds of the formula (I) or of the formula (II) are administered to birds, namely caged birds or, in particular, poultry.
  • birds namely caged birds or, in particular, poultry.
  • death and performance reductions in meat, milk, wool, hides, eggs, honey and the like
  • a more economical and easier animal husbandry is possible and a better welfare of the animals is achievable.
  • controlling means that the compounds of the formula (I) or the formula ( ⁇ ) are effective for the occurrence of the respective parasite in an animal that is infected with such parasites is infected to a harmless extent, is reduced. More specifically, “combat” in the present context means that the compounds of the formula (I) or the formula ( ⁇ ) kill the respective parasite, prevent its growth or prevent its replication.
  • the arthropods include, but are not limited to, the order Anoplurida, for example Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp .; from the order Mallophagida and the suborders Amblycerina and Ischnocerina, for example Bovicola spp., Damalina spp., Felicola spp .; Lepikentron spp., Menopon spp., Trichodectes spp., Trimenopon spp., Trinoton spp., Werneckiella spp; from the order Diptera and the suborders Nematocerina and Brachycerina, for example Aedes spp., Anopheles spp., Atylotus spp., Braula spp., Calliphora spp., Chrysomy
  • Melophagus spp. Melophagus spp., Morellia spp., Musca spp., Odagmia spp., oestrus spp., Philipomyia spp., Phlebotomus spp., Rhinoestrus spp., Sarcophaga spp., Simulium spp., Stomoxys spp., Tabanus spp., Tipula spp., Wilhelmia spp., Wohlfahrtia spp .; from the order Siphonaptrida, for example Ceratophyllus spp., Ctenocephalides spp., Pulex spp., Tunga spp., Xenopsylla spp .; from the order Heteropterida, for example Cimex spp., Panstrongylus spp., Rhodnius spp., Triatoma spp .; as well as pest
  • Metastigmata From the subclass Akari (Acarina) and the order Metastigmata, for example from the family Argasidae, such as Argas spp., Ornithodorus spp., Otobius spp., From the family Ixodidae, such as Amblyomma spp., Dermacentor spp., Haemaphysalis spp. Hyalomma spp., Ixodes spp., Rhipicephalus (Boophilus) spp., Rhipicephalus spp.
  • Argasidae such as Argas spp., Ornithodorus spp., Otobius spp.
  • Ixodidae such as Amblyomma spp., Dermacentor spp., Haemaphysalis spp. Hyalomma spp., Ixodes spp., Rhipicephal
  • parasitic protozoa examples include, but are not limited to: Mastigophora (Flagellata), such as:
  • Metamonada from the order Vaccinia spp., Spironucleus spp.
  • Trichomonadida for example Histomonas spp., Pentatrichomonas spp., Tetratrichomonas spp., Trichomonas spp., Tritrichomonas spp.
  • Euglenozoa from the order Trypanosomatida for example Leishmania spp., Trypanosoma spp. Sarcomastigophora (Rhizopoda), such as Entamoebidae, for example Entamoeba spp., Centramoebidae, for example Acanthamoeba sp., Euamoebidae, e.g. Hartmanella sp.
  • Alveolata such as Apicomplexa (Sporozoa): z. Cryptosporidium spp .; from the order Eimeriida for example Besnoitia spp., Cystoisospora spp., Eimeria spp., Hammondia spp., Isospora spp., Neospora spp., Sarcocystis spp., Toxoplasma spp .; from the order Adeleida z. B. Hepatozoon spp., Klossiella spp .; from the order Haemosporida z. B.
  • Leucocytozoon spp. Plasmodium spp .; from the order Piroplasmida z. Babesia spp., Ciliophora spp., Echinozoon spp., Theileria spp .; from the order Vesibuliferida z. Balantidium spp., Buxtonella spp.
  • Microspora such as Encephalitozoon spp., Enterocytozoon spp., Globidium spp., Nosema spp., And also e.g. B. Myxozoa spp.
  • the human or animal pathogenic helminths include, for example, Acanthocephala, nematodes, pentastoma, and platyhelminthes (eg, Monogenea, Cestodes, and Trematodes).
  • Exemplary helminths include, but are not limited to:
  • Monogenea z.
  • Dactylogyrus spp. Gyrodactylus spp., Microbothrium spp., Polystoma spp., Troglecephalus spp .;
  • Cestodes from the order Pseudophyllidea for example: Bothridium spp., Diphyllobothrium spp., Diplogonoporus spp. Ichthyobothrium spp., Ligula spp., Schistocephalus spp., Spirometra spp.
  • Echinolepis spp. Hydatigera spp., Hymenolepis spp., Joyeuxiella spp., Mesocestoides spp., Moniezia spp., Paranoplocephala spp., Raillietina spp., Stilesia spp., Taenia spp., Thysaniezia spp., Thysanosoma spp.
  • Trematodes from the genus Digenea for example: Austrobilharzia spp., Brachylaima spp., Calicophoron spp., Catatropis spp., Clonorchis spp.
  • Collyricum spp. Cotylophoron spp., Cyclocoelum spp., Dicrocoelium spp., Diplostomum spp., Echinochasmus spp., Echinoparyphium spp., Echinostoma spp., Eurytrema spp., Fasciola spp., Fasciolides spp., Fasciolopsis spp., Fischoederius spp , Gastrothylacus spp., Gigantobilharzia spp., Gigantocotyle spp., Heterophyes spp., Hypoderaeum spp., Leucochloridium spp., Metagonimus spp., Metorchis spp., Nanophyetus spp., Notocotylus spp., Opisthorchis spp., Or
  • Aelurostrongylus spp. Amidostomum spp., Ancylostoma spp., Angiostrongylus spp., Bronchonema spp., Bunostomum spp., Chabertia spp., Cooperia spp., Cooperioides spp., Crenosoma spp., Cyathostomum spp.
  • Cyclococercus spp. Cyclodontostomum spp., Cylicocyclus spp., Cylicostephanus spp., Cylindropharynx spp., Cystocaulus spp., Dictyocaulus spp., Elaphostrongylus spp., Filaroides spp., Globocephalus spp., Graphidium spp., Gyalocephalus spp., Haemonchus spp., Heligmosomoides spp., Hyostrongylus spp., Marshallagia spp., Metastrongylus spp., Muellerius spp., Necator spp., Nematodirus spp., Neostrongylus spp., Nippostrongylus spp., Obeliscoides spp., Oesophagodontus spp., Oesoot
  • Acanthocephala from the order Oligacanthorhynchida, for example: Macracanthorhynchus spp., Prosthenorchis spp .; from the order Moniliformida for example: Moniliformis spp.,
  • the compounds of the formula (I) or of the formula (II) are administered by methods which are generally known in the art, such as enteral, parenteral, dermal or nasal in the form of suitable preparations. Administration may be prophylactic; metaphylactically or therapeutically.
  • an embodiment of the present invention relates to the compounds of the formula (I) or the formula ( ⁇ ) for use as a medicament.
  • Another aspect relates to the compounds of formula (I) or formula ( ⁇ ) for use as antiendoparasitic.
  • a further specific aspect of the invention relates to the compounds of the formula (I) or of the formula (II) for use as antihelminthic agents, in particular for use as nematicide, platelet minthicide, acanthocephalicide or pentastomicide.
  • Another specific aspect of the invention relates to the compounds of formula (I) or formula (II) for use as antiprotozoic.
  • Another aspect relates to the compounds of the formula (I) or the formula ( ⁇ ) for use as anti-topazarasitic, in particular an arthropodicide, very particularly an insecticide or an acaricide.
  • veterinary formulations comprising an effective amount of at least one compound of formula (I) or formula (II) and at least one of the following: a pharmaceutically acceptable excipient (eg solid or liquid diluent), a pharmaceutically acceptable adjuvant (eg surfactants), in particular a pharmaceutically acceptable excipient conventionally used in veterinary formulations and / or a pharmaceutically acceptable excipient conventionally used in veterinary formulations.
  • a pharmaceutically acceptable excipient eg solid or liquid diluent
  • a pharmaceutically acceptable adjuvant eg surfactants
  • a related aspect of the invention is a process for the preparation of a veterinary formulation as described herein, which comprises the step of mixing at least one compound of formula (I) or formula (II) with pharmaceutically acceptable excipients and / or adjuvants, especially conventionally in veterinary medicine
  • Formulations used include pharmaceutically acceptable excipients and / or adjuvants conventionally used in veterinary formulations.
  • veterinary formulations selected from the group of ectoparasiticidal and endoparasiticidal formulations, in particular selected from the group of anthelmintic, antiprotozoic and arthropodicidal formulations, more particularly selected from the group of nematicidal, platyhelminthicidal, acanthocephalicidal, pentastomicidal, insecticidal and acaricidal formulations the aspects mentioned, as well as methods for their preparation.
  • Another aspect relates to a method for treating a parasitic infection, in particular infection by a parasite selected from the group of the ectoparasites and endoparasites mentioned here, by using an effective amount of a compound of the formula (I) or the formula ( ⁇ ) an animal, especially a nonhuman animal, that needs it.
  • Another aspect relates to a method for treating a parasitic infection, in particular infection by a parasite selected from the group of the ectoparasites and endoparasites mentioned here, by applying a veterinary formulation as defined herein to an animal, in particular a non-human animal, the same requirement.
  • Another aspect relates to the use of the compounds of the formula (I) or of the formula (I) in the treatment of a parasitic infection, in particular an infection by a parasite selected from the group of the ectoparasites and endoparasites mentioned here, in an animal, in particular one nonhuman animal.
  • treatment includes prophylactic, metaphylactic and therapeutic treatment.
  • mixtures of at least one compound of the formula (I) or of the formula (II) with other active substances, in particular with endo- and ectoparasiticides, are provided hereby for the veterinary field.
  • blending not only means that two (or more) different active ingredients are formulated in a single formulation and applied together, but also refers to products comprising separate formulations for each active ingredient. if more than two active substances are to be used, all active substances should be formulated in a common formulation, or all active substances should be formulated in separate formulations, or mixed forms where some of the active substances are formulated together and some of the active substances are formulated separately the separate or sequential use of the active substances in question.
  • Exemplary agents from the group of ectoparasiticides as compounding partners include, but are not limited to, the insecticides and accicides detailed above.
  • Other useful agents are listed below in accordance with the above mentioned classification based on the current IRAC Mode of Action Classification Scheme: (1) acetylcholinesterase (AChE) inhibitors; (2) GABA-controlled chloride channel blockers; (3) sodium channel modulators; (4) competitive nicotinic acetylcholine receptor (nAChR) modulators; (5) allosteric modulators of the nicotinic acetylcholine receptor (nAChR); (6) allosteric modulators of the glutamate-dependent chloride channel (GluCl); (7) juvenile hormone mimetics; (8) various non-specific (multi-site) inhibitors; (9) modulators of chordotonic organs; (10) mite growth inhibitors; (12) inhibitors of mitochondrial ATP synthase, such as ATP disruptors; (13) decoupling of
  • Active substances with unknown or non-specific mechanisms of action eg. Fentrifanil, fenoxacrim, cycloprene, chlorobenzilate, chlorodimeform, flubenzimine, dicyclanil, amidoflumet, quinomethionate, Triarathene, clothiazoben, tetrasul, potassium oleate, petroleum, metoxadiazone, gossyplur, floutenzine, bromopropylate, cryolite;
  • Organochlorine compounds e.g. B. Camphechlor, Lindane, Heptachlor; or phenylpyrazoles, e.g. Acetoprol, pyrafluprol, pyriprole, vaniliprole, sisapronil; or isoxazolines, e.g. Sarolaner, Afoxolaner, Lotilaner, Fluralaner;
  • Pyrethroids e.g. Eg, (cis, trans) metofluthrin, profuthrin, flufenprox, flubrocythrinate, fubfenprox, fenfluthrin, protrifenbut, pyresmethrin, RU15525, terallethrin, cis-resmethrin, heptafluthrin, bioethanomethrin, biopermethrin, fenpyrithrin, cis-cypermethrin, cis-permethrin, clocythrin , Cyhalothrin (lambda), chlovaporthrin, or halogenated hydrocarbon compounds (HCHs),
  • Neonicotinoids e.g. B. Nithiazine
  • Dicloromezotiaz, triflumezopyrim, macrocyclic lactones e.g. Nemadectin, ivermectin, latidectin, moxidectin, selamectin, eprinomectin, doramectin, emamectin benzoate; Milbemycin oxime, triphene, epofenone, diofenolane;
  • Bios, hormones or pheromones for example natural products, e.g. Thuringiensin, codlemon or neem components
  • Dinitrophenols e.g. Dinocap, dinobuton, binapacryl
  • Benzoylureas eg. As fluazuron, penflurone, amidine derivatives, z. B. Chlormebuform, cymiazole, demiditraz
  • Hive varroa acaricides for example organic acids, e.g. Formic acid, oxalic acid.
  • agents from the group of endoparasiticides, as a mixture partner include, but are not limited to, anthelmintic agents and antiprotozoal agents.
  • the anthelmintic agents include, but are not limited to, the following nematicidal, tremesticidal and / or cestotic agents: from the class of macrocyclic lactones, for example: eprinomectin, abamectin, nemadectin, moxidectin, doramectin, selamectin, lepimectin, latidectin, milbemectin, Ivermectin, emamectin, milbemycin; from the class of benzimidazoles and sample zimidazoles, for example: oxibendazole, mebendazole, triclabendazole, thiophanate, parbendazole, oxfendazole, netobimine, fenbendazole,
  • Antiprotozoal agents including, but not limited to, the following: from the class of triazines, for example: diclazuril, ponazuril, letrazuril, toltrazuril; from the class polyl ether ionophore for example: monensin, salinomycin, maduramicin, narasin; from the class of macrocyclic lactones, for example: milbemycin, erythromycin; from the class of quinolones for example: enrofloxacin, pradofloxacin; from the class of quinines for example: chloroquine; from the class of pyrimidines for example: pyrimethamine; from the class of sulfonamides for example: sulfachinoxalin, trimethoprim, sulfaclozin; from the class of thiamine for example: amprolium; from the class of lincosamides for example: clindamycin; from the class of carbanilides,
  • all said mixing partners can optionally form salts with suitable bases or acids.
  • a vector in the context of the present invention is an arthropod, in particular an insect or arachnid, which is able to attack pathogens such.
  • pathogens such as viruses, worms, protozoa and bacteria from a reservoir (plant, animal, human, etc.) to a host to transfer.
  • the pathogens can be transferred to a host either mechanically (eg, trachoma by non-stinging flies) on a host, or after injection (eg, malaria parasites by mosquitoes).
  • vectors and their transmitted diseases or pathogens are:
  • flies sleeping sickness (trypanosomiasis); Cholera, other bacterial diseases;
  • mites acariosis, epidemic typhus, rickettsipox, tularemia, Saint-Louis encephalitis, tick-borne encephalitis (TBE), Crimean Congo fever, borreliosis;
  • Ticks Borellioses such as Borrelia bungdorferi sensu lato., Borrelia duttoni, tick-borne encephalitis, Q fever (Coxiella burnetii), Babesia (Babesia canis canis), ehrlichiosis.
  • vectors for the purposes of the present invention are insects, for example aphids, flies, cicadas or thrips, which can transmit plant viruses to plants.
  • Other vectors that can transmit plant viruses are spider mites, lice, beetles and nematodes.
  • vectors for the purposes of the present invention are insects and arachnids such as mosquitoes, in particular of the genera Aedes, Anopheles, z. BA gambiae, A. arabiensis, A. funestus, A. dirus (malaria) and Culex, psychodides such as phlebotomus, lutzomyia, lice, fleas, flies, mites and ticks that can transmit pathogens to animals and / or humans.
  • insects and arachnids such as mosquitoes, in particular of the genera Aedes, Anopheles, z. BA gambiae, A. arabiensis, A. funestus, A. dirus (malaria) and Culex, psychodides such as phlebotomus, lutzomyia, lice, fleas, flies, mites and ticks that can transmit pathogens to animals and / or humans.
  • Vector control is also possible when the compounds of formula (I) or formula (II) are resistance-disrupting.
  • Compounds of formula (I) or formula (II) are suitable for use in the prevention of diseases and / or pathogens transmitted by vectors.
  • another aspect of the present invention is the use of compounds of formula (I) or formula ( ⁇ ) for vector control, e.g. As in agriculture, horticulture, forests, gardens and recreational facilities and in the protection of materials and materials. Protection of technical materials
  • the compounds of the formula (I) or the formula (II) are suitable for the protection of industrial materials against attack or destruction by insects, eg. B. from the orders Coleoptera, Hymenoptera, Isoptera, Lepidoptera, Psocoptera and Zygentoma.
  • the compounds of the formula (I) or of the formula (II) are used together with at least one further insecticide and / or at least or of the formula (II) a fungicide.
  • the compounds of the formula (I) or of the formula (II) are present as ready-to-use pesticides, ie they can be applied to the corresponding material without further changes.
  • insecticides or fungicides in particular those mentioned above come into question.
  • the compounds of the formula (I) or of the formula (II) protect against the growth of objects, in particular hulls, sieves, nets, structures, quays and signal systems, which come into contact with seawater or brackish water. can be used.
  • the compounds of the formula (I) or the formula (II) can be used alone or in combinations with other active substances as antifouling agents. Control of animal pests in the hygiene sector
  • the compounds of the formula (I) or of the formula (II) are suitable for controlling animal pests in the hygiene sector.
  • the invention can be used in household, hygiene and storage protection, especially for controlling insects, arachnids, ticks and mites, which occur in enclosed spaces, such as apartments, factories, offices, vehicle cabins, animal husbandry.
  • the compounds of the formula (I) or of the formula (II) are used alone or in combination with other active ingredients and / or adjuvants.
  • they are used in household insecticide products.
  • the compounds of formula (I) or formula (II) are effective against sensitive and resistant species as well as against all stages of development.
  • pests of the class Arachnida from the orders Scorpiones, Araneae and Opiliones, from the classes Chilopoda and Diplopoda, from the class Insecta the order Blattodea, from the orders Coleoptera, Dermaptera, Diptera, Heteroptera, Hymenoptera, Isoptera, Lepidoptera, Phthiraptera, Psocoptera, Saltatoria or Orthoptera, Siphonaptera and Zygentoma and from the class Malacostraca the order Isopoda.
  • the application is carried out for example in aerosols, non-pressurized sprays, z.
  • Pump and atomizer sprays misting machines, foggers, foams, gels, evaporator products with cellulose or plastic evaporator plates, liquid evaporators, gel and membrane evaporators, propeller driven evaporators, energyless or passive evaporation systems, moth papers, moth cakes and moth gels, as granules or dusts, in straw baits or bait stations.
  • the determination with the LC-MS in the acidic range is carried out at pH 2.7 with 0.1% aqueous formic acid and acetonitrile (containing 0.1% formic acid) as eluent; linear gradient from 10% acetonitrile to 95% acetonitrile.
  • logP HCOOH
  • the determination with the LC-MS in the neutral range is carried out at pH 7.8 with 0.001 molar aqueous ammonium bicarbonate solution and acetonitrile as eluent; linear gradient from 10% acetonitrile to 95% acetonitrile.
  • logP neutral
  • the calibration is carried out with un branched alkan-2-ones (having 3 to 16 carbon atoms) whose logP values are known (determination of the logP values by retention times by linear interpolation between two consecutive alkanones).
  • NMR data of selected examples are listed either in classical form ( ⁇ values, multiplet splitting, number of H atoms) or as NMR peak lists.
  • the ⁇ -NMR data of selected examples are noted in terms of 1 H NMR peaks. For each signal peak, first the ⁇ value in ppm and then the signal intensity in round brackets are listed. The ⁇ -value signal intensity number pairs of different signal peaks are listed separated by semicolons.
  • the peak list of an example therefore has the form: ⁇ (intensity ⁇ ; 02 (intensity 2);; öi (intensity;; ⁇ ⁇ (intensity);
  • the intensity of sharp signals correlates with the height of the signals in a printed example of an NMR spectrum in cm and shows the true ratios of the signal intensities. For broad signals, multiple peaks or the center of the signal and their relative intensity can be shown compared to the most intense signal in the spectrum.
  • solvent signals may, like classical NMR prints, show solvent signals, signals from stereoisomers of the target compounds, which are also the subject of the invention, and / or peaks of impurities.
  • connection signals in the delta range of solvents and / or water in our lists of ⁇ NMR peaks, the usual solvent peaks, for example, peaks of DMSO in DMSO-De and the peak of water, usually showing a high intensity on average.
  • the peaks of stereoisomers of the target compounds and / or peaks of impurities usually have on average a lower intensity than the peaks of the target compounds (for example with a purity of> 90).
  • Such stereoisomers and / or impurities may be typical of the particular preparation process. Their peaks can thus help to detect the reproduction of our manufacturing process by "by-product fingerprints.”
  • An expert calculating the peaks of the target compounds by known methods can isolate the peaks of the target compounds as needed, using additional intensity filters, if necessary. This isolation would be similar to peak picking in the classical ⁇ NMR interpretation.
  • Emulsifier alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is dissolved with the stated parts by weight of solvent and filled with water containing an emulsifier concentration of 1000 ppm until reaching the desired concentration. To prepare further test concentrations, dilute with emulsifier-containing water.
  • Chinese cabbage leaf discs (Brassica pekinensis) infested with all stages of the green peach aphid (Myzus persicae) are sprayed with an active compound preparation of the desired concentration.
  • the active ingredient preparation 50 ⁇ of the active ingredient preparation are transferred into microtiter plates and filled with 150 ⁇ l IPL41 insect medium (33% + 15% sugar) to a final volume of 200 ⁇ . Subsequently, the plates are sealed with parafilm, through which a mixed population of green peach aphid (Myzus persicae), which is located in a second microtiter plate, can pierce and take up the solution.
  • IPL41 insect medium 33% + 15% sugar
  • Emulsifier alkylaryl polyglycol ether To prepare a suitable preparation of active compound, 1 part by weight of active compound is dissolved with the stated parts by weight of solvent and filled with water containing an emulsifier concentration of 1000 ppm until reaching the desired concentration. To prepare further test concentrations, dilute with emulsifier-containing water.
  • Chinese cabbage leaf discs (Brassica pekinensis) are sprayed with an active compound preparation of the desired concentration and, after drying, are populated with larvae of the horseradish leaf beetle (Phaedon cochleariae j.
  • Emulsifier alkylaryl polyglycol ether To prepare a suitable preparation of active compound, 1 part by weight of active compound is dissolved with the stated parts by weight of solvent and filled with water containing an emulsifier concentration of 1000 ppm until reaching the desired concentration. To prepare further test concentrations, dilute with emulsifier-containing water.
  • Maize leaf discs (Zea mays) are sprayed with an active compound preparation of the desired concentration and, after drying, are infested with caterpillars of the armyworm (Spodoptera frugiperda).

Abstract

Die Erfindung betrifft neue Verbindungen der Formeln (I) oder (I') in welchen R1, R2, R3, R7, R10, R11, Q und n die oben genannten Bedeutungen haben, deren Anwendung als Akarizide und/oder Insektizide zur Bekämpfung tierischer Schädlinge und Verfahren und Zwischenprodukte zu ihrer Herstellung.

Description

Naphthalin-Derivate als Schädlingsbekämpfungsmittel
Die vorliegende Erfindung betrifft neue Naphthalin-Derivate der Formel (I) oder der Formel (Γ), deren Anwendung als Akarizide und/oder Insektizide zur Bekämpfung tierischer Schädlinge, vor allem von Arthropoden und insbesondere von Insekten und Spinnentieren und Verfahren und Zwischenprodukte zu ihrer Herstellung.
Kondensierte bicyclische Heterocyclen-Derivate mit Insektiziden Eigenschaften sind in der Literatur bereits beschrieben, z.B. in WO 2010/125985, WO 2012/074135, WO 2012/086848, WO 2013/018928, WO 2013/191113, WO 2014/142292, WO 2014/148451, WO 2015/000715, WO 2016/124563, WO 2016/124557, PCT/EP2016/075365, WO 2015/121136, WO 2016/107742 und WO 2016/091731. Die gemäß den oben genannten Schriften bereits bekannten Wirkstoffe weisen aber in ihrer Anwendung teils Nachteile auf, sei es, dass sie nur eine geringe Anwendungsbreite aufweisen, sei es, dass sie keine zufriedenstellende Insektizide oder akarizide Wirkung aufweisen.
Es wurden nun neue Naphthalin-Derivate gefunden, welche gegenüber den bereits bekannten Verbindungen Vorteile aufweisen, z.B. seien bessere biologische oder ökologische Eigenschaften, breitere Anwendungsmethoden, eine bessere Insektizide, akarizide Wirkung, sowie eine gute Verträglichkeit gegenüber Nutzpflanzen beispielhaft genannt. Die Naphthalin-Derivate können in Kombination mit weiteren Mitteln zur Verbesserung der Wirksamkeit insbesondere gegen schwierig zu bekämpfende Insekten eingesetzt werden.
Gegenstand der vorliegenden Erfindung sind daher neue Verbindungen der Formeln (I) oder (Γ)
Figure imgf000002_0001
welchen (Ausgestaltung 1) für (Ci-C6)Alkyl, (Ci-C6)Halogenalkyl, (Ci-C6)Cyanoalkyl, (Ci-C6)Hydroxyalkyl, (Ci- C6)Alkoxy-(Ci-C6)alkyl, (Ci-C6)Halogenalkoxy-(Ci-C6)alkyl, (C2-C6)Alkenyl, (C2- C6)Alkenyloxy-(Ci-C6)alkyl, (C2-C6)Halogenalkenyloxy-(Ci-C6)alkyl, (C2-C6)Halogenalkenyl, (C2-C6)Cyanoalkenyl, (C2-C6)Alkinyl, (C2-C6)Alkinyloxy-(Ci-C6)alkyl, (C2-
C6)Halogenalkinyloxy-(Ci-C6)alkyl, (C2-C6)Halogenalkinyl, (C2-Ce)Cyanoalkinyl, (C3- C8)Cycloalkyl, (C3-C8)Cycloalkyl-(C3-C8)Cycloalkyl, (Ci-C6)Alkyl-(C3-C8)Cycloalkyl, Halogen(C3-C8)cycloalkyl, Amino, (Ci-C6)Alkylamino, Di-(Ci-C6)alkyl-amino, (C3- C8)Cycloalkylamino, (Ci-C6)Alkylcarbonyl-amino, (Ci-C6)Alkylthio-(Ci-C6)alkyl, (Ci- C6)Halogenalkylthio-(Ci-C6)alkyl, (Ci-C6)Alkylsulfinyl-(Ci-C6)alkyl, (Ci-
C6)Halogenalkylsulfinyl-(Ci-C6)alkyl, (Ci-C6)Alkylsulfonyl-(Ci-C6)alkyl, (Ci-
C6)Halogenalkylsulfonyl-(Ci-C6)alkyl, (Ci-C6)Alkoxy-(Ci-C6)alkylthio-(Ci-C6)alkyl, (Ci- C6)Alkoxy-(Ci-C6)alkylsulfinyl-(Ci-C6)alkyl, (Ci-C6)Alkoxy-(Ci-C6)alkylsulfonyl-(Ci-C6)alkyl, (Ci-C6)Alkylcarbonyl-(Ci-C6)alkyl, (Ci-C6)Halogenalkylcarbonyl-(Ci-C6)alkyl, (Ci- C6)Alkoxycarbonyl-(Ci-C6)alkyl, (Ci-C6)Halogenalkoxycarbonyl-(Ci-C6)alkyl, (Ci- C6)Alkylsulfonylamino, Aminosulfonyl-(Ci-C6)alkyl, (Ci-C6)Alkylaminosulfonyl-(Ci-C6)alkyl, Di-(Ci-C6)alkyl-aminosulfonyl-(Ci-C6)alkyl, oder für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Aryl, Hetaryl oder Heterocyclyl substituiertes (Ci-Ce)Alkyl, (Ci-C6)Alkoxy, (C2-C6)Alkenyl, (C2- C6)Alkinyl, (C3-C8)Cycloalkyl steht, wobei Aryl, Hetaryl oder Heterocyclyl jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, Cyano, Nitro, Hydroxy, Amino, Carboxy, Carbamoyl, Aminosulfonyl, (Ci-C6)Alkyl, (C3-C6)Cycloalkyl, (Ci- C6)Alkoxy, (Ci-C6)Halogenalkyl, (Ci-C6)Halogenalkoxy, (Ci-C6)Alkylthio, (Ci-C6)Alkylsulfinyl, (Ci-C6)Alkylsulfonyl, (Ci-C6)Alkylsulfimino, (Ci-C6)Alkylsulfimino-(Ci-C6)alkyl, (Ci- C6)Alkylsulfimino-(C2-C6)alkylcarbonyl, (Ci-C6)Alkylsulfoximino, (Ci-C6)Alkylsulfoximino-(Ci- Ce)alkyl, (Ci-C6)Alkylsulfoximino-(C2-C6)alkylcarbonyl, (Ci-C6)Alkoxycarbonyl, (Ci- C6)Alkylcarbonyl, (C3-C6)Trialkylsilyl oder Benzyl substituiert sein können, oder
R1 für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, Cyano, Nitro, Hydroxy, Amino, Carboxy, Carbamoyl, (Ci-C6)Alkyl, (C3-C8)Cycloalkyl, (Ci- C6)-Alkoxy, (Ci-C6)Halogenalkyl, (Ci-C6)Halogenalkoxy, (Ci-C6)Alkylthio, (Ci-C6)Alkyl- sulfinyl, (Ci-C6)Alkylsulfonyl, (Ci-C6)Alkylsulfimino, (Ci-C6)Alkylsulfimino-(Ci-C6)alkyl, (Ci- C6)Alkylsulfimino-(C2-C6)alkylcarbonyl, (Ci-C6)Alkylsulfoximino, (Ci-C6)Alkylsulfoximino- (Ci-Ce)alkyl, (Ci-C6)Alkylsulfoximino-(C2-C6)alkylcarbonyl, (Ci-C6)Alkoxycarbonyl, (Ci- Ce)Alkylcarbonyl, (C3-C6)Trialkylsilyl, (=0) (nur im Fall von Heterocyclyl) oder (=0)2 (nur im Fall von Heterocyclyl) substituiertes Aryl, Hetaryl oder Heterocyclyl steht,
R2, R3 unabhängig voneinander für Wasserstoff, Cyano, Halogen, Nitro, Acetyl, Hydroxy, Amino, SCN, Tri-(Ci-C6)alkylsilyl, (C3-C8)Cycloalkyl, (C3-C8)Cycloalkyl-(C3-C8)Cycloalkyl, (Ci- C6)Alkyl-(C3-C8)cycloalkyl, Halogen(C3-C8)cycloalkyl, (Ci-C6)Alkyl, (Ci-C6)Halogenalkyl, (Ci-Ce)Cyanoalkyl, (Ci-Ce)Hydroxyalkyl, Hydroxycarbonyl-(Ci-Ce)-alkoxy, (Ci- C6)Alkoxycarbonyl-(Ci-C6)alkyl, (Ci-C6)Alkoxy-(Ci-C6)alkyl, (C2-C6)Alkenyl, (C2- Ce)Halogenalkenyl, (C2-Ce)Cyanoalkenyl, (C2-C6)Alkinyl, (C2-C6)Halogenalkinyl, (C2- C6)Cyanoalkinyl, (Ci-C6)Alkoxy, (Ci-Ce)Halogenalkoxy, (Ci-Ce)Cyanoalkoxy, (Ci- C6)Alkoxycarbonyl-(Ci-C6)alkoxy, (Ci-C6)Alkoxy-(Ci-C6)alkoxy, (Ci-C6)Alkylhydroxyimino, (Ci-C6)Alkoxyimino, (Ci-C6)Alkyl-(Ci-C6)alkoxyimino, (Ci-C6)Halogenalkyl-(Ci- C6)alkoxyimino, (Ci-C6)Alkylthio, (Ci-C6)Halogenalkylthio, (Ci-C6)Alkoxy-(Ci-C6)alkylthio, (Ci-C6)Alkylthio-(Ci-C6)alkyl, (Ci-C6)Alkylsulfinyl, (Ci-C6)Halogenalkylsulfinyl, (Ci- C6)Alkoxy-(Ci-C6)alkylsulfinyl, (Ci-C6)Alkylsulfinyl-(Ci-C6)alkyl, (Ci-C6)Alkylsulfonyl, (Ci- C6)Halogenalkylsulfonyl, (Ci-C6)Alkoxy-(Ci-C6)alkylsulfonyl, (Ci-C6)Alkylsulfonyl-(Ci- C6)alkyl, (Ci-C6)Alkylsulfonyloxy, (Ci-C6)Alkylcarbonyl, (Ci-C6)Alkylthiocarbonyl, (Ci- Ce)Halogenalkylcarbonyl, (Ci-C6)Alkylcarbonyloxy, (Ci-C6)Alkoxycarbonyl, (Ci- Ce)Halogenalkoxycarbonyl, Aminocarbonyl, (Ci-C6)Alkylaminocarbonyl, (Ci- C6)Alkylaminothiocarbonyl, Di-(Ci-C6)alkyl-aminocarbonyl, Di-(Ci-C6)alkyl- aminothiocarbonyl, (C2-C6)Alkenylaminocarbonyl, Di-(C2-C6)-alkenylaminocarbonyl, (C3- C8)Cycloalkylaminocarbonyl, (Ci-C6)Alkylsulfonylamino, (Ci-C6)Alkylamino, Di-(Ci- C6)Alkylamino, Aminosulfonyl, (Ci-C6)Alkylaminosulfonyl, Di-(Ci-C6)alkyl-aminosulfonyl, (Ci-C6)Alkylsulfoximino, Aminothiocarbonyl, (Ci-C6)Alkylaminothiocarbonyl, Di-(Ci- C6)alkyl-aminothiocarbonyl, (C3-C8)Cycloalkylamino oder NHCO-(Ci-Ce)alkyl ((Ci- C6)Alkylcarbonylamino) stehen, für Wasserstoff, Cyano, Halogen, (Ci-C6)Alkyl, (Ci-C6)Halogenalkyl, (Ci-Ce)Alkoxy oder (Ci- Ce)Halogenalkoxy steht, für Wasserstoff, Cyano, Halogen, (Ci-C6)Alkyl, (Ci-C6)Halogenalkyl, (Ci-C6)Alkoxy oder (Ci- Ce)Halogenalkoxy steht, für Wasserstoff, Cyano, Halogen, (Ci-C6)Alkyl, (Ci-C6)Halogenalkyl, (Ci-Ce)Alkoxy oder (Ci- Ce)Halogenalkoxy steht, wobei mindestens einer der Substituenten R10 oder R11 für Wasserstoff stehen muss, für ein teilweise gesättigtes oder gesättigtes heterozyklisches oder heteroaromatisches 8-, 9-, 10-, 11 - oder 12-gliedriges annelliertes bicyclisches oder tricyclisches Ringsystem steht, wobei gegebenenfalls mindestens eine Carbonylgruppe enthalten sein kann und/oder wobei das Ringsystem gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiert ist, und wobei die Substituenten unabhängig voneinander ausgewählt sein können aus Cyano, Halogen, Nitro, Acetyl, Hydroxy, Amino, SCN, Tri-(Ci-C6)alkylsilyl, (C3-C8)Cycloalkyl, (C3- C8)Cycloalkyl-(C3-C8)Cycloalkyl, (Ci-C6)Alkyl-(C3-C8)cycloalkyl, Halogen(C3-C8)cycloalkyl, (Ci-C6)Alkyl, (Ci-C6)Halogenalkyl, (Ci-C6)Cyanoalkyl, (Ci-C6)Hydroxyalkyl, Hydroxycarbonyl-(Ci-C6)-alkoxy, (Ci-C6)Alkoxycarbonyl-(Ci-C6)alkyl, (Ci-C6)Alkoxy-(Ci- C6)alkyl, (C2-C6)Alkenyl, (C2-C6)Halogenalkenyl, (C2-C6)Cyanoalkenyl, (C2-C6)Alkinyl, (C2- C6)Alkinyloxy-(Ci-C4)alkyl, (C2-C6)Halogenalkinyl, (C2-C6)Cyanoalkinyl, (Ci-C6)Alkoxy, (Ci- C6)Halogenalkoxy, (Ci-C6)Halogenalkoxy-(Ci-C6)alkyl, (C2-C6)Alkenyloxy-(Ci-C6)alkyl, (C2- C6)Halogenalkenyloxy-(C 1 -Ce) alkyl, (C 1 -Ce)Cy anoalkoxy , (C 1 -Ce) Alkoxycarbonyl-(C 1 - Ce)alkoxy, (Ci-C6)Alkoxy-(Ci-C6)alkoxy, (Ci-C6)Alkylhydroxyimino, (Ci-C6)Alkoxyimino, (Ci-C6)Alkyl-(Ci-C6)alkoxyimino, (Ci-C6)Halogenalkyl-(Ci-C6)alkoxyimino, (Ci-C6)Alkylthio, (Ci-C6)Halogenalkylthio, (Ci-C6)Alkoxy-(Ci-C6)alkylthio, (Ci-C6)Alkylthio-(Ci-C6)alkyl, (Ci- C6)Alkylsulfinyl, (Ci-C6)Halogenalkylsulfinyl, (Ci-C6)Alkoxy-(Ci-C6)alkylsulfinyl, (Ci- C6)Alkylsulfinyl-(Ci-C6)alkyl, (Ci-C6)Alkylsulfonyl, (Ci-C6)Halogenalkylsulfonyl, (Ci- C6)Alkoxy-(Ci-C6)alkylsulfonyl, (Ci-C6)Alkylsulfonyl-(Ci-C6)alkyl, (Ci-C6)Alkylsulfonyloxy, (Ci-C6)Alkylcarbonyl, (Ci-C6)Alkylcarbonyl-(Ci-C6)alkyl, (Ci-C6)Alkylthiocarbonyl, (Ci- Ce)Halogenalkylcarbonyl, (Ci-C6)Alkylcarbonyloxy, (Ci-C6)Alkoxycarbonyl, (Ci- Ce)Halogenalkoxycarbonyl, Aminocarbonyl, (Ci-C6)Alkylaminocarbonyl, (Ci- C6)Alkylaminothiocarbonyl, Di-(Ci-C6)alkyl-aminocarbonyl, Di-(Ci-C6)alkyl- aminothiocarbonyl, (C2-C6)Alkenylaminocarbonyl, Di-(C2-C6)-alkenylaminocarbonyl, (C3- C8)Cycloalkylaminocarbonyl, (Ci-C6)Alkylsulfonylamino, (Ci-C6)Alkylamino, Di-(Ci- C6)Alkylamino, Aminosulfonyl, (Ci-C6)Alkylaminosulfonyl, Di-(Ci-C6)alkyl-aminosulfonyl, (Ci-C6)Alkylsulfoximino, Aminothiocarbonyl, (Ci-C6)Alkylaminothiocarbonyl, Di-(Ci- C6)alkyl-aminothiocarbonyl, (C3-C8)Cycloalkylamino, NHCO-(Ci-C6)alkyl ((Ci-
CÖ) Alkylcarbonylamino) , oder wobei die Substituenten unabhängig voneinander ausgewählt sein können aus Phenyl oder einem 5- oder 6-gliedrigen heteroaromatischen Ring, wobei Phenyl oder der Ring gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Ci-Cö-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C6-Cycloalkyl, Ci-C6-Haloalkyl, C2-C6-Haloalkenyl, C2-C6-Haloalkinyl, C3-C6-Halocycloalkyl, Halogen, CN, NO2, Ci-C4-Alkoxy, Ci-C4-Haloalkoxy substituiert sein können, n für 0, 1 oder 2 steht, ausgenommen
2-(3-Methylmercapto-2-naphthyl)-lH-imidazo[4,5-b]pyridin, 2-(3-Methylsulfinyl-2-naphthyl)-lH- imidazo[4,5-b]pyridin, 2-(3-Methylsulfanyl-2-naphthyl)-lH-imidazo[4,5-b]pyridine, 2-(l-
Methylmercapto-2-naphthalenyl)imidazo[4,5-c]pyridin, 2-(l,6-bis(Methylmercapto)-2- naphthalenyl)imidazo[4,5-c]pyridin, 5-Methoxy-2-(3-methylmercapto-naphth-2-yl)-lH-imidazo[4,5- b]pyridin.
Weiterhin wurde gefunden, dass die Verbindungen der Formeln (I) oder (Γ) eine sehr gute Wirksamkeit als Schädlingsbekämpfungsmittel, vorzugsweise als Insektizide und/oder Akarizide aufweisen, darüber hinaus in der Regel insbesondere gegenüber Kulturpflanzen sehr gut pflanzenverträglich sind.
Die erfindungsgemäßen Verbindungen sind durch die Formeln (I) oder (Γ) allgemein definiert. Bevorzugte Substituenten bzw. Bereiche der in der oben und nachstehend erwähnten Formeln aufgeführten Reste werden im Folgenden erläutert:
Ausgestaltung 2 R1 steht bevorzugt für (Ci-C4)Alkyl, (Ci-C4)Hydroxyalkyl, (Ci-C4)Halogenalkyl, (Ci- C4)Cyanoalkyl, (Ci-C4)Alkoxy-(Ci-C4)alkyl, (Ci-C4)Halogenalkoxy-(Ci-C4)alkyl, (C2- C4)Alkenyl, (C2-C4)Alkenyloxy-(Ci-C4)alkyl, (C2-C4)Halogenalkenyloxy-(Ci-C4)alkyl, (C2- C4)Halogenalkenyl, (C2-C4)Cyanoalkenyl, (C2-C4)Alkinyl, (C2-C4)Alkinyloxy-(Ci-C4)alkyl, (C2- C4)Halogenalkinyloxy-(Ci-C4)alkyl, (C2-C4)Halogenalkinyl, (C2-C4)Cyanoalkinyl, (C3- C6)Cycloalkyl, (C3-C6)Cycloalkyl(C3-C6)cycloalkyl, (Ci-C4)Alkyl-(C3-C6)cycloalkyl, Halogen(C3-C6)cycloalkyl, (Ci-C4)Alkylamino, Di-(Ci-C4)alkyl-amino, (C3-
C6)Cycloalkylamino, (Ci-C )Alkylcarbonyl-amino, (Ci-C )Alkylthio-(Ci-C )alkyl, (Ci- C4)Halogenalkylthio-(Ci-C4)alkyl, (Ci-C4)Alkylsulfinyl-(Ci-C4)alkyl, (Ci-
C4)Halogenalkylsulfinyl-(Ci-C4)alkyl, (Ci-C4)Alkylsulfonyl-(Ci-C4)alkyl, (Ci-
C4)Alkylcarbonyl-(Ci-C4)alkyl, (Ci-C4)Halogenalkylcarbonyl-(Ci-C4)alkyl, (Ci-
C4)Alkylsulfonylamino, oder für jeweils gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Aryl, Hetaryl oder Heterocyclyl substituiertes (Ci-C )Alkyl, (Ci-C )Alkoxy, (C2-C )Alkenyl, (C2- C4)Alkinyl, (C3-C6)Cycloalkyl, wobei Aryl, Hetaryl oder Heterocyclyl jeweils gegebenenfalls einfach oder zweifach gleich oder verschieden durch Halogen, Cyano, Carbamoyl, Aminosulfonyl, (Ci-C4)Alkyl, (C3-C4)Cycloalkyl, (Ci-C4)Alkoxy, (Ci-C4)Halogenalkyl, (Ci- C4)Halogenalkoxy, (Ci-C4)Alkylthio, (Ci-C4)Alkylsulfinyl, (Ci-C4)Alkylsulfonyl, (Ci- C4)Alkylsulfimino substituiert sein können, oder
R1 steht bevorzugt für jeweils gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Halogen, Cyano, Carbamoyl, (Ci-C4)Alkyl, (C3-C6)Cycloalkyl, (Ci-C4)-Alkoxy, (Ci- C4)Halogenalkyl, (Ci-C4)Halogenalkoxy, (Ci-C4)Alkylthio, (Ci-C4)Alkylsulfinyl, (Ci- C )Alkylsulfonyl, (Ci-C )Alkylsulfimino, (Ci-C )Alkylsulfoximino, (Ci-C )Alkylcarbonyl, (C3- C4)Trialkylsilyl, (=0) (nur im Fall von Heterocyclyl) oder (=0)2 (nur im Fall von Heterocyclyl) substituiertes Aryl, Hetaryl oder Heterocyclyl,
R2, R3 stehen unabhängig voneinander bevorzugt für Wasserstoff, Cyano, Halogen, Nitro, Acetyl, Hydroxy, Amino, SCN, Tri-(Ci-C4)alkylsilyl, (C3-C6)Cycloalkyl, (C3-C6)Cycloalkyl-(C3- C6)cycloalkyl, (Ci-C4)Alkyl-(C3-C6)cycloalkyl, Halogen(C3-C6)cycloalkyl, (Ci-C4)Alkyl, (Ci- C4)Halogenalkyl, (Ci-C4)Cyanoalkyl, (Ci-C4)Hydroxyalkyl, (Ci-C4)Alkoxy-(Ci-C4)alkyl, (C2- C4)Alkenyl, (C2-C4)Halogenalkenyl, (C2-C4)Cyanoalkenyl, (C2-C4)Alkinyl, (C2- C4)Halogenalkinyl, (C2-C4)Cyanoalkinyl, (Ci-C4)Alkoxy, (Ci-C4)Halogenalkoxy, (Ci- C4)Cyanoalkoxy, (Ci-C4)Alkoxy-(Ci-C4)alkoxy, (Ci-C4)Alkylhydroxyimino, (Ci- C4)Alkoxyimino, (Ci-C4)Alkyl-(Ci-C4)alkoxyimino, (Ci-C4)Halogenalkyl-(Ci-C4)alkoxyimino, (Ci-C4)Alkylthio, (Ci-C4)Halogenalkylthio, (Ci-C4)Alkylthio-(Ci-C4)alkyl, (Ci- C4)Alkylsulfinyl, (Ci-C4)Halogenalkylsulfinyl, (Ci-C4)Alkylsulfinyl-(Ci-C4)alkyl, (Ci- C4)Alkylsulfonyl, (Ci-C4)Halogenalkylsulfonyl, (Ci-C4)Alkylsulfonyl-(Ci-C4)alkyl, (Ci- C4)Alkylsulfonyloxy, (Ci-C4)Alkylcarbonyl, (Ci-C Halogenalkylcarbonyl, Aminocarbonyl, Aminothiocarbonyl, (Ci-C4)Alkylaminocarbonyl, Di-(Ci-C4)alkyl-aminocarbonyl, (Ci- C4)Alkylsulfonylamino, (Ci-C4)Alkylamino, Di-(Ci-C4)Alkylamino, Aminosulfonyl, (Ci- C4)Alkylaminosulfonyl, Di-(Ci-C4)alkyl-aminosulfonyl, Aminothiocarbonyl oder NHCO-(Ci- C4)alkyl ((Ci-C4)Alkylcarbonylamino), steht bevorzugt für Wasserstoff, Cyano, Halogen, (Ci-C4)Alkyl, (Ci-C4)Halogenalkyl, (Ci- C4)Alkoxy oder (Ci-C4)Halogenalkoxy, steht bevorzugt für Wasserstoff, Cyano, Halogen, (Ci-C Alkyl, (Ci-C4)Halogenalkyl, (Ci- C4)Alkoxy oder (Ci-C4)Halogenalkoxy, steht bevorzugt für Wasserstoff, Cyano, Halogen, (Ci-C Alkyl, (Ci-C4)Halogenalkyl, (Ci- C4)Alkoxy oder (Ci-C4)Halogenalkoxy, wobei mindestens einer der Substituenten R10 oder R11 für Wasserstoff stehen muss, steht bevorzugt für ein heteroaromatisches 8-, 9-, 10-, 11- oder 12-gliedriges annelliertes bicyclisches oder tricyclisches Ringsystem, wobei das Ringsystem gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiert ist, und wobei die Substituenten unabhängig voneinander ausgewählt sein können aus Cyano, Halogen, Nitro, Acetyl, Hydroxy, Amino, SCN, Tri-(Ci-C6)alkylsilyl, (C3-C8)Cycloalkyl, (C3-C8)Cycloalkyl-(C3-C8)Cycloalkyl, (Ci- C6)Alkyl-(C3-C8)cycloalkyl, Halogen(C3-C8)cycloalkyl, (Ci-C6)Alkyl, (Ci-C6)Halogenalkyl, (Ci-C6)Cyanoalkyl, (Ci-C6)Hydroxyalkyl, (Ci-C6)Alkoxy-(Ci-C6)alkyl, (C2-C6)Alkenyl, (C2- C6)Halogenalkenyl, (C2-C6)Cyanoalkenyl, (C2-C6)Alkinyl, (C2-C6)Alkinyloxy-(Ci-C4)alkyl, (C2- Ce)Halogenalkinyl, (Ci-Ce)Alkoxy, (Ci-C6)Halogenalkoxy, (Ci-C6)Halogenalkoxy-(Ci-C6)alkyl, (C2-C6)Alkenyloxy-(Ci-C6)alkyl, (C2-C6)Halogenalkenyloxy-(Ci-C6)alkyl, (Ci-C6)Cyanoalkoxy, (Ci-C6)Alkoxy-(Ci-C6)alkoxy, (Ci-C6)Alkylhydroxyimino, (Ci-C6)Alkoxyimino, (Ci-Ce)Alkyl- (Ci-C6)alkoxyimino, (Ci-C6)Alkylthio, (Ci-C6)Halogenalkylthio, (Ci-C6)Alkoxy-(Ci- C6)alkylthio, (Ci-C6)Alkylthio-(Ci-C6)alkyl, (Ci-C6)Alkylsulfinyl, (Ci-C6)Halogenalkylsulfinyl, (Ci-C6)Alkoxy-(Ci-C6)alkylsulfinyl, (Ci-C6)Alkylsulfinyl-(Ci-C6)alkyl, (Ci-C6)Alkylsulfonyl, (Ci-C6)Halogenalkylsulfonyl, (Ci-C6)Alkoxy-(Ci-C6)alkylsulfonyl, (Ci-C6)Alkylsulfonyl-(Ci- C6)alkyl, (Ci-C6)Alkylsulfonyloxy, (Ci-C6)Alkylcarbonyl, (Ci-C6)Alkylcarbonyl-(Ci-C6)alkyl, (Ci-C6)Alkylthiocarbonyl, (Ci-C6)Halogenalkylcarbonyl, (Ci-C6)Alkylcarbonyloxy, (Ci- C6)Alkoxycarbonyl, (Ci-C6)Halogenalkoxycarbonyl, Aminocarbonyl, (Ci-
C6)Alkylaminocarbonyl, (Ci-C6)Alkylaminothiocarbonyl, Di-(Ci-C6)alkyl-aminocarbonyl, Di- (Ci-C6)alkyl-aminothiocarbonyl, (C3-C8)Cycloalkylaminocarbonyl, (Ci-C6)Alkylsulfonylamino, (Ci-C6)Alkylamino, Di-(Ci-C6)Alkylamino, Aminosulfonyl, (Ci-C6)Alkylaminosulfonyl, Di- (Ci-C6)alkyl-aminosulfonyl, (Ci-C6)Alkylsulfoximino, Aminothiocarbonyl, (Ci- C6)Alkylaminothiocarbonyl, Di-(Ci-C6)alkyl-aminothiocarbonyl, (C3-C8)Cycloalkylamino, NHCO-(C i -C6)alkyl ((C i -C6) Alkylcarbonylamino) , oder wobei die Substituenten unabhängig voneinander ausgewählt sein können aus Phenyl oder einem 5- oder 6-gliedrigen heteroaromatischen Ring, wobei Phenyl oder der Ring gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Ci-C6-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C6-Cycloalkyl, Ci-C6-Haloalkyl, C2-C6-Haloalkenyl, C2-C6-Haloalkinyl, C3-C6-Halocycloalkyl, Halogen, CN, Ci-C4-Alkoxy, Ci-C4-Haloalkoxy substituiert sein können, n steht bevorzugt für 0, 1 oder 2, ausgenommen
2-(3-Methylmercapto-2-naphthyl)-lH-imidazo[4,5-b]pyridin, 2-(3-Methylsulfinyl-2-naphthyl)-lH- imidazo[4,5-b]pyridin, 2-(3-Methylsulfanyl-2-naphthyl)-lH-imidazo[4,5-b]pyridine, 2-(l-
Methylmercapto-2-naphthalenyl)imidazo[4,5-c]pyridin, 2-(l,6-bis(Methylmercapto)-2- naphthalenyl)imidazo[4,5-c]pyridin, 5-Methoxy-2-(3-methylmercapto-naphth-2-yl)-lH-imidazo[4,5- b]pyridin.
Ausgestaltung 3
R1 steht besonders bevorzugt für (Ci-C4)Alkyl, (Ci-C4)Hydroxyalkyl, (Ci-C4)Halogenalkyl, (C2- C4)Alkenyl, (C2-C4)Halogenalkenyl, (C2-C4)Alkinyl, (C2-C4)Halogenalkinyl, (C3-C6)Cycloalkyl, (Ci-C4)Alkylthio-(Ci-C4)alkyl, (Ci-C4)Alkylsulfinyl-(Ci-C4)alkyl oder (Ci-C4)Alkylsulfonyl- (C1-C4)alkyl,
R2, R3 stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Cyano, Halogen, Nitro, Hydroxy, Amino, SCN, Tri-(Ci-C4)alkylsilyl, (C3-C6)Cycloalkyl, (C3-C6)Cycloalkyl-(C3- C6)cycloalkyl, (Ci-C4)Alkyl-(C3-C6)cycloalkyl, Halogen(C3-C6)cycloalkyl, (Ci-C4)Alkyl, (Ci- C4)Halogenalkyl, (Ci-C4)Cyanoalkyl, (Ci-C4)Alkoxy-(Ci-C4)alkyl, (C2-C4)Alkenyl, (C2- C4)Halogenalkenyl, (C2-C4)Cyanoalkenyl, (C2-C4)Alkinyl, (C2-C4)Halogenalkinyl, (C2- C4)Cyanoalkinyl, (Ci-C4)Alkoxy, (Ci-C4)Halogenalkoxy, (Ci-C4)Cyanoalkoxy, (Ci- C4)Alkylhydroxyimino, (Ci-C4)Alkoxyimino, (Ci-C4)Alkyl-(Ci-C4)alkoxyimino, (Ci- C4)Alkylthio, (Ci-C4)Halogenalkylthio, (Ci-C4)Alkylsulfinyl, (Ci-C4)Halogenalkylsulfinyl, (Ci- C4)Alkylsulfonyl, (Ci-C4)Halogenalkylsulfonyl, (Ci-C4)Alkylsulfonyloxy, (Ci- C4)Alkylcarbonyl, (Ci-C4)Halogenalkylcarbonyl, Aminocarbonyl, (Ci-C4)Alkylaminocarbonyl, Di-(Ci-C4)alkyl-aminocarbonyl, (Ci-C4)Alkylsulfonylamino, (Ci-C4)Alkylamino, Di-(Ci- C4)Alkylamino, Aminosulfonyl, (Ci-C4)Alkylaminosulfonyl, Di-(Ci-C4)alkyl-aminosulfonyl oder NHCO-(Ci-C4)alkyl ((Ci-C4)Alkylcarbonylamino),
Q steht besonders bevorzugt für ein heteroaromatisches 9-gliedriges oder 12-gliedriges annelliertes bicyclisches oder tricyclisches Ringsystem aus der Reihe Ql bis Q20,
Figure imgf000009_0001
Figure imgf000010_0001
Q19 Q20
R4 steht besonders bevorzugt für (Ci-C Alkyl, (Ci-C4)Halogenalkyl, (Ci-C4)Cyanoalkyl, (Ci- C4)Hydroxyalkyl, (Ci-C4)Alkoxy-(Ci-C4)alkyl, (Ci-C4)Halogenalkoxy-(Ci-C4)alkyl, (C2- C4)Alkenyl, (C2-C4)Alkenyloxy-(Ci-C4)alkyl, (C2-C4)Halogenalkenyloxy-(Ci-C4)alkyl, (C2- C4)Halogenalkenyl, (C2-C4)Cyanoalkenyl, (C2-C4)Alkinyl, (C2-C4)Alkinyloxy-(Ci-C4)alkyl, (C2- C4)Halogenalkinyl, (C3-C6)Cycloalkyl, (C3-C6)Cycloalkyl-(C3-C6)cycloalkyl, (Ci-C4)Alkyl-(C3- C6)cycloalkyl, Halogen(C3-C6)cycloalkyl, (Ci-C4)Alkylthio-(Ci-C4)alkyl, (Ci-C4)Alkylsulfinyl- (Ci-C4)alkyl, (Ci-C4)Alkylsulfonyl-(Ci-C4)alkyl oder (Ci-C4)Alkylcarbonyl-(Ci-C4)alkyl,
R5, R6 stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Cyano, Halogen, (Ci- C4)Alkyl, (Ci-C4)Halogenalkyl, (C2-C4)Alkenyl, (C2-C4)Halogenalkenyl, (C2-C4)Alkinyl, (C2- C4)Halogenalkinyl, (C3-C6)Cycloalkyl, (C3-C6)Cycloalkyl-(C3-C6)cycloalkyl, (Ci-C4)Alkyl-(C3- C6)cycloalkyl, (Ci-C4)Alkoxy, (Ci-C4)Halogenalkoxy, (Ci-C4)Alkoxyimino, (Ci-C4)Alkylthio, (Ci-C4)Halogenalkylthio, (Ci-C4)Alkylsulfinyl, (Ci-C4)Halogenalkylsulfinyl, (Ci- C4)Alkylsulfonyl, (Ci-C4)Halogenalkylsulfonyl, (Ci-C4)Alkylsulfonyloxy, (Ci- C4)Alkylcarbonyl, (Ci-C4)Halogenalkylcarbonyl, Aminocarbonyl, (Ci-C4)Alkylaminocarbonyl, Di-(Ci-C4)alkyl-aminocarbonyl, (Ci-C4)Alkylsulfonylamino, (Ci-C4)Alkylamino, Di-(Ci- C4)Alkylamino, Aminosulfonyl, (Ci-C4)Alkylaminosulfonyl oder Di-(Ci-C4)alkylaminosulfonyl,
R7 steht besonders bevorzugt für Wasserstoff, Cyano, Fluor, Chlor, Brom, (Ci-C4)Alkyl, (Ci- C4)Halogenalkyl, (Ci-C4)Alkoxy oder (Ci-C4)Halogenalkoxy,
R10 steht besonders bevorzugt für Wasserstoff, Cyano, Fluor, Chlor, Brom, (Ci-C4)Alkyl, (Ci- C4)Halogenalkyl, (Ci-C4)Alkoxy oder (Ci-C4)Halogenalkoxy,
R11 steht besonders bevorzugt für Wasserstoff, Cyano, Fluor, Chlor, Brom, Methyl, Trifluormethyl, Methoxy oder Trifluormethoxy, wobei mindestens einer der Substituenten R10 oder R11 für Wasserstoff stehen muss, n steht besonders bevorzugt für 0, 1 oder 2.
Ausgestaltung 4 steht ganz besonders bevorzugt für (Ci-C4)Alkyl, (Ci-C4)Halogenalkyl oder (C3-C6)Cycloalkyl, R2, R3 stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Cyano, Halogen, (Ci-C4)Alkyl, (Ci-C4)Halogenalkyl, (Ci-C4)Halogenalkoxy, (Ci-C4)Alkylthio, (Ci- C4)Alkylsulfinyl, (Ci-C4)Alkylsulfonyl, (Ci-C4)Halogenalkylthio, (Ci-C4)Halogenalkylsulfinyl, (Ci-C4)Halogenalkylsulfonyl oder NHCO-(Ci-C4)alkyl ((Ci-C4)Alkylcarbonylamino), steht ganz besonders bevorzugt für ein heteroaromatisches 9-gliedriges oder 12-gliedriges annelliertes bicyclisches oder tricyclisches Ringsystem aus der Reihe Q2, Q3, Q5, Q6, Q8, Q9, Q10, QU, Q14, Q15, Q16 oder Q19,
Figure imgf000011_0001
R4 steht ganz besonders bevorzugt für (Ci-C4)Alkyl oder (Ci-C4)Alkyoxy-(Ci-C4)alkyl, R5 steht ganz besonders bevorzugt für Wasserstoff, Cyano, Halogen, (Ci-C4)Alkyl, (Ci- C4)Halogenalkyl, (C3-C6)Cycloalkyl, (C3-C6)Cycloalkyl-(C3-C6)cycloalkyl, (Ci-C4)Alkyl-(C3- C6)cycloalkyl, (Ci-C )Alkoxy, (Ci-C )Halogenalkoxy, (Ci-C )Alkoxyimino, (Ci-C )Alkylhio, (Ci-C4)Halogenalkylthio, (Ci-C4)Alkylsulfinyl, (Ci-C4)Halogenalkylsulfinyl, (Ci- C4)Alkylsulfonyl, (Ci-C4)Halogenalkylsulfonyl, (Ci-C4)Alkylcarbonyl, (Ci-
C4)Halogenalkylcarbonyl, (Ci-C4)Alkylaminocarbonyl, Di-(Ci-C4)alkyl-aminocarbonyl, (Ci- C4)Alkylsulfonylamino, (Ci-C4)Alkylaminosulfonyl oder Di-(Ci-C4)alkylaminosulfonyl,
R6 steht ganz besonders bevorzugt für Wasserstoff,
R7 steht ganz besonders bevorzugt für Wasserstoff, Cyano, Fluor, Chlor, Brom, Methyl oder Trifluormethyl,
R10 steht ganz besonders bevorzugt für Wasserstoff, Cyano, Fluor, Chlor, Brom, Methyl oder Trifluormethyl,
R11 steht ganz besonders bevorzugt für Wasserstoff, Cyano, Fluor, Chlor, Brom, Methyl oder Trifluormethyl, wobei mindestens einer der Substituenten R10 oder R11 für Wasserstoff stehen muss, n steht ganz besonders bevorzugt für 0, 1 oder 2. Ausgestaltung 5
R1 steht hervorgehoben für Methyl, Ethyl, n-Propyl, i-Propyl, cyclo-Propyl, n-Butyl, i-Butyl, tert- Butyl, cyclo-Butyl, Fluormethyl, Difluormethyl, Trifluormethyl, Fluorethyl, Difluorethyl, Trifluorethyl, Tetrafluorethyl oder Pentafluorethyl,
R2, R3 stehen unabhängig voneinander hervorgehoben für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, Methoxy, Trifluormethyl, Trifluormethoxy, Trifluormethylthio, Trifluormethylsulfinyl oder Trifluoralkylsulfonyl, steht hervorgehoben für ein heteroaromatisches 9-gliedriges annelliertes bicyclisches Ringsystem aus der Reihe Q2, Q3, Q10, Q14 oder Q16,
Figure imgf000012_0001
Q14 Q1 R4 steht hervorgehoben für Methyl, Ethyl, i-Propyl, Methoxymethyl oder Methoxyethyl,
R5 steht hervorgehoben für Fluor, Chlor, Brom, Fluormethyl, Difluormethyl, Trifluormethyl, Fluorethyl (CH2CFH2, CHFCH3), Difluorethyl (CF2CH3, CH2CHF2, CHFCFH2), Trifluorethyl, (CH2CF3, CHFCHF2, CF2CFH2), Tetrafluorethyl (CHFCF3, CF2CHF2), Pentafluorethyl, Trifluormethoxy, Difluorchlormethoxy, Dichlorfluormethoxy, Trifluormethylthio,
Trifluormethylsulfinyl oder Trifluormethylsulfonyl,
R6 steht hervorgehoben für Wasserstoff,
R7 steht hervorgehoben für Wasserstoff, Fluor, Chlor oder Trifluormethyl, R10 steht hervorgehoben für Wasserstoff, Fluor, Chlor oder Trifluormethyl, R11 steht hervorgehoben für Wasserstoff, Fluor, Chlor oder Trifluormethyl, wobei mindestens einer der Substituenten R10 oder R11 für Wasserstoff stehen muss, n steht hervorgehoben für 0, 1 oder 2. Ausgestaltung 6
Verbindungen der Formel (I), in welcher R1 insbesonders für Ethyl steht, R2 insbesonders für Chlor steht, R3 insbesonders für Wasserstoff steht,
Q insbesonders für ein heteroaromatisches 9-gliedriges annelliertes bicyclisches Ringsystem aus der Reihe Q3 steht, R4 insbesonders für Methyl steht,
R5 insbesonders für Trifluormethyl steht,
R6 insbesonders für Wasserstoff steht,
R7 insbesonders für Wasserstoff steht, n insbesonders für 0 oder 2 steht. Ausgestaltung 7
Verbindungen der Formel (Γ), in welcher R1 insbesonders für Ethyl steht,
R2 insbesonders für Wasserstoff steht, R3 insbesonders für Wasserstoff steht,
Q insbesonders für ein heteroaromatisches 9-gliedriges annelliertes bicyclisches Ringsystem der Reihe Q3 steht,
R4 insbesonders für Methyl steht,
R5 insbesonders für Trifluormethyl steht,
R6 insbesonders für Wasserstoff steht,
R10 insbesonders für Wasserstoff steht,
R11 insbesonders für Wasserstoff steht, n insbesonders für 2 steht.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ),
Figure imgf000014_0001
in welcher R1, R2, R3, R10, R11, Q und n die in Ausgestaltung (1) oder Ausgestaltung (2) oder Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei
R2 für Chlor steht,
R3 für Wasserstoff steht, R7 für Wasserstoff steht, wobei sich bevorzugt folgende Struktur ergibt:
Figure imgf000015_0001
und Q, R1 und n die in Ausgestaltung (1) oder Ausgestaltung (2) oder Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei R1, R2, R3, R7, Q und n die in Ausgestaltung (1) oder Ausgestaltung (2) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei R1, R2, R3, R4, R5, R6, R7, Q und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei R1, R2, R3, R10, R11, Q und n die in Ausgestaltung (1) oder Ausgestaltung (2) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei R1, R2, R3, R4, R5, R6, R10, R11, Q und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben. In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Ql steht und R1, R2, R3, R4, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q2 steht und R1, R2, R3, R4, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q3 steht und R1, R2, R3, R4, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q4 steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q5 steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q6 steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben. In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q7 steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q8 steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q9 steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q10 steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für QU steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben. In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q12 steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q13 steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q14 steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q15 steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben. In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q16 steht und R1, R2, R3, R4, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q17 steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q18 steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben. In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q19 steht und R1, R2, R3, R4, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (I), wobei Q für Q20 steht und R1, R2, R3, R5, R6, R7 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Ql steht und R1, R2, R3, R4, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q2 steht und R1, R2, R3, R4, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q3 steht und R1, R2, R3, R4, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben. In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q4 steht und R1, R2, R3, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q5 steht und R1, R2, R3, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q6 steht und R1, R2, R3, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q7 steht und R1, R2, R3, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben. In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q8 steht und R1, R2, R3, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q9 steht und R1, R2, R3, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q10 steht und R1, R2, R3, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für QU steht und R1, R2, R3, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q12 steht und R1, R2, R3, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben. In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q13 steht und R1, R2, R3, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q14 steht und R1, R2, R3, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q15 steht und R1, R2, R3, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q16 steht und R1, R2, R3, R4, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben. In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q17 steht und R1, R2, R3, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q18 steht und R1, R2, R3, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q19 steht und R1, R2, R3, R4, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben. In einer bevorzugten Ausführungsform betrifft die Erfindung Verbindungen der Formel (Γ), wobei Q für Q20 steht und R1, R2, R3, R4, R5, R6, R10, R11 und n die in Ausgestaltung (3) oder Ausgestaltung (4) oder Ausgestaltung (5) oder Ausgestaltung (6) oder Ausgestaltung (7) angegebenen Bedeutungen haben.
In den bevorzugten Definitionen ist, sofern nichts anderes angegeben ist,
Halogen ausgewählt aus der Reihe Fluor, Chlor, Brom und Iod, bevorzugt wiederum aus der Reihe Fluor, Chlor und Brom,
In den besonders bevorzugten Definitionen ist, sofern nichts anderes angegeben ist,
Halogen ausgewählt aus der Reihe Fluor, Chlor, Brom und Iod, bevorzugt wiederum aus der Reihe Fluor, Chlor und Brom,
Sofern nicht an anderer Stelle anders definiert, wird unter dem Begriff „Alkyl", entweder in Alleinstellung oder aber in Kombination mit weiteren Begriffen, wie beispielsweise Halogenalkyl, im Rahmen der vorliegenden Erfindung ein Rest einer gesättigten, aliphatischen Kohlenwasserstoffgruppe mit 1 bis 12 Kohlenstoffatomen verstanden, die verzweigt oder unverzweigt sein kann. Beispiele für Ci- Ci2-Alkylreste sind Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl, tert.-Butyl, n- Pentyl, iso-Pentyl, Neopentyl, tert.-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 1-Ethylpropyl, 1,2- Dimethylpropyl, Hexyl n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Undecyl und n-Dodecyl. Von diesen Alkylresten sind Ci-C6-Alkylreste besonders bevorzugt. Insbesondere bevorzugt sind Ci-C4-Alkylreste.
Sofern nicht an anderer Stelle anders definiert, wird unter dem Begriff „Alkenyl", entweder in Alleinstellung oder aber in Kombination mit weiteren Begriffen, erfindungsgemäß ein linearer oder verzweigter C2-Ci2-Alkenylrest, welcher mindestens eine Doppelbindung aufweist, beispielsweise Vinyl, Allyl, 1-Propenyl, Isopropenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1,3-Butadienyl, 1-Pentenyl, 2- Pentenyl, 3-Pentenyl, 4-Pentenyl, 1,3-Pentadienyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5- Hexenyl und 1 ,4-Hexadienyl, verstanden. Bevorzugt hiervon sind C2-C6-Alkenylreste und besonders bevorzugt sind C2-C4-Alkenylreste. Sofern nicht an anderer Stelle anders definiert, wird unter dem Begriff „Alkinyl", entweder in Alleinstellung oder aber in Kombination mit weiteren Begriffen, erfindungsgemäß ein linearer oder verzweigter C2-Ci2-Alkinylrest, welcher mindestens eine Dreifachbindung aufweist, beispielsweise Ethinyl, 1-Propinyl und Propargyl, verstanden. Bevorzugt hiervon sind C3-C6-Alkinylreste und besonders bevorzugt sind C3-C4-Alkinylreste. Der Alkinylrest kann dabei auch mindestens eine Doppelbindung aufweisen.
Sofern nicht an anderer Stelle anders definiert, wird unter dem Begriff „Cycloalkyl", entweder in Alleinstellung oder aber in Kombination mit weiteren Begriffen, erfindungsgemäß ein C3-C8- Cycloalkylrest verstanden, beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl, verstanden. Bevorzugt hiervon sind C3-C6-Cycloalkylreste.
Unter dem Begriff „Alkoxy", entweder in Alleinstellung oder aber in Kombination mit weiteren Begriffen, wie beispielsweise Halogenalkoxy, wird vorliegend ein Rest O-Alkyl verstanden, wobei der Begriff„Alkyl" die oben stehende Bedeutung aufweist.
Durch Halogen substituierte Reste, z.B. Halogenalkyl (=Haloalkyl), sind einfach oder mehrfach bis zur maximal möglichen Substituentenzahl halogeniert. Bei mehrfacher Halogenierung können die Halogenatome gleich oder verschieden sein. Halogen steht dabei für Fluor, Chlor, Brom oder Iod, insbesondere für Fluor, Chlor oder Brom.
Gegebenenfalls substituierte Reste können, wenn nichts anderes erwähnt ist, einfach oder mehrfach substituiert sein, wobei bei Mehrfachsubstitutionen die Substituenten gleich oder verschieden sein können.
Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen gelten für die Endprodukte und für die Ausgangsprodukte und Zwischenprodukte entsprechend. Diese Restedefinitionen können untereinander, also auch zwischen den jeweiligen Vorzugsbereichen, beliebig kombiniert werden. Erfindungsgemäß bevorzugt verwendet werden Verbindungen der Formeln (I) oder (Γ), in welchen eine Kombination der vorstehend als bevorzugt aufgeführten Bedeutungen vorliegt.
Erfindungsgemäß besonders bevorzugt verwendet werden Verbindungen der Formeln (I) oder (Γ), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.
Erfindungsgemäß ganz besonders bevorzugt verwendet werden Verbindungen der Formeln (I) oder (Γ), in welchen eine Kombination der vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt.
Erfindungsgemäß hervorgehoben verwendet werden Verbindungen der Formeln (I) oder (Γ), in welchen eine Kombination der vorstehend als hervorgehoben aufgeführten Bedeutungen vorliegt. Erfindungsgemäß insbesonders verwendet werden Verbindungen der Formeln (I) oder (Γ), in welchen eine Kombination der vorstehend als insbesonders aufgeführten Bedeutungen vorliegt.
Die Verbindungen der Formeln (I) oder (Γ) können in Abhängigkeit von der Art der Substituenten als geometrische und/oder als optisch aktive Isomere oder entsprechende Isomerengemische in unterschiedlicher Zusammensetzung vorliegen. Diese Stereoisomere sind beispielsweise Enantiomere, Diastereomere, Atropisomere oder geometrische Isomere. Die Erfindung umfasst somit reine Stereoisomere als auch beliebige Gemische dieser Isomere.
Die erfindungsgemäßen Verbindungen der Formeln (I) oder (Γ) können durch die in den folgenden Schemata dargestellten Verfahren erhalten werden: Verfahren A
Figure imgf000021_0001
Die Reste R1, R2, R3, R4, R5, R6, R7und n haben die oben beschriebenen Bedeutungen. A2 und A3 stehen für CH oder N. A4 steht für O, S oder N-R4.
Schritt a) Die Verbindungen der Formel (IV) können in Analogie zu dem in US5576335 beschriebenen Verfahren durch die Umsetzung von Verbindungen der Formel (II) mit Carbonsäuren der Formel (III) in Gegenwart eines Kondensationsmittels hergestellt werden.
Verbindungen der Formel (II) sind entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden, beispielsweise analog der in US2003/69257, WO2006/65703, WO2009/131237, WO2010/125985, WO2011/043404, WO2011/040629, WO2012/086848, WO2013/018928 oder WO2015/000715 beschriebenen Verfahren.
Carbonsäuren der Formel (III) sind entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden, beispielsweise analog der Verfahren I und J.
Die Umsetzung der Verbindungen der Formel (II) mit Carbonsäuren der Formel (III) kann in Substanz oder in einem Lösungsmittel erfolgen, vorzugsweise wird die Reaktion in einem Lösungsmittel durchgeführt, welches ausgewählt ist aus üblichen, bei den vorherrschenden Reaktionsbedingungen inerten Lösungsmitteln. Bevorzugt werden Ether wie beispielsweise Diisopropylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan; halogenierte Kohlenwasserstoffe wie beispielsweise Dichlormethan, Chloroform, Tetrachlorkohlenstoff, 1 ,2-Dichlorethan oder Chlorbenzol; Nitrile, wie beispielsweise Acetonitril oder Propionitril; aromatische Kohlenwasserstoffe wie beispielsweise Toluol, oder Xylol; aprotische polare Lösungsmittel wie beispielsweise N,N-Dimethylformamid oder N- Methylpyrrolidon oder stickstoffhaltige Verbindungen wie beispielsweise Pyridin.
Geeignete Kondensationsmittel sind beispielsweise Carbodiimide wie l-(3-Dimethylaminopropyl)-3- ethylcarbodiimid hydrochlorid (EDCI) oder 1,3-Dicyclohexylcarbodiimid. Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 180 °C durchgeführt werden, vorzugsweise erfolgt die Reaktion bei Normaldruck und Temperaturen von 20 bis 140 °C.
Schritt b)
Die Verbindungen der Formel (I) lassen sich herstellen durch Kondensation der Verbindungen der Formel (IV) z.B. analog der in US2003/69257, WO2006/65703, WO2009/131237, WO2010/125985, WO2011/043404, WO2011/040629, WO2012/86848, WO2015/000715 oder WO2015/121136 beschriebenen Verfahren.
Die Umsetzung zu Verbindungen der Formel (I) kann in Substanz oder in einem Lösungsmittel erfolgen, vorzugsweise wird die Reaktion in einem Lösungsmittel durchgeführt, welches ausgewählt ist aus üblichen, bei den vorherrschenden Reaktionsbedingungen inerten Lösungsmitteln. Bevorzugt werden Ether wie beispielsweise Diisopropylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, tert- Butylmethylether; halogenierte Kohlenwasserstoffe wie beispielsweise Dichlormethan, Chloroform, Tetrachlorkohlenstoff, 1 ,2-Dichlorethan oder Chlorbenzol; Nitrile, wie beispielsweise Acetonitril oder Propionitril; aromatische Kohlenwasserstoffe wie beispielsweise Toluol oder Xylol; aprotische polare Lösungsmittel wie beispielsweise N,N-Dimethylformamid oder N-Methylpyrrolidon oder stickstoffhaltige Verbindungen wie beispielsweise Pyridin.
Die Reaktion lässt sich durchführen in Gegenwart eines Kondensationsmittels, einer Säure, einer Base oder eines Chlorierungsmittels. Beispiele für geeignete Kondensationsmittel sind Carbodiimide wie l-(3-Dimethylaminopropyl)-3- ethylcarbodiimid hydrochlorid (EDCI) oder 1,3-Dicyclohexylcarbodiimid; Anhydride wie Essigsäureanhydrid, Trifluoressigsäureanhydrid; eine Mischung aus Triphenylphosphin, einer Base und Tetrachlorkohlenstoff oder eine Mischung aus Triphenylphosphin und einem Azodiester wie z.B. Diethylazodicarbonsäure.
Beispiele für geeignete Säuren, die in der beschriebenen Reaktion eingesetzt werden können, sind Sulfonsäuren wie para-Toluolsulfonsäure; Carbonsäuren wie Essigsäure oder Polyphosphorsäuren.
Beispiele für geeignete Basen sind stickstoffhaltige Heterocyclen wie Pyridin, Picolin, 2,6-Lutidin, 1 ,8- Diazabicyclo[5.4.0]-7-undecen (DBU); tertiäre Amine wie Triethylamin und N,N- Diisopropylethylamin; anorganische Basen wie Kaliumphosphat, Kaliumcarbonat und Natriumhydrid.
Ein Beispiel für ein geeignetes Chlorierungsmittel ist Phosphoroxychlorid.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Verfahren B
Figure imgf000023_0001
Figure imgf000023_0002
Die Reste R1, R2, R3, R4, R5, R6, R7 und n haben die oben beschriebenen Bedeutungen. A2 und A3 stehen für CH oder N. A4 steht für O, S oder N-R4.
Schritt a)
In einer weiteren erfindungsgemäßen Ausführungsform können Verbindungen der Formel (IV) hergestellt werden durch die Umsetzung von Verbindungen der Formel (II) mit Carbonsäurechloriden der Formel (V) in Gegenwart eines Kondensationsmittels.
Carbonsäurechloride der Formel (V) sind entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden, beispielsweise analog der in US2010/234603 oder US2010/234604 beschriebenen Verfahren. Die Umsetzung der Verbindungen der Formel (II) mit Carbonsäurechloriden der Formel (V) kann in Substanz oder in einem Lösungsmittel erfolgen, vorzugsweise wird die Reaktion in einem Lösungsmittel durchgeführt, welches ausgewählt ist aus üblichen, bei den vorherrschenden Reaktionsbedingungen inerten Lösungsmitteln. Bevorzugt werden Ether wie beispielsweise Diisopropylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan; halogenierte Kohlenwasserstoffe wie beispielsweise Dichlormethan, Chloroform, Tetrachlorkohlenstoff, 1 ,2-Dichlorethan oder Chlorbenzol; aliphatische Kohlenwasserstoffe wie Hexan, Heptan oder Octan; aromatische Kohlenwasserstoffe wie beispielsweise Toluol oder Xylol; Nitrile, wie beispielsweise Acetonitril oder Propionitril; aprotische polare Lösungsmittel wie beispielsweise N,N-Dimethylformamid oder N-Methylpyrrolidon oder stickstoffhaltige Verbindungen wie beispielsweise Pyridin. Die Reaktion erfolgt vorzugsweise in Gegenwart einer Base. Geeignete Basen sind anorganische Basen, die üblicherweise in solchen Reaktionen verwendet werden. Vorzugsweise werden Basen verwendet, die beispielhaft ausgewählt sind aus der Gruppe bestehend aus Acetaten, Phosphaten, Carbonaten und Hydrogencarbonaten von Alkali- oder Erdalkalimetallen. Besonders bevorzugt sind dabei Natriumacetat, Natriumphosphat, Kaliumphosphat, Caesiumcarbonat, Natriumcarbonat, Kaliumcarbonat, Natriumhydrogencarbonat, Kaliumhydrogencarbonat. Weitere geeignete Basen sind tertiäre Amine wie Triethylamin und Ν,Ν-Diisopropylethylamin und stickstoffhaltige Heterocyclen wie Pyridin, Picolin, 2,6-Lutidin, 4-Dimethylaminopyridin und l,8-Diazabicyclo[5.4.0]-7-undecen (DBU).
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von - 20°C bis 100 °C durchgeführt werden, vorzugsweise erfolgt die Reaktion bei Normaldruck und Temperaturen von 0°C bis 80 °C.
Schritt b)
Die weitere Umsetzung der Verbindungen der Formel (IV) zu Verbindungen der Formel (I) erfolgt wie in Verfahren A, Schritt b) beschrieben. Verfahren C
Figure imgf000025_0001
(III) (I)
Die Reste R1, R2, R3, R4, R5, R6, R7 und n haben die oben beschriebenen Bedeutungen. A2 und A3 stehen für CH oder N. A4 steht für O, S oder N-R4. In einer weiteren erfindungsgemäßen Ausführungsform können Verbindungen der Formel (I) in einem einstufigen Prozess aus den Zwischenverbindungen der Formeln (II) und (III) in Gegenwart eines Kondensationsmittels hergestellt werden.
Die Umsetzung zu Verbindungen der Formel (I) kann in Substanz oder in einem Lösungsmittel erfolgen, vorzugsweise wird die Reaktion in einem Lösungsmittel durchgeführt, welches ausgewählt ist aus üblichen, bei den vorherrschenden Reaktionsbedingungen inerten Lösungsmitteln. Bevorzugt werden Ether wie beispielsweise Diisopropylether, Dioxan, Tetrahydrofuran, 1 ,2-Dimethoxyethan, tert- Butylmethylether; halogenierte Kohlenwasserstoffe wie beispielsweise Dichlormethan, Chloroform, Tetrachlorkohlenstoff, 1 ,2-Dichlorethan oder Chlorbenzol; Alkohole wie Methanol, Ethanol oder iso- Propanol; Nitrile, wie beispielsweise Acetonitril oder Propionitril; aromatische Kohlenwasserstoffe wie beispielsweise Toluol oder Xylol; aprotische polare Lösungsmittel wie beispielsweise N,N- Dimethylformamid oder N-Methylpyrrolidon oder stickstoffhaltige Verbindungen wie beispielsweise Pyridin.
Beispiele für geeignete Kondensationsmittel sind Carbodiimide wie l-(3-Dimethylaminopropyl)-3- ethylcarbodiimid hydrochlorid (EDCI) oder 1,3-Dicyclohexylcarbodiimid; Anhydride wie Essigsäureanhydrid, Trifluoressigsäureanhydrid; eine Mischung aus Triphenylphosphin, einer Base und Tetrachlorkohlenstoff oder eine Mischung aus Triphenylphosphin und einem Azodiester wie z.B. Diethylazodicarbonsäure.
Die Reaktion lässt sich durchführen in Gegenwart einer Säure oder einer Base.
Beispiele für eine Säure, die in der beschriebenen Reaktion eingesetzt werden kann, sind Sulfonsäuren wie Methansulfonsäure oder para-Toluolsulfonsäure; Carbonsäuren wie Essigsäure oder Polyphosphorsäuren.
Beispiele für geeignete Basen sind stickstoffhaltige Heterocyclen wie Pyridin, Picolin, 2,6-Lutidin, 1 ,8- Diazabicyclo[5.4.0]-7-undecen (DBU); tertiäre Amine wie Triethylamin und N,N- Diisopropylethylamin; anorganische Basen wie Kaliumphosphat, Kaliumcarbonat und Natriumhydrid. Die Reaktion kann durchgeführt werden in Gegenwart eines geeigneten Katalysators wie z.B. 1- Hydroxybenzotriazol.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden. Verfahren D
Figure imgf000026_0001
Die Reste R1, R2, R3, R4, R5, R6, R7 und n haben die oben beschriebenen Bedeutungen. A2 und A3 stehen für CH oder N. A4 steht für O, S oder N-R4.
In einer weiteren erfindungsgemäßen Ausführungsform können Verbindungen der Formel (I) in einem einstufigen Prozess aus den Zwischen Verbindungen der Formeln (II) und (V) hergestellt werden.
Die Umsetzung zu Verbindungen der Formel (I) kann in Substanz oder in einem Lösungsmittel erfolgen, vorzugsweise wird die Reaktion in einem Lösungsmittel durchgeführt, welches ausgewählt ist aus üblichen, bei den vorherrschenden Reaktionsbedingungen inerten Lösungsmitteln. Bevorzugt werden Ether wie beispielsweise Diisopropylether, Dioxan, Tetrahydrofuran, 1 ,2-Dimethoxyethan, tert- Butylmethylether; halogenierte Kohlenwasserstoffe wie beispielsweise Dichlormethan, Chloroform, Tetrachlorkohlenstoff, 1 ,2-Dichlorethan oder Chlorbenzol; Alkohole wie Methanol, Ethanol oder iso- Propanol; Nitrile, wie beispielsweise Acetonitril oder Propionitril; aromatische Kohlenwasserstoffe wie beispielsweise Toluol oder Xylol; aprotische polare Lösungsmittel wie beispielsweise N,N- Dimethylformamid oder N-Methylpyrrolidon oder stickstoffhaltige Verbindungen wie beispielsweise Pyridin.
Die Reaktion erfolgt vorzugsweise in Gegenwart einer Base. Geeignete Basen sind anorganische Basen, die üblicherweise in solchen Reaktionen verwendet werden. Vorzugsweise werden Basen verwendet, die beispielhaft ausgewählt sind aus der Gruppe bestehend aus Acetaten, Phosphaten, Hydroxiden Carbonaten und Hydrogencarbonaten von Alkali- oder Erdalkalimetallen. Bevorzugt sind dabei Caesiumcarbonat, Natriumcarbonat, Kaliumcarbonat, Natriumhydroxid und Kaliumhydroxid. Weitere geeignete Basen sind tertiaäre Amine wie Triethylamin und Ν,Ν-Diisopropylethylamin, stickstoffhaltige Heterocyclen wie Pyridin, Picolin, 2,6-Lutidin, 4-Dimethylaminopyridin und l,8-Diazabicyclo[5.4.0]-7- undecen (DBU). Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Verbindungen der Formel (Γ) können analog der in A-D beschriebenen Verfahren hergestellt werden.
Verfahren E
Die Verbindungen der Formel (I), bei denen Q für Ql bis Q9 oder Q16 oder Q19 steht, können nach bekannten Methoden hergestellt werden, beispielsweise analog der in WO2009/131237, WO2010/125985, WO2011/043404, WO2011/040629, WO2012/086848, WO2013/018928, WO2015/000715, WO2015/121136 sowie WO2016/039441 beschriebenen Verfahren.
Figure imgf000027_0001
(I) n=1 (I) n=2
Die Reste R1, R2, R3, R4, R5, R6 und R7 haben die oben beschriebenen Bedeutungen, A2 und A3 stehen für CH oder N, A4 steht für O, S oder N-R4 und X1 steht für Halogen. M steht für ein Alkalimetall (bevorzugt für Natrium oder Kalium).
Schritt a)
Die Verbindungen der Formel (VII) können in Analogie zu dem in US5576335 beschriebenen Verfahren durch die Umsetzung von Verbindungen der Formel (II) mit Carbonsäuren der Formel (VI) in Gegenwart eines Kondensationsmittels bzw. einer Base hergestellt werden.
Verbindungen der Formel (II) sind entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden, beispielsweise analog der in US2003/69257, WO2006/65703, WO2009/131237, WO2010/125985, WO2011/043404, WO2011/040629, WO2012/086848, WO2013/018928 oder WO2015/000715 beschriebenen Verfahren.
Carbonsäuren der Formel (VI) sind entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden. Mögliche Herstellungswege werden in Verfahren I beschrieben.
Die Umsetzung der Verbindungen der Formel (II) mit Carbonsäuren der Formel (VI) kann in Substanz oder in einem Lösungsmittel erfolgen, vorzugsweise wird die Reaktion in einem Lösungsmittel durchgeführt, welches ausgewählt ist aus üblichen, bei den vorherrschenden Reaktionsbedingungen inerten Lösungsmitteln. Bevorzugt werden Ether wie beispielsweise Diisopropylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan; halogenierte Kohlenwasserstoffe wie beispielsweise Dichlormethan, Chloroform, Tetrachlorkohlenstoff, 1 ,2-Dichlorethan oder Chlorbenzol; Nitrile, wie beispielsweise Acetonitril oder Propionitril; aromatische Kohlenwasserstoffe wie beispielsweise Toluol, oder Xylol; aprotische polare Lösungsmittel wie beispielsweise N,N-Dimethylformamid oder N- Methylpyrrolidon oder Stickstoffhaltige Verbindungen wie beispielsweise Pyridin.
Geeignete Kondensationsmittel sind beispielsweise Carbodiimide wie l-(3-Dimethylaminopropyl)-3- ethylcarbodiimid hydrochlorid (EDCI) oder 1,3-Dicyclohexylcarbodiimid. Geeignete Basen sind anorganische Basen, die üblicherweise in solchen Reaktionen verwendet werden. Vorzugsweise werden Basen verwendet, die beispielhaft ausgewählt sind aus der Gruppe bestehend aus Acetaten, Phosphaten, Carbonaten und Hydrogencarbonaten von Alkali- oder Erdalkalimetallen. Besonders bevorzugt sind dabei Natriumacetat, Natriumphosphat, Kaliumphosphat, Caesiumcarbonat, Natriumcarbonat, Kaliumcarbonat, Natriumhydrogencarbonat, Kaliumhydrogencarbonat. Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 180 °C durchgeführt werden, vorzugsweise erfolgt die Reaktion bei Normaldruck und Temperaturen von 20 bis 140 °C.
Schritt b)
Die Verbindungen der Formel (VIII) lassen sich herstellen durch Kondensation der Verbindungen der Formel (VII) z.B. analog der in WO2009/131237, WO2010/125985, WO2011/043404, WO2011/040629, WO2012/086848, WO2013/018928, WO2015/000715 sowie WO2015/121136 beschriebenen Verfahren.
Die Umsetzung zu Verbindungen der Formel (VIII) kann in Substanz oder in einem Lösungsmittel erfolgen, vorzugsweise wird die Reaktion in einem Lösungsmittel durchgeführt, welches ausgewählt ist aus üblichen, bei den vorherrschenden Reaktionsbedingungen inerten Lösungsmitteln. Bevorzugt werden Ether wie beispielsweise Diisopropylether, Dioxan, Tetrahydrofuran, 1 ,2-Dimethoxyethan, tert- Butylmethylether; halogenierte Kohlenwasserstoffe wie beispielsweise Dichlormethan, Chloroform, Tetrachlorkohlenstoff, 1 ,2-Dichlorethan oder Chlorbenzol; Nitrile, wie beispielsweise Acetonitril oder Propionitril; aromatische Kohlenwasserstoffe wie beispielsweise Toluol oder Xylol; aprotische polare Lösungsmittel wie beispielsweise N,N-Dimethylformamid oder N-Methylpyrrolidon oder stickstoffhaltige Verbindungen wie beispielsweise Pyridin.
Die Reaktion lässt sich durchführen in Gegenwart eines Kondensationsmittels, einer Säure, einer Base oder eines Chlorierungsmittels.
Beispiele für geeignete Kondensationsmittel sind Carbodiimide wie l-(3-Dimethylaminopropyl)-3- ethylcarbodiimid hydrochlorid (EDCI) oder 1,3-Dicyclohexylcarbodiimid; Anhydride wie Essigsäureanhydrid, Trifluoressigsäureanhydrid; eine Mischung aus Triphenylphosphin, einer Base und Tetrachlorkohlenstoff oder eine Mischung aus Triphenylphosphin und einem Azodiester wie z.B. Diethylazodicarbonsäure.
Beispiele für geeignete Säuren, die in der beschriebenen Reaktion eingesetzt werden können, sind Sulfonsäuren wie para-Toluolsulfonsäure; Carbonsäuren wie Essigsäure oder Polyphosphorsäuren.
Beispiele für geeignete Basen sind stickstoffhaltige Heterocyclen wie Pyridin, Picolin, 2,6-Lutidin, 1 ,8- Diazabicyclo[5.4.0]-7-undecen (DBU); tertiäre Amine wie Triethylamin und N,N- Diisopropylethylamin; anorganische Basen wie Kaliumphosphat, Kaliumcarbonat und Natriumhydrid.
Ein Beispiel für ein geeignetes Chlorierungsmittel ist Phosphoroxychlorid.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Schritt c) Die Verbindungen der Formel (I), wobei n für 0 steht, lassen sich herstellen durch Umsetzung der Verbindungen der Formel (VIII) mit den Verbindungen der Formel (IXa) in Gegenwart einer Base.
Mercaptanderivate der Formel (IXa) wie beispielsweise Methylmercaptan, Ethylmercaptan oder Isopropylmercaptan sind entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden, beispielsweise analog der in US2006/25633, US2006/111591, US2820062, Chemical Communications, 13 (2000), 1163-1164 oder Journal of the American Chemical Society, 44 (1922), p. 1329 beschriebenen Verfahren.
Die Umsetzung zu Verbindung der Formel (I), wobei n für 0 steht, kann in Substanz oder in einem Lösungsmittel erfolgen, vorzugsweise wird die Reaktion in einem Lösungsmittel durchgeführt, welches ausgewählt ist aus üblichen, bei den vorherrschenden Reaktionsbedingungen inerten Lösungsmitteln. Bevorzugt werden Ether wie beispielsweise Diisopropylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan, tert.-Butylmethylether; Nitrile, wie beispielsweise Acetonitril oder Propionitril; aromatische Kohlenwasserstoffe wie beispielsweise Toluol oder Xylol; aprotische polare Lösungsmittel wie beispielsweise N,N-Dimethylformamid, N-Methylpyrrolidon oder Dimethylsulfoxid.
Beispiele für geeignete Basen sind anorganische Basen aus der Gruppe bestehend aus Acetaten, Phosphaten und Carbonaten von Alkali- oder Erdalkalimetallen. Bevorzugt sind dabei Caesiumcarbonat, Natriumcarbonat und Kaliumcarbonat. Weitere geeignete Basen sind Alkalimetallhydride wie z.B. Natriumhydrid.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
In der beschriebenen Reaktion steht X1 bevorzugt für ein Fluor- oder Chloratom. Schritt d) Die Verbindungen der Formel (I), wobei n für 1 steht, lassen sich herstellen durch Oxidation der Verbindungen der Formel (I), wobei n für 0 steht. Die Oxidation wird generell in einem Lösungsmittel durchgeführt, welches ausgewählt ist aus üblichen, bei den vorherrschenden Reaktionsbedingungen inerten Lösungsmitteln. Bevorzugt werden halogenierte Kohlenwasserstoffe wie beispielsweise Dichlormethan, Chloroform, Tetrachlorkohlenstoff, 1 ,2-Dichlorethan oder Chlorbenzol; Alkohole wie Methanol oder Ethanol; Ameisensäure, Essigsäure. Propionsäure oder Wasser.
Beispiele für geeignete Oxidationsmittel sind Wasserstoffperoxid, meta-Chlorperbenzoesäure oder Natriumperiodat.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von -20°C °C bis 120 °C durchgeführt werden. Schritt e)
Die Verbindungen der Formel (I), wobei n für 2 steht, lassen sich herstellen durch Oxidation der Verbindungen der Formel (I), wobei n für 1 steht. Die Oxidation wird generell in einem Lösungsmittel durchgeführt. Bevorzugt werden halogenierte Kohlenwasserstoffe wie beispielsweise Dichlormethan, Chloroform, Tetrachlorkohlenstoff, 1 ,2-Dichlorethan oder Chlorbenzol; Alkohole wie Methanol oder Ethanol; Ameisensäure, Essigsäure. Propionsäure oder Wasser.
Beispiele für geeignete Oxidationsmittel sind Wasserstoffperoxid und meta-Chlorperbenzoesäure. Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von -20°C °C bis 120 °C durchgeführt werden.
Schritt f)
Die Verbindungen der Formel (I), wobei n für 2 steht, lassen sich auch in einem einstufigen Prozess herstellen durch Oxidation der Verbindungen der Formel (I), wobei n für 0 steht. Die Oxidation wird generell in einem Lösungsmittel durchgeführt. Bevorzugt werden halogenierte Kohlenwasserstoffe wie beispielsweise Dichlormethan, Chloroform, Tetrachlorkohlenstoff, 1 ,2-Dichlorethan oder Chlorbenzol; Alkohole wie Methanol oder Ethanol; Ameisensäure, Essigsäure. Propionsäure oder Wasser.
Beispiele für geeignete Oxidationsmittel sind Wasserstoffperoxid und meta-Chlorperbenzoesäure. Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von -20°C °C bis 120 °C durchgeführt werden.
Schritt g)
Alternativ können Verbindungen der Formel (I), wobei n für 2 steht, auch in einem einstufigen Prozess hergestellt werden, beispielsweise in Analogie zu den in Journal of Organic Chemistry 2005, 70, 2696- 2700 beschriebenen Verfahren durch einen Halogen-Sulfon-Austausch mit einer Verbindung der Formel (IXb) ausgehend von Verbindungen der Formel (VIII). Der Austausch wird generell in einem Lösungsmittel durchgeführt. Bevorzugt werden polar aprotische Lösungsmittel wie beispielsweise Dimethylsulfoxid und N,N-Dimethylformamid eingesetzt.
Verbindungen der Formel (IXb) sind entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden, beispielsweise analog der in Organic Synthesis 1977, 57, 88-92; Tetrahedron Letters 1979, 9, 821-824 sowie Bulletin de la Societe Chimique de France 1958, 4, 447-450 beschriebenen Verfahren.
Beispiele für geeignete Schwefel-Reagenzien sind Salze der Sulfinsäure.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von -20°C °C bis 120 °C durchgeführt werden.
Die Verbindungen der Formel (Γ), bei denen Q für Ql bis Q9 oder Q16 oder Q19 steht, lassen sich ebenfalls analog zu Verfahren E herstellen.
Verfahren F
Die Verbindungen der Formel (I), bei denen Q für Q10, QU, Q14 oder Q15 steht, können nach bekannten Methoden hergestellt werden, beispielsweise analog der in US2009/203705 , US2012/258951 , WO2013/3298 oder J. Med. Chem. 31, (1988) 1590-1595 beschriebenen Verfahren.
Figure imgf000032_0001
Figure imgf000032_0002
(I) n=1 (I) n=2
Die Reste R1, R2, R3, R5, R6, R7 und n haben die oben beschriebenen Bedeutungen. A2, A3, A4 und A5 stehen für CH oder N (wobei A2, A3, A4 und A5 nicht gleichzeitig für N stehen) und X1 steht für Halogen. M steht für ein Alkalimetall (bevorzugt für Natrium oder Kalium).
Schritt a)
Carbonsäuren der Formel (VI) werden in Analogie zu dem in WO2011/75643 oder EP2671582 beschriebenen Verfahren in Gegenwart von Ο,Ν-Dimethyl-hydroxylamin Hydrochlorid in Weinreb- Amide der Formel (X) überführt.
Carbonsäuren der Formel (VI) sind entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden. Mögliche Herstellungswege werden in Verfahren J beschrieben. Schritt b, c)
Verbindungen der Formel (X) lassen sich anschließend nach bekannten Methoden, beispielsweise analog dem in WO2011/75643 beschriebenen Verfahren, mit einem Grignard Reagenz wie beispielsweise Methylmagnesiumbromid in Ketone der Formel (XI) überführen. Durch anschließende Halogenierung analog der beispielsweise in US2012/302573 beschriebenen bekannten Methode sind Verbindungen der Formel (XII) zugänglich.
Schritt d)
Die Verbindungen der Formel (XIV) lassen sich herstellen durch Cyclisierung der Verbindungen der Formel (XII) mit Aminen der Formel (XIII). Die Cyclisierung erfolgt beispielsweise in Ethanol, Acetonitril oder N,N-Dimethylformamid nach bekannten Methoden analog der beispielsweise in WO2005/66177, WO2012/88411, WO2013/3298, US2009/203705, US2012/258951, WO2012/168733, WO2014/187762 oder J. Med. Chem. 31 (1988) 1590-1595 beschriebenen Verfahren.
Die Verbindungen der Formel (XIII) sind kommerziell erhältlich.
Schritt e) Die Verbindungen der Formel (I), wobei n für 0 steht, lassen sich herstellen durch Umsetzung der Verbindungen der Formel (XIV) mit den Verbindungen der Formel (IXa) in Gegenwart einer Base. Mercaptanderivate der Formel (IXa) wie beispielsweise Methylmercaptan, Ethylmercaptan oder Isopropylmercaptan sind entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden, beispielsweise analog der in US2006/25633, US2006/111591, US2820062, Chemical Communications, 13 (2000), 1163-1164 oder Journal of the American Chemical Society, 44 (1922), p. 1329 beschriebenen Verfahren.
Schritt f, g)
Die Verbindungen der Formel (I), wobei n für 1 steht, lassen sich herstellen durch Oxidation der Verbindungen der Formel (I), wobei n für 0 steht. Die Oxidation erfolgt nach bekannten Methoden mit einem geeigneten Oxidationsmittel wie bespielsweise Wasserstoffperoxid, meta-Chlorperbenzoesäure oder Natriumperiodat.
Die Verbindungen der Formel (I), wobei n für 2 steht, lassen sich herstellen durch Oxidation der Verbindungen der Formel (I), wobei n für 1 steht.
Die Oxidation wird generell in einem Lösungsmittel durchgeführt. Bevorzugt werden halogenierte Kohlenwasserstoffe wie beispielsweise Dichlormethan, Chloroform, Tetrachlorkohlenstoff, 1,2- Dichlorethan oder Chlorbenzol; Alkohole wie Methanol oder Ethanol; Ameisensäure, Essigsäure. Propionsäure oder Wasser. Beispiele für geeignete Oxidationsmittel sind Wasserstoffperoxid und meta- Chlorperbenzoesäure.
Schritt h)
Die Verbindungen der Formel (I), wobei n für 2 steht, lassen sich auch in einem einstufigen Prozess herstellen durch Oxidation der Verbindungen der Formel (I), wobei n für 0 steht. Die Oxidation wird generell in einem Lösungsmittel durchgeführt. Bevorzugt werden halogenierte Kohlenwasserstoffe wie beispielsweise Dichlormethan, Chloroform, Tetrachlorkohlenstoff, 1 ,2-Dichlorethan oder Chlorbenzol; Alkohole wie Methanol oder Ethanol; Ameisensäure, Essigsäure. Propionsäure oder Wasser. Beispiele für geeignete Oxidationsmittel sind Wasserstoffperoxid und meta-Chlorperbenzoesäure.
Die Verbindungen der Formel (Γ), bei denen Q für Q10, QU, Q14 und Q15 steht, lassen sich ebenfalls analog zu Verfahren F herstellen.
Schritt i)
Alternativ können Verbindungen der Formel (I), wobei n für 2 steht, auch in einem einstufigen Prozess hergestellt werden, beispielsweise in Analogie zu den in Journal of Organic Chemistry 2005, 70, 2696- 2700 beschriebenen Verfahren durch einen Halogen-Sulfon-Austausch mit einer Verbindung der Formel (IXb) ausgehend von Verbindungen der Formel (XIV). Der Austausch wird generell in einem Lösungsmittel durchgeführt. Bevorzugt werden polar aprotische Lösungsmittel wie beispielsweise Dimethylsulfoxid und N,N-Dimethylformamid eingesetzt.
Beispiele für geeignete Schwefel-Reagenzien sind Salze der Sulfinsäure.
Verbindungen der Formel (IXb) sind entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden, beispielsweise analog der in Organic Synthesis 1977, 57, 88-92; Tetrahedron Letters 1979, 9, 821-824 sowie Bulletin de la Societe Chimique de France 1958, 4, 447-450 beschriebenen Verfahren.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von -20°C °C bis 120 °C durchgeführt werden. Die Verbindungen der Formel (Γ), bei denen Q für Q10, QU, Q14 oder Q15 steht, lassen sich ebenfalls analog zu Verfahren F herstellen.
Verfahren G
Die Verbindungen der Formel (I), bei denen Q für Q16 steht, können nach bekannten Methoden hergestellt werden, beispielsweise analog der in WO2014/142292 beschriebenen Verfahren.
Figure imgf000035_0001
Figure imgf000035_0002
Die Reste R2, R3, R4, R5, R6 und R7 haben die oben beschriebenen Bedeutungen. X1 steht für Halogen. Schritt a)
Die Verbindungen der Formel (XV) können in Analogie zu dem in US5374646 oder Bioorganic and Medicinal Chemistry Letters 2003, 13, 1093 - 1096 beschriebenen Verfahren durch die Umsetzung von Verbindungen der Formel (VI) mit einer Ammoniakquelle in Gegenwart eines Kondensationsmittels hergestellt werden.
Carbonsäuren der Formel (VI) sind entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden. Mögliche Herstellungswege werden in Verfahren I beschrieben. Die Umsetzung der Verbindungen der Formel (VI) mit der Ammoniakquelle wird vorzugsweise in einem Lösungsmittel durchgeführt, welches ausgewählt ist aus üblichen, bei den vorherrschenden Reaktionsbedingungen inerten Lösungsmitteln. Bevorzugt werden Ether wie beispielsweise Dioxan oder Tetrahydrofuran.
Ein geeignetes Kondensationsmittel ist beispielsweise Carbonyldiimidazol. Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck durchgeführt werden. Vorzugsweise erfolgt die Reaktion bei Normaldruck und Temperaturen von 20 bis 70 °C.
Schritt b)
Die Verbindungen der Formel (XVII) können in Analogie zu dem in WO2014/142292 beschriebenen Verfahren durch die Umsetzung von Verbindungen der Formel (XV) mit Verbindungen der Formel (XVI) in Gegenwart eines Palladiumkatalysators im Basischen hergestellt werden. Verbindungen der Formel (XVI) können beispielsweise analog der in WO2014/ 142292 beschriebenen Verfahren hergestellt werden. Als Palladiunikatalysator kann beispielsweise [1,1 '-Bis- (diphenylphosphino)ferrocen]dichlorpalladium(II) verwendet werden. Als Base finden häufig anorganische Basen wie Kaliumtertbutanolat Verwendung Die Umsetzung erfolgt in einem Lösungsmittel. Häufig wird Toluol verwendet.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck durchgeführt werden. Vorzugsweise erfolgt die Reaktion bei Normaldruck und Temperaturen von 20 bis 110 °C.
Die weitere Umsetzung von Verbindungen der Formel (XVII) zu Verbindungen der Formel (I) erfolgt analog zu Verfahren E. Die Verbindungen der Formel (Γ), bei denen Q für Q16 steht, lassen sich ebenfalls analog zu Verfahren G herstellen.
Verfahren H
Die Verbindungen der Formel (I), bei denen Q für Q12, Q13, Q17, Q18 oder Q20 steht, können nach bekannten Methoden hergestellt werden, beispielsweise analog der in WO2010/091310, WO 2012/66061 oder WO2013/099041 beschriebenen Verfahren.
Figure imgf000036_0001
Die Reste R2, R3, R5, R6 und R7 haben die oben beschriebenen Bedeutungen. A2, A3 und A6 stehen für CH oder N. X1 und X2 stehen für Halogen. Schritt a)
Die Verbindungen der Formel (XXIII) lassen sich herstellen durch Umsetzung von Verbindungen der Formel (XXI) mit Verbindungen der Formel (XXII) unter basischen Bedingungen, z.B. analog der in WO2010/091310, WO 2012/66061, WO2013/099041 oder Tetrahedron 1993, 49, 10997-11008 beschriebenen Verfahren. Verbindungen der Formel (XXI) sind entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden, beispielsweise analog der in WO2005/100353, WO 2012/66061 oder in European Journal of Medicinal Chemistry 2010, 45, 2214 - 2222 beschriebenen Verfahren. Verbindungen der Formel (XXII) sind entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden, beispielsweise analog der in Angewandte Chemie International Edition 2015, 54, 12163-12166, Angewandte Chemie International Edition 2015, 54, 10773-10777, Chemistry - A European Journal 2013, 19, 7944-7960, Science of Synthesis 2010, 45b, 745-8548 und WO2014/0145169 beschriebenen Verfahren.
Als Basen werden meist anorganische Basen wie Natriumhydrid, Kaliumcarbonat oder Cäsiumcarbonat verwendet.
Die Umsetzung zu Verbindungen der Formel (XXIII) erfolgt meist in einem Lösungsmittel, vorzugsweise in einem Nitril, wie beispielsweise Acetonitril oder Propionitril oder in einem aprotischen, polaren Lösungsmittel wie beispielsweise Ν,Ν-Dimethylformamid oder N-Methylpyrrolidon.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Alternativ kann die Umsetzung von Verbindungen der Formel (XXI) mit Verbindungen der Formel (XXII) zu Verbindungen der Formel (XXIII) auch durch Palladium-katalysierte N-Arylierung erfolgen, z.B. analog der in Angewandte Chemie Int. Ed. 2011, 50, 8944-8947 beschriebenen Verfahren.
Die weitere Umsetzung von Verbindungen der Formel (XXIII) zu Verbindungen der Formel (I) erfolgt analog zu Verfahren E.
Die Verbindungen der Formel (Γ), bei denen Q für Q12, Q13, Q17, Q18 oder Q20 steht, lassen sich ebenfalls analog zu Verfahren H herstellen. Verfahren I
Die Verbindungen der Formel (VI), bei denen R7 für Wasserstoff steht, können nach folgenden Methoden hergestellt werden:
Figure imgf000038_0001
Die Reste R2 und R3 haben die oben beschriebene Bedeutung. R7 steht für Wasserstoff. X1, X2 und X3 stehen für Halogen und R8 steht für C1-C4 Alkyl. Schritt a)
Die Verbindungen der Formel (XXXII) können in Analogie zu den in Journal of Organic Chemistry 1993, 58, 6429-6437 beschriebenen Verfahren aus o-Alkenyl α-diazopropiophenon Derivaten der Formel (XXIV) unter photochemischen oder thermischen Bedingungen über eine Wolff-Umlagerung gefolgt von einer intramolekularen Cyclisierung synthetisiert werden. Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Verbindungen der Formel (XXIV) sind entweder kommerziell erhältlich oder können aus den entsprechenden Carbonsäure-Derivaten durch Umsetzung zu den Carbonsäurechloriden und anschließender Reaktion mit Diazomethan erhalten werden. Diese Transformationen sind z. B. in Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry 1979, 17B, 329- 332, Organic Syntheses 1970, 50, 77-80 und Chemical & Pharmaceutical Bulletin 1981, 29, 3249-3255 beschrieben.
Schritt b-c)
Die ß-Naphthol-Derivate der Formel (XXXII) können alternativ in Analogie zu dem in Angewandte Chemie, International Edition 2014, 53, 8980-8984 beschriebenen Verfahren aus einem Keten-Surrogat der Formel (XXV) und o-Vinylaryliodiden der Formel (XXVI) über eine Sonogashira- Kupplung (Schritt b) gefolgt von einer Umlagerung zu dem entsprechenden o-Vinylarylketen, welches anschließend eine sigmatrope Umlagerung unterläuft (Schritt c), erhalten werden. Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden. tert-Butoxyacetylen (XXV) ist kommerziell erhältlich und o-Vinylaryliodide der Formel (XXVI) sind ebenfalls entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden, beispielsweise über eine Wittig-Reaktion aus den entsprechenden Aldehyden in Analogie zu den in Angewandte Chemie International Edition 2016, 55, 413-417, Organic Letters 2015, 17, 4180-4183 oder Chemistry - An Asian Journal 2015, 10, 1618-1621 beschriebenen Verfahren.
Schritt d)
Die ß-Naphthol-Derivate der Formel (XXXII) können alternativ in Analogie zu dem in Journal of Organic Chemistry 2011, 76, 10068-10077 beschriebenen Verfahren hergestellt werden, beispielsweise über eine intramolekulare Heck-Reaktion von Verbindungen der Formel (XXVII).
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Verbindungen der Formel (XXVII) sind entweder kommerziell erhältlich oder können in Analogie zu den in Journal of Organic Chemistry 2011, 76, 10068-10077 beschriebenen Verfahren über eine carbonylative Stille-Kupplung von 2-Halobenzylhalogeniden mit Tributylallylstannan synthetisiert werden.
Schritt e)
Die ß-Naphthosäure-Derivate der Formel (XXXIII) können in Analogie zu dem in Tetrahedron Letters 2004, 45, 5653-5656 beschriebenen Verfahren über eine Übergangsmetall-katalysierte Tandem Heck- Aldol-Reaktion von 2-Halobenzaldehyden der Formel (XXIX) und But-3-ensäure der Formel (XXVIII) erhalten werden.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden. Verbindungen der Formel (XXIX) sind entweder kommerziell erhältlich oder können nach bekannten Verfahren, beispielsweise wie in Tetrahedron 2015, 71, 6744-6748, RCS Advances 2015, 5, 79699- 79702, WO2014/0163257, Journal of Organic Chemistry 2014, 79, 1529-1541, Journal of Fluorine Chemistry 2013, 156, 9-14 oder Organic Reaktions (Hoboken, NJ, United States) 2008, 71, 1-737 beschrieben, hergestellt werden.
Verbindungen der Formel (XXVIII) sind kommerziell erhältlich. Schritt f-i)
Die ß-Naphthosäure -Derivate der Formel (XXXIII) können alternativ in Analogie zu dem in ChemMedChem 2010, 5, 65-78 beschriebenen Verfahren über eine mehrstufige Syntheseroute hergestellt werden. 2-Halobenzaldehyd-Derivate der Formel (XXXI) können in Gegenwart einer Aminbase, z. B. DABCO, mit einem Alkyl Acrylat der Formel (XXX) in ein Baylis-Hillman Addukt überführt werden, welches im nächsten Schritt in Gegenwart einer Aminbase mit einem geeigneten Carbonsäurechlorid acyliert wird. Unter thermischen Bedingungen und Verwendung einer Base, z. B. einer Carbonatbase, wie Cäsiumcarbonat und Nitromethan als Nukleophil kann eine Benzannelierung stattfinden. Die erhaltenen ß-Naphthosäureester können durch Verseifung mit Hydroxid Basen in die ß- Naphthosäure -Derivate der Formel (XXXIII) überführt werden.
Die einzelnen Reaktionen können jeweils im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Schritt j)
3-Hydroxy-2-naphthocarbonsäure -Derivate der Formel (XXXIV) sind entweder kommerziell erhältlich oder können nach den in CN2015/104447302, Angewandte Chemie, International Edition 2015, 54, 2255-2259, Green Processing and Synthesis 2015, 4, 91-96 beschriebenen Verfahren über Carboxylierung in ortho-Stellung der Hydroxyfunktion von ß-Naphthol-Derivate der Formel (XXXII) hergestellt werden. Die Funktionalisierung kann unter Übergangsmetall-katalysierten oder nicht katalysierten Bedingungen, mit Kohlenstoffdioxid oder Metall Alkylcarbonaten als Elektrophilen stattfinden.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden. ß-Naphthol-Derivate der Formel (XXXII) können zum Beispiel wie unter Verfahren a-d) beschrieben hergestellt werden.
Schritt k)
3-Hydroxy-2-naphthocarbonsäure -Derivate der Formel (XXXIV) können alternativ nach den in WO2011/037929 beschriebenen Verfahren über eine Hydroxylierung von ß-Naphthosäure -Derivaten der Formel (XXXIII) hergestellt werden. Als Oxidationsmittel kann z. B. (Luft-)Sauerstoff verwendet werden. Die Funktionalisierung kann mit oder ohne Metallkatalysator, bei Raumtemperatur oder unter thermischen Bedingungen durchgeführt werden. Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden. ß-Naphthosäure-Derivaten der Formel (XXXIII) können z. B. wie in Schritt e-i) beschrieben hergestellt werden. Schritt 1)
3-Amino-2-naphthocarbonsäure-Derivate der Formel (XXXV) sind entweder kommerziell erhältlich oder können in Analogie zu den in Heterocycles 2012, 86, 425-433, Tetrahedron Letters 2003, 44, 7613- 7615 beschriebenen Verfahren aus den entsprechenden 3-Hydroxy-2-naphthocarbonsäure-Derivaten der Formel (XXXIV) über eine nukleophile aromatische Substitution erhalten werden. Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Schritt m-n)
Die 3-Halo-2-naphthocarbonsäure-Derivate der Formel (VI) sind entweder kommerziell erhältlich oder können nach den in Angewandte Chemie, International Edition 2014, 53, 9860-9864, Journal of the American Chemical Society 2014, 136, 15414-15421 beschriebenen Verfahren z.B. über eine Sandmeyer-Reaktion aus den entsprechenden 3-Amino-2-naphthocarbonsäure-Derivaten der Formel (XXXV) synthetisiert werden.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden. Verfahren .T
Die Verbindungen der Formel (VF), bei denen R10 und R11 für Wasserstoff stehen, können nach folgenden Methoden hergestellt werden:
Figure imgf000042_0001
Die Reste R2 und R3 haben die oben beschriebene Bedeutung. R10 und R11 stehen für Wasserstoff. X1 und X2 stehen für Halogen. Schritt a)
Die 2-Halonaphthalin-Derivate der Formel (XXXVI) sind entweder kommerziell erhältlich oder können in Analogie zu den in Huaxue Shiji 2012, 34, 571-573, Journal of the American Chemical Society 2014, 136, 2236-2239 hergestellt werden, z. B. aus den ß-Naphthol-Derivaten der Formel (XXXII) mit Triphenylphosphindibromid, Brom oder dem entsprechenden N-Halosuccinimid als Halogenierungsreagenz. Die nukleophile aromatische Substitution kann unter Verwendung von Trialkyl- oder Triarylphosphinendurchgeführt werden. Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden. ß-Naphthol-Derivate der Formel (XXXII) können wie in Verfahren I (Schritt a-d) beschrieben hergestellt werden. Schritt b)
2-Methylnaphthalin-Derivate der Formel (XLII) sind entweder kommerziell erhältlich oder können in Analogie zu den in Chemical Communications 2006, 1, 97-99, Applied Catalysis, A: General 2010, 381, 161-168 beschriebenen Verfahren aus Verbindungen der Formel (XXXVI) mittels einer Übergangsmetall-katalysierten Kreuzkupplungsreaktion unter Verwendung von z. B. Aluminium- oder Zinnorganylen synthetisiert werden. Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Schritt c)
2-Methylnaphthalin-Derivate der Formel (XLII) können alternativ in Analogie zu den in Organic Letters 2015, 17, 4654-4657, Journal of Organic Chemistry 2011, 76, 7204-7215 beschriebenen Verfahren aus Alkenylbenzaldehyd-Derivaten der Formel (XXXVII) über eine intramolekulare Lewis- oder Brönsted- Säure katalysierte Zyklisierung hergestellt werden. Als Lewis Säuren könne z. B. Gold- oder Silbersalze verwendet werden. Die Umsetzung kann bei Raumtemperatur oder unter thermischen Bedingungen erfolgen. Es können protische und aprotische Lösungsmittel verwendet werden. Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Alkenylbenzaldehyd-Derivaten der Formel (XXXVII) sind entweder kommerziell erhältlich oder können in Analogie zu den in Organic Letters 2015, 17, 4654-4657, Angewandte Chemie International Edition 2012, 51, 10812-10815, Journal of Organic Chemistry 2003, 68, 6238-6250 oder Journal of the American Chemical Society 2009, 131, 2056-2057 beschriebenen Verfahren synthetisiert werden.
Schritt d)
2-Methylnaphthalin-Derivate der Formel (XLII) können alternativ in Analogie zu den in Helvetica Chimica Acta 2012, 95, 1953-1969 beschriebenen Verfahren aus den entsprechenden Alkenylbenzaldehyd-Derivaten der Formel (XXXVIII) über eine intramolekulare Säure-katalysierte Zyklisierung hergestellt werden. Verbindungen der Formel (XXXVIII) sind isomer zu den Verbindungen der Formel (XXXVII) und die in Schritt c) und d) beschriebenen Reaktionsbedingungen können für beide Edukte der Formeln (XXXVII) und (XXXVIII) angewendet werden.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden. Alkenylbenzaldehyd-Derivaten der Formel (XXXVIII) sind entweder kommerziell erhältlich oder können in Analogie zu den in Journal of the American Chemical Society 2006, 128, 9340-9341, Organic Letters 1999, 1, 1415-1417, Journal of Organic Chemistry 2011, 76, 7204-7215 und Organic Letters 2015, 17, 4654-4657 beschriebenen Verfahren synthetisiert werden.
Schritt e)
2-Methylnaphthalin-Derivate der Formel (XLII) können alternativ in Analogie zu den in Science of Synthesis 2010, 45b, 745-854 beschriebenen Verfahren aus l-Ethinyl-2-[(E)-propl-enyl]benzol- Derivaten der Formel (XXXIX) mittels elektrocyclischer Ringschlussreaktion hergestellt werden. 1- Ethinyl-2-[(E)-propl-enyl]benzol-Derivaten der Formel (XXXIX) sind entweder kommerziell erhältlich oder können in Analogie zu den in Angewandte Chemie, International Edition 2014, 53, 1841- 1844, Organic Letters 2007, 9, 4143-4146 und WO2011/132633 hergestellt werden.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Schritt f)
2- Methylnaphthalin-Derivate der Formel (XLII) können alternativ in Analogie zu den in Tetrahedron 1991, 47, 3499-3510 beschriebenen Verfahren aus Benzylchlorid-Derivaten der Formel (XLI) und ß- Oxo-ketendithioacetal (XL) über eine Cycloaromatisierung synthetisiert werden. Dabei kann z. B. zunächst aus Verbindungen der Formel (XLI) das entsprechende Grignard-Reagenz überführt werden, welches dann mit ß-Oxo-ketendithioacetal (XL) zu einem Carbonilacetal reagiert, das anschließend in Gegenwart einer Lewis-Säure, wie z. B. Bortrifluorid Etherat, zu dem entsprechenden Naphthalin- Derivat (XLII) reagiert.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden. ß-Oxo-ketendithioacetal (XL) kann aus dem entsprechenden Ketenacetal durch 1 ,4-Redutkion mit Natriumborhydrid erhalten werden. Benzylchloride der Formel (XLI) sind entweder kommerziell erhältlich oder können analog der in European Journal of Inorganic Chemistry 2014, 5, 888-895, International Journal of Organic Chemistry 2013, 3, 1-7 und Chinese Journal of Chemistry 2012, 30, 1647-1657 beschriebenen Verfahren hergestellt werden.
Schritt g) l-Halo-2-methylnaphthalin-Derivate der Formel (XLIII) können in Analogie zu den in Journal of Materials Chemistry A: Materials for Energy and Sustainability 2014, 2, 13905-13915, Hubei Daxue Xuebao, Ziran Kexueban 2010, 32, 62-64 beschriebenen Verfahren aus den 2-Methylnaphthalin- Derivaten der Formel (XLII) über eine elektrophile aromatische Halogenierung erhalten werden. Als Halogenierungsreagenz kann beispielsweise Brom, N-Bromsuccinimid, N-Chlorsuccinimid N- Iodsuccinimid verwendet werden. Als Lösungsmittel werden halogenierte Alkane, wie z.B. Tetrachlorkohlenstoff verwendet.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Schritt h)
l-Halonaphthalin-2-carbonsäuren der Formel (VT) sind entweder kommerziell erhältlich oder können in Analogie zu den in Chemistry - A European Journal 2015, 21, 7030-7034, Journal of Materials Chemistry A: Materials for Energy and Sustainability 2014, 2, 13905-13915, WO2010/114262, Hubei Daxue Xuebao, Ziran Kexueban 2010, 32, 62-64, Chemical & Pharmaceutical Bulletin 2005, 53, 1540- 1546, Synthesis 2000, 12, 1677-1680 beschriebenen Verfahren aus den entsprechenden l-Halo-2- methylnaphthalin-Derivaten der Formel (XLIII) hergestellt werden. Dabei kann über ein zweistufiges Verfahren zunächst die benzylische Position unter radikalischen Bedingungen halogeniert werden, beispielsweise unter Verwendung von N-Bromsuccinimid und Dibenzoylperoxid. Anschließend kann unter oxidativen Bedingungen die Carbonsäure erhalten werden. Alternativ kann eine benzylische Oxidation mithilfe von beispielsweise Kaliumpermanganat oder Luftsauerstoff und in Gegenwart eines Übergangsmetallkatalysators durchgeführt werden, um die 1-Halo-naphthalin— 2-carbonsäure -Derivate der Formel (VT) zu erhalten.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Verfahren K
Die Verbindungen der Formel (III) können nach folgenden Methoden hergestellt werden:
Figure imgf000045_0001
n = 2
Die Reste R1, R2, R3 und R7 haben die oben beschriebene Bedeutung. X1 und X2 stehen für Halogen und R9 steht für C1-C4 Alkyl. M steht für ein Alkalimetall (bevorzugt für Natrium oder Kalium). Schritt a)
Verbindungen der Formel (XLIV) sind entweder kommerziell erhältlich oder können in Analogie zu den in ChemSusChem 2015, 8, 1916-1925, Chemical Engineering Journal 2015, 271, 269-275, Catalysis Communications 2015, 59, 122-126, Synthetic Communications 2014, 44, 2386-2392, Synthetic Communications 2014, 44, 836-846, Journal of Organic Chemistry 2013, 78, 11606-11611, Organic Letters 2011, 13, 320-323 und Journal oft he American Chemical Society 1948, 70, 3135-3136 beschriebenen Verfahren aus den entsprechenden Carbonsäuren der Formel (VI) über eine Veresterung bzw. eine Alkylierung unter sauren oder neutralen Bedingungen erhalten werden.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 180 °C durchgeführt werden, vorzugsweise erfolgt die Reaktion bei Normaldruck und Temperaturen von 20 bis 140 °C.
Verbindungen der Formel (VI) sind entweder kommerziell erhältlich oder entsprechend den Verfahren I und L hergestellt werden.
Schritt b) Verbindungen der Formel (XLV), wobei n für 0 steht, lassen sich herstellen durch Umsetzung der Verbindungen der Formel (XLIV) mit den Verbindungen der Formel (IXa) in Gegenwart einer Base.
Mercaptanderivate der Formel (IXa) wie beispielsweise Methylmercaptan, Ethylmercaptan oder Isopropylmercaptan sind entweder kommerziell erhältlich oder können nach bekannten Methoden hergestellt werden, beispielsweise analog der in US2006/25633, US2006/111591, US2820062, Chemical Communications, 13 (2000), 1163-1164 oder Journal of the American Chemical Society, 44 (1922), p. 1329 beschriebenen Verfahren.
Die Umsetzung zu Verbindung der Formel (XLV), wobei n für 0 steht, kann in Substanz oder in einem Lösungsmittel erfolgen, vorzugsweise wird die Reaktion in einem Lösungsmittel durchgeführt, welches ausgewählt ist aus üblichen, bei den vorherrschenden Reaktionsbedingungen inerten Lösungsmitteln. Bevorzugt werden Ether wie beispielsweise Diisopropylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan, tert.-Butylmethylether; Nitrile, wie beispielsweise Acetonitril oder Propionitril; aromatische Kohlenwasserstoffe wie beispielsweise Toluol oder Xylol; aprotische polare Lösungsmittel wie beispielsweise Ν,Ν-Dimethylformamid, N-Methylpyrrolidon oder Dimethylsulfoxid.
Beispiele für geeignete Basen sind anorganische Basen aus der Gruppe bestehend aus Acetaten, Phosphaten und Carbonaten von Alkali- oder Erdalkalimetallen. Bevorzugt sind dabei Caesiumcarbonat, Natriumcarbonat und Kaliumcarbonat. Weitere geeignete Basen sind Alkalimetallhydride wie z.B. Natriumhydrid. Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
In der beschriebenen Reaktion steht X1 bevorzugt für ein Fluor- oder Chloratom. Schritt c), d) Die Verbindungen der Formel (XLV), wobei n für 1 steht, lassen sich herstellen durch Oxidation der Verbindungen der Formel (XLV), wobei n für 0 steht. Die Oxidation erfolgt nach bekannten Methoden mit einem geeigneten Oxidationsmittel wie bespielsweise Wasserstoffperoxid, meta- Chlorperbenzoesäure oder Natriumperiodat.
Die Verbindungen der Formel (XLV), wobei n für 2 steht, lassen sich herstellen durch Oxidation der Verbindungen der Formel (XLV), wobei n für 1 steht.
Die Oxidation wird generell in einem Lösungsmittel durchgeführt. Bevorzugt werden halogenierte Kohlenwasserstoffe wie beispielsweise Dichlormethan, Chloroform, Tetrachlorkohlenstoff, 1,2- Dichlorethan oder Chlorbenzol; Alkohole wie Methanol oder Ethanol; Ameisensäure, Essigsäure. Propionsäure oder Wasser. Beispiele für geeignete Oxidationsmittel sind Wasserstoffperoxid und meta- Chlorperbenzoesäure.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von -20°C °C bis 120 °C durchgeführt werden.
Schritt e)
Alternativ können Verbindungen der Formel (XLV), wobei n für 2 steht, auch in einem einstufigen Prozess hergestellt werden, beispielsweise in Analogie zu den in Journal of Organic Chemistry 2005, 70, 2696-2700 beschriebenen Verfahren durch einen Halogen-Sulfon-Austausch mit einer Verbindung der Formel (IXb) ausgehend von Verbindungen der Formel (XIV). Der Austausch wird generell in einem Lösungsmittel durchgeführt. Bevorzugt werden polar aprotische Lösungsmittel wie beispielsweise Dimethylsulfoxid und N,N-Dimethylformamid eingesetzt. Beispiele für geeignete Schwefel-Reagenzien sind Salze der Sulfinsäure.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von -20°C °C bis 120 °C durchgeführt werden.
Schritt f)
Die Verbindungen der Formel (III) können analog der in Synthesis 1987, 6, 586-587, Tetrahedron Letters 2006, 47, 565-567 oder ChemMedChem 2010, 5, 65-78 beschriebenen Verfahren über eine Verseifung aus den Verbindungen der Formel (XLV) synthetisiert werden. Beispiele für geeginete Basen sind beispielsweise Lithiurnhydroxid oder Natriumhydroxid. Als Solvens können polare aprotische und protische Lösungsmittel sowie Mischungen dieser verwendet werden, beispielsweise Ethanol, Tetrahydrofuran oder Wasser.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von -20°C °C bis 120 °C durchgeführt werden.
Die Verbindungen der Formel (ΙΙ ) lassen sich ebenfalls analog zu Verfahren K aus Verbindungen der Formel (VF) herstellen. Verbindungen der Formel (VF) sind entweder kommerziell erhältlich oder entsprechend den Verfahren J und M hergestellt werden.
Verfahren L
Die Verbindungen der Formel (VI) können nach folgenden Methoden hergestellt werden:
Figure imgf000048_0001
Die Reste R2, R3 und R7 haben die oben beschriebene Bedeutung. X1 steht für Halogen. Schritt a) 3-Hydroxy-2-naphthocarbonsäure -Derivate der Formel (XXXIV) sind entweder kommerziell erhältlich oder können nach den in CN2015/104447302, Angewandte Chemie, International Edition 2015, 54, 2255-2259, Green Processing and Synthesis 2015, 4, 91-96 beschriebenen Verfahren über Carboxylierung in ortho-Stellung der Hydroxyfunktion von ß-Naphthol-Derivate der Formel (XXXII) hergestellt werden. Die Funktionalisierung kann unter Übergangsmetall-katalysierten oder nicht katalysierten Bedingungen, mit Kohlenstoffdioxid oder Metall Alkylcarbonaten als Elektrophilen stattfinden.
Verbindungen der Formel (XXXII) sind kommerziell erhältlich.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden. Schritt b)
3-Amino-2-naphthocarbonsäure-Derivate der Formel (XXXV) sind entweder kommerziell erhältlich oder können in Analogie zu den in Heterocycles 2012, 86, 425-433, Tetrahedron Letters 2003, 44, 7613- 7615 beschriebenen Verfahren aus den entsprechenden 3-Hydroxy-2-naphthocarbonsäure-Derivaten der Formel (XXXIV) über eine nukleophile aromatische Substitution erhalten werden. Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Schritt c-d)
Die 3-Halo-2-naphthocarbonsäure-Derivate der Formel (VI) sind entweder kommerziell erhältlich oder können nach den in Angewandte Chemie, International Edition 2014, 53, 9860-9864, Journal of the American Chemical Society 2014, 136, 15414-15421 beschriebenen Verfahren z.B. über eine Sandmeyer-Reaktion aus den entsprechenden 3-Amino-2-naphthocarbonsäure-Derivaten der Formel (XXXV) synthetisiert werden.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Verfahren M
Die Verbindungen der Formel (VF), können nach folgenden Methoden hergestellt werden:
Figure imgf000049_0001
Die Reste R2, R3, R10 und R11 haben die oben beschriebene Bedeutung. X1 steht für Halogen. Schritt a) l-Halo-2-methylnaphthalin-Derivate der Formel (XLIII) können in Analogie zu den in Journal of Materials Chemistry A: Materials for Energy and Sustainability 2014, 2, 13905-13915, Hubei Daxue Xuebao, Ziran Kexueban 2010, 32, 62-64 beschriebenen Verfahren aus den 2-Methylnaphthalin- Derivaten der Formel (XLII) über eine elektrophile aromatische Halogenierung erhalten werden. Als Halogenierungsreagenz kann beispielsweise Brom, N-Bromsuccinimid, N-Chlorsuccinimid N- Iodsuccinimid verwendet werden. Als Lösungsmittel werden halogenierte Alkane, wie z.B. Tetrachlorkohlenstoff verwendet.
Verbindungen der Formel XLII sind kommerziell erhältlich.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden. Schritt b)
l-Halonaphthalin-2-carbonsäuren der Formel (VT) sind entweder kommerziell erhältlich oder können in Analogie zu den in Chemistry - A European Journal 2015, 21, 7030-7034, Journal of Materials Chemistry A: Materials for Energy and Sustainability 2014, 2, 13905-13915, WO2010/114262, Hubei Daxue Xuebao, Ziran Kexueban 2010, 32, 62-64, Chemical & Pharmaceutical Bulletin 2005, 53, 1540- 1546, Synthesis 2000, 12, 1677-1680 beschriebenen Verfahren aus den entsprechenden l-Halo-2- methylnaphthalin-Derivaten der Formel (XLIII) hergestellt werden. Dabei kann über ein zweistufiges Verfahren zunächst die benzylische Position unter radikalischen Bedingungen halogeniert werden, beispielsweise unter Verwendung von N-Bromsuccinimid und Dibenzoylperoxid. Anschließend kann unter oxidativen Bedingungen die Carbonsäure erhalten werden. Alternativ kann eine benzylische Oxidation mithilfe von beispielsweise Kaliumpermanganat oder Luftsauerstoff und in Gegenwart eines Übergangsmetallkatalysators durchgeführt werden, um die 1-Halo-naphthalin— 2-carbonsäure -Derivate der Formel (VT) zu erhalten.
Die Reaktion kann im Vakuum, bei Normaldruck oder unter Überdruck und bei Temperaturen von 0 °C bis 200 °C durchgeführt werden.
Verfahren und Verwendungen
Die Erfindung betrifft auch Verfahren zur Bekämpfung von tierischen Schädlingen, bei dem man Verbindungen der Formel (I) oder der Formel (T) auf tierische Schädlinge und/oder ihren Lebensraum einwirken lässt. Bevorzugt wird die Bekämpfung der tierischen Schädlinge in der Land- und Forstwirtschaft und im Materialschutz durchgeführt. Hierunter vorzugsweise ausgeschlossen sind Verfahren zur chirurgischen oder therapeutischen Behandlung des menschlichen oder tierischen Körpers und Diagnostizierverfahren, die am menschlichen oder tierischen Körper vorgenommen werden.
Die Erfindung betrifft ferner die Verwendung der Verbindungen der Formel (I) oder der Formel (T) als Schädlingsbekämpfungsmittel, insbesondere Pflanzenschutzmittel. Im Rahmen der vorliegenden Anmeldung umfasst der Begriff Schädlingsbekämpfungsmittel jeweils immer auch den Begriff Pflanzenschutzmittel.
Die Verbindungen der Formel (I) oder der Formel (T) eignen sich bei guter Pflanzenverträglichkeit, günstiger Warmblütertoxizität und guter Umweltverträglichkeit zum Schutz von Pflanzen und Pflanzenorganen vor biotischen und abiotischen Stressfaktoren, zur Steigerung der Ernteerträge, Verbesserung der Qualität des Erntegutes und zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnentieren, Helminthen, insbesondere Nematoden, und Mollusken, die in der Landwirtschaft, im Gartenbau, bei der Tierzucht, in Aquakulturen, in Forsten, in Gärten und Freizeiteinrichtungen, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Im Rahmen der vorliegenden Patentanmeldung ist der Begriff „Hygiene" so zu verstehen, dass damit jegliche und alle Maßnahmen, Vorschriften und Verfahrensweisen gemeint sind, deren Ziel es ist, Krankheiten, insbesondere Infektionskrankheiten, zu verhindern, und die dazu dienen, die Gesundheit von Menschen und Tieren zu schützen und/oder die Umwelt zu schützen, und/oder die Sauberkeit aufrechterhalten. Erfindungsgemäß schließt dies insbesondere Maßnahmen zur Reinigung, Desinfektion und Sterilisation beispielsweise von Textilien oder harten Oberflächen, insbesondere Oberflächen aus Glas, Holz, Zement, Porzellan, Keramik, Kunststoff oder auch Metall(en) ein, um sicherzustellen, dass diese frei von Hygieneschädlingen und/oder ihren Ausscheidungen sind. Vorzugsweise ausgeschlossen vom Schutzbereich der Erfindung sind in dieser Hinsicht chirurgische oder therapeutische, auf den menschlichen Körper oder die Körper von Tieren anzuwendende Behandlungsvorschriften und diagnostische Vorschriften, die am menschlichen Körper oder den Körpern von Tieren durchgeführt werden.
Der Begriff„Hygienesektor" deckt alle Gebiete, technischen Felder und industriellen Anwendungen ab, bei denen diese Hygienemaßnahmen, -Vorschriften und -Verfahrensweisen wichtig sind, zum Beispiel im Hinblick auf Hygiene in Küchen, Bäckereien, Flughäfen, Badezimmern, Schwimmbecken, Kaufhäusern, Hotels, Krankenhäusern, Ställen, Tierhaltungen usw.
Der Begriff„Hygieneschädling" ist daher so zu verstehen, dass damit ein oder mehrere Tierschädlinge gemeint sind, deren Gegenwart im Hygienesektor problematisch ist, insbesondere aus Gesundheitsgründen. Es ist daher ein Hauptziel, das Vorhandensein von Hygieneschädlingen und/oder das Ausgesetztsein ihnen gegenüber im Hygienesektor zu vermeiden oder auf ein Mindestmaß zu begrenzen. Dies lässt sich insbesondere durch die Anwendung eines Pestizids erreichen, das sich sowohl zum Verhindern eines Befalls als auch zum Verhindern eines bereits vorhandenen Befalls einsetzen lässt. Man kann auch Zubereitungen verwenden, die eine Exposition gegenüber Schädlingen verhindern oder reduzieren. Hygieneschädlinge schließen zum Beispiel die unten erwähnten Organismen ein. Der Begriff „Hygieneschutz" deckt somit alle Handlungen ab, mit denen diese Hygienemaßnahmen, -Vorschriften und -Verfahrensweisen aufrechterhalten und/oder verbessert werden.
Die Verbindungen der Formel (I) oder der Formel (Γ) können vorzugsweise als Schädlingsbekämpfungsmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:
Schädlinge aus dem Stamm der Arthropoda, insbesondere aus der Klasse der Arachnida z. B. Acarus spp., z. B. Acarus siro, Aceria kuko, Aceria sheldoni, Aculops spp., Aculus spp., z. B. Aculus fockeui, Aculus schlechtendali, Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., z. B. Brevipalpus phoenicis, Bryobia graminum, Bryobia praetiosa, Centruroides spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Dermacentor spp., Eotetranychus spp., z. B. Eotetranychus hicoriae, Epitrimerus pyri, Eutetranychus spp., z. B. Eutetranychus banksi, Eriophyes spp., z. B. Eriophyes pyri, Glycyphagus domesticus, Halotydeus destructor, Hemitarsonemus spp., z. B. Hemitarsonemus latus (=Polyphagotarsonemus latus), Hyalomma spp., Ixodes spp., Latrodectus spp., Loxosceles spp., Neutrombicula autumnalis, Nuphersa spp., Oligonychus spp., z. B. Oligonychus coffeae, Oligonychus coniferarum, Oligonychus ilicis, Oligonychus indicus, Oligonychus mangiferus, Oligonychus pratensis, Oligonychus punicae, Oligonychus yothersi, Ornithodorus spp., Ornithonyssus spp., Panonychus spp., z. B. Panonychus citri (=Metatetranychus citri), Panonychus ulmi (=Metatetranychus ulmi), Phyllocoptruta oleivora, Platytetranychus multidigituli, Polyphagotarsonemus latus, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Scorpio maurus, Steneotarsonemus spp., Steneotarsonemus spinki, Tarsonemus spp., z. B. Tarsonemus confusus, Tarsonemus pallidus, Tetranychus spp., z. B. Tetranychus canadensis, Tetranychus cinnabarinus, Tetranychus turkestani, Tetranychus urticae, Trombicula alfreddugesi, Vaejovis spp., Vasates lycopersici; aus der Klasse der Chilopoda z. B. Geophilus spp., Scutigera spp.; aus der Ordnung oder der Klasse der Collembola z. B. Onychiurus armatus; Sminthurus viridis; aus der Klasse der Diplopoda z. B. Blaniulus guttulatus; aus der Klasse der Insecta, z. B. aus der Ordnung der Blattodea z. B. Blatta orientalis, Blattella asahinai, Blattella germanica, Leucophaea maderae, Loboptera decipiens, Neostylopyga rhombifolia, Panchlora spp., Parcoblatta spp., Periplaneta spp., z. B. Periplaneta americana, Periplaneta australasiae, Pycnoscelus surinamensis, Supella longipalpa; aus der Ordnung der Coleoptera z. B. Acalymma vittatum, Acanthoscelides obtectus, Adoretus spp., Aethina tumida, Agelastica alni, Agriotes spp., z. B. Agriotes linneatus, Agriotes mancus, Alphitobius diaperinus, Amphimallon solstitialis, Anobium punctatum, Anoplophora spp., Anthonomus spp., z. B. Anthonomus grandis, Anthrenus spp., Apion spp., Apogonia spp., Atomaria spp., z. B. Atomaria linearis, Attagenus spp., Baris caerulescens, Bruchidius obtectus, Bruchus spp., z. B. Bruchus pisorum, Bruchus rufimanus, Cassida spp., Cerotoma trifurcata, Ceutorrhynchus spp., z. B. Ceutorrhynchus assimilis, Ceutorrhynchus quadridens, Ceutorrhynchus rapae, Chaetocnema spp., z. B. Chaetocnema confinis, Chaetocnema denticulata, Chaetocnema ectypa, Cleonus mendicus, Conoderus spp., Cosmopolites spp., z. B. Cosmopolites sordidus, Costelytra zealandica, Ctenicera spp., Curculio spp., z. B. Curculio caryae, Curculio caryatrypes, Curculio obtusus, Curculio sayi, Cryptolestes ferrugineus, Cryptolestes pusillus, Cryptorhynchus lapathi, Cryptorhynchus mangiferae, Cylindrocopturus spp., Cylindrocopturus adspersus, Cylindrocopturus furnissi, Dermestes spp., Diabrotica spp., z. B. Diabrotica balteata, Diabrotica barberi, Diabrotica undecimpunctata howardi, Diabrotica undecimpunctata undecimpunctata, Diabrotica virgifera virgifera, Diabrotica virgifera zeae, Dichocrocis spp., Dicladispa armigera, Diloboderus spp., Epicaerus spp., Epilachna spp., z. B. Epilachna borealis, Epilachna varivestis, Epitrix spp., z. B. Epitrix cucumeris, Epitrix fuscula, Epitrix hirtipennis, Epitrix subcrinita, Epitrix tuberis, Faustinus spp., Gibbium psylloides, Gnathocerus cornutus, Hellula undalis, Heteronychus arator, Heteronyx spp., Hylamorpha elegans, Hylotrupes bajulus, Hypera postica, Hypomeces squamosus, Hypothenemus spp., z. B. Hypothenemus hampei, Hypothenemus obscurus, Hypothenemus pubescens, Lachnosterna consanguinea, Lasioderma serricorne, Latheticus oryzae, Lathridius spp., Lema spp., Leptinotarsa decemlineata, Leucoptera spp., z. B. Leucoptera coffeella, Lissorhoptrus oryzophilus, Listronotus (=Hyperodes) spp., Lixus spp., Luperodes spp., Luperomorpha xanthodera, Lyctus spp., Megascelis spp., Melanotus spp., z. B. Melanotus longulus oregonensis, Meligethes aeneus, Melolontha spp., z. B. Melolontha melolontha, Migdolus spp., Monochamus spp., Naupactus xanthographus, Necrobia spp., Neogalerucella spp., Niptus hololeucus, Oryctes rhinoceros, Oryzaephilus surinamensis, Oryzaphagus oryzae, Otiorhynchus spp., z. B. Otiorhynchus cribricollis, Otiorhynchus ligustici, Otiorhynchus ovatus, Otiorhynchus rugosostriarus, Otiorhynchus sulcatus, Oulema spp., z. B. Oulema melanopus, Oulema oryzae, Oxycetonia jucunda, Phaedon cochleariae, Phyllophaga spp., Phyllophaga helleri, Phyllotreta spp., z. B. Phyllotreta armoraciae, Phyllotreta pusilla, Phyllotreta ramosa, Phyllotreta striolata, Popillia japonica, Premnotrypes spp., Prostephanus truncatus, Psylliodes spp., z. B. Psylliodes affinis, Psylliodes chrysocephala, Psylliodes punctulata, Ptinus spp., Rhizobius ventralis, Rhizopertha dominica, Rhynchophorus spp., Rhynchophorus ferrugineus, Rhynchophorus palmarum, Sinoxylon perforans, Sitophilus spp., z. B. Sitophilus granarius, Sitophilus linearis, Sitophilus oryzae, Sitophilus zeamais, Sphenophorus spp., Stegobium paniceum, Sternechus spp., z. B. Sternechus paludatus, Symphyletes spp., Tanymecus spp., z. B. Tanymecus dilaticollis, Tanymecus indicus, Tanymecus palliatus, Tenebrio molitor, Tenebrioides mauretanicus, Tribolium spp., z. B. Tribolium audax, Tribolium castaneum, Tribolium confusum, Trogoderma spp., Tychius spp., Xylotrechus spp., Zabrus spp., z. B. Zabrus tenebrioides; aus der Ordnung der Dermaptera z. B. Anisolabis maritime, Forficula auricularia, Labidura riparia; aus der Ordnung der Diptera z. B. Aedes spp., z. B. Aedes aegypti, Aedes albopictus, Aedes sticticus, Aedes vexans, Agromyza spp., z. B. Agromyza frontella, Agromyza parvicornis, Anastrepha spp., Anopheles spp., z. B. Anopheles quadrimaculatus, Anopheles gambiae, Asphondylia spp., Bactrocera spp., z. B. Bactrocera Cucurbitae, Bactrocera dorsalis, Bactrocera oleae, Bibio hortulanus, Calliphora erythrocephala, Calliphora vicina, Ceratitis capitata, Chironomus spp., Chrysomya spp., Chrysops spp., Chrysozona pluvialis, Cochliomya spp., Contarinia spp., z. B. Contarinia johnsoni, Contarinia nasturtii, Contarinia pyrivora, Contarinia schulzi, Contarinia sorghicola, Contarinia tritici, Cordylobia anthropophaga, Cricotopus sylvestris, Culex spp., z. B. Culex pipiens, Culex quinquefasciatus, Culicoides spp., Culiseta spp., Cuterebra spp., Dacus oleae, Dasineura spp., z. B. Dasineura brassicae, Delia spp., z. B. Delia antiqua, Delia coarctata, Delia llorilega, Delia platura, Delia radicum, Dermatobia hominis, Drosophila spp., z. B. Drosphila melanogaster, Drosophila suzukii, Echinocnemus spp., Euleia heraclei, Fannia spp., Gasterophilus spp., Glossina spp., Haematopota spp., Hydrellia spp., Hydrellia griseola, Hylemya spp., Hippobosca spp., Hypoderma spp., Liriomyza spp., z. B. Liriomyza brassicae, Liriomyza huidobrensis, Liriomyza sativae, Lucilla spp., z. B. Lucilla cuprina, Lutzomyia spp., Mansonia spp., Musca spp., z. B. Musca domestica, Musca domestica vicina, Oestrus spp., Oscinella frit, Paratanytarsus spp., Paralauterborniella subcincta, Pegomya oder Pegomyia spp., z. B. Pegomya betae, Pegomya hyoscyami, Pegomya rubivora, Phlebotomus spp., Phorbia spp., Phormia spp., Piophila casei, Platyparea poeciloptera, Prodiplosis spp., Psila rosae, Rhagoletis spp., z. B. Rhagoletis cingulata, Rhagoletis completa, Rhagoletis fausta, Rhagoletis indifferens, Rhagoletis mendax, Rhagoletis pomonella, Sarcophaga spp., Simulium spp., z. B. Simulium meridionale, Stomoxys spp., Tabanus spp., Tetanops spp., Tipula spp., z. B. Tipula paludosa, Tipula simplex, Toxotrypana curvicauda; aus der Ordnung der Hemiptera z. B. Acizzia acaciaebaileyanae, Acizzia dodonaeae, Acizzia uncatoides, Acrida turrita, Acyrthosipon spp., z. B. Acyrthosiphon pisum, Acrogonia spp., Aeneolamia spp., Agonoscena spp., Aleurocanthus spp., Aleyrodes proletella, Aleurolobus barodensis, Aleurothrixus lloccosus, Allocaridara malayensis, Amrasca spp., z. B. Amrasca bigutulla, Amrasca devastans, Anuraphis cardui, Aonidiella spp., z. B. Aonidiella aurantii, Aonidiella citrina, Aonidiella inornata, Aphanostigma piri, Aphis spp., z. B. Aphis citricola, Aphis craccivora, Aphis fabae, Aphis forbesi, Aphis glycines, Aphis gossypii, Aphis hederae, Aphis illinoisensis, Aphis middletoni, Aphis nasturtii, Aphis nerii, Aphis pomi, Aphis spiraecola, Aphis viburniphila, Arboridia apicalis, Arytainilla spp., Aspidiella spp., Aspidiotus spp., z. B. Aspidiotus nerii, Atanus spp., Aulacorthum solani, Bemisia tabaci, Blastopsylla occidentalis, Boreioglycaspis melaleucae, Brachycaudus helichrysi, Brachycolus spp., Brevicoryne brassicae, Cacopsylla spp., z. B. Cacopsylla pyricola, Calligypona marginata, Capulinia spp., Carneocephala fulgida, Ceratovacuna lanigera, Cercopidae, Ceroplastes spp., Chaetosiphon fragaefolii, Chionaspis tegalensis, Chlorita onukii, Chondracris rosea, Chromaphis juglandicola, Chrysomphalus aonidum, Chrysomphalus ficus, Cicadulina mbila, Coccomytilus halli, Coccus spp., z. B. Coccus hesperidum, Coccus longulus, Coccus pseudomagnoliarum, Coccus viridis, Cryptomyzus ribis, Cryptoneossa spp., Ctenarytaina spp., Dalbulus spp., Dialeurodes chittendeni, Dialeurodes citri, Diaphorina citri, Diaspis spp., Diuraphis spp., Doralis spp., Drosicha spp., Dysaphis spp., z. B. Dysaphis apiifolia, Dysaphis plantaginea, Dysaphis tulipae, Dysmicoccus spp., Empoasca spp., z. B. Empoasca abrupta, Empoasca fabae, Empoasca maligna, Empoasca Solana, Empoasca stevensi, Eriosoma spp., z. B. Eriosoma americanum, Eriosoma lanigerum, Eriosoma pyricola, Erythroneura spp., Eucalyptolyma spp., Euphyllura spp., Euscelis bilobatus, Ferrisia spp., Fiorinia spp., Furcaspis oceanica, Geococcus coffeae, Glycaspis spp., Heteropsylla cubana, Heteropsylla spinulosa, Homalodisca coagulata, Hyalopterus arundinis, Hyalopterus pruni, Icerya spp., z. B. Icerya purchasi, Idiocerus spp., Idioscopus spp., Laodelphax striatellus, Lecanium spp., z. B. Lecanium corni (=Parthenolecanium corni), Lepidosaphes spp., z. B. Lepidosaphes ulmi, Lipaphis erysimi, Lopholeucaspis japonica, Lycorma delicatula, Macrosiphum spp., z. B. Macrosiphum euphorbiae, Macrosiphum lilii, Macrosiphum rosae, Macrosteies facifrons, Mahanarva spp., Melanaphis sacchari, Metcalfiella spp., Metealfa pruinosa, Metopolophium dirhodum, Monellia costalis, Monelliopsis pecanis, Myzus spp., z. B. Myzus ascalonicus, Myzus cerasi, Myzus ligustri, Myzus ornatus, Myzus persicae, Myzus nicotianae, Nasonovia ribisnigri, Neomaskellia spp., Nephotettix spp., z. B. Nephotettix cincticeps, Nephotettix nigropictus, Nettigoniclla spectra, Nilaparvata lugens, Oncometopia spp., Orthezia praelonga, Oxya chinensis, Pachypsylla spp., Parabemisia myricae, Paratrioza spp., z. B. Paratrioza cockerelli, Parlatoria spp., Pemphigus spp., z. B. Pemphigus bursarius, Pemphigus populivenae, Peregrinus maidis, Perkinsiella spp., Phenacoccus spp., z. B. Phenacoccus madeirensis, Phloeomyzus passerinii, Phorodon humuli, Phylloxera spp., z. B. Phylloxera devastatrix, Phylloxera notabilis, Pinnaspis aspidistrae, Planococcus spp., z. B. Planococcus citri, Prosopidopsylla flava, Protopulvinaria pyriformis, Pseudaulacaspis pentagona, Pseudococcus spp., z. B. Pseudococcus calceolariae, Pseudococcus comstocki, Pseudococcus longispinus, Pseudococcus maritimus, Pseudococcus viburni, Psyllopsis spp., Psylla spp., z. B. Psylla buxi, Psylla mali, Psylla pyri, Pteromalus spp., Pulvinaria spp., Pyrilla spp., Quadraspidiotus spp., z. B. Quadraspidiotus juglansregiae, Quadraspidiotus ostreaeformis, Quadraspidiotus perniciosus, Quesada gigas, Rastrococcus spp., Rhopalosiphum spp., z. B. Rhopalosiphum maidis, Rhopalosiphum oxyacanthae, Rhopalosiphum padi, Rhopalosiphum rufiabdominale, Saissetia spp., z. B. Saissetia coffeae, Saissetia miranda, Saissetia neglecta, Saissetia oleae, Scaphoideus titanus, Schizaphis graminum, Selenaspidus articulatus, Sipha flava, Sitobion avenae, Sogata spp., Sogatella furcifera, Sogatodes spp., Stictocephala festina, Siphoninus phillyreae, Tenalaphara malayensis, Tetragonocephela spp., Tinocallis caryaefoliae, Tomaspis spp., Toxoptera spp., z. B. Toxoptera aurantii, Toxoptera citricidus, Trialeurodes vaporariorum, Trioza spp., z. B. Trioza diospyri, Typhlocyba spp., Unaspis spp., Viteus vitifolii, Zygina spp.; aus der Unterordnung der Heteroptera z. B. Aelia spp., Anasa tristis, Antestiopsis spp., Boisea spp., Blissus spp., Calocoris spp., Campylomma livida, Cavelerius spp., Cimex spp., z. B. Cimex adjunctus, Cimex hemipterus, Cimex lectularius, Cimex pilosellus, Collaria spp., Creontiades dilutus, Dasynus piperis, Dichelops furcatus, Diconocoris hewetti, Dysdercus spp., Euschistus spp., z. B. Euschistus heros, Euschistus servus, Euschistus tristigmus, Euschistus variolarius, Eurydema spp., Eurygaster spp., Halyomorpha halys, Heliopeltis spp., Horcias nobilellus, Leptocorisa spp., Leptocorisa varicornis, Leptoglossus occidentalis, Leptoglossus phyllopus, Lygocoris spp., z. B. Lygocoris pabulinus, Lygus spp., z. B. Lygus elisus, Lygus hesperus, Lygus lineolaris, Macropes excavatus, Megacopta cribraria, Miridae, Monaionion atratum, Nezara spp., z. B. Nezara viridula, Nysius spp., Oebalus spp., Pentomidae, Piesma quadrata, Piezodorus spp., z. B. Piezodorus guildinii, Psallus spp., Pseudacysta persea, Rhodnius spp., Sahlbergella singularis, Scaptocoris castanea, Scotinophora spp., Stephanitis nashi, Tibraca spp., Triatoma spp.; aus der Ordnung der Hymenoptera z. B. Acromyrmex spp., Athalia spp., z. B. Athalia rosae, Atta spp., Camponotus spp., Dolichovespula spp., Diprion spp., z. B. Diprion similis, Hoplocampa spp., z. B. Hoplocampa cookei, Hoplocampa testudinea, Lasius spp., Linepithema (Iridiomyrmex) humile, Monomorium pharaonis, Paratrechina spp., Paravespula spp., Plagiolepis spp., Sirex spp., Solenopsis invicta, Tapinoma spp., Technomyrmex albipes, Urocerus spp., Vespa spp., z. B. Vespa crabro, Wasmannia auropunctata, Xeris spp.; aus der Ordnung der Isopoda z. B. Armadillidium vulgare, Oniscus asellus, Porcellio scaber; aus der Ordnung der Isoptera z. B. Coptotermes spp., z. B. Coptotermes formosanus, Cornitermes cumulans, Cryptotermes spp., Incisitermes spp., Kalotermes spp., Microtermes obesi, Nasutitermis spp., Odontotermes spp., Porotermes spp., Reticulitermes spp., z. B. Reticulitermes flavipes, Reticulitermes hesperus; aus der Ordnung der Lepidoptera z. B. Achroia grisella, Acronicta major, Adoxophyes spp., z. B. Adoxophyes orana, Aedia leucomelas, Agrotis spp., z. B. Agrotis segetum, Agrotis ipsilon, Alabama spp., z. B. Alabama argillacea, Amyelois transitella, Anarsia spp., Anticarsia spp., z. B. Anticarsia gemmatalis, Argyroploce spp., Autographa spp., Barathra brassicae, Blastodacna atra, Borbo cinnara, Bucculatrix thurberiella, Bupalus piniarius, Busseola spp., Cacoecia spp., Caloptilia theivora, Capua reticulana, Carpocapsa pomonella, Carposina niponensis, Cheimatobia brumata, Chilo spp., z. B. Chilo plejadellus, Chilo suppressalis, Choreutis pariana, Choristoneura spp., Chrysodeixis chalcites, Clysia ambiguella, Cnaphalocerus spp., Cnaphalocrocis medinalis, Cnephasia spp., Conopomorpha spp., Conotrachelus spp., Copitarsia spp., Cydia spp., z. B. Cydia nigricana, Cydia pomonella, Dalaca noctuides, Diaphania spp., Diparopsis spp., Diatraea saccharalis, Earias spp., Ecdytolopha aurantium, Elasmopalpus lignosellus, Eidana saccharina, Ephestia spp., z. B. Ephestia elutella, Ephestia kuehniella, Epinotia spp., Epiphyas postvittana, Erannis spp., Erschoviella musculana, Etiella spp., Eudocima spp., Eulia spp., Eupoecilia ambiguella, Euproctis spp., z. B. Euproctis chrysorrhoea, Euxoa spp., Feltia spp., Galleria mellonella, Gracillaria spp., Grapholitha spp., z. B. Grapholita molesta, Grapholita prunivora, Hedylepta spp., Helicoverpa spp., z. B. Helicoverpa armigera, Helicoverpa zea, Heliothis spp., z. B. Heliothis virescens Hofmannophila pseudospretella, Homoeosoma spp., Homona spp., Hyponomeuta padella, Kakivoria ilavofasciata, Lampides spp., Laphygma spp., Laspeyresia molesta, Leucinodes orbonalis, Leucoptera spp., z. B. Leucoptera coffeella, Lithocolletis spp., z. B. Lithocolletis blancardella, Lithophane antennata, Lobesia spp., z. B. Lobesia botrana, Loxagrotis albicosta, Lymantria spp., z. B. Lymantria dispar, Lyonetia spp., z. B. Lyonetia clerkella, Malacosoma neustria, Maruca testulalis, Mamestra brassicae, Melanitis leda, Mocis spp., Monopis obviella, Mythimna separata, Nemapogon cloacellus, Nymphula spp., Oiketicus spp., Omphisa spp., Operophtera spp., Oria spp., Orthaga spp., Ostrinia spp., z. B. Ostrinia nubilalis, Panolis llammea, Parnara spp., Pectinophora spp., z. B. Pectinophora gossypiella, Perileucoptera spp., Phthorimaea spp., z. B. Phthorimaea operculella, Phyllocnistis citrella, Phyllonorycter spp., z. B. Phyllonorycter blancardella, Phyllonorycter crataegella, Pieris spp., z. B. Pieris rapae, Platynota stultana, Plodia interpunctella, Plusia spp., Plutella xylostella (=Plutella maculipennis), Prays spp., Prodenia spp., Protoparce spp., Pseudaletia spp., z. B. Pseudaletia unipuncta, Pseudoplusia includens, Pyrausta nubilalis, Rachiplusia nu, Schoenobius spp., z. B. Schoenobius bipunctifer, Scirpophaga spp., z. B. Scirpophaga innotata, Scotia segetum, Sesamia spp., z. B. Sesamia inferens, Sparganothis spp., Spodoptera spp., z. B. Spodoptera eradiana, Spodoptera exigua, Spodoptera frugiperda, Spodoptera praefica, Stathmopoda spp., Stenoma spp., Stomopteryx subsecivella, Synanthedon spp., Tecia solanivora, Thaumetopoea spp., Thermesia gemmatalis, Tinea cloacella, Tinea pellionella, Tineola bisselliella, Tortrix spp., Trichophaga tapetzella, Trichoplusia spp., z. B. Trichoplusia ni, Tryporyza incertulas, Tuta absoluta, Virachola spp.; aus der Ordnung der Orthoptera oder Saltatoria z. B. Acheta domesticus, Dichroplus spp., Gryllotalpa spp., z. B. Gryllotalpa gryllotalpa, Hieroglyphus spp., Locusta spp., z. B. Locusta migratoria, Melanoplus spp., z. B. Melanoplus devastator, Paratlanticus ussuriensis, Schistocerca gregaria; aus der Ordnung der Phthiraptera z. B. Damalinia spp., Haematopinus spp., Linognathus spp., Pediculus spp., Phylloxera vastatrix, Phthirus pubis, Trichodectes spp.; aus der Ordnung der Psocoptera z. B. Lepinotus spp., Liposcelis spp.; aus der Ordnung der Siphonaptera z. B. Ceratophyllus spp., Ctenocephalides spp., z. B. Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis; aus der Ordnung der Thysanoptera z. B. Anaphothrips obscurus, Baliothrips biformis, Chaetanaphothrips leeuweni, Drepanothrips reuteri, Enneothrips Hävens, Frankliniella spp., z. B. Frankliniella fusca, Frankliniella occidentalis, Frankliniella schultzei, Frankliniella tritici, Frankliniella vaccinii, Frankliniella williamsi, Haplothrips spp., Heliothrips spp., Hercinothrips femoralis, Kakothrips spp., Rhipiphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamomi, Thrips spp., z. B. Thrips palmi, Thrips tabaci; aus der Ordnung der Zygentoma (= Thysanura), z. B. Ctenolepisma spp., Lepisma saccharina, Lepismodes inquilinus, Thermobia domestica; aus der Klasse der Symphyla z. B. Scutigerella spp., z. B. Scutigerella immaculata; Schädlinge aus dem Stamm der Mollusca, z. B. aus der Klasse der Bivalvia, z. B. Dreissena spp.; sowie aus der Klasse der Gastropoda z. B. Arion spp., z. B. Arion ater rufus, Biomphalaria spp., Bulinus spp., Deroceras spp., z. B. Deroceras laeve, Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp.;
Pflanzenschädlinge aus dem Stamm der Nematoda, d. h. pflanzenparasitäre Nematoden, insbesondere Aglenchus spp., z. B. Aglenchus agricola, Anguina spp., z. B. Anguina tritici, Aphelenchoides spp., z. B. Aphelenchoides arachidis, Aphelenchoides fragariae, Belonolaimus spp., z. B. Belonolaimus gracilis, Belonolaimus longicaudatus, Belonolaimus nortoni, Bursaphelenchus spp., z. B. Bursaphelenchus cocophilus, Bursaphelenchus eremus, Bursaphelenchus xylophilus, Cacopaurus spp., z. B. Cacopaurus pestis, Criconemella spp., z. B. Criconemella curvata, Criconemella onoensis, Criconemella ornata, Criconemella rusium, Criconemella xenoplax (= Mesocriconema xenoplax), Criconemoides spp., z. B. Criconemoides ferniae, Criconemoides onoense, Criconemoides ornatum, Ditylenchus spp., z. B. Ditylenchus dipsaci, Dolichodorus spp., Globodera spp., z. B. Globodera pallida, Globodera rostochiensis, Helicotylenchus spp., z. B. Helicotylenchus dihystera, Hemicriconemoides spp., Hemicycliophora spp., Heterodera spp., z. B. Heterodera avenae, Heterodera glycines, Heterodera schachtii, Hirschmaniella spp., Hoplolaimus spp., Longidorus spp., z. B. Longidorus africanus, Meloidogyne spp., z. B. Meloidogyne chitwoodi, Meloidogyne fallax, Meloidogyne hapla, Meloidogyne incognita, Meloinema spp., Nacobbus spp., Neotylenchus spp., Paralongidorus spp., Paraphelenchus spp., Paratrichodorus spp., z. B. Paratrichodorus minor, Paratylenchus spp., Pratylenchus spp., z. B. Pratylenchus penetrans, Pseudohalenchus spp., Psilenchus spp., Punctodera spp., Quinisulcius spp., Radopholus spp., z. B. Radopholus citrophilus, Radopholus similis, Rotylenchulus spp., Rotylenchus spp., Scutellonema spp., Subanguina spp., Trichodorus spp., z. B. Trichodorus obtusus, Trichodorus primitivus, Tylenchorhynchus spp., z. B. Tylenchorhynchus annulatus, Tylenchulus spp., z. B. Tylenchulus semipenetrans, Xiphinema spp., z. B. Xiphinema index.
Die Verbindungen der Formel (I) oder der Formel (Γ) können gegebenenfalls in bestimmten Konzentrationen bzw. Aufwandmengen auch als Herbizide, Safener, Wachstumsregulatoren oder Mittel zur Verbesserung der Pflanzeneigenschaften, als Mikrobizide oder Gametozide, beispielsweise als Fungizide, Antimykotika, Bakterizide, Virizide (einschließlich Mittel gegen Viroide) oder als Mittel gegen MLO (Mycoplasma-like-organism) und RLO (Rickettsia-like-organism) verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- oder Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen. Formulierungen
Die vorliegende Erfindung betrifft weiterhin Formulierungen und daraus bereitete Anwendungsformen als Schädlingsbekämpfungsmittel wie z. B. Drench-, Drip- und Spritzbrühen, umfassend mindestens eine Verbindung der Formel (I) oder der Formel (Γ). Gegebenenfalls enthalten die Anwendungsformen weitere Schädlingsbekämpfungsmittel und/oder die Wirkung verbessernde Adjuvantien wie Penetrationsförderer, z. B. pflanzliche Öle wie beispielsweise Rapsöl, Sonnenblumenöl, Mineralöle wie beispielsweise Paraffinöle, Alkylester pflanzlicher Fettsäuren wie beispielsweise Rapsöl- oder Sojaölmethylester oder Alkanol-alkoxylate und/oder Spreitmittel wie beispielsweise Alkylsiloxane und/oder Salze, z. B. organische oder anorganische Ammonium- oder Phosphoniumsalze wie beispielsweise Ammoniumsulfat oder Diammonium-hydrogenphosphat und/oder die Retention fördernde Mittel wie z. B. Dioctylsulfosuccinat oder Hydroxypropyl-guar-Polymere und/oder Humectants wie z. B. Glycerin und/oder Dünger wie beispielsweise Ammonium, Kalium oder Phosphor enthaltende Dünger.
Übliche Formulierungen sind beispielsweise wasserlösliche Flüssigkeiten (SL), Emulsionskonzentrate (EC), Emulsionen in Wasser (EW), Suspensionskonzentrate (SC, SE, FS, OD), in Wasser dispergierbare Granulate (WG), Granulate (GR) und Kapselkonzentrate (CS); diese und weitere mögliche Formuliertypen sind beispielsweise durch Crop Life International und in Pesticide Specifications, Manual on development and use of FAO and WHO specifications for pesticides, FAO Plant Production and Protection Papers - 173, prepared by the FAO/WHO Joint Meeting on Pesticide Specifications, 2004, ISBN: 9251048576 beschrieben. Gegebenenfalls enthalten die Formulierungen neben einer oder mehreren Verbindungen der Formel (I) oder der Formel (Γ) weitere agrochemische Wirkstoffe.
Vorzugsweise handelt es sich um Formulierungen oder Anwendungsformen, welche Hilfsstoffe wie beispielsweise Streckmittel, Lösemittel, Spontanitätsförderer, Trägerstoffe, Emulgiermittel, Dispergiermittel, Frostschutzmittel, Biozide, Verdicker und/oder weitere Hilfsstoffe wie beispielsweise Adjuvantien enthalten. Ein Adjuvant in diesem Kontext ist eine Komponente, die die biologische Wirkung der Formulierung verbessert, ohne dass die Komponente selbst eine biologische Wirkung hat. Beispiele für Adjuvantien sind Mittel, die die Retention, das Spreitverhalten, das Anhaften an der Blattoberfläche oder die Penetration fördern.
Diese Formulierungen werden in bekannter Weise hergestellt, z. B. durch Vermischen der Verbindungen der Formel (I) oder der Formel (Γ) mit Hilfsstoffen wie beispielsweise Streckmitteln, Lösemitteln und/oder festen Trägerstoffen und/oder weiteren Hilfsstoffen wie beispielsweise oberflächenaktiven Stoffen. Die Herstellung der Formulierungen erfolgt entweder in geeigneten Anlagen oder auch vor oder während der Anwendung.
Als Hilfsstoffe können solche Stoffe Verwendung finden, die geeignet sind, der Formulierung der Verbindungen der Formel (I) oder der Formel (Γ) oder den aus diesen Formulierungen bereiteten Anwendungsformen (wie z. B. gebrauchsfähigen Schädlingsbekämpfungsmitteln wie Spritzbrühen oder Saatgutbeizen) besondere Eigenschaften, wie bestimmte physikalische, technische und/oder biologische Eigenschaften zu verleihen.
Als Streckmittel eignen sich z. B. Wasser, polare und unpolare organische chemische Flüssigkeiten z. B. aus den Klassen der aromatischen und nicht-aromatischen Kohlenwasserstoffe (wie Paraffine, Alkylbenzole, Alkylnaphthaline, Chlorbenzole), der Alkohole und Polyole (die ggf. auch substituiert, verethert und/oder verestert sein können), der Ketone (wie Aceton, Cyclohexanon), Ester (auch Fette und Öle) und (Poly-)Ether, der einfachen und substituierten Amine, Amide, Lactame (wie N- Alkylpyrrolidone) und Lactone, der Sulfone und Sulfoxide (wie Dimethylsulfoxid).
Im Falle der Benutzung von Wasser als Streckmittel können z. B. auch organische Lösemittel als Hilfslösemittel verwendet werden. Als flüssige Lösemittel kommen im Wesentlichen infrage: Aromaten wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z. B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösemittel Dimethylformamid und Dimethylsulfoxid sowie Wasser.
Grundsätzlich können alle geeigneten Lösemittel verwendet werden. Geeignete Lösemittel sind beispielsweise aromatische Kohlenwasserstoffe wie z. B. Xylol, Toluol oder Alkylnaphthaline, chlorierte aromatische oder chlorierte aliphatische Kohlenwasserstoffe wie z. B. Chlorbenzol, Chlorethylen, oder Methylenchlorid, aliphatische Kohlenwasserstoffe wie z. B. Cyclohexan, Paraffine, Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole wie z. B. Methanol, Ethanol, iso-Propanol, Butanol oder Glykol sowie deren Ether und Ester, Ketone wie z. B. Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösemittel wie Dimethylsulfoxid sowie Wasser. Grundsätzlich können alle geeigneten Trägerstoffe eingesetzt werden. Als Trägerstoffe kommen insbesondere infrage: z. B. Ammoniumsalze und natürliche Gesteinsmehle wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und natürliche oder synthetische Silikate, Harze, Wachse und/oder feste Düngemittel. Mischungen solcher Trägerstoffe können ebenfalls verwendet werden. Als Trägerstoffe für Granulate kommen infrage: z. B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Papier, Kokosnussschalen, Maiskolben und Tabakstängel.
Auch verflüssigte gasförmige Streckmittel oder Lösemittel können eingesetzt werden. Insbesondere eignen sich solche Streckmittel oder Trägerstoffe, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z. B. Aerosol-Treibgase wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid.
Beispiele für Emulgier- und/oder Schaum erzeugende Mittel, Dispergiermittel oder Benetzungsmittel mit ionischen oder nicht-ionischen Eigenschaften oder Mischungen dieser oberflächenaktiven Stoffe sind Salze von Polyacrylsäure, Salze von Lignosulfonsäure, Salze von Phenolsulfonsäure oder Naphthalinsulf onsäure, Polykondensate von Ethylenoxid mit Fettalkoholen oder mit Fettsäuren oder mit Fettaminen, mit substituierten Phenolen (vorzugsweise Alkylphenole oder Arylphenole), Salze von Sulfobernsteinsäureestern, Taurinderivate (vorzugsweise Alkyltaurate), Phosphorsäureester von polyethoxylierten Alkoholen oder Phenolen, Fettsäureester von Polyolen und Derivate der Verbindungen enthaltend Sulfate, Sulfonate und Phosphate, z. B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate, Eiweißhydrolysate, Lignin-Sulfitablaugen und Methylcellulose. Die Anwesenheit einer oberflächenaktiven Substanz ist vorteilhaft, wenn eine der Verbindungen der Formel (I) oder der Formel (Γ) und/oder einer der inerten Träger Stoffe nicht in Wasser löslich ist und wenn die Anwendung in Wasser erfolgt. Als weitere Hilfsstoffe können in den Formulierungen und den daraus abgeleiteten Anwendungsformen Farbstoffe wie anorganische Pigmente, z. B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Nähr- und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink vorhanden sein. Weiterhin enthalten sein können Stabilisatoren wie Kältestabilisatoren, Konservierungsmittel, Oxidationsschutzmittel, Lichtschutzmittel oder andere die chemische und/oder physikalische Stabilität verbessernde Mittel. Weiterhin enthalten sein können schaumerzeugende Mittel oder Entschäumer.
Ferner können die Formulierungen und daraus abgeleiteten Anwendungsformen als zusätzliche Hilfsstoffe auch Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere enthalten wie Gummiarabikum, Polyvinylalkohol, Polyvinylacetat sowie natürliche Phospholipide wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Hilfsstoffe können mineralische und pflanzliche Öle sein.
Gegebenenfalls können noch weitere Hilfsstoffe in den Formulierungen und den daraus abgeleiteten Anwendungsformen enthalten sein. Solche Zusatzstoffe sind beispielsweise Duftstoffe, schützende Kolloide, Bindemittel, Klebstoffe, Verdicker, thixotrope Stoffe, Penetrationsförderer, Retentionsiörderer, Stabilisatoren, Sequestiermittel, Komplexbildner, Feuchthaltemittel, Spreitmittel. Im Allgemeinen können die Verbindungen der Formel (I) oder der Formel (Γ) mit jedem festen oder flüssigen Zusatzstoff, welcher für Formulierungszwecke gewöhnlich verwendet wird, kombiniert werden. Als Retentionsiörderer kommen alle diejenigen Substanzen in Betracht, die die dynamische Oberflächenspannung verringern wie beispielsweise Dioctylsulfosuccinat oder die die Visko-Elastizität erhöhen wie beispielsweise Hydroxypropyl-guar-Polymere.
Als Penetrationsförderer kommen im vorliegenden Zusammenhang alle diejenigen Substanzen in Betracht, die üblicherweise eingesetzt werden, um das Eindringen von agrochemischen Wirkstoffen in Pflanzen zu verbessern. Penetrationsförderer werden in diesem Zusammenhang dadurch definiert, dass sie aus der (in der Regel wässerigen) Applikationsbrühe und/oder aus dem Spritzbelag in die Kutikula der Pflanze eindringen und dadurch die Beweglichkeit der Wirkstoffe in der Kutikula erhöhen können. Die in der Literatur (Baur et al., 1997, Pesticide Science 51, 131-152) beschriebene Methode kann zur Bestimmung dieser Eigenschaft eingesetzt werden. Beispielhaft werden genannt Alkoholalkoxylate wie beispielsweise Kokosiettethoxylat (10) oder Isotridecylethoxylat (12), Fettsäureester wie beispielsweise Rapsöl- oder Sojaölmethylester, Fettaminalkoxylate wie beispielsweise Tallowamine-ethoxylat (15) oder Ammonium- und/oder Phosphonium-Salze wie beispielsweise Ammoniumsulfat oder Diammonium-hydrogenphosphat. Die Formulierungen enthalten bevorzugt zwischen 0,00000001 und 98 Gew.- der Verbindung der Formel (I) oder der Formel (Γ), besonders bevorzugt zwischen 0,01 und 95 Gew.- der Verbindung der Formel (I) oder der Formel (Γ), ganz besonders bevorzugt zwischen 0,5 und 90 Gew.- der Verbindung der Formel (I) oder der Formel (Γ), bezogen auf das Gewicht der Formulierung. Der Gehalt an der Verbindung der Formel (I) oder der Formel (Γ) in den aus den Formulierungen bereiteten Anwendungsformen (insbesondere Schädlingsbekämpfungsmittel) kann in weiten Bereichen variieren. Die Konzentration der Verbindung der Formel (I) oder der Formel (Γ) in den Anwendungsformen kann üblicherweise zwischen 0,00000001 und 95 Gew.- der Verbindung der Formel (I) oder der Formel (Γ), vorzugsweise zwischen 0,00001 und 1 Gew.- , bezogen auf das Gewicht der Anwendungsform, liegen. Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.
Mischungen
Die Verbindungen der Formel (I) oder der Formel (Γ) können auch in Mischung mit einem oder mehreren geeigneten Fungiziden, Bakteriziden, Akariziden, Molluskiziden, Nematiziden, Insektiziden, Mikrobiologika, Nützlingen, Herbiziden, Düngemitteln, Vogelrepellentien, Phytotonics, Sterilantien, Safenern, Semiochemicals und/oder Pflanzenwachstumsregulatoren verwendet werden, um so z. B. das Wirkungsspektrum zu verbreitern, die Wirkdauer zu verlängern, die Wirkgeschwindigkeit zu steigern, Repellenz zu verhindern oder Resistenzentwicklungen vorzubeugen. Des Weiteren können solche Wirkstoffkombinationen das Pflanzenwachstum und/oder die Toleranz gegenüber abiotischen Faktoren wie z. B. hohen oder niedrigen Temperaturen, gegen Trockenheit oder gegen erhöhten Wasser- bzw. Bodensalzgehalt verbessern. Auch lässt sich das Blüh- und Fruchtverhalten verbessern, die Keimfähigkeit und Bewurzelung optimieren, die Ernte erleichtern und Ernteertrag steigern, die Reife beeinflussen, die Qualität und/oder der Ernährungswert der Ernteprodukte steigern, die Lagerfähigkeit verlängern und/oder die Bearbeitbarkeit der Ernteprodukte verbessern. Weiterhin können die Verbindungen der Formel (I) oder der Formel (Γ) in Mischung mit weiteren Wirkstoffen oder Semiochemicals, wie Lockstoffen und/oder Vogelrepellentien und/oder Pflanzenaktivatoren und/oder Wachstumsregulatoren und/oder Düngemitteln vorliegen. Gleichfalls können die Verbindungen der Formel (I) oder der Formel (Γ) zur Verbesserung der Pflanzeneigenschaften wie zum Beispiel Wuchs, Ertrag und Qualität des Erntegutes eingesetzt werden. In einer besonderen erfindungsgemäßen Ausführungsform liegen die Verbindungen der Formel (I) oder der Formel (Γ) in Formulierungen bzw. in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit weiteren Verbindungen vor, vorzugsweise solchen wie nachstehend beschrieben. Wenn eine der im Folgenden genannten Verbindungen in verschiedenen tautomeren Formen vorkommen kann, sind auch diese Formen mit umfasst, auch wenn sie sie nicht in jedem Fall explizit genannt wurden. Alle genannten Mischungspartner können außerdem, wenn sie auf Grund ihrer funktionellen Gruppen dazu imstande sind, gegebenenfalls mit geeigneten Basen oder Säuren Salze bilden.
Insektizide/Akarizide/Nematizide
Die hier mit ihrem „Common Name" genannten Wirkstoffe sind bekannt und beispielsweise im Pestizidhandbuch („The Pesticide Manual" 16th Ed., British Crop Protection Council 2012) beschrieben oder im Internet recherchierbar (z. B. http://www.alanwood.net/pesticides). Die Klassifizierung basiert auf dem zum Zeitpunkt der Einreichung dieser Patentanmeldung gültigen IRAC Mode of Action Classification Scheme.
(1) Acetylcholinesterase(AChE)-Inhibitoren, wie beispielsweise Carbamate, z. B. Alanycarb, Aldicarb, Bendiocarb, Benfuracarb, Butocarboxim, Butoxycarboxim, Carbaryl, Carbofuran, Carbosulfan, Ethiofencarb, Fenobucarb, Formetanate, Furathiocarb, Isoprocarb, Methiocarb, Methomyl, Metolcarb, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, Triazamate, Trimethacarb, XMC und Xylylcarb oder Organophosphate, z. B. Acephat, Azamethiphos, Azinphos-ethyl, Azinphos-methyl, Cadusafos, Chlorethoxyfos, Chlorfenvinphos, Chlormephos, Chlorpyrifos-methyl, Coumaphos, Cyanophos, Demeton-S-methyl, Diazinon, Dichlorvos/DDVP, Dicrotophos, Dimethoat, Dimethylvinphos, Disulfoton, EPN, Ethion, Ethoprophos, Famphur, Fenamiphos, Fenitrothion, Fenthion, Fosthiazat, Heptenophos, Imicyafos, Isofenphos, Isopropyl-0-(methoxyaminothio-phosphoryl)salicylat, Isoxathion, Malathion, Mecarbam, Methamidophos, Methidathion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion-methyl, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamidon, Phoxim, Pirimiphos-methyl, Profenofos, Propetamphos, Prothiofos, Pyraclofos, Pyridaphenthion, Quinalphos, Sulfotep, Tebupirimfos, Temephos, Terbufos, Tetrachlorvinphos, Thiometon, Triazophos, Triclorfon und Vamidothion.
(2) GABA-gesteuerte Chlorid- Kanal-B locker, wie beispielsweise Cyclodien-organochlorine, z. B. Chlordan und Endosulfan oder Phenylpyrazole (Fiprole), z. B. Ethiprol und Fipronil.
(3) Natrium- Kanal-Modulatoren, wie beispielsweise Pyrethroide, z. B. Acrinathrin, Allethrin, d-cis- trans-Allethrin, d-trans-Allethrin, Bifenthrin, Bioallethrin, Bioallethrin-S-cyclopentenyl-Isomer, Bioresmethrin, Cycloprothrin, Cyfluthrin, beta-Cyfluthrin, Cyhalothrin, lambda-Cyhalothrin, gamma- Cyhalothrin, Cypermethrin, alpha-Cypermethrin, beta-Cypermethrin, theta-Cypermethrin, zeta- Cypermethrin, Cyphenothrin [(lR)-trans-Isomer], Deltamethrin, Empenthrin [(EZ)-(IR) -Isomer], Esfenvalerat, Etofenprox, Fenpropathrin, Fenvalerat, Flucythrinat, Flumethrin, tau-Fluvalinat, Halfenprox, Imiprothrin, Kadethrin, Momfluorothrin, Permethrin, Phenothrin [(lR)-trans-Isomer], Prallethrin, Pyrethrine (pyrethrum), Resmethrin, Silailuofen, Teiluthrin, Tetramethrin, Tetramethrin [(lR)-Isomer], Tralomethrin und Transiluthrin oder DDT oder Methoxychlor.
(4) Kompetitive Modulatoren des nicotinischen Acetylcholin-Rezeptors (nAChR), wie beispielsweise Neonicotinoide, z. B. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid und Thiamethoxam oder Nicotin oder Sulfoxallor oder Flupyradifurone.
(5) AUosterische Modulatoren des nicotinischen Acetylcholin-Rezeptors (nAChR), wie beispielsweise Spinosyne, z. B. Spinetoram und Spinosad.
(6) AUosterische Modulatoren des Glutamat-abhängigen Chloridkanals(GluCl), wie beispielsweise Avermectine/Milbemycine, z. B. Abamectin, Emamectin-benzoat, Lepimectin und Milbemectin. (7) Juvenilhormon-Mimetika, wie beispielsweise Juvenilhormon- Analoge, z. B. Hydropren, Kinopren und Methopren oder Fenoxycarb oder Pyriproxyfen.
(8) Verschiedene nicht spezifische (multi-site) Inhibitoren, wie beispielsweise Alkylhalogenide, z. B. Methylbromid und andere Alkylhalogenide; oder Chloropicrin oder Sulfuryliluorid oder Borax oder Brech Weinstein oder Methylisocyanaterzeuger, z. B. Diazomet und Metam. (9) Modulatoren chordotonaler Organe, z. B. Pymetrozin oder Flonicamid.
(10) Milbenwachstumsinhibitoren, wie z. B. Clofentezin, Hexythiazox und Dillovidazin oder Etoxazol.
(11) Mikrobielle Disruptoren der Insektendarmmembran, wie z. B. Bacillus thuringiensis Subspezies israelensis, Bacillus sphaericus, Bacillus thuringiensis Subspezies aizawai, Bacillus thuringiensis Subspezies kurstaki, Bacillus thuringiensis Subspezies tenebrionis und ß.i.-Pllanzenproteine: CrylAb, CrylAc, CrylFa, CrylA.105, Cry2Ab, VIP3A, mCry3A, Cry3Ab, Cry3Bb, Cry34Ab 1/35 Abi.
(12) Inhibitoren der mitochondrialen ATP-Synthase, wie ATP-Disruptoren, wie beispielsweise Diafenthiuron oder Organozinn Verbindungen, z. B. Azocyclotin, Cyhexatin und Fenbutatin-oxid oder Propargit oder Tetradifon.
(13) Entkoppler der oxidativen Phoshorylierung durch Störung des Protonengradienten, wie beispielsweise Chlorfenapyr, DNOC und Sulfluramid.
(14) Blocker des nicotinischen Acetylcholinrezeptorkanals, wie beispielsweise Bensultap, Cartap- hydrochlorid, Thiocyclam und Thiosultap-Natrium.
(15) Inhibitoren der Chitinbiosynthese, Typ 0, wie beispielsweise Bistrifluron, Chlorfluazuron, Dillubenzuron, Flucycloxuron, Flufenoxuron, Hexallumuron, Lufenuron, Novaluron, Novillumuron, Teflubenzuron und Triflumuron. (16) Inhibitoren der Chitinbiosynthese, Typ 1, wie beispielsweise Buprofezin.
(17) Häutungsdisruptor (insbesondere bei Dipteren, d. h. Zweiflüglern), wie beispielsweise Cyromazin.
(18) Ecdyson-Rezeptor-Agonisten, wie beispielsweise Chromafenozid, Halofenozid, Methoxyfenozid und Tebufenozid. (19) Oktopamin-Rezeptor-Agonisten, wie beispielsweise Amitraz.
(20) Mitochondriale Komplex-III-Elektronentransportinhibitoren, wie beispielsweise Hydramethylnon oder Acequinocyl oder Fluacrypyrim.
(21) Mitochondriale Komplex-I-Elektronentransportinhibitoren, wie beispielsweise METI-Akarizide, z. B. Fenazaquin, Fenpyroximat, Pyrimidiien, Pyridaben, Tebufenpyrad und Tolfenpyrad oder Rotenon (Derris).
(22) Blocker des spannungsabhängigen Natriumkanals, wie z. B. Indoxacarb oder Metaflumizone.
(23) Inhibitoren der Acetyl-CoA-Carboxylase, wie beispielsweise Tetron- und Tetramsäurederivate, z. B. Spirodiclofen, Spiromesifen und Spirotetramat.
(24) Inhibitoren des mitochondrialen Komplex-IV-Elektronentransports, wie beispielsweise Phosphine, z. B. Aluminiumphosphid, Calciumphosphid, Phosphin und Zinkphosphid oder Cyanide,
Calciumcyanid, Kaliumcyanid und Natriumcyanid.
(25) Inhibitoren des mitochondrialen Komplex-II-Elektronentransports, wie beispielsweise beta- Ketonitrilderivate, z. B. Cyenopyrafen und Cyflumetofen und Carboxanilide, wie beispielsweise Pyflubumid. (28) Ryanodinrezeptor-Modulatoren, wie beispielsweise Diamide, z. B. Chlorantraniliprol, Cyantraniliprol und Flubendiamid, weitere Wirkstoffe wie beispielsweise Afidopyropen, Afoxolaner, Azadirachtin, Benclothiaz, Benzoximat, Bifenazat, Broflanilid, Bromopropylat, Chinomethionat, Chloroprallethrin, Cryolit, Cyclaniliprol, Cycloxaprid, Cyhalodiamid, Dicloromezotiaz, Dicofol, epsilon-Metofluthrin, epsilon- Momfluthrin, Flometoquin, Fluazaindolizin, Fluensulfon, Flufenerim, Flufenoxystrobin, Flufiprol, Fluhexafon, Fluopyram, Fluralaner, Fluxametamid, Fufenozid, Guadipyr, Heptafluthrin, Imidaclothiz, Iprodione, kappa-Bifenthrin, kappa-Tefluthrin, Lotilaner, Meperfluthrin, Paichongding, Pyridalyl, Pyrifluquinazon, Pyriminostrobin, Spirobudiclofen, Tetramethylfluthrin, Tetraniliprol, Tetrachlorantraniliprol, Tioxazafen, Thiofluoximat, Triflumezopyrim und lodmethan; des Weiteren Präparate auf Basis von Bacillus firmus (1-1582, BioNeem, Votivo), sowie folgende Verbindungen: 1- { 2-Fluor-4-methyl-5-[(2,2,2-trilluorethyl)sulfinyl]phenyl } -3-(trifluormethyl)- 1H- 1 ,2,4-triazol-5-amin (bekannt aus WO2006/043635) (CAS 885026-50-6), { l'-[(2E)-3-(4-Chlorphenyl)prop-2-en-l-yl]-5- fluorspiro[indol-3 ,4'-piperidin] - 1 (2H)-yl } (2-chlorpyridin-4-yl)methanon (bekannt aus WO2003/106457) (CAS 637360-23-7), 2-Chlor-N-[2-{ l-[(2E)-3-(4-chlorphenyl)prop-2-en-l-yl]piperidin-4-yl}-4- (trifluormethyl)phenyl]isonicotinamid (bekannt aus WO2006/003494) (CAS 872999-66-1), 3-(4-Chlor- 2,6-dimethylphenyl)-4-hydroxy-8-methoxy-l,8-diazaspiro[4.5]dec-3-en-2-on (bekannt aus WO 2010052161) (CAS 1225292-17-0), 3-(4-Chlor-2, 6-dimethylphenyl)-8-methoxy-2-oxo-l,8- diazaspiro[4.5]dec-3-en-4-yl-ethylcarbonat (bekannt aus EP 2647626) (CAS-1440516-42-6), 4-(But-2- in-l-yloxy)-6-(3,5-dimethylpiperidin-l-yl)-5-fluorpyrimidin (bekannt aus WO2004/099160) (CAS 792914-58-0), PF1364 (bekannt aus JP2010/018586) (CAS-Reg.No. 1204776-60-2), N-[(2E)-l-[(6- Chlorpyridin-3-yl)methyl]pyridin-2(lH)-yliden]-2,2,2-trilluoracetamid (bekannt aus WO2012/029672) (CAS 1363400-41 -2), (3E)-3-[l -[(6-Chlor-3-pyridyl)methyl] -2-pyridyliden]- 1 ,1,1 -trifluorpropan-2-οη (bekannt aus WO2013/144213) (CAS 1461743-15-6), N-[3-(Benzylcarbamoyl)-4-chlorphenyl]-l- methyl-3-(pentafluorethyl)-4-(trilluormethyl)-lH-pyrazol-5-carboxamid (bekannt aus WO2010/051926) (CAS 1226889- 14-0), 5 -Brom-4-chlor-N- [4-chlor-2-methyl-6-(methylcarbamoyl)phenyl] -2-(3 -chlor-2- pyridyl)pyrazol-3-carboxamid (bekannt aus CN103232431) (CAS 1449220-44-3), 4-[5-(3,5- Dichlo henyl)-4,5-dihydro-5-(triί uormethyl)-3-isoxazolyl]-2-methyl-N-(cis-l-oxido-3- thietanyl)benzamid, 4-[5-(3,5-Dichlo henyl)-4,5-dihydro-5-(triί uormethyl)-3-isoxazolyl]-2-methyl-N- (trans-l-oxido-3-thietanyl)benzamid und 4-[(5S)-5-(3,5-Dichlorphenyl)-4,5-dihydro-5-(trifluormethyl)- 3-isoxazolyl]-2-methyl-N-(cis-l-oxido-3-thietanyl)benzamid (bekannt aus WO 2013/050317 AI) (CAS 1332628-83-7), N-[3-Chlor-l-(3-pyridinyl)-lH-pyrazol-4-yl]-N-ethyl-3-[(3,3,3- trifluo ropyl)sulfinyl]propanamid, (+)-N-[3-Chlor-l-(3-pyridinyl)-lH-pyrazol-4-yl]-N-ethyl-3-[(3,3,3- triί uo ropyl)sulfinyl]propananlid und (-)-N-[3-Chlor- 1 -(3 -pyridinyl)- 1 H-pyrazol-4-yl] -N-ethyl-3 - [(3,3,3-trifluoφropyl)sulflnyl]propanamid (bekannt aus WO 2013/162715 A2, WO 2013/162716 A2, US 2014/0213448 AI) (CAS 1477923-37-7), 5-[[(2E)-3-Chlor-2-propen-l-yl]amino]-l-[2,6-dichlor-4- (trifluormethyl)phenyl]-4-[(trilluormethyl)sulfinyl]-lH-pyrazol-3-carbonitrile (bekannt aus CN 101337937 A) (CAS 1105672-77-2), 3-Brom-N-[4-chlor-2-methyl-6-
[(methylamino)thioxomethyl]phenyl]-l-(3-chlor-2-pyridinyl)-lH-pyrazol-5-carboxamid,
(Liudaibenjiaxuanan, bekannt aus CN 103109816 A) (CAS 1232543-85-9); N-[4-Chlor-2-[[(l,l- dimethylethyl)amino] carbonyl] -6-methylphenyl] - 1 -(3 -chlor-2-pyridinyl)-3-(fluormethoxy)- 1 H-pyrazol- 5-carboxamid (bekannt aus WO 2012/034403 AI) (CAS 1268277-22-0), N-[2-(5-Amino-l,3,4- thiadiazol-2-yl)-4-chlor-6-methylphenyl]-3-brom-l-(3-chlor-2-pyridinyl)-lH-pyrazol-5-carboxamid (bekannt aus WO 2011/085575 AI) (CAS 1233882-22-8), 4-[3-[2,6-Dichlor-4-[(3,3-dichlor-2-propen-l- yl)oxy]phenoxy]propoxy]-2-methoxy-6-(trifluormethyl)pyrimidin (bekannt aus CN 101337940 A) (CAS 1108184-52-6); (2E)- und 2(Z)-2-[2-(4-Cyanophenyl)-l-[3-(trifluormethyl)phenyl]ethyliden]-N-[4- (difluormethoxy)phenyl]hydrazincarboxamid (bekannt aus CN 101715774 A) (CAS 1232543-85-9); Cyclopropancarbonsäure-3-(2,2-dichlorethenyl)-2,2-dimethyl-4-(lH-benzimidazol-2-yl)phenylester (bekannt aus CN 103524422 A) (CAS 1542271-46-4); (4aS)-7-Chlor-2,5-dihydro-2- [ [(methoxycarbonyl) [4- [(trifluormethyl)thio] phenyl] amino] carbonyl] indeno [ 1 ,2-e] [ 1 ,3 ,4]oxadiazin- 4a(3H)-carbonsäuremethylester (bekannt aus CN 102391261 A) (CAS 1370358-69-2); 6-Desoxy-3-0- ethyl-2,4-di-0-methyl- 1 - [N-[4- [ 1 -[4-( 1 , 1 ,2,2,2-pentafluorethoxy)phenyl] - 1 H- 1 ,2,4-triazol-3 - yl]phenyl]carbamat]-a-L-mannopyranose (bekannt aus US 2014/0275503 AI) (CAS 1181213-14-8); 8- (2-Cyclopropylmethoxy-4-trifluormethylphenoxy)-3-(6-trifluormethylpyridazin-3-yl)-3- azabicyclo[3.2.1]octan (CAS 1253850-56-4), (8-anti)-8-(2-Cyclopropylmethoxy-4- trifluormethylphenoxy)-3-(6-trifluormethylpyridazin-3-yl)-3-azabicyclo[3.2.1]octan (CAS 933798-27- 7), (8-syn)-8-(2-Cyclopropylmethoxy-4-trifluormethylphenoxy)-3-(6-trifluormethylpyridazin-3-yl)-3- azabicyclo[3.2.1]octan (bekannt aus WO 2007040280 AI, WO 2007040282 AI) (CAS 934001-66-8) und N-[3-Chlor-l-(3-pyridinyl)-lH-pyrazol-4-yl]-N-ethyl-3-[(3,3,3-triίluo ropyl)thio]-propananlid (bekannt aus WO 2015/058021 AI, WO 2015/058028 AI) (CAS 1477919-27-9).
Fungizide
Die hier mit ihrem "Common Name" spezifizierten Wirkstoffe sind bekannt und beispielsweise im "Pesticide Manual" (16. Aufl. British Crop Protection Council) oder im Internet recherchierbar (beispielsweise: http://www.alanwood.net/pesticides) beschrieben.
Alle genannten Mischungspartner der Klassen (1) bis (15) können, wenn sie auf Grund ihrer funktionellen Gruppen dazu imstande sind, gegebenenfalls mit geeigneten Basen oder Säuren Salze bilden. Alle genannten fungiziden Mischungspartner der Klassen (1) bis (15) können gegebenenfalls tautomere Formen einschließen. 1) Inhibitoren der Ergosterol-Biosynthese, beispielsweise (1.001) Cyproconazol, (1.002) Difenoconazol, (1.003) Epoxiconazol, (1.004) Fenhexamid, (1.005) Fenpropidin, (1.006) Fenpropimorph, (1.007) Fenpyrazamin, (1.008) Fluquinconazol, (1.009) Flutriafol, (1.010) Imazalil, (1.011) Imazalil Sulfat, (1.012) Ipconazol, (1.013) Metconazol, (1.014) Myclobutanil, (1.015) Paclobutrazol, (1.016) Prochloraz, (1.017) Propiconazol, (1.018) Prothioconazol, (1.019) Pyrisoxazol, (1.020) Spiroxamin, (1.021) Tebuconazol, (1.022) Tetraconazol, (1.023) Triadimenol, (1.024) Tridemorph, (1.025) Triticonazol, (1.026) (lR,2S,5S)-5-(4-Chlorbenzyl)-2-(chlormethyl)-2-methyl-l-(lH-l,2,4-triazol-l- ylmethyl)cyclopentanol, (1.027) (lS,2R,5R)-5-(4-Chlorbenzyl)-2-(chlormethyl)-2-methyl-l-(lH-l,2,4- triazol-l-ylmethyl)cyclopentanol, (1.028) (2R)-2-(l-Chlorcyclopropyl)-4-[(lR)-2,2-dichlorcyclopropyl]- 1 -( 1 H- 1 ,2,4-triazol- 1 -yl)butan-2-ol ( 1.029) (2R)-2-( 1 -Chlorcyclopropyl)-4- [( 1 S)-2,2- dichlorcyclopropyl] - 1 -( 1 H- 1 ,2,4-triazol- 1 -yl)butan-2-ol, ( 1.030) (2R)-2- [4-(4-Chlorphenoxy)-2- (trifluormethyl)phenyl] - 1 -( 1 H- 1 ,2,4-triazol- 1 -yl)propan-2-ol, ( 1.031) (2S)-2-( 1 -Chlorcyclopropyl)-4- [(1 R)-2,2-dichlorcyclopropyl] - 1 -( 1 H- 1 ,2,4-triazol- 1 -yl)butan-2-ol, ( 1.032) (2S)-2-( 1 -Chlorcyclopropyl)- 4- [( 1 S)-2,2-dichlorcyclopropyl] - 1 -( 1 H- 1 ,2,4-triazol- 1 -yl)butan-2-ol, ( 1.033) (2S)-2-[4-(4-
Chlorphenoxy)-2-(trifluormethyl)phenyl] - 1 -( 1 H- 1 ,2,4-triazol- 1 -yl)propan-2-ol, ( 1.034) (R)- [3 -(4-Chlor- 2-fluo henyl)-5-(2,4-difluo henyl)-l,2-oxazol-4-yl](pyridin-3-yl)methanol, (1.035) (S)-[3-(4-Chlor-2- fluorphenyl)-5-(2,4-difluo henyl)-l,2-oxazol-4-yl](pyridin-3-yl)methanol, (1.036) [3-(4-Chlor-2- fluo henyl)-5-(2,4-difluo henyl)-l,2-oxazol-4-yl](pyridin-3-yl)methanol, (1.037) l-({(2R,4S)-2-[2- Chlor-4-(4-chlorphenoxy)phenyl] -4-methyl- 1 ,3 -dioxolan-2-yl } methyl)- 1 H- 1 ,2,4-triazol, ( 1.038) 1 - ({ (2S,4S)-2- [2-Chlor-4-(4-chlorphenoxy)phenyl] -4-methyl- 1 ,3-dioxolan-2-yl } methyl)- 1 H- 1 ,2,4-triazol, ( 1.039) 1 - { [3-(2-Chlorphenyl)-2-(2,4-diίluoφhenyl)oxiran-2-yl] methyl } - 1 H- 1 ,2,4-triazol-5-yl- thiocyanat, (1.040) l-{ [rel(2R,3R)-3-(2-Chlorphenyl)-2-(2,4-difluoφhenyl)oxiran-2-yl]methyl}-lH- l,2,4-triazol-5-yl-thiocyanat, (1.041) l-{ [rel(2R,3S)-3-(2-Ch^henyl)-2-(2,4-dilluorphenyl)oxiran-2- yl] methyl } - 1 H- 1 ,2,4-triazol-5 -yl-thiocyanat, ( 1.042) 2- [(2R,4R,5R)- 1 -(2,4-Dich^henyl)-5-hydroxy- 2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazol-3-thion, (1.043) 2-[(2R,4R,5S)-l-(2,4- Dichloφhenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazol-3-thion, (1.044) 2- [(2R,4S,5R)-l-(2,4-Dichlorophenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4- triazol-3-thion, (1.045) 2-[(2R,4S,5S)-l-(2,4-Dich^henyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4- dihydro-3H-l,2,4-triazol-3-thion, (1.046) 2-[(2S,4R,5R)-l-(2,4-Dich^henyl)-5-hydroxy-2,6,6- trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazol-3-thion, (1.047) 2-[(2S,4R,5S)-l-(2,4-
Dichloφhenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazol-3-thion, (1.048) 2- [(2S,4S,5R)-l-(2,4-Dich^henyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4-dihydro-3H-l,2,4-triazol- 3-thion, (1.049) 2-[(2S,4S,5S)-l-(2,4-Dichlorphenyl)-5-hydroxy-2,6,6-trimethylheptan-4-yl]-2,4- dihydro-3H-l,2,4-triazol-3-thion, (1.050) 2-[l-(2,4-Dichloφhenyl)-5-hydroxy-2,6,6-trimethylheptan-4- yl] -2,4-dihydro-3H- 1 ,2,4-triazol-3-thion, ( 1.051) 2- [2-Chlor-4-(2,4-dichlorophenoxy)phenyl] - 1 -( 1 H- 1 ,2,4-triazol- 1 -yl)propan-2-ol, ( 1.052) 2-[2-Chlor-4-(4-chlorphenoxy)phenyl] - 1 -( 1 H- 1 ,2,4-triazol- 1 - yl)butan-2-ol, ( 1.053) 2- [4-(4-Ch^henoxy)-2-(trifluormethyl)phenyl] - 1 -( 1 H- 1 ,2,4-triazol- 1 -yl)butan- 2-ol, ( 1.054) 2-[4-(4-Ch^henoxy)-2-(trinuormethyl)phenyl] - 1 -( 1 H- 1 ,2,4-triazol- 1 -yl)pentan-2-ol, (1.055) 2-[4-(4-Ch^henoxy)-2-(trilluormethyl)phenyl]-l-(lH-l,2,4-triazol-l-yl)propan-2-ol, (1.056) 2-{ [3-(2-Chloφhenyl)-2-(2,4-diίluorphenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H-l,2,4-triazol-3-thion, (1.057) 2-{ [rel(2R,3R)-3-(2-Ch^henyl)-2-(2,4-difluorphenyl)oxiran-2-yl]methyl}-2,4-dihydro-3H- l,2,4-triazol-3-thion, (1.058) 2-{ [rel(2R,3S)-3-(2-Chlorphenyl)-2-(2,4-difluoφhenyl)oxiran-2- yl]methyl}-2,4-dihydro-3H-l,2,4-triazol-3-thion, (1.059) 5-(4-Chlorbenzyl)-2-(chlormethyl)-2-methyl- l-(lH-l,2,4-triazol-l-ylmethyl)cyclopentanol, (1.060) 5-(Allylsulfanyl)-l-{ [3-(2-chlorphenyl)-2-(2,4- difluoφhenyl)oxiran-2-yl] methyl } - 1 H- 1 ,2,4-triazol, ( 1.061 ) 5-( Allylsulfanyl)- 1 - { [rel(2R,3R)-3 -(2- chloφhenyl)-2-(2,4-diίluoφhenyl)oxiran-2-yl]methyl } - 1 H- 1 ,2,4-triazol, ( 1.062) 5-(Allylsulf anyl)- 1 - { [rel(2R,3S)-3-(2-chlorphenyl)-2-(2,4-difluoφhenyl)oxiran-2-yl]methyl}-lH-l,2,4-triazol, (1.063) N'- (2,5-Dimethyl-4- { [3-( 1 , 1 ,2,2-tetrafluorethoxy)phenyl]sulfanyl }phenyl)-N-ethyl-N- methylimidoformamid, ( 1.064) N'-(2,5-Dimethyl-4- { [3-(2,2,2-trifluorethoxy)phenyl]sulfanyl Jphenyl)- N-ethyl-N-methylimidoformamid, (1.065) N'-(2,5-Dimethyl-4-{ [3-(2,2,3,3- tetrafluorpropoxy)phenyl]sulfanyl}phenyl)-N-ethyl-N-methylimidoformamid, (1.066) N'-(2,5-Dimethyl- 4-{ [3-(pentalluorethoxy)phenyl]sulfanyl}phenyl)-N-ethyl-N-methylimidoformamid, (1.067) N'-(2,5- Dimethyl-4-{3-[(l,l,2,2-tetrafluorethyl)sulfanyl]phenoxy}phenyl)-N-ethyl-N-methylimidoformamid, (1.068) N'-(2,5-Dimethyl-4-{3-[(2,2,2-trifluorethyl)sulfanyl]phenoxy}phenyl)-N-ethyl-N- methylimidoformamid, (1.069) N'-(2,5-Dimethyl-4-{3-[(2,2,3,3- tetrafluorpropyl)sulfanyl]phenoxy}phenyl)-N-ethyl-N-methylimidoformaniid, (1.070) N'-(2,5-Dimethyl- 4-{3-[(pentafluorethyl)sulfanyl]phenoxy}phenyl)-N-ethyl-N-methylimidoformamid, (1.071) N'-(2,5- Dimethyl-4-phenoxyphenyl)-N-ethyl-N-methylimidoformamid, (1.072) N'-(4-{ [3-
(Difluormethoxy)phenyl]sulfanyl}-2,5-dimethylphenyl)-N-ethyl-N-methylimidoformanii (1.073) N- (4- { 3 - [(Difluormethyl) sulf anyl] phenoxy } -2, 5 -dimethylphenyl) -N-ethyl-N-methylimidof ormamid,
(1.074) N'-[5-Brom-6-(2,3-dihydro-lH-inden-2-yloxy)-2-methylpyridin-3-yl]-N-ethyl-N- methylimidoformamid, ( 1.075) N'- { 4- [(4,5-Dichlor- 1 ,3-thiazol-2-yl)oxy] -2,5 -dimethylphenyl } -N-ethyl- N-methylimidof ormamid, ( 1.076) N- { 5-Brom-6- [( 1 R)- 1 -(3 ,5 -difluorophenyl)ethoxy] -2-methylpyridin- 3-yl } -N-ethyl-N-methylimidoformamid, ( 1.077) N- { 5-Brom-6- [( 1S)-1 -(3 ,5 -difluorphenyl)ethoxy] -2- methylpyridin-3-yl} -N-ethyl-N-methylimidoformamid, (1.078) N'-{5-Brom-6-[(cis-4- isopropylcyclohexyl)oxy] -2-methylpyridin-3 -yl } -N-ethyl-N-methylimidoformamid, ( 1.079) N- { 5 - Brom-6- [(trans-4-isopropylcyclohexyl)oxy] -2-methylpyridin-3 -yl } -N-ethyl-N-methylimidoformamid, (1.080) N- { 5-Bromo-6- [ 1 -(3 ,5 -difluorphenyl)ethoxy] -2-methylpyridin-3-yl } -N-ethyl-N- methylimidoformamid. 2) Inhibitoren der Atmungskette am Komplex I oder II beispielsweise (2.001) Benzovindiflupyr, (2.002) Bixafen, (2.003) Boscalid, (2.004) Carboxin, (2.005) Fluopyram, (2.006) Flutolanil, (2.007) Fluxapyroxad, (2.008) Furametpyr, (2.009) Isofetamid, (2.010) Isopyrazam (anti-epimeres Enantiomer 1R,4S,9S), (2.011) Isopyrazam (anti-epimeres Enantiomer 1S,4R,9R), (2.012) Isopyrazam (anti- epimeres Racemat 1RS,4SR,9SR), (2.013) Isopyrazam (Mischung des syn-epimeren Razemates 1RS,4SR,9RS und des anti-epimeren Razemates 1RS,4SR,9SR), (2.014) Isopyrazam (syn-epimeres Enantiomer 1R,4S,9R), (2.015) Isopyrazam (syn-epimeres Enantiomer 1S,4R,9S), (2.016) Isopyrazam (syn-epimeres Racemat 1RS,4SR,9RS), (2.017) Penflufen, (2.018) Penthiopyrad, (2.019) Pydiflumetofen, (2.020) Pyraziflumid, (2.021) Sedaxane, (2.022) l,3-Dimethyl-N-(l,l,3-trimethyl-2,3- dihydro-lH-inden-4-yl)-lH-pyrazol-4-carboxamid, (2.023) l,3-Dimethyl-N-[(3R)-l,l,3-trimethyl-2,3- dihydro-lH-inden-4-yl]-lH-pyrazol-4-carboxamid, (2.024) l,3-Dimethyl-N-[(3S)-l,l,3-trimethyl-2,3- dihydro- 1 H-inden-4-yl] - 1 H-pyrazol-4-carboxamid, (2.025) 1 -Methyl-3 -(trifluormethyl)-N- [2'- (trifluormethyl)biphenyl-2-yl] - 1 H-pyr azol-4-carboxamid, (2.026) 2-Fluor-6 -(trifluoromethyl) -N-( 1 , 1 , 3 - trimethyl-2,3 -dihydro- 1 H-inden-4-yl)benzamid, (2.027) 3-(Difluormethyl)- 1 -methyl-N-( 1 , 1 ,3 -trimethyl- 2,3-dihydro-lH-inden-4-yl)-lH-pyrazol-4-carboxamid, (2.028) 3-(Difluormethyl)-l-methyl-N-[(3R)- 1,1 ,3-trimethyl-2,3-dihydro- lH-inden-4-yl] - lH-pyrazol-4-carboxamid, (2.029) 3-(Difluormethyl)- 1 - methyl-N-[(3S)-l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl]-lH-pyrazol-4-carboxamid, (2.030) 3- (Difluormethyl)-N-(7-fluor- 1 , 1 ,3 -trimethyl-2,3 -dihydro- 1 H-inden-4-yl)- 1 -methyl- 1 H-pyrazol-4- carboxamid, (2.031) 3-(Difluormethyl)-N-[(3R)-7-fluor-l,l,3-trimethyl-2,3-dihydro-lH-inden-4-yl]-l- methyl-lH-pyrazol-4-carboxamid, (2.032) 3-(Difluoromethyl)-N-[(3S)-7-fluor-l,l,3-trimethyl-2,3- dihydro- lH-inden-4-yl]-l -methyl- lH-pyrazol-4-carboxamid, (2.033) 5,8-Difluor-N-[2-(2-fluor-4-{ [4- (trifluormethyl)pyridin-2-yl]oxy }phenyl)ethyl]quinazolin-4-amin, (2.034) N-(2-Cyclopentyl-5- fluorbenzyl)-N-cyclopropyl-3-(difluormethyl)-5-fluor-l-methyl-lH-pyrazol-4-carboxamid, (2.035) N- (2-tert-Butyl-5-methylbenzyl)-N-cyclopropyl-3-(difluormethyl)-5-fluor-l-methyl-lH-pyrazol-4- carboxamid, (2.036) N-(2-tert-Butylbenzyl)-N-cyclopropyl-3-(difluormethyl)-5-fluor-l-methyl-lH- pyrazol-4-carboxamid, (2.037) N-(5-Chlor-2-ethylbenzyl)-N-cyclopropyl-3-(difluormethyl)-5-fluor-l- methyl-lH-pyrazol-4-carboxamid, (2.038) N-(5-Chlor-2-isopropylbenzyl)-N-cyclopropyl-3- (difluormethyl)-5-fluor-l-methyl-lH-pyrazol-4-carboxamid, (2.039) N-[(lR,4S)-9-(Dichlormethylen)- l,23,4-tetrahydro-l,4-methanonaphthalen-5-yl]-3-(difluormethyl)-l-methyl-lH^yrazol-4-carboxamid, (2.040) N-[( 1 S ,4R)-9-(Dichlormethylen)- 1 ,2,3 ,4-tetrahydro- 1 ,4-methanonaphthalen-5-yl] -3 -
(difluormethyl)- 1 -methyl- 1 H-pyrazol-4-carboxamid, (2.041 ) N- [ 1 -(2,4-Dichlorphenyl)- 1 - methoxypropan-2-yl]-3-(difluormethyl)-l-methyl-lH-pyrazol-4-carboxamid, (2.042) N-[2-Chlor-6- (trifluormethyl)benzyl] -N-cyclopropyl-3 -(difluormethyl) -5 -fluor- 1 -methyl- 1 H-pyrazol-4-carboxamid, (2.043) N-[3-Chlor-2-fluor-6-(trifluormethyl)benzyl]-N-cyclopropyl-3-(difluormethyl)-5-fluor-l- methyl-lH-pyrazol-4-carboxamid, (2.044) N-[5-Chlor-2-(trifluormethyl)benzyl]-N-cyclopropyl-3- (difluormethyl)-5-fluor-l-methyl-lH-pyrazol-4-carboxamid, (2.045) N-Cyclopropyl-3-(difluormethyl)- 5-fluor- 1 -methyl-N- [5 -methyl -2-(trifluormethyl)benzyl] - 1 H-pyrazol-4-carboxamid, (2.046) N- Cyclopropyl-3-(difluormethyl)-5-fluor-N-(2-fluor-6-isopropylbenzyl)-l-methyl-lH-pyrazol-4- carboxamid, (2.047) N-Cyclopropyl-3-(difluormethyl)-5-fluor-N-(2-isopropyl-5-methylbenzyl)-l- methyl- 1 H-pyrazol-4-carboxamid, (2.048) N-Cyclopropyl-3 -(difluormethyl) -5 -fluor-N-(2- isopropylbenzyl)-l-methyl-lH-pyrazol-4-carbothioamid, (2.049) N-Cyclopropyl-3-(difluoromethyl)-5- fluor-N-(2-isopropylbenzyl)-l -methyl-lH-pyrazol-4-carboxamid, (2.050) N-Cyclopropyl-3-
(difluormethyl)-5-fluor-N-(5-fluor-2-isopropylbenzyl)-l-methyl-lH-pyrazol-4-carboxamid, (2.051) N- Cyclopropyl-3-(difluormethyl)-N-(2-ethyl-4,5-dimethylbenzyl)-5-fluor-l-methyl-lH-pyrazol-4- carboxamid, (2.052) N-Cyclopropyl-3-(difluormethyl)-N-(2-ethyl-5-fluorbenzyl)-5-fluor-l -methyl-lH- pyrazol-4-carboxamid, (2.053) N-Cyclopropyl-3-(difluormethyl)-N-(2-ethyl-5-methylbenzyl)-5-fluor-l- methyl-lH-pyrazole-4-carboxamid, (2.054) N-Cyclopropyl-N-(2-cyclopropyl-5-fluorbenzyl)-3- (difluormethyl)-5-fluor-l-methyl-lH-pyrazole-4-carboxamid, (2.055) N-Cyclopropyl-N-(2-cyclopropyl- 5-methylbenzyl)-3-(difluormethyl)-5-fluor-l-methyl-lH-pyrazole-4-carboxamid, (2.056) N- Cyclopropyl-N-(2-cyclopropylbenzyl)-3-(difluormethyl)-5-fluor-l-methyl-lH-pyrazole-4-carboxamid.
3) Inhibitoren der Atmungskette am Komplex III, beispielsweise (3.001) Ametoctradin, (3.002) Amisulbrom, (3.003) Azoxystrobin, (3.004) Coumethoxystrobin, (3.005) Coumoxystrobin, (3.006) Cyazofamid, (3.007) Dimoxystrobin, (3.008) Enoxastrobin, (3.009) Famoxadon, (3.010) Fenamidon, (3.011) Flufenoxystrobin, (3.012) Fluoxastrobin, (3.013) Kresoxim-Methyl, (3.014) Metominostrobin, (3.015) Orysastrobin, (3.016) Picoxystrobin, (3.017) Pyraclostrobin, (3.018) Pyrametostrobin, (3.019) Pyraoxystrobin, (3.020) Trifloxystrobin (3.021) (2E)-2-{2-[({ [(lE)-l-(3-{ [(E)-l-Fluor-2- phenylvinyl] oxy } phenyl)ethyliden] amino } oxy)methyl] phenyl } -2-(methoxyimino) -N-methylacetamid, (3.022) (2E,3Z)-5-{ [l-(4-Chlorphenyl)-lH-pyrazol-3-yl]oxy}-2-(methoxyimino)-N,3-dimethylpent-3- enamid, (3.023) (2R)-2-{2-[(2,5-Dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamid, (3.024) (2S)-2- { 2- [(2,5 -Dimethylphenoxy)methyl] phenyl } -2-methoxy-N-methylacetamid, (3.025) (3S,6S,7R,8R)-8-Benzyl-3-[({3-[(isobutyryloxy)methoxy]-4-methoxypyridin-2-yl}carbonyl)amino]-6- methyl-4,9-dioxo-l,5-dioxonan-7-yl-2-methylpropanoat, (3.026) 2-{2-[(2,5- Dimethylphenoxy)methyl]phenyl}-2-methoxy-N-methylacetamid, (3.027) N-(3-Ethyl-3,5,5- trimethylcyclohexyl)-3-formamido-2-hydroxybenzamid, (3.028) (2E,3Z)-5-{ [l-(4-Chlor-2-fhK^henyl)- 1 H-pyrazol-3 -yl] oxy } -2-(methoxyimino)-N,3 -dimethylpent-3-enamid.
4) Inhibitoren der Mitose und Zellteilung, beispielsweise (4.001) Carbendazim, (4.002) Diethofencarb, (4.003) Ethaboxam, (4.004) Fluopicolid, (4.005) Pencycuron, (4.006) Thiabendazol, (4.007)
Thiophanat-Methyl, (4.008) Zoxamid, , (4.009) 3-Chlor-4-(2,6-difluo henyl)-6-methyl-5- phenylpyridazin, (4.010) 3-Chlor-5-(4-chlorphenyl)-4-(2,6-difluorphenyl)-6-methylpyridazin, (4.011) 3- Chlor-5-(6-chlorpyridin-3-yl)-6-methyl-4-(2,4,6-trifluorphenyl)pyridazin, (4.012) 4-(2-Brom-4- fluo henyl)-N-(2,6-difluo henyl)-l,3-dimethyl-lH-pyrazol-5-arnin, (4.013) 4-(2-Brom-4- fluoφhenyl)-N-(2-brom-6-fluorphenyl)-l,3-dimethyl-lH yrazol-5-arnin, (4.014) 4-(2-Brom-4- fluoφhenyl)-N-(2-bromphenyl)-l,3-dimethyl-lH-pyrazol-5-arnin, (4.015) 4-(2-Brom-4-fluoφhenyl)-N- (2-chlor-6-fluoφhenyl)-l,3-dimethyl-lH-pyrazol-5-amin, (4.016) 4-(2-Brom-4-fluoφhenyl)-N-(2- chloφhenyl)- 1 ,3 -dimethyl- 1 H-pyrazol-5 -amin, (4.017) 4-(2-Brom-4-fluorphenyl)-N-(2-fluoφhenyl)- l,3-dimethyl-lH-pyrazol-5-amin, (4.018) 4-(2-Chlor-4-fluoφhenyl)-N-(2,6-difluoφhenyl)-l,3- dimethyl- 1 H-pyrazol-5 -amin, (4.019) 4-(2-Chlor-4-fluorphenyl)-N-(2-chlor-6-fluoφhenyl)-l,3- dimethyl-1 H-pyrazol-5 -amin, (4.020) 4-(2-Chlor-4-fluorphenyl)-N-(2-chlorphenyl)-l,3-dimethyl-lH- pyrazol-5-amin, (4.021 ) 4-(2-Chlor-4-fluorphenyl)-N-(2-fluoφhenyl)- 1 ,3 -dimethyl- 1 H-pyrazol-5 -amin, (4.022) 4-(4-Ch^henyl)-5-(2,6-difluorphenyl)-3,6-dimethylpyridazin, (4.023) N-(2-Brom-6- fluoφhenyl)-4-(2-chlor-4-fluorphenyl)-l,3-dimethyl-lH-pyrazol-5-amin, (4.024) N-(2-Bromphenyl)-4- (2-chlor-4-fluoφhenyl)-l,3-dimethyl-lH-pyrazol-5-amin, (4.025) N-(4-Chlor-2,6-difluorphenyl)-4-(2- chlor-4-fluorphenyl) -1,3 -dimethyl- 1 H-pyrazol-5 -amin.
5) Verbindungen mit Befähigung zu Multisite-Aktivität, beispielsweise (5.001) Bordeauxmischung, (5.002) Captafol, (5.003) Captan, (5.004) Chlorthalonil, (5.005) Kupferhydroxid, (5.006) Kupfernaphthenat, (5.007) Kupferoxid, (5.008) Kupferoxychlorid, (5.009) Kupfer(2+)-sulfat, (5.010) Dithianon, (5.011) Dodin, (5.012) Folpet, (5.013) Mancozeb, (5.014) Maneb, (5.015) Metiram, (5.016) Zinkmetiram, (5.017) Kupfer-Oxin, (5.018) Propineb, (5.019) Schwefel und Schwefelzubereitungen einschließlich Calciumpolysulfid, (5.020) Thiram, (5.021) Zineb, (5.022) Ziram.
6) Verbindungen, die zum Auslösen einer Wirtsabwehr befähigt sind, beispielsweise (6.001) Acibenzolar-S-Methyl, (6.002) Isotianil, (6.003) Probenazol, (6.004) Tiadinil. 7) Inhibitoren der Aminosäure- und/oder Protein-Biosynthese, beispielsweise (7.001) Cyprodinil, (7.002) Kasugamycin, (7.003) Kasugamycinhydrochlorid-hydrat, (7.004) Oxytetracyclin (7.005) Pyrimethanil, (7.006) 3-(5-Fluor-3,3,4,4-tetramethyl-3,4-dihydroisochinolin-l -yl)chinolin.
(8) Inhibitoren der ATP-Produktion, beispielsweise (8.001) Silthiofam.
9) Inhibitoren der Zellwandsynthese, beispielsweise (9.001) Benthiavalicarb, (9.002) Dimethomorph, (9.003) Flumorph, (9.004) Iprovalicarb, (9.005) Mandipropamid, (9.006) Pyrimorph, (9.007) Valifenalat, (9.008) (2Ε)-3-(4-ΙεΓΐ.-ΒηΙγ1ρ1ΐ6ηγ1)-3-(2-ο1ι1ο γΓΪ(ϋη-4-γ1)-1-(ηιο 1ιο1ϊη-4-γ1)ρΓορ-2-6η- 1-on, (9.009) (2Ζ)-3-(4-ΙεΓΐ.-ΒηΙγ1ρ1ΐ6ηγ1)-3-(2-ο1ι1οφγΓΪ(ϋη-4-γ1)-1-(ηιθΓρ1ιο1ϊη-4-γ1)ρΓορ-2-6η-1-οη.
10) Inhibitoren der Lipid- und Membran-Synthese, beispielsweise (10.001) Propamocarb, (10.002) Propamocarbhydrochlorid, (10.003) Tolclofos-Methyl. 11) Inhibitoren der Melanin-Biosynthese, beispielsweise (11.001) Tricyclazol, (11.002) 2,2,2- Triiluorethyl-{3-methyl-l-[(4-methylbenzoyl)amino]butan-2-yl}carbamat.
12) Inhibitoren der Nukleinsäuresynthese, beispielsweise (12.001) Benalaxyl, (12.002) Benalaxyl-M (Kiralaxyl), (12.003) Metalaxyl, (12.004) Metalaxyl-M (Mefenoxam).
13) Inhibitoren der Signaltransduktion, beispielsweise (13.001) Fludioxonil, (13.002) Iprodion, (13.003) Procymidon, (13.004) Proquinazid, (13.005) Quinoxyfen, (13.006) Vinclozolin.
14) Verbindungen, die als Entkoppler wirken können, beispielsweise (14.001) Fluazinam, (14.002) Meptyldinocap.
15) Weitere Verbindungen, beispielsweise (15.001) Abscisinsäure, (15.002) Benthiazol, (15.003) Bethoxazin, (15.004) Capsimycin, (15.005) Carvon, (15.006) Chinomethionat, (15.007) Cufraneb, (15.008) Cyflufenamid, (15.009) Cymoxanil, (15.010) Cyprosulfamid, (15.011) Flutianil, (15.012) Fosetyl-Aluminium, (15.013) Fosetyl-Calcium, (15.014) Fosetyl-Natrium, (15.015) Methylisothiocyanat, (15.016) Metrafenon, (15.017) Mildiomycin, (15.018) Natamycin, (15.019) Nickel-Dimethyldithiocarbamat, (15.020) Nitrothal-Isopropyl, (15.021) Oxamocarb, (15.022) Oxathiapiprolin, (15.023) Oxyfenthiin, (15.024) Pentachlorphenol und Salze, (15.025) Phosphonsäure und deren Salze, (15.026) Propamocarb-fosetylat, (15.027) Pyriofenone (Chlazafenone) (15.028) Tebufloquin, (15.029) Tecloftalam, (15.030) Tolnifanide, (15.031) l-(4-{4-[(5R)-5-(2,6-Difhu^henyl)- 4,5-dihydro-l,2-oxazol-3-yl]-l,3-thiazol-2-yl}piperidin-l-yl)-2-[5-methyl-3-(trifluormethyl)-lH- pyrazol-l-yl]ethanon, (15.032) l-(4-{4-[(5S)-5-(2,6-Difluorphenyl)-4,5-dihydro-l,2-oxazol-3-yl]-l,3- thiazol-2-yl Jpiperidin- 1 -yl)-2- [5 -methyl-3 -(trifluormethyl)- 1 H-pyrazol- 1 -yl] ethanon, ( 15.033) 2-(6- Benzylpyridin-2-yl)quinazolin, (15.034) 2,6-Dimethyl-lH,5H-[l,4]dithiino[2,3-c:5,6-c']dipyrrol- l,3,5,7(2H,6H)-tetron, (15.035) 2-[3,5-Bis(difluormethyl)-lH-pyrazol-l-yl]-l-[4-(4-{5-[2-(prop-2-in-l- yloxy)phenyl]-4,5-dihydro-l,2-oxazol-3-yl}-l,3-thiazol-2-yl)piperidin-l-yl]ethanon, (15.036) 2-[3,5- Bis(difluormethyl)-lH-pyrazol-l-yl]-l-[4-(4-{5-[2-chlor-6-(prop-2-in-l-yloxy)phenyl]-4,5-dihydro-l,2- oxazol-3-yl } - 1 ,3-thiazol-2-yl)piperidin- 1 -yl]ethanon, ( 15.037) 2-[3,5-Bis(difluormethyl)- lH-pyrazol- 1 - yl]-l-[4-(4-{5-[2-fluor-6-(prop-2-in-l-yloxy)phenyl]-4,5-dihydro-l,2-oxazol-3-yl}-l,3-thiazol-2- yl)piperidin-l-yl] ethanon, (15.038) 2-[6-(3-Fluor-4-methoxyphenyl)-5-methylpyridin-2-yl]quinazolin, (15.039) 2-{(5R)-3-[2-(l-{ [3,5-Bis(difluormethyl)-lH-pyrazol-l-yl]acetyl}piperidin-4-yl)-l,3-thiazol-4- yl]-4,5-dihydro-l,2-oxazol-5-yl}-3-chlorphenyl methanesulfonat, (15.040) 2-{(5S)-3-[2-(l-{ [3,5- Bis(difluormethyl)-lH-pyrazol-l-yl]acetyl}piperidin-4-yl)-l,3-thiazol-4-yl]-4,5-dihydro-l,2-oxazol-5- yl}-3-chkMphenyl methanesulfonat, (15.041) 2-{2-[(7,8-Difluor-2-methylquinolin-3-yl)oxy]-6- fluorphenyl}propan-2-ol, (15.042) 2-{2-Fluor-6-[(8-fluor-2-methylquinolin-3-yl)oxy]phenyl}propan-2- ol, (15.043) 2-{3-[2-(l-{ [3,5-Bis(difluormethyl)-lH-pyrazol-l-yl^^
yl]-4,5-dihydro-l,2-oxazol-5-yl}-3-chlorphenyl-methansulfonat, (15.044) 2-{3-[2-(l-{ [3,5-
Bis(difluormethyl)-lH-pyrazol-l-yl]acetyl}piperidin-4-yl)-l,3-thiazol-4-yl]-4,5-dihydro-l,2-oxazol-5 yljphenyl methanesulfonat, (15.045) 2-Phenylphenol und deren Salze, (15.046) 3-(4,4,5-Trifluor-3,3- dimethyl-3 ,4-dihydroisoquinolin- 1 -yl)quinolin, ( 15.047) 3-(4,4-Difluor-3 ,3 -dimethyl-3 ,4- dihydroisoquinolin-l-yl)quinolin, (15.048) 4-Amino-5-lluorpyrimidin-2-ol (Tautomere Form: 4-Amino- 5-fluo yrimidin-2(lH)-on), (15.049) 4-Oxo-4-[(2-phenylethyl)amino]buttersäure, (15.050) 5-Amino- 1 ,3 ,4-thiadiazol-2-thiol, ( 15.051 ) 5-Chlor-N'-phenyl-N'-(prop-2-yn- 1 -yl)thiophen-2-sulfonohydrazid, (15.052) 5-Fluor-2-[(4-fluorbenzyl)oxy]pyrimidin-4-amin, (15.053) 5-Fluor-2-[(4- methylbenzyl)oxy]pyrimidin-4-amin, (15.054) 9-Fluor-2,2-dimethyl-5-(quinolin-3-yl)-2,3-dihydro-l,4- benzoxazepin, (15.055) But-3-yn-l-yl {6-[({ [(Z)-(l-methyl-lH-tetrazol-5- yl)(phenyl)methylen]amino}oxy)methyl]pyridin-2-yl}carbamat, (15.056) Ethyl (2Z)-3-amino-2-cyano- 3-phenylacrylat, (15.057) Phenazin-1 -carbonsäure, (15.058) Propyl 3,4,5-trihydroxybenzoat, (15.059) Quinolin-8-ol, (15.060) Quinolin-8-ol sulfat (2:1), (15.061) tert-Butyl {6-[({ [(l-methyl-lH-tetrazol-5- yl)(phenyl)methylene] amino } oxy)methyl]pyridin-2-yl } carbamat.
Biologische Schädlingsbekämpfungsmittel als Mischungskomponenten
Die Verbindungen der Formel (I) oder der Formel (Γ) können mit biologischen Schädlingsbekämpfungsmitteln kombiniert werden. Biologische Schädlingsbekämpfungsmittel umfassen insbesondere Bakterien, Pilze, Hefen, Pflanzenextrakte und solche Produkte, die von Mikroorganismen gebildet wurden inklusive Proteine und sekundäre Stoffwechselprodukte.
Biologische Schädlingsbekämpfungsmittel umfassen Bakterien wie sporenbildende Bakterien, wurzelbesiedelnde Bakterien und Bakterien, die als biologische Insektizide, Fungizide oder Nematizide wirken.
Beispiele für solche Bakterien, die als biologische Schädlingsbekämpfungsmittel eingesetzt werden bzw. verwendet werden können, sind:
Bacillus amyloliquefaciens, Stamm FZB42 (DSM 231179), oder Bacillus cereus, insbesondere B. cereus Stamm CNCM 1-1562 oder Bacillus firmus, Stamm 1-1582 (Accession number CNCM 1-1582) oder Bacillus pumilus, insbesondere Stamm GB34 (Accession No. ATCC 700814) und Stamm QST2808 (Accession No. NRRL B-30087), oder Bacillus subtilis, insbesondere Stamm GB03 (Accession No. ATCC SD-1397), oder Bacillus subtilis Stamm QST713 (Accession No. NRRL B-21661) oder Bacillus subtilis Stamm OST 30002 (Accession No. NRRL B-50421), Bacillus thuringiensis, insbesondere B. thuringiensis Subspezies israelensis (Serotyp H-14), Stamm AM65-52 (Accession No. ATCC 1276), oder B. thuringiensis subsp. aizawai, insbesondere Stamm ABTS- 1857 (SD- 1372), oder B. thuringiensis subsp. kurstaki Stamm HD-1, oder B. thuringiensis subsp. tenebrionis Stamm NB 176 (SD-5428), Pasteuria penetrans, Pasteuria spp. (Rotylenchulus reniformis nematode)-PR3 (Accession Number ATCC SD-5834), Streptomyces microflavus Stamm AQ6121 (= QRD 31.013, NRRL B-50550), Streptomyces galbus Stamm AQ 6047 (Acession Number NRRL 30232). Beispiele für Pilze und Hefen, die als biologische Schädlingsbekämpfungsmittel eingesetzt werden bzw. verwendet werden können, sind:
Beauveria bassiana, insbesondere Stamm ATCC 74040, Coniothyrium minitans, insbesondere Stamm CON/M/91-8 (Accession No. DSM-9660), Lecanicillium spp., insbesondere Stamm HRO LEC 12, Lecanicillium lecanii (ehemals bekannt als Verticillium lecanii), insbesondere Stamm KV01, Metarhizium anisopliae, insbesondere Stamm F52 (DSM3884/ ATCC 90448), Metschnikowia fructicola, insbesondere Stamm NRRL Y-30752, Paecilomyces fumosoroseus (neu: Isaria fumosorosea), insbesondere Stamm IFPC 200613, oder Stamm Apopka 97 (Accesion No. ATCC 20874), Paecilomyces lilacinus, insbesondere P. lilacinus Stamm 251 (AGAL 89/030550), Talaromyces flavus, insbesondere Stamm VI 17b, Trichoderma atroviride, insbesondere Stamm SCI (Accession Number CBS 122089), Trichoderma harzianum, insbesondere T. harzianum rifai T39. (Accession Number CNCM 1-952).
Beispiele für Viren, die als biologische Schädlingsbekämpfungsmittel eingesetzt werden bzw. verwendet werden können, sind:
Adoxophyes orana (Apfelschalenwickler) Granulosevirus (GV), Cydia pomonella (Apfelwickler) Granulosevirus (GV), Helicoverpa armiger a (Baumwollkapsel wurm) Nuklear Polyhedrosis Virus (NPV), Spodoptera exigua (Zuckerrübeneule) mNPV, Spodoptera frugiperda (Heerwurm) mNPV, Spodoptera littoralis (Afrikanischer Baumwollwurm) NPV.
Es sind auch Bakterien und Pilze umfasst, die als Jnokulant' Pflanzen oder Pflanzenteilen oder Pflanzenorganen beigegeben werden und durch ihre besonderen Eigenschaften das Pflanzenwachstum und die Pflanzengesundheit fördern. Als Beispiele sind genannt:
Agrobacterium spp. , Azorhizobium caulinodans, Azospirillum spp., Azotobacter spp., Bradyrhizobium spp., Burkholderia spp., insbesondere Burkholderia cepacia (ehemals bekannt als Pseudomonas cepacia), Gigaspora spp., oder Gigaspora monosporum, Glomus spp., Laccaria spp., Lactobacillus buchneri, Paraglomus spp., Pisolithus tinctorus, Pseudomonas spp., Rhizobium spp., insbesondere Rhizobium trifolii, Rhizopogon spp., Scleroderma spp., Suillus spp., Streptomyces spp..
Beispiele für Pflanzenextrakte und solche Produkte, die von Mikroorganismen gebildet wurden inklusive Proteine und sekundäre Stoffwechselprodukte, die als biologische Schädlingsbekämpfungsmittel eingesetzt werden bzw. verwendet werden können, sind:
Allium sativum, Artemisia absinthium, Azadirachtin, Biokeeper WP, Cassia nigricans, Celastrus angulatus, Chenopodium anthelminticum, Chitin, Armour-Zen, Dryopteris filix-mas, Equisetum arvense, Fortune Aza, Fungastop, Heads Up (Chenopodium quinoa-Saponinextrakt), Pyrethrum/Pyrethrine, Quassia amara, Quercus, Quillaja, Regalia,„Requiem™ Insecticide", Rotenon, Ryania/Ryanodine, Symphytum officinale, Tanacetum vulgare, Thymol, Triact 70, TriCon, Tropaeulum majus, Urtica dioica, Veratrin, Viscum album, Brassicacaeen-Extrakt, insbesondere Raps- oder Senfpulver.
Safener als Mischungskomponenten
Die Verbindungen der Formel (I) oder der Formel (Γ) können mit Safenern kombiniert werden, wie zum Beispiel Benoxacor, Cloquintocet (-mexyl), Cyometrinil, Cyprosulfamide, Dichlormid, Fenchlorazole (- ethyl), Fenclorim, Flurazole, Fluxofenim, Furilazole, Isoxadifen (-ethyl), Mefenpyr (-diethyl), Naphthalic anhydride, Oxabetrinil, 2-Methoxy-N-({4-
[(methylcarbamoyl)amino]phenyl}sulfonyl)benzamid (CAS 129531-12-0), 4-(Dichloracetyl)-l-oxa-4- azaspiro[4.5]decan (CAS 71526-07-3), 2,2,5-Trimethyl-3-(dichloracetyl)-l,3-oxazolidin (CAS 52836- 31-4). Pflanzen und Pflanzenteile
Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen), beispielsweise Getreide (Weizen, Reis, Triticale, Gerste, Roggen, Hafer), Mais, Soja, Kartoffel, Zuckerrüben, Zuckerrohr, Tomaten, Paprika, Gurke, Melone, Möhre, Wassermelone, Zwiebel, Salat, Spinat, Porree, Bohnen, Brassica oleracea (z. B. Kohl) und andere Gemüsesorten, Baumwolle, Tabak, Raps, sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchte und Weintrauben). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzen sollen alle Entwicklungsstadien wie Saatgut, Stecklinge, junge (unausgereifte) Pflanzen bis hin zu ausgereiften Pflanzen verstanden werden. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehören auch geerntete Pflanzen oder geerntete Pflanzenteile sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Verbindungen der Formel (I) oder der Formel (Γ) erfolgt direkt oder durch Einwirkung der Verbindungen auf die Umgebung, den Lebensraum oder den Lagerraum nach den üblichen Behandlungsmethoden, z. B. durch Eintauchen, Spritzen, Verdampfen, Vernebeln, Streuen, Aufstreichen, Injizieren und bei Vermehrungsmaterial, insbesondere bei Saatgut, weiterhin durch ein- oder mehrschichtiges Umhüllen.
Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden wie Kreuzung oder Protoplastenfusion erhaltene Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff „Teile" bzw.„Teile von Pflanzen" oder„Pflanzenteile" wurde oben erläutert. Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften („Traits"), die durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken erhalten worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.
Transgene Pflanze, Saatgutbehandlung und Integrationsereignisse
Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehrfähigkeit der Pflanzen gegen tierische und mikrobielle Schädlinge, wie Insekten, Spinnentiere, Nematoden, Milben, Schnecken, bewirkt z. B. durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z. B. durch die Gene CrylA(a), CrylA(b), CrylA(c), CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CrylF sowie deren Kombinationen) in den Pflanzen erzeugt werden, ferner eine erhöhte Abwehrfähigkeit der Pflanzen gegen pflanzenpathogene Pilze, Bakterien und/oder Viren, bewirkt z. B. durch Systemisch Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine, sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe, beispielsweise Imidazolinone, Sulfonylharnstoffe, Glyphosat oder Phosphinotricin (z. B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis, Triticale, Gerste, Roggen, Hafer), Mais, Soja, Kartoffel, Zuckerrüben, Zuckerrohr, Tomaten, Erbsen und andere Gemüsesorten, Baumwolle, Tabak, Raps, sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchte und Weintrauben) erwähnt, wobei Mais, Soja, Weizen, Reis, Kartoffel, Baumwolle, Zuckerrohr, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehrfähigkeit der Pflanzen gegen Insekten, Spinnentiere, Nematoden und Schnecken.
Pflanzenschutz - Behandlungsarten
Die Behandlung der Pflanzen und Pflanzenteile mit den Verbindungen der Formel (I) oder der Formel (Γ) erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z. B. durch Tauchen, Spritzen, Sprühen, Berieseln, Verdampfen, Zerstäuben, Vernebeln, Verstreuen, Verschäumen, Bestreichen, Verstreichen, Injizieren, Gießen (drenchen), Tröpfchenbewässerung und bei Vermehrungsmaterial, insbesondere bei Saatgut, weiterhin durch Trockenbeizen, Nassbeizen, Schlämmbeizen, Inkrustieren, ein- oder mehrschichtiges Umhüllen, usw. Es ist ferner möglich, die Verbindungen der Formel (I) oder der Formel (Γ) nach dem Ultra-Low- Volume -Verfahren auszubringen oder die Anwendungsform oder die Verbindung der Formel (I) oder der Formel (Γ) selbst in den Boden zu injizieren.
Eine bevorzugte direkte Behandlung der Pflanzen ist die Blattapplikation, d. h. die Verbindungen der Formel (I) oder der Formel (Γ) werden auf das Blattwerk aufgebracht, wobei die Behandlungsfrequenz und die Aufwandmenge auf den Befallsdruck des jeweiligen Schädlings abgestimmt sein sollte. Bei systemisch wirksamen Wirkstoffen gelangen die Verbindungen der Formel (I) oder der Formel (Γ) auch über das Wurzelwerk in die Pflanzen. Die Behandlung der Pflanzen erfolgt dann durch Einwirkung der Verbindungen der Formel (I) oder der Formel (Γ) auf den Lebensraum der Pflanze. Das kann beispielsweise durch Drenchen, Einmischen in den Boden oder die Nährlösung sein, d. h. der Standort der Pflanze (z. B. Boden oder hydroponische Systeme) wird mit einer flüssigen Form der Verbindungen der Formel (I) oder der Formel (Γ) getränkt, oder durch die Bodenapplikation, d. h. die erfindungsgemäßen Verbindungen der Formel (I) oder der Formel (Γ) werden in fester Form (z. B. in Form eines Granulats) in den Standort der Pflanzen oder der Formel (Γ) eingebracht. Bei Wasserreiskulturen kann das auch durch Zudosieren der Verbindung der Formel (I) oder der Formel (Γ) in einer festen Anwendungsform (z. B. als Granulat) in ein überflutetes Reisfeld sein. Saatgutbehandlung
Die Bekämpfung von tierischen Schädlingen durch die Behandlung des Saatguts von Pflanzen ist seit langem bekannt und ist Gegenstand ständiger Verbesserungen. Dennoch ergeben sich bei der Behandlung von Saatgut eine Reihe von Problemen, die nicht immer zufriedenstellend gelöst werden können. So ist es erstrebenswert, Verfahren zum Schutz des Saatguts und der keimenden Pflanze zu entwickeln, die das zusätzliche Ausbringen von Schädlingsbekämpfungsmitteln bei der Lagerung, nach der Saat oder nach dem Auflaufen der Pflanzen überflüssig machen oder zumindest deutlich verringern. Es ist weiterhin erstrebenswert, die Menge des eingesetzten Wirkstoffs dahingehend zu optimieren, dass das Saatgut und die keimende Pflanze vor dem Befall durch tierische Schädlinge bestmöglich geschützt werden, ohne jedoch die Pflanze selbst durch den eingesetzten Wirkstoff zu schädigen. Insbesondere sollten Verfahren zur Behandlung von Saatgut auch die intrinsischen Insektiziden bzw. nematiziden Eigenschaften schädlingsresistenter bzw. -toleranter transgener Pflanzen einbeziehen, um einen optimalen Schutz des Saatguts und auch der keimenden Pflanze bei einem minimalen Aufwand an Schädlingsbekämpfungsmitteln zu erreichen. Die vorliegende Erfindung bezieht sich daher insbesondere auch auf ein Verfahren zum Schutz von Saatgut und keimenden Pflanzen vor dem Befall von Schädlingen, indem das Saatgut mit einer der Verbindungen der Formel (I) oder der Formel (Γ) behandelt wird. Das erfindungsgemäße Verfahren zum Schutz von Saatgut und keimenden Pflanzen vor dem Befall von Schädlingen umfasst ferner ein Verfahren, in dem das Saatgut gleichzeitig in einem Vorgang oder sequentiell mit einer Verbindung der Formel (I) oder der Formel (Γ) und einer Mischungskomponente behandelt wird. Es umfasst ferner auch ein Verfahren, in dem das Saatgut zu unterschiedlichen Zeiten mit einer Verbindung der Formel (I) oder der Formel (Γ) und einer Mischungskomponente behandelt wird.
Die Erfindung bezieht sich ebenfalls auf die Verwendung der Verbindungen der Formel (I) oder der Formel (Γ) zur Behandlung von Saatgut zum Schutz des Saatguts und der daraus entstehenden Pflanze vor tierischen Schädlingen.
Weiterhin bezieht sich die Erfindung auf Saatgut, welches zum Schutz vor tierischen Schädlingen mit einer erfindungsgemäßen Verbindung der Formel (I) oder der Formel (Γ) behandelt wurde. Die Erfindung bezieht sich auch auf Saatgut, welches zur gleichen Zeit mit einer Verbindung der Formel (I) oder der Formel (Γ) und einer Mischungskomponente behandelt wurde. Die Erfindung bezieht sich weiterhin auf Saatgut, welches zu unterschiedlichen Zeiten mit einer Verbindung der Formel (I) oder der Formel (Γ) und einer Mischungskomponente behandelt wurde. Bei Saatgut, welches zu unterschiedlichen Zeiten mit einer Verbindung der Formel (I) oder der Formel (Γ) und einer Mischungskomponente behandelt wurde, können die einzelnen Substanzen in unterschiedlichen Schichten auf dem Saatgut vorhanden sein. Dabei können die Schichten, die eine Verbindung der Formel (I) oder der Formel (Γ) und Mischungskomponenten enthalten, gegebenenfalls durch eine Zwischenschicht getrennt sein. Die Erfindung bezieht sich auch auf Saatgut, bei dem eine Verbindung der Formel (I) oder der Formel (Γ) und eine Mischungskomponente als Bestandteil einer Umhüllung oder als weitere Schicht oder weitere Schichten zusätzlich zu einer Umhüllung aufgebracht sind. Des Weiteren bezieht sich die Erfindung auf Saatgut, welches nach der Behandlung mit einer Verbindung der Formel (I) oder der Formel (Γ) einem Filmcoating- Verfahren unterzogen wird, um Staubabrieb am Saatgut zu vermeiden.
Einer der auftretenden Vorteile, wenn eine Verbindung der Formel (I) oder der Formel (Γ) systemisch wirkt, ist es, dass die Behandlung des Saatguts nicht nur das Saatgut selbst, sondern auch die daraus hervorgehenden Pflanzen nach dem Auflaufen vor tierischen Schädlingen schützt. Auf diese Weise kann die unmittelbare Behandlung der Kultur zum Zeitpunkt der Aussaat oder kurz danach entfallen.
Ein weiterer Vorteil ist darin zu sehen, dass durch die Behandlung des Saatguts mit einer Verbindung der Formel (I) oder der Formel (Γ) Keimung und Auflauf des behandelten Saatguts gefördert werden können.
Ebenso ist es als vorteilhaft anzusehen, dass Verbindungen der Formel (I) oder der Formel (Γ) insbesondere auch bei transgenem Saatgut eingesetzt werden können.
Verbindungen der Formel (I) oder der Formel (Γ) können ferner in Kombination mit Mitteln der Signaltechnologie eingesetzt werden, wodurch eine bessere Besiedlung mit Symbionten, wie zum Beispiel Rhizobien, Mycorrhiza und/oder endophytischen Bakterien oder Pilzen, stattfindet und/oder es zu einer optimierten Stickstofffixierung kommt.
Die Verbindungen der Formel (I) oder der Formel (Γ) eignen sich zum Schutz von Saatgut jeglicher Pflanzensorte, die in der Landwirtschaft, im Gewächshaus, in Forsten oder im Gartenbau eingesetzt wird. Insbesondere handelt es sich dabei um Saatgut von Getreide (z. B. Weizen, Gerste, Roggen, Hirse und Hafer), Mais, Baumwolle, Soja, Reis, Kartoffeln, Sonnenblume, Kaffee, Tabak, Canola, Raps, Rübe (z. B. Zuckerrübe und Futterrübe), Erdnuss, Gemüse (z. B. Tomate, Gurke, Bohne, Kohlgewächse, Zwiebeln und Salat), Obstpflanzen, Rasen und Zierpflanzen. Besondere Bedeutung kommt der Behandlung des Saatguts von Getreide (wie Weizen, Gerste, Roggen und Hafer), Mais, Soja, Baumwolle, Canola, Raps, Gemüse und Reis zu. Wie vorstehend bereits erwähnt, kommt auch der Behandlung von transgenem Saatgut mit einer Verbindung der Formel (I) oder der Formel (Γ) eine besondere Bedeutung zu. Dabei handelt es sich um das Saatgut von Pflanzen, die in der Regel zumindest ein heterologes Gen enthalten, das die Expression eines Polypeptids mit insbesondere Insektiziden bzw. nematiziden Eigenschaften steuert. Die heterologen Gene in transgenem Saatgut können dabei aus Mikroorganismen wie Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus oder Gliocladium stammen. Die vorliegende Erfindung eignet sich besonders für die Behandlung von transgenem Saatgut, das zumindest ein heterologes Gen enthält, das aus Bacillus sp. stammt. Besonders bevorzugt handelt es sich dabei um ein heterologes Gen, das aus Bacillus thuringiensis stammt. Im Rahmen der vorliegenden Erfindung wird die Verbindung der Formel (I) oder der Formel (Γ) auf das Saatgut aufgebracht. Vorzugsweise wird das Saatgut in einem Zustand behandelt, in dem es so stabil ist, dass keine Schäden bei der Behandlung auftreten. Im Allgemeinen kann die Behandlung des Saatguts zu jedem Zeitpunkt zwischen der Ernte und der Aussaat erfolgen. Üblicherweise wird Saatgut verwendet, das von der Pflanze getrennt und von Kolben, Schalen, Stängeln, Hüllen, Wolle oder Fruchtfleisch befreit wurde. So kann zum Beispiel Saatgut verwendet werden, das geerntet, gereinigt und bis zu einem lagerfähigen Feuchtigkeitsgehalt getrocknet wurde. Alternativ kann auch Saatgut verwendet werden, das nach dem Trocknen z. B. mit Wasser behandelt und dann erneut getrocknet wurde, zum Beispiel Priming. Im Fall von Reis-Saatgut ist es auch möglich, Saatgut zu verwenden, das getränkt wurde, zum Beispiel in Wasser bis zu einem bestimmten Stadium des Reisembryos („Pigeon Breast Stage"), wodurch die Keimung und ein einheitlicheres Auflaufen stimuliert wird.
Im Allgemeinen muss bei der Behandlung des Saatguts darauf geachtet werden, dass die Menge der auf das Saatgut aufgebrachten Verbindung der Formel (I) u oder der Formel (Γ) nd/oder weiterer Zusatzstoffe so gewählt wird, dass die Keimung des Saatguts nicht beeinträchtigt bzw. die daraus hervorgehende Pflanze nicht geschädigt wird. Dies ist vor allem bei Wirkstoffen zu beachten, die in bestimmten Aufwandmengen phytotoxische Effekte zeigen können.
Die Verbindungen der Formel (I) oder der Formel (Γ) werden in der Regel in Form einer geeigneten Formulierung auf das Saatgut aufgebracht. Geeignete Formulierungen und Verfahren für die Saatgutbehandlung sind dem Fachmann bekannt. Die Verbindungen der Formel (I) oder der Formel (Γ) können in die üblichen Beizmittel- Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Slurries oder andere Hüllmassen für Saatgut, sowie ULV -Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, indem man die Verbindungen der Formel (I) oder der Formel (Γ) mit üblichen Zusatzstoffen vermischt, wie zum Beispiel übliche Streckmittel sowie Lösungs- oder Verdünnungsmittel, Farbstoffe, Netzmittel, Dispergiermittel, Emulgatoren, Entschäumer, Konservierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline und auch Wasser.
Als Farbstoffe, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke üblichen Farbstoffe in Betracht. Dabei sind sowohl in Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe verwendbar. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, C.I. Pigment Red 112 und C.I. Solvent Red 1 bekannten Farbstoffe.
Als Netzmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen, die Benetzung fördernden Stoffe in Frage. Vorzugsweise verwendbar sind Alkylnaphthalinsulfonate, wie Diisopropyl- oder Diisobutylnaphthalinsulfonate.
Als Dispergiermittel und/oder Emulgatoren, die in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen nichtionischen, anionischen und kationischen Dispergiermittel in Betracht. Vor-zugsweise verwendbar sind nichtionische oder anionische Dispergiermittel oder Gemische von nichtionischen oder anionischen Dispergiermitteln. Als geeignete nichtionische Dispergiermittel sind insbesondere Ethylenoxid-Propylenoxid-Blockpolymere, Alkylphenolpolyglykolether sowie Tri- stryrylphenolpolyglykolether und deren phosphatierte oder sulfatierte Derivate zu nennen. Geeignete anionische Dispergiermittel sind insbesondere Ligninsulfonate, Polyacrylsäuresalze und Arylsulfonat- Formaldehydkondensate.
Als Entschäumer können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle zur Formulierung von agrochemischen Wirkstoffen üblichen schaumhemmenden Stoffe enthalten sein. Vorzugsweise verwendbar sind Silikonentschäumer und Magnesiumstearat. Als Konservierungsmittel können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe vorhanden sein. Beispielhaft genannt seien Dichlorophen und Benzylalkoholhemiformal.
Als sekundäre Verdickungsmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke in agrochemischen Mitteln ein- setzbaren Stoffe in Frage. Vorzugsweise in Betracht kommen Cellulosederivate, Acrylsäurederivate, Xanthan, modifizierte Tone und hochdisperse Kieselsäure.
Als Kleber, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle üblichen in Beizmitteln einsetzbaren Bindemittel in Frage. Vorzugsweise genannt seien Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und Tylose. Als Gibberelline, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen vorzugsweise die Gibberelline AI, A3 (= Gibberellinsäure), A4 und A7 infrage, besonders bevorzugt verwendet man die Gibberellinsäure. Die Gibberelline sind bekannt (vgl. R. Wegler „Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel", Bd. 2, Springer Verlag, 1970, S. 401- 412). Die erfindungsgemäß verwendbaren Beizmittel-Formulierungen können entweder direkt oder nach vorherigem Verdünnen mit Wasser zur Behandlung von Saatgut der verschiedensten Art eingesetzt werden. So lassen sich die Konzentrate oder die daraus durch Verdünnen mit Wasser erhältlichen Zubereitungen einsetzen zur Beizung des Saatgutes von Getreide, wie Weizen, Gerste, Roggen, Hafer und Triticale, sowie des Saatgutes von Mais, Reis, Raps, Erbsen, Bohnen, Baumwolle, Sonnenblumen, Soja und Rüben oder auch von Gemüsesaatgut der verschiedensten Natur. Die erfindungsgemäß verwendbaren Beizmittel-Formulierungen oder deren verdünnte Anwendungsformen können auch zum Beizen von Saatgut transgener Pflanzen eingesetzt werden. Zur Behandlung von Saatgut mit den erfindungsgemäß verwendbaren Beizmittel-Formulierungen oder dem daraus durch Zugabe von Wasser hergestellten Anwendungsformen kommen alle üblicherweise für die Beizung einsetzbaren Mischgeräte in Betracht. Im Einzelnen geht man bei der Beizung so vor, dass man das Saatgut in einen Mischer im diskontinuierlichen oder kontinuierlichen Betrieb gibt, die jeweils gewünschte Menge an Beizmittel-Formulierungen entweder als solche oder nach vorherigem Verdünnen mit Wasser hinzufügt und bis zur gleichmäßigen Verteilung der Formulierung auf dem Saatgut mischt. Gegebenenfalls schließt sich ein Trocknungsvorgang an.
Die Aufwandmenge an den erfindungsgemäß verwendbaren Beizmittel-Formulierungen kann inner-halb eines größeren Bereiches variiert werden. Sie richtet sich nach dem jeweiligen Gehalt der Verbindungen der Formel (I) oder der Formel (Γ) in den Formulierungen und nach dem Saatgut. Die Aufwandmengen bei der Verbindung der Formel (I) oder der Formel (Γ) liegen im Allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 15 g pro Kilogramm Saatgut.
Tiergesundheit
Auf dem Gebiet der Tiergesundheit, d. h. dem Gebiet der Tiermedizin, sind die Verbindungen der Formel (I) oder der Formel (Γ) gegen Tierparasiten, insbesondere Ektoparasiten oder Endoparasiten, wirksam. Der Begriff Endoparasit umfasst insbesondere Helminthen und Protozoen wie Kokzidien. Ektoparasiten sind typischerweise und bevorzugt Arthropoden, insbesondere Insekten oder Akariden.
Auf dem Gebiet der Tiermedizin eignen sich die Verbindungen der Formel (I) oder der Formel (Γ), die eine günstige Toxizität gegenüber Warmblütern aufweisen, für die Bekämpfung von Parasiten, die in der Tierzucht und Tierhaltung bei Nutztieren, Zuchttieren, Zootieren, Laboratoriumstieren, Versuchstieren und Haustieren auftreten. Sie sind gegen alle oder einzelne Entwicklungsstadien der Parasiten wirksam.
Zu den landwirtschaftlichen Nutztieren zählen zum Beispiel Säugetiere wie Schafe, Ziegen, Pferde, Esel, Kamele, Büffel, Kaninchen, Rentiere, Damhirsche und insbesondere Rinder und Schweine; oder Geflügel wie Truthähne, Enten, Gänse und insbesondere Hühner; oder Fische oder Krustentiere, z. B. in der Aquakultur, oder gegebenenfalls Insekten wie Bienen. Zu den Haustieren zählen zum Beispiel Säugetiere wie Hamster, Meerschweinchen, Ratten, Mäuse, Chinchillas, Frettchen und insbesondere Hunde, Katzen, Stubenvögel; Reptilien, Amphibien oder Aquariumfische . Gemäß einer bestimmten Ausführungsform werden die Verbindungen der Formel (I) oder der Formel (Γ) an Säugetiere verabreicht.
Gemäß einer weiteren bestimmten Ausführungsform werden die Verbindungen der Formel (I) oder der Formel (Γ) an Vögel, nämlich Stubenvögel oder insbesondere Geflügel, verabreicht. Durch Verwendung der Verbindungen der Formel (I) oder der Formel (Γ) für die Bekämpfung von Tierparasiten sollen Krankheit, Todesfälle und Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig und dergleichen) verringert bzw. vorgebeugt werden, so dass eine wirtschaftlichere und einfachere Tierhaltung ermöglicht wird und ein besseres Wohlbefinden der Tiere erzielbar ist. In Bezug auf das Gebiet der Tiergesundheit bedeutet der Begriff "Bekämpfung" oder "bekämpfen" im vorliegenden Zusammenhang, dass durch die Verbindungen der Formel (I) oder der Formel (Γ) wirksam das Auftreten des jeweiligen Parasiten in einem Tier, das mit solchen Parasiten in einem harmlosen Ausmaß infiziert ist, reduziert wird. Genauer gesagt bedeutet "bekämpfen" im vorliegenden Zusammenhang, dass die Verbindungen der Formel (I) oder der Formel (Γ) den jeweiligen Parasiten abtöten, sein Wachstum verhindern oder seine Vermehrung verhindern.
Zu den Arthropoden zählen beispielsweise, ohne hierauf beschränkt zu sein, aus der Ordnung Anoplurida zum Beispiel Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp.; aus der Ordnung Mallophagida und den Unterordnungen Amblycerina und Ischnocerina, zum Beispiel Bovicola spp., Damalina spp., Felicola spp.; Lepikentron spp., Menopon spp., Trichodectes spp., Trimenopon spp., Trinoton spp., Werneckiella spp; aus der Ordnung Diptera und den Unterordnungen Nematocerina und Brachycerina, zum Beispiel Aedes spp., Anopheles spp., Atylotus spp., Braula spp., Calliphora spp., Chrysomyia spp., Chrysops spp., Culex spp., Culicoides spp., Eusimulium spp., Fannia spp., Gasterophilus spp., Glossina spp., Haematobia spp., Haematopota spp., Hippobosca spp., Hybomitra spp., Hydrotaea spp., Hypoderma spp., Lipoptena spp., Lucilla spp., Lutzomyia spp., Melophagus spp., Morellia spp., Musca spp., Odagmia spp., Oestrus spp., Philipomyia spp., Phlebotomus spp., Rhinoestrus spp., Sarcophaga spp., Simulium spp., Stomoxys spp., Tabanus spp., Tipula spp., Wilhelmia spp., Wohlfahrtia spp.; aus der Ordnung Siphonapterida, zum Beispiel Ceratophyllus spp., Ctenocephalides spp., Pulex spp., Tunga spp., Xenopsylla spp.; aus der Ordnung Heteropterida, zum Beispiel Cimex spp., Panstrongylus spp., Rhodnius spp., Triatoma spp.; sowie Lästlinge und Hygieneschädlinge aus der Ordnung Blattarida. Weiterhin sind bei den Arthropoden beispielhaft, ohne hierauf beschränkt zu sein, die folgenden Akari zu nennen:
Aus der Unterklasse Akari (Acarina) und der Ordnung Metastigmata, zum Beispiel aus der Familie Argasidae, wie Argas spp., Ornithodorus spp., Otobius spp., aus der Familie Ixodidae, wie Amblyomma spp., Dermacentor spp., Haemaphysalis spp., Hyalomma spp., Ixodes spp., Rhipicephalus (Boophilus) spp., Rhipicephalus spp. (die ursprüngliche Gattung der mehrwirtigen Zecken); aus der Ordnung Mesostigmata, wie Dermanyssus spp., Ornithonyssus spp., Pneumonyssus spp., Raillietia spp., Sternostoma spp., Tropilaelaps spp., Varroa spp.; aus der Ordnung Actinedida (Prostigmata), zum Beispiel Acarapis spp., Cheyletiella spp., Demodex spp., Listrophorus spp., Myobia spp., Neotrombicula spp., Ornithocheyletia spp., Psorergates spp., Trombicula spp.; und aus der Ordung der Acaridida (Astigmata), zum Beispiel Acarus spp., Caloglyphus spp., Chorioptes spp., Cytodites spp., Hypodectes spp., Knemidocoptes spp., Laminosioptes spp., Notoedres spp., Otodectes spp., Psoroptes spp., Pterolichus spp., Sarcoptes spp., Trixacarus spp., Tyrophagus spp.
Zu Beispielen für parasitäre Protozoen zählen, ohne hierauf beschränkt zu sein: Mastigophora (Flagellata), wie:
Metamonada: aus der Ordnung Diplomonadida zum Beispiel Giardia spp., Spironucleus spp.
Parabasala: aus der Ordnung Trichomonadida zum Beispiel Histomonas spp., Pentatrichomonas spp., Tetratrichomonas spp., Trichomonas spp., Tritrichomonas spp.
Euglenozoa: aus der Ordnung Trypanosomatida zum Beispiel Leishmania spp., Trypanosoma spp. Sarcomastigophora (Rhizopoda), wie Entamoebidae, zum Beispiel Entamoeba spp., Centramoebidae, zum Beispiel Acanthamoeba sp., Euamoebidae, z. B. Hartmanella sp.
Alveolata wie Apicomplexa (Sporozoa): z. B. Cryptosporidium spp.; aus der Ordnung Eimeriida zum Beispiel Besnoitia spp., Cystoisospora spp., Eimeria spp., Hammondia spp., Isospora spp., Neospora spp., Sarcocystis spp., Toxoplasma spp.; aus der Ordnung Adeleida z. B. Hepatozoon spp., Klossiella spp.; aus der Ordnung Haemosporida z. B. Leucocytozoon spp., Plasmodium spp.; aus der Ordnung Piroplasmida z. B. Babesia spp., Ciliophora spp., Echinozoon spp., Theileria spp.; aus der Ordnung Vesibuliferida z. B. Balantidium spp., Buxtonella spp.
Microspora wie Encephalitozoon spp., Enterocytozoon spp., Globidium spp., Nosema spp., und außerdem z. B. Myxozoa spp. Zu den für Menschen oder Tiere pathogenen Helminthen zählen zum Beispiel Acanthocephala, Nematoden, Pentastoma und Platyhelminthen (z.B. Monogenea, Cestodes und Trematodes). Zu beispielhaften Helminthen zählen, ohne hierauf beschränkt zu sein:
Monogenea: z. B.: Dactylogyrus spp., Gyrodactylus spp., Microbothrium spp., Polystoma spp., Troglecephalus spp.;
Cestodes: aus der Ordnung Pseudophyllidea zum Beispiel: Bothridium spp., Diphyllobothrium spp., Diplogonoporus spp. Ichthyobothrium spp., Ligula spp., Schistocephalus spp., Spirometra spp.
Aus der Ordnung Cyclophyllida zum Beispiel: Andyra spp., Anoplocephala spp., Avitellina spp., Bertiella spp., Cittotaenia spp., Davainea spp., Diorchis spp., Diplopylidium spp., Dipylidium spp., Echinococcus spp., Echinocotyle spp., Echinolepis spp., Hydatigera spp., Hymenolepis spp., Joyeuxiella spp., Mesocestoides spp., Moniezia spp., Paranoplocephala spp., Raillietina spp., Stilesia spp., Taenia spp., Thysaniezia spp., Thysanosoma spp.
Trematodes: aus der Klasse Digenea zum Beispiel: Austrobilharzia spp., Brachylaima spp., Calicophoron spp., Catatropis spp., Clonorchis spp. Collyriclum spp., Cotylophoron spp., Cyclocoelum spp., Dicrocoelium spp., Diplostomum spp., Echinochasmus spp., Echinoparyphium spp., Echinostoma spp., Eurytrema spp., Fasciola spp., Fasciolides spp., Fasciolopsis spp., Fischoederius spp., Gastrothylacus spp., Gigantobilharzia spp., Gigantocotyle spp., Heterophyes spp., Hypoderaeum spp., Leucochloridium spp., Metagonimus spp., Metorchis spp., Nanophyetus spp., Notocotylus spp., Opisthorchis spp., Ornithobilharzia spp., Paragonimus spp., Paramphistomum spp., Plagiorchis spp., Posthodiplostomum spp., Prosthogonimus spp., Schistosoma spp., Trichobilharzia spp., Troglotrema spp., Typhlocoelum spp. Nematoden: aus der Ordnung Trichinellida zum Beispiel: Capillaria spp., Trichinella spp., Trichomosoides spp., Trichuris spp.
Aus der Ordnung Tylenchida zum Beispiel: Micronema spp., Parastrangyloides spp., Strongyloides spp.
Aus der Ordnung Rhabditina zum Beispiel: Aelurostrongylus spp., Amidostomum spp., Ancylostoma spp., Angiostrongylus spp., Bronchonema spp., Bunostomum spp., Chabertia spp., Cooperia spp., Cooperioides spp., Crenosoma spp., Cyathostomum spp., Cyclococercus spp., Cyclodontostomum spp., Cylicocyclus spp., Cylicostephanus spp., Cylindropharynx spp., Cystocaulus spp., Dictyocaulus spp., Elaphostrongylus spp., Filaroides spp., Globocephalus spp., Graphidium spp., Gyalocephalus spp., Haemonchus spp., Heligmosomoides spp., Hyostrongylus spp., Marshallagia spp., Metastrongylus spp., Muellerius spp., Necator spp., Nematodirus spp., Neostrongylus spp., Nippostrongylus spp., Obeliscoides spp., Oesophagodontus spp., Oesophagostomum spp., Ollulanus spp.; Ornithostrongylus spp., Oslerus spp., Ostertagia spp., Paracooperia spp., Paracrenosoma spp., Parafilaroides spp., Parelaphostrongylus spp., Pneumocaulus spp., Pneumostrongylus spp., Poteriostomum spp., Protostrongylus spp., Spicocaulus spp., Stephanurus spp., Strongylus spp., Syngamus spp., Teladorsagia spp., Trichonema spp., Trichostrongylus spp., Triodontophorus spp., Troglostrongylus spp., Uncinaria spp.
Aus der Ordnung Spirurida zum Beispiel: Acanthocheilonema spp., Anisakis spp., Ascaridia spp.; Ascaris spp., Ascarops spp., Aspiculuris spp., Baylisascaris spp., Brugia spp., Cercopithifilaria spp., Crassicauda spp., Dipetalonema spp., Dirofilaria spp., Dracunculus spp.; Draschia spp., Enterobius spp., Filaria spp., Gnathostoma spp., Gongylonema spp., Habronema spp., Heterakis spp.; Litomosoides spp., Loa spp., Onchocerca spp., Oxyuris spp., Parabronema spp., Parafilaria spp., Parascaris spp., Passalurus spp., Physaloptera spp., Probstmayria spp., Pseudofilaria spp., Setaria spp., Skjrabinema spp., Spirocerca spp., Stephanofilaria spp., Strongyluris spp., Syphacia spp., Thelazia spp., Toxascaris spp., Toxocara spp., Wuchereria spp.
Acanthocephala: aus der Ordnung Oligacanthorhynchida z.B: Macracanthorhynchus spp., Prosthenorchis spp.; aus der Ordnung Moniliformida zum Beispiel: Moniliformis spp.,
Aus der Ordnung Polymorphida zum Beispiel: Filicollis spp.; aus der Ordnung Echinorhynchida zum Beispiel Acanthocephalus spp., Echinorhynchus spp., Leptorhynchoides spp. Pentastoma: aus der Ordnung Porocephalida zum Beispiel Linguatula spp.
Auf dem Gebiet der Tiermedizin und der Tierhaltung erfolgt die Verabreichung der Verbindungen der Formel (I) oder der Formel (Γ) nach allgemein fachbekannten Verfahren, wie enteral, parenteral, dermal oder nasal in Form von geeigneten Präparaten. Die Verabreichung kann prophylaktisch; metaphylaktisch oder therapeutisch erfolgen. So bezieht sich eine Ausführungsform der vorliegenden Erfindung auf die Verbindungen der Formel (I) oder der Formel (Γ) zur Verwendung als Arzneimittel.
Ein weiterer Aspekt bezieht sich auf die Verbindungen der Formel (I) oder der Formel (Γ) zur Verwendung als Antiendoparasitikum.
Ein weiterer spezieller Aspekt der Erfindung betrifft die Verbindungen der Formel (I) oder der Formel (Γ) zur Verwendung als Antihelminthikum, insbesondere zur Verwendung als Nematizid, Platymelminthizid, Acanthocephalizid oder Pentastomizid.
Ein weiterer spezieller Aspekt der Erfindung betrifft die Verbindungen der Formel (I) oder der Formel (Γ) zur Verwendung als Antiprotozoikum.
Ein weiterer Aspekt betrifft die Verbindungen der Formel (I) oder der Formel (Γ) zur Verwendung als Antiektoparasitikum, insbesondere ein Arthropodizid, ganz besonders ein Insektizid oder ein Akarizid. Weitere Aspekte der Erfindung sind veterinärmedizinische Formulierungen, die eine wirksame Menge mindestens einer Verbindung der Formel (I) oder der Formel (Γ) und mindestens einen der folgenden umfassen: einen pharmazeutisch unbedenklichen Exzipienten (z.B. feste oder flüssige Verdünnungsmittel), ein pharmazeutisch unbedenkliches Hilfsmittel (z.B. Tenside), insbesondere einen herkömmlicherweise in veterinärmedizinischen Formulierungen verwendeten pharmazeutisch unbedenklichen Exzipienten und/oder ein herkömmlicherweise in veterinärmedizinischen Formulierungen verwendetes pharmazeutisch unbedenkliches Hilfsmittel.
Ein verwandter Aspekt der Erfindung ist ein Verfahren zur Herstellung einer wie hier beschriebenen veterinärmedizinischen Formulierung, welches den Schritt des Mischens mindestens einer Verbindung der Formel (I) oder der Formel (Γ) mit pharmazeutisch unbedenklichen Exzipienten und/oder Hilfsmitteln, insbesondere mit herkömmlicherweise in veterinärmedizinischen Formulierungen verwendeten pharmazeutisch unbedenklichen Exzipienten und/oder herkömmlicherweise in veterinärmedizinischen Formulierungen verwendeten Hilfsmitteln umfasst.
Ein anderer spezieller Aspekt der Erfindung sind veterinärmedizinische Formulierungen ausgewählt aus der Gruppe ektoparasitizider und endoparasitizider Formulierungen, insbesondere ausgewählt aus der Gruppe anthelmintischer, antiprotozolischer und arthropodizider Formulierungen, ganz besonders ausgewählt aus der Gruppe nematizider, platyhelminthizider, acanthocephalizider, pentastomizider, insektizider und akkarizider Formulierungen, gemäß den erwähnten Aspekten, sowie Verfahren zu ihrer Herstellung. Ein anderer Aspekt bezieht sich auf ein Verfahren zur Behandlung einer parasitischen Infektion, insbesondere einer Infektion durch einen Parasiten ausgewählt aus der Gruppe der hier erwähnten Ektoparasiten und Endoparasiten, durch Anwendung einer wirksamen Menge einer Verbindung der Formel (I) oder der Formel (Γ) bei einem Tier, insbesondere einem nichthumanen Tier, das dessen bedarf. Ein anderer Aspekt bezieht sich auf ein Verfahren zur Behandlung einer parasitischen Infektion, insbesondere einer Infektion durch einen Parasiten ausgewählt aus der Gruppe der hier erwähnten Ektoparasiten und Endoparasiten, durch Anwendung einer wie hier definierten veterinärmedizinischen Formulierung bei einem Tier, insbesondere einem nichthumanen Tier, das dessen bedarf.
Ein anderer Aspekt bezieht sich auf die Verwendung der Verbindungen der Formel (I) oder der Formel (Γ) bei der Behandlung einer Parasiteninfektion, insbesondere einer Infektion durch einen Parasiten ausgewählt aus der Gruppe der hier erwähnten Ektoparasiten und Endoparasiten, bei einem Tier, insbesondere einem nichthumanen Tier.
Im vorliegenden tiergesundheitlichen oder veterinärmedizinischen Zusammenhang schließt der Begriff „Behandlung" die prophylaktische, die metaphylaktische und die therapeutische Behandlung ein. Bei einer bestimmten Ausführungsform werden hiermit Mischungen mindestens einer Verbindung der Formel (I) oder der Formel (Γ) mit anderen Wirkstoffen, insbesondere mit Endo- und Ektoparasitiziden, für das veterinärmedizinische Gebiet bereitgestellt.
Auf dem Gebiet der Tiergesundheit bedeutet„Mischung" nicht nur, dass zwei (oder mehr) verschiedene Wirkstoffe in einer gemeinsamen Formulierung formuliert werden und entsprechend zusammen angewendet werden, sondern bezieht sich auch auf Produkte, die für jeden Wirkstoff getrennte Formulierungen umfassen. Dementsprechend können, wenn mehr als zwei Wirkstoffe angewendet werden sollen, alle Wirkstoffe in einer gemeinsamen Formulierung formuliert werden oder alle Wirkstoffe in getrennten Formulierungen formuliert werden; ebenfalls denkbar sind gemischte Formen, bei denen einige der Wirkstoffe gemeinsam formuliert und einige der Wirkstoffe getrennt formuliert sind. Getrennte Formulierungen erlauben die getrennte oder aufeinanderfolgende Anwendung der in Rede stehenden Wirkstoffe.
Die hier mit ihrem„Common Name" spezifizierten Wirkstoffe sind bekannt und beispielsweise im „Pesticide Manual" (siehe oben) beschrieben oder im Internet recherchierbar (z.B. http://www.alanwood.net/pesticides).
Beispielhafte Wirkstoffe aus der Gruppe der Ektoparasitizide als Mischungspartner schließen, ohne dass dies eine Einschränkung darstellen soll, die oben ausführlich aufgelisteten Insektizide und Akkarizide ein. Weitere verwendbare Wirkstoffe sind unten gemäß der oben erwähnten Klassifikation, die auf dem aktuellen IRAC Mode of Action Classification Scheme beruht, aufgeführt: (1) Acetylcholinesterase (AChE)-Inhibitoren; (2) GABA-gesteuerte Chlorid-Kanal-Blocker; (3) Natrium-Kanal-Modulatoren; (4) kompetitive Modulatoren des nicotinischen Acetylcholin-Rezeptors (nAChR); (5) allosterische Modulatoren des nicotinischen Acetylcholin-Rezeptors (nAChR); (6) allosterische Modulatoren des Glutamat-abhängigen Chloridkanals (GluCl); (7) Juvenilhormon-Mimetika; (8) verschiedene nichtspezifische (Multi-Site) Inhibitoren; (9) Modulatoren Chordotonaler Organe; (10) Milbenwachstumsinhibitoren; (12) Inhibitoren der mitochondrialen ATP-Synthase, wie ATP- Disruptoren; (13) Entkoppler der oxidativen Phosphorylierung durch Störung des Protonengradienten; (14) Blocker des nicotinischen Acetylcholinrezeptorkanals; (15) Inhibitoren der Chitinbiosynthese, Typ 0; (16) Inhibitoren der Chitinbiosynthese, Typ 1 ; (17) Häutungsdisruptor (insbesondere bei Dipteren, d.h. Zweiflüglern); (18) Ecdyson-Rezeptor-Agonisten; (19) Octopamin-Rezeptor-Agonisten; (21) mitochondriale Komplex-I-Elektronentransportinhibitoren; (25) mitochondriale Komplex-II- Elektronentransportinhibitoren; (20) mitochondriale Komplex-III-Elektronentransportinhibitoren; (22) Blocker des spannungsabhängigen Natriumkanals; (23) Inhibitoren der Acetyl-CoA-Carboxylase; (28) Ryanodinrezeptor-Modulatoren;
Wirkstoffe mit unbekannten oder nicht spezifischen Wirkmechanismen, z. B. Fentrifanil, Fenoxacrim, Cyclopren, Chlorobenzilat, Chlordimeform, Flubenzimin, Dicyclanil, Amidoflumet, Quinomethionat, Triarathen, Clothiazoben, Tetrasul, Kaliumoleat, Petroleum, Metoxadiazon, Gossyplur, Flutenzin, Brompropylat, Cryolit;
Verbindungen aus anderen Klassen, z.B. Butacarb, Dimetilan, Cloethocarb, Phosphocarb, Pirimiphos(- ethyl), Parathion(-ethyl), Methacrifos, Isopropyl-o-salicylat, Trichlorfon, Sulprofos, Propaphos, Sebufos, Pyridathion, Prothoat, Dichlofenthion, Demeton-S-methylsulfon, Isazofos, Cyanofenphos, Dialifos, Carbophenothion, Autathiofos, Aromfenvinfos(-methyl), Azinphos(-ethyl), Chlorpyrifos(- ethyl), Fosmethilan, Iodofenphos, Dioxabenzofos, Formothion, Fonofos, Flupyrazofos, Fensulfothion, Etrimfos;
Organochlorverbindungen, z. B. Camphechlor, Lindan, Heptachlor; oder Phenylpyrazole, z. B. Acetoprol, Pyrafluprol, Pyriprol, Vaniliprol, Sisapronil; oder Isoxazoline, z. B. Sarolaner, Afoxolaner, Lotilaner, Fluralaner;
Pyrethroide, z. B. (eis-, trans-)Metofluthrin, Profluthrin, Flufenprox, Flubrocythrinat, Fubfenprox, Fenfluthrin, Protrifenbut, Pyresmethrin, RU15525, Terallethrin, cis-Resmethrin, Heptafluthrin, Bioethanomethrin, Biopermethrin, Fenpyrithrin, cis-Cypermethrin, cis-Permethrin, Clocythrin, Cyhalothrin (lambda-), Chlovaporthrin, oder halogenierte Kohlenwasserstoffverbindungen (HCHs),
Neonicotinoide, z. B. Nithiazin
Dicloromezotiaz, Triflumezopyrim makroeyclische Lactone, z. B. Nemadectin, Ivermectin, Latidectin, Moxidectin, Selamectin, Eprinomectin, Doramectin, Emamectinbenzoat; Milbemycinoxim Tripren, Epofenonan, Diofenolan;
Biologicals, Hormone oder Pheromone, zum Beispiel natürliche Produkte, z.B. Thuringiensin, Codlemon oder Neem-Komponenten
Dinitrophenole, z. B. Dinocap, Dinobuton, Binapacryl;
Benzoylharnstoffe, z. B. Fluazuron, Penfluron, Amidinderivate, z. B. Chlormebuform, Cymiazol, Demiditraz
Bienenstockvarroa-Akarizide, zum Beispiel organische Säuren, z.B. Ameisensäure, Oxalsäure.
Zu beispielhaften Wirkstoffen aus der Gruppe der Endoparasitizide, als Mischungspartner, zählen, ohne hierauf beschränkt zu sein, anthelmintische Wirkstoffe und antiprotozoische Wirkstoffe. Zu den anthelmintischen Wirkstoffen zählen, ohne hierauf beschränkt zu sein, die folgenden nematiziden, trematiziden und/oder cestoziden Wirkstoffe: aus der Klasse der makrocyclischen Lactone zum Beispiel: Eprinomectin, Abamectin, Nemadectin, Moxidectin, Doramectin, Selamectin, Lepimectin, Latidectin, Milbemectin, Ivermectin, Emamectin, Milbemycin; aus der Klasse der Benzimidazole und Probenzimidazole zum Beispiel: Oxibendazol, Mebendazol, Triclabendazol, Thiophanat, Parbendazol, Oxfendazol, Netobimin, Fenbendazol, Febantel, Thiabendazol, Cyclobendazol, Cambendazol, Albendazol-sulfoxid, Albendazol, Flubendazol; aus der Klasse der Depsipeptide, vorzugsweise cyclischen Depsipetide, insbesondere 24-gliedrigen cyclischen Depsipeptide, zum Beispiel: Emodepsid, PF1022A; aus der Klasse der Tetrahydropyrimidine zum Beispiel: Morantel, Pyrantel, Oxantel; aus der Klasse der Imidazothiazole zum Beispiel: Butamisol, Levamisol, Tetramisol; aus der Klasse der Aminophenylamidine zum Beispiel: Amidantel, deacyliertes Amidantel (dAMD), Tribendimidin; aus der Klasse der Aminoacetonitrile zum Beispiel: Monepantel; aus der Klasse der Paraherquamide zum Beispiel: Paraherquamid, Derquantel; aus der Klasse der Salicylanilide zum Beispiel: Tribromsalan, Bromoxanid, Brotianid, Clioxanid, Closantel, Niclosamid, Oxyclozanid, Rafoxanid; aus der Klasse der substituierten Phenole zum Beispiel: Nitroxynil, Bithionol, Disophenol, Hexachlorophen, Niclofolan, Meniclopholan; aus der Klasse der Organophosphate zum Beispiel: Trichlorfon, Naphthalofos, Dichlorvos/DDVP, Crufomat, Coumaphos, Haloxon; aus der Klasse der Piperazinone/Chinoline zum Beispiel: Praziquantel, Epsiprantel; aus der Klasse der Piperazine zum Beispiel: Piperazin, Hydroxyzin; aus der Klasse der Tetracycline zum Beispiel: Tetracyclin, Chlorotetracyclin, Doxycyclin, Oxytetracyclin, Rolitetracyclin; aus diversen anderen Klassen zum Beispiel: Bunamidin, Niridazol, Resorantel, Omphalotin, Oltipraz, Nitroscanat, Nitroxynil, Oxamniquin, Mirasan, Miracil, Lucanthon, Hycanthon, Hetolin, Emetin, Diethylcarbamazin, Dichlorophen, Diamfenetid, Clonazepam, Bephenium, Amoscanat, Clorsulon.
Antiprotozoische Wirkstoffe, darunter, ohne hierauf beschränkt zu sein, die folgenden Wirkstoffe: aus der Klasse der Triazine zum Beispiel: Diclazuril, Ponazuril, Letrazuril, Toltrazuril; aus der Klasse Polyletherionophor zum Beispiel: Monensin, Salinomycin, Maduramicin, Narasin; aus der Klasse der makrocyclischen Lactone zum Beispiel: Milbemycin, Erythromycin; aus der Klasse der Chinolone zum Beispiel: Enrofloxacin, Pradofloxacin; aus der Klasse der Chinine zum Beispiel: Chloroquin; aus der Klasse der Pyrimidine zum Beispiel: Pyrimethamin; aus der Klasse der Sulfonamide zum Beispiel: Sulfachinoxalin, Trimethoprim, Sulfaclozin; aus der Klasse der Thiamine zum Beispiel: Amprolium; aus der Klasse der Lincosamide zum Beispiel: Clindamycin; aus der Klasse der Carbanilide zum Beispiel: Imidocarb; aus der Klasse der Nitrofurane zum Beispiel: Nifurtimox; aus der Klasse der Chinazolinonalkaloide zum Beispiel: Halofuginon; aus diversen anderen Klassen zum Beispiel: Oxamniquin, Paromomycin; aus der Klasse der Vakzine oder Antigene aus Mikroorganismen zum Beispiel: Babesia canis rossi, Eimeria tenella, Eimeria praecox, Eimeria necatrix, Eimeria mitis, Eimeria maxima, Eimeria brunetti, Eimeria acervulina, Babesia canis vogeli, Leishmania infantum, Babesia canis canis, Dictyocaulus viviparus.
Alle genannten Mischungspartner können außerdem, wenn sie auf Grund ihrer funktionellen Gruppen dazu imstande sind, gegebenenfalls mit geeigneten Basen oder Säuren Salze bilden. Vektorbekämpfung
Die Verbindungen der Formel (I) oder der Formel (Γ) können auch in der Vektorbekämpfung eingesetzt werden. Ein Vektor im Sinne der vorliegenden Erfindung ist ein Arthropode, insbesondere ein Insekt oder Arachnide, der in der Lage ist, Krankheitserreger wie z. B. Viren, Würmer, Einzeller und Bakterien aus einem Reservoir (Pflanze, Tier, Mensch, etc.) auf einen Wirt zu übertragen. Die Krankheitserreger können entweder mechanisch (z. B. Trachoma durch nicht-stechende Fliegen) auf einem Wirt, oder nach Injektion (z. B. Malaria-Parasiten durch Mücken) in einen Wirt übertragen werden.
Beispiele für Vektoren und die von ihnen übertragenen Krankheiten bzw. Krankheitserreger sind:
1) Mücken - Anopheles: Malaria, Filariose;
- Culex: Japanische Encephalitis, Filariasis, weitere virale Erkrankungen, Übertragung von anderen Würmern;
- Aedes: Gelbfieber, Dengue -Fieber, weitere virale Erkrankungen, Filariasis;
- Simulien: Übertragung von Würmern, insbesondere Onchocerca volvulus; - Psychodidae: Übertragung von Leishmaniose
2) Läuse: Hautinfektionen, epidemisches Fleckfieber;
3) Flöhe: Pest, endemisches Fleckfieber, Bandwürmer;
4) Fliegen: Schlafkrankheit (Trypanosomiasis); Cholera, weitere bakterielle Erkrankungen;
5) Milben: Acariose, epidemisches Fleckfieber, Rickettsipocken, Tularämie, Saint-Louis-Enzephalitis, Frühsommer-Meningoenzephalitis (FSME), Krim- Kongo-Fieber, Borreliose;
6) Zecken: Borelliosen wie Borrelia bungdorferi sensu lato., Borrelia duttoni, Frühsommer- Meningoenzephalitis, Q-Fieber (Coxiella burnetii), Babesien (Babesia canis canis), Ehrlichiose.
Beispiele für Vektoren im Sinne der vorliegenden Erfindung sind Insekten, zum Beispiel Aphiden, Fliegen, Zikaden oder Thripse, die Pflanzenviren auf Pflanzen übertragen können. Weitere Vektoren, die Pflanzenviren übertragen können, sind Spinnmilben, Läuse, Käfer und Nematoden.
Weitere Beispiele für Vektoren im Sinne der vorliegenden Erfindung sind Insekten und Arachniden wie Mücken, insbesondere der Gattungen Aedes, Anopheles, z. B. A. gambiae, A. arabiensis, A. funestus, A. dirus (Malaria) und Culex, Psychodide wie Phlebotomus, Lutzomyia, Läuse, Flöhe, Fliegen, Milben und Zecken, die Krankheitserreger auf Tiere und/oder Menschen übertragen können.
Eine Vektorbekämpfung ist auch möglich, wenn die Verbindungen der Formel (I) oder der Formel (Γ) Resistenz-brechend sind. Verbindungen der Formel (I) oder der Formel (Γ) sind zur Verwendung in der Prävention von Krankheiten und/oder Krankheitserregern, die durch Vektoren übertragen werden, geeignet. Somit ist ein weiterer Aspekt der vorliegenden Erfindung die Verwendung von Verbindungen der Formel (I) oder der Formel (Γ) zur Vektorbekämpfung, z. B. in der Landwirtschaft, im Gartenbau, in Forsten, in Gärten und Freizeiteinrichtungen sowie im Vorrats- und Materialschutz. Schutz von technischen Materialen
Die Verbindungen der Formel (I) oder der Formel (Γ) eignen sich zum Schutz von technischen Materialien gegen Befall oder Zerstörung durch Insekten, z. B. aus den Ordnungen Coleoptera, Hymenoptera, Isoptera, Lepidoptera, Psocoptera und Zygentoma.
Unter technischen Materialien sind im vorliegenden Zusammenhang nicht lebende Materialien zu verstehen, wie vorzugsweise Kunststoffe, Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Holzverarbeitungsprodukte und Anstrichmittel. Die Anwendung der Erfindung zum Schutz von Holz ist besonders bevorzugt.
In einer weiteren Ausführungsform werden die Verbindungen der Formel (I) oder der Formel (Γ) zusammen mit mindestens einem weiteren Insektizid und/oder mindestens oder der Formel (Γ) einem Fungizid eingesetzt.
In einer weiteren Ausführungsform liegen die Verbindungen der Formel (I) oder der Formel (Γ) als ein anwendungsfertiges (ready-to-use) Schädlingsbekämpfungsmittel vor, d. h., sie können ohne weitere Änderungen auf das entsprechende Material aufgebracht werden. Als weitere Insektizide oder Fungizide kommen insbesondere die oben genannten in Frage. Überraschenderweise wurde auch gefunden, dass die Verbindungen der Formel (I) oder der Formel (Γ) zum Schutz vor Bewuchs von Gegenständen, insbesondere von Schiffskörpern, Sieben, Netzen, Bauwerken, Kaianlagen und Signalanlagen, welche mit See- oder Brackwasser in Verbindung kommen, verwendet werden können. Gleichfalls können die Verbindungen der Formel (I) oder der Formel (Γ) allein oder in Kombinationen mit anderen Wirkstoffen als Antifouling-Mittel eingesetzt werden. Bekämpfung von tierischen Schädlingen auf dem Hygienesektor
Die Verbindungen der Formel (I) oder der Formel (Γ) eignen sich zur Bekämpfung von tierischen Schädlingen auf dem Hygienesektor. Insbesondere kann die Erfindung im Haushalts-, Hygiene- und Vorratsschutz verwendet werden, vor allem zur Bekämpfung von Insekten, Spinnentieren, Zecken und Milben, die in geschlossenen Räumen, wie beispielsweise Wohnungen, Fabrikhallen, Büros, Fahrzeugkabinen, Tierzuchtanlagen vorkommen. Zur Bekämpfung der tierischen Schädlinge werden die Verbindungen der Formel (I) oder der Formel (Γ) allein oder in Kombination mit anderen Wirk- und/oder Hilfsstoffen verwendet. Bevorzugt werden sie in Haushaltsinsektizid-Produkten verwendet. Die Verbindungen der Formel (I) oder der Formel (Γ) sind gegen sensible und resistente Arten sowie gegen alle Entwicklungsstadien wirksam.
Zu diesen Schädlingen gehören beispielsweise Schädlinge aus der Klasse Arachnida, aus den Ordnungen Scorpiones, Araneae und Opiliones, aus den Klassen Chilopoda und Diplopoda, aus der Klasse Insecta die Ordnung Blattodea, aus den Ordnungen Coleoptera, Dermaptera, Diptera, Heteroptera, Hymenoptera, Isoptera, Lepidoptera, Phthiraptera, Psocoptera, Saltatoria oder Orthoptera, Siphonaptera und Zygentoma und aus der Klasse Malacostraca die Ordnung Isopoda.
Die Anwendung erfolgt beispielsweise in Aerosolen, drucklosen Sprühmitteln, z. B. Pump- und Zerstäubersprays, Nebelautomaten, Foggern, Schäumen, Gelen, Verdampferprodukten mit Verdampferplättchen aus Cellulose oder Kunststoff, Flüssigverdampfern, Gel- und Membranverdampfern, propellergetriebenen Verdampfern, energielosen bzw. passiven Verdampfungssystemen, Mottenpapieren, Mottensäckchen und Mottengelen, als Granulate oder Stäube, in Streuködern oder Köderstationen.
Herstellungsbeispiele :
2-(6-Chlor-3-ethylsulfonyl-2-naphthyl)-3-me^^ (Beispiel I-
001)
Figure imgf000095_0001
400 mg 6-Chlor-3-ethylsulfanyl-naphthalin-2-carbonsäure (1,50 mmol, 1,30 Äq.) und 220 mg N3- Methyl-6-(trifluormethyl)pyridin-3,4-diamin (1,15 mmol, 1,00 Äq.) wurden in 10,0 mL Pyridin gelöst. Die Lösung wurde anschließend mit EDCPHC1 versetzt und das entstandene Gemisch für 9 h bei 120 °C gerührt. Es wurden 219 mg para-Toluolsulfonsäure (1,15 mmol, 1,00 Äq.) zugegeben und erneut für 9 h bei 120 °C gerührt. Nach dem Abkühlen auf Raumtemperatur wurde das Reaktionsgemisch mit Acetonitril verdünnt, filtriert und das Filtrat bis zur Trockene eingeengt. Das Rohprodukt wurde säulenchromatographisch an Kieselgel gereinigt (Eluent: CEbCk/MeOH, 10/1). Die das Produkt enthaltenen Fraktionen wurden weiterhin über eine präparative HPLC mit einem Wasser / Acetonitril Gradienten als Laufmittel gereinigt. logP (HCCOH): 4,27; MH+: 422; Ή NMR (400MHz, CDC13) δ ppm: 8,95 (s, 1H), 8,15 (s, 1H), 7,96 (s, 1H), 7,85 (d, 1H), 7,79 (d, 1H), 7,78 (s, 1H), 7,47 (dd, 1H), 3,82 (s, 3H), 2,94 (q, 2H), 1,28 (t, 3H).
2-(6-Chlor-3-ethylsulfonyl-2-naphthyl)-3-methyl-6-(trifluormethyl)imidazor4,5-clpyridin (Beispiel I-
002)
Figure imgf000095_0002
100 mg 2-(6-Chlor-3-ethylsulfonyl-2-naphthyl)-3-methyl-6-(trifluormethyl)imidazo[4,5-c]pyridin (0,23 mmol, 1,00 Äq.) wurde in 5,0 mL CH2CI2 gelöst. Die Lösung wurde mit 0,045 mL Ameisensäure (1,18 mmol, 5,00 Äq.) und 111 mg (35%) Wasserstoffperoxid (1,65 mmol, 7,00 Äq.) versetzt. Das Reaktionsgemisch wurde für 16 h bei Raumtemperatur gerührt und anschließend mit Natriumthiosulfat- Lösung versetzt. Die organische Phase wurde abgetrennt, über Na2SÜ4 getrocknet und eingeengt. Das Rohprodukt wurde über eine präparative HPLC mit einem Wasser / Acetonitril Gradienten als Laufmittel gereinigt. logP (HCCOH): 3,38; MH+: 454; Ή NMR (400MHz, CDC13) δ ppm: 8,97 (s, 1H), 8,68 (s, 1H), 8,14 (d, 1H), 8,11 (s, 1H), 8,03 (s, 1H), 7,94 (d, 1H), 7,76 (dd, 1H), 3,78 (s, 3H), 3,42 (m, 2H), 1,26 (t, 3H). 2-(l-Ethylsulfonyl-2-naphthyl)-3-methyl-6-(trifluormethyl)imidazor4,5-clpyridin (Beispiel 1-003)
Figure imgf000096_0001
395 mg 2-(l-Brom-2-naphthyl)-3-methyl-6-(trifluormethyl)imidazo[4,5-c]pyridin (0,97 mmol), 1,13 g Natriumethansulfinat (9,72 mmol), 18,5 mg Kupferiodid (0,09 mmol) und 22,4 mg (S)-(-)-Prolin (0,19 mmol) wurden in 5,0 mL Dimethylsulfoxid gelöst und 8 h bei 80 °C gerührt. Das Reaktionsgemisch wurde anschließend mit Ethylacetat verdünnt. Die organische Phase wurde abgetrennt und mit H2O gewaschen, über Na2SC>4 getrocknet und eingeengt. Das Rohprodukt wurde präparative HPLC mit einem Wasser / Acetonitril Gradienten als Laufmittel gereinigt. logP (HCCOH): 2,67; MH+: 420; XH NMR (400MHz, CDC13) δ ppm: 9,15 (d, 1H), 8,96 (s, 1H), 8,29 (d, 1H), 8,11 (s, 1H), 8,09 (d, 1H), 7,85 (m, 1H), 7,78 (m, 1H), 7,52 (d, 1H), 3,82 (s, 3H), 3,51 (m, 2H), 1,33 (t, 3H).
2-(l-Brom-2-naphthyl)-3-methyl-6-(trifluormethyl)imidazor4,5-clpyridin
Figure imgf000096_0002
1,00 g l-Bromonaphthalen-2-carbonsäure (3,98 mmol), 586 mg N3-Methyl-6-(trifluormethyl)pyridin- 3,4-diamin (3,06 mmol) und 587 mg EDCI*HC1 (3,06 mmol) wurden in 20,0 mL Pyridin gelöst und 16 h bei 120 °C gerührt. Anschließend wurden 583 mg 4-Toluolsulfonsäuremonohydrat zugegeben und das Reaktionsgemisch für weitere 16 h bei 120 °C gerührt. Nach dem Abkühlen auf Raumtemperatur wurde das Reaktionsgemisch mit Acetonitril verdünnt, filtriert und das Filtrat bis zur Trockene eingeengt. Das Rohprodukt wurde säulenchromatographisch an Kieselgel gereinigt (Eluent: Cyclohexan/Ethylacetat, 1/1). Das 63 ige Produkt wurde ohne weitere Aufreinigung zu Beispiel 1-3 umgesetzt. logP (HCCOH): 3,46; MH+: 408; Ή NMR (400MHz, CDC13) δ ppm: 8,97 (s, H), 8,40 (d, 1H), 8,18 (s, 1H), 8,01 (d, 1H), 7,97 (d, 1H), 7,74 (m, 1H), 7,70 (m, 1H), 7,54 (d, 1H), 3,84 (s, 3H).
Die Messung der logP Werte erfolgt gemäß EEC Directive 79/831 Annex V.A8 durch HPLC (High Performance Liquid Chromatography) an einer Phasenumkehrsäule (C 18). Temperatur: 55°C.
Die Bestimmung mit der LC-MS im sauren Bereich erfolgt bei pH 2,7 mit 0,1 % wässriger Ameisensäure und Acetonitril (enthält 0,1% Ameisensäure) als Eluenten; linearer Gradient von 10% Acetonitril bis 95% Acetonitril. In der Tabelle logP (HCOOH) genannt. Die Bestimmung mit der LC-MS im neutralen Bereich erfolgt bei pH 7.8 mit 0,001 molarer wässriger Ammoniumhydrogencarbonat-Lösung und Acetonitril als Eluenten; linearer Gradient von 10 % Acetonitril bis 95 % Acetonitril. In der Tabelle logP (neutral) genannt.
Die Eichung erfolgt mit un verzweigten Alkan-2-onen (mit 3 bis 16 Kohlenstoffatomen), deren logP- Werte bekannt sind (Bestimmung der logP- Werte anhand der Retentionszeiten durch lineare Interpolation zwischen zwei aufeinander folgenden Alkanonen).
Die NMR-Daten ausgewählter Beispiele werden entweder in klassischer Form (δ-Werte, Multiplettaufspaltung, Anzahl der H-Atome) oder als NMR-Peak-Listen aufgeführt.
Das Lösungsmittel, in welchem das NMR-Spektrum aufgenommen wurde ist jeweils angegeben. NMR-Peak-Listenverfahren
Die ^-NMR-Daten ausgewählter Beispiele werden in Form von 1 H-NMR-Peaklisten notiert. Zu jedem Signalpeak wird erst der δ-Wert in ppm und dann die Signalintensität in runden Klammern aufgeführt. Die δ-Wert - Signalintensitäts- Zahlenpaare von verschiedenen Signalpeaks werden durch Semikolons voneinander getrennt aufgelistet. Die Peakliste eines Beispieles hat daher die Form: δι (Intensität^; 02 (Intensität2); ; öi (Intensität ; ; δη (Intensität)
Die Intensität scharfer Signale korreliert mit der Höhe der Signale in einem gedruckten Beispiel eines NMR-Spektrums in cm und zeigt die wirklichen Verhältnisse der Signalintensitäten. Bei breiten Signalen können mehrere Peaks oder die Mitte des Signals und ihre relative Intensität im Vergleich zum intensivsten Signal im Spektrum gezeigt werden.
Zur Kalibrierung der chemischen Verschiebung von ^-NMR-Spektren benutzen wir Tetramethylsilan und/oder die chemische Verschiebung des Lösungsmittels, besondern im Falle von Spektren, die in DMSO gemessen werden. Daher kann in NMR-Peaklisten der Tetramethylsilan-Peak vorkommen, muss es aber nicht. Die Listen der ^-NMR-Peaks sind ähnlich den klassischen ^-NMR- Ausdrucken und enthalten somit gewöhnlich alle Peaks, die bei einer klassischen NMR-Interpretation aufgeführt werden.
Darüber hinaus können sie wie klassische ^-NMR- Ausdrucke Lösungsmittelsignale, Signale von Stereoisomeren der Zielverbindungen, die ebenfalls Gegenstand der Erfindung sind, und/oder Peaks von Verunreinigungen zeigen. Bei der Angabe von Verbindungssignalen im Delta-Bereich von Lösungsmitteln und/oder Wasser sind in unseren Listen von ^-NMR-Peaks die gewöhnlichen Lösungsmittelpeaks, zum Beispiel Peaks von DMSO in DMSO-De und der Peak von Wasser, gezeigt, die gewöhnlich im Durchschnitt eine hohe Intensität aufweisen.
Die Peaks von Stereoisomeren der Targetverbindungen und/oder Peaks von Verunreinigungen haben gewöhnlich im Durchschnitt eine geringere Intensität als die Peaks der Zielverbindungen (zum Beispiel mit einer Reinheit von >90 ).
Solche Stereoisomere und/oder Verunreinigungen können typisch für das jeweilige Herstellungsverfahren sein. Ihre Peaks können somit dabei helfen, die Reproduktion unseres Herstellungsverfahrens anhand von "Nebenprodukt-Fingerabdrucken" zu erkennen.
Einem Experten, der die Peaks der Zielverbindungen mit bekannten Verfahren (MestreC, ACD- Simulation, aber auch mit empirisch ausgewerteten Erwartungswerten) berechnet, kann je nach Bedarf die Peaks der Zielverbindungen isolieren, wobei gegebenenfalls zusätzliche Intensitätsfilter eingesetzt werden. Diese Isolierung wäre ähnlich dem betreffenden Peak-Picking bei der klassischen ^-NMR- Interpretation.
Weitere Details zu ^-NMR-Peaklisten können der Research Disclosure Database Number 564025 entnommen werden.
Anwendungsbeispiele
Myzus persicae - Sprühtest
Lösungsmittel: 78 Gewichtsteile Aceton
1 ,5 Gewichtsteile Dimethylformamid
Emulgator: Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung löst man 1 Gewichtsteil Wirkstoff mit den angegebenen Gewichtsteilen Lösungsmittel und füllt mit Wasser, welches eine Emulgatorkonzentration von 1000 ppm enthält, bis zum Erreichen der gewünschten Konzentration auf. Zur Herstellung weiterer Testkonzentrationen wird mit emulgatorhaltigem Wasser verdünnt.
Chinakohlblattscheiben (Brassica pekinensis), die von allen Stadien der Grünen Pfirsichblattlaus (Myzus persicae) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt.
Nach 5 Tagen wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele Wirkung von 90% bei einer Aufwandmenge von 500g/ha: 1-002
Myzus persicae - Oraltest
Lösungsmittel: 100 Gewichtsteile Aceton
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung löst man 1 Gewichtsteil Wirkstoff mit den angegebenen Gewichtsteilen Lösungsmittel und füllt mit Wasser bis zum Erreichen der gewünschten Konzentration auf.
50 μΐ der Wirkstoffzubereitung werden in Mikrotiterplatten überführt und mit 150μ1 IPL41 Insektenmedium (33% + 15% Zucker) auf eine Endvolumen von 200 μΐ aufgefüllt. Anschließend werden die Platten mit Parafilm verschlossen, durch den eine gemischte Population der Grünen Pfirsichblattlaus (Myzus persicae), die sich in einer zweiten Mikrotiterplatte befindet, hindurchstechen und die Lösung aufnehmen kann.
Nach 5 Tagen wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden.
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele Wirkung von 100% bei einer Aufwandmenge von 20ppm: 1-003 Phaedon cochleariae - Sprühtest
Lösungsmittel: 78,0 Gewichtsteile Aceton
1,5 Gewichtsteile Dimethylformamid
Emulgator: Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung löst man 1 Gewichtsteil Wirkstoff mit den angegebenen Gewichtsteilen Lösungsmittel und füllt mit Wasser, welches eine Emulgatorkonzentration von 1000 ppm enthält, bis zum Erreichen der gewünschten Konzentration auf. Zur Herstellung weiterer Testkonzentrationen wird mit emulgatorhaltigem Wasser verdünnt.
Chinakohlblattscheiben (Brassica pekinensis) werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt und nach dem Abtrocknen mit Larven des Meerrettichblattkäfers (Phaedon cochleariae j besetzt.
Nach 7 Tagen wird die Wirkung in % bestimmt. Dabei bedeutet 100 , dass alle Käferlarven abgetötet wurden; 0 % bedeutet, dass keine Käferlarven abgetötet wurden.
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele Wirkung von 100% bei einer Aufwandmenge von 500g/ha: 1-002
Spodoptera frugiperda - Sprühtest
Lösungsmittel: 78,0 Gewichtsteile Aceton
1,5 Gewichtsteile Dimethylformamid
Emulgator: Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung löst man 1 Gewichtsteil Wirkstoff mit den angegebenen Gewichtsteilen Lösungsmittel und füllt mit Wasser, welches eine Emulgatorkonzentration von 1000 ppm enthält, bis zum Erreichen der gewünschten Konzentration auf. Zur Herstellung weiterer Testkonzentrationen wird mit emulgatorhaltigem Wasser verdünnt.
Maisblattscheiben (Zea mays) werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt und nach dem Abtrocknen mit Raupen des Heerwurms (Spodoptera frugiperda) besetzt.
Nach 7 Tagen wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupe abgetötet wurde.
Bei diesem Test zeigen z. B. die folgenden Verbindungen der Herstellungsbeispiele Wirkung von 100% bei einer Aufwandmenge von 500g/ha: 1-001, 1-002

Claims

Patentansprüche
1. Verbindungen der Formeln (I) oder (Γ)
Figure imgf000101_0001
(i) (10 in welchen
R1 für (Ci-C6)Alkyl, (Ci-C6)Halogenalkyl, (Ci-C6)Cyanoalkyl, (Ci-C6)Hydroxyalkyl, (Ci- C6)Alkoxy-(Ci-C6)alkyl, (Ci-C6)Halogenalkoxy-(Ci-C6)alkyl, (C2-C6)Alkenyl, (C2- C6)Alkenyloxy-(Ci-C6)alkyl, (C2-C6)Halogenalkenyloxy-(Ci-C6)alkyl, (C2-C6)Halogenalkenyl, (C2-C6)Cyanoalkenyl, (C2-C6)Alkinyl, (C2-C6)Alkinyloxy-(Ci-C6)alkyl, (C2-
C6)Halogenalkinyloxy-(Ci-C6)alkyl, (C2-Ce)Halogenalkinyl, (C2-Ce)Cyanoalkinyl, (C3- C8)Cycloalkyl, (C3-C8)Cycloalkyl-(C3-C8)Cycloalkyl, (Ci-C6)Alkyl-(C3-C8)Cycloalkyl, Halogen(C3-C8)cycloalkyl, Amino, (Ci-C6)Alkylamino, Di-(Ci-C6)alkyl-amino, (C3- C8)Cycloalkylamino, (Ci-C6)Alkylcarbonyl-amino, (Ci-C6)Alkylthio-(Ci-C6)alkyl, (Ci- C6)Halogenalkylthio-(Ci-C6)alkyl, (Ci-C6)Alkylsulfinyl-(Ci-C6)alkyl, (Ci-
C6)Halogenalkylsulfinyl-(Ci-C6)alkyl, (Ci-C6)Alkylsulfonyl-(Ci-C6)alkyl, (Ci-
C6)Halogenalkylsulfonyl-(Ci-C6)alkyl, (Ci-C6)Alkoxy-(Ci-C6)alkylthio-(Ci-C6)alkyl, (Ci- C6)Alkoxy-(Ci-C6)alkylsulfinyl-(Ci-C6)alkyl, (Ci-C6)Alkoxy-(Ci-C6)alkylsulfonyl-(Ci-C6)alkyl, (Ci-C6)Alkylcarbonyl-(Ci-C6)alkyl, (Ci-C6)Halogenalkylcarbonyl-(Ci-C6)alkyl, (Ci- C6)Alkoxycarbonyl-(Ci-C6)alkyl, (Ci-C6)Halogenalkoxycarbonyl-(Ci-C6)alkyl, (Ci- C6)Alkylsulfonylamino, Aminosulfonyl-(Ci-C6)alkyl, (Ci-C6)Alkylaminosulfonyl-(Ci-C6)alkyl, Di-(Ci-C6)alkyl-aminosulfonyl-(Ci-C6)alkyl, oder für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Aryl, Hetaryl oder Heterocyclyl substituiertes (Ci-Ce)Alkyl, (Ci-C6)Alkoxy, (C2-C6)Alkenyl, (C2- C6)Alkinyl, (C3-C8)Cycloalkyl steht, wobei Aryl, Hetaryl oder Heterocyclyl jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, Cyano, Nitro, Hydroxy, Amino, Carboxy, Carbamoyl, Aminosulfonyl, (Ci-C6)Alkyl, (C3-C6)Cycloalkyl, (Ci- C6)Alkoxy, (Ci-C6)Halogenalkyl, (Ci-C6)Halogenalkoxy, (Ci-C6)Alkylthio, (Ci-C6)Alkylsulfinyl, (Ci-C6)Alkylsulfonyl, (Ci-C6)Alkylsulfimino, (Ci-C6)Alkylsulfimino-(Ci-C6)alkyl, (Ci- C6)Alkylsulfimino-(C2-C6)alkylcarbonyl, (Ci-C6)Alkylsulfoximino, (Ci-C6)Alkylsulfoximino-(Ci- Ce)alkyl, (Ci-C6)Alkylsulfoximino-(C2-C6)alkylcarbonyl, (Ci-C6)Alkoxycarbonyl, C6)Alkylcarbonyl, (C3-C6)Trialkylsilyl oder Benzyl substituiert sein können, oder
R1 für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, Cyano, Nitro, Hydroxy, Amino, Carboxy, Carbamoyl, (Ci-Ce)Alkyl, (C3- C8)Cycloalkyl, (Ci-C6)-Alkoxy, (Ci-C6)Halogenalkyl, (Ci-C6)Halogenalkoxy, (Ci-C6)Alkylthio, (Ci-C6)Alkylsulfinyl, (Ci-C6)Alkylsulfonyl, (Ci-C6)Alkylsulfimino, (Ci-C6)Alkylsulfimino-(Ci- C6)alkyl, (Ci-C6)Alkylsulfimino-(C2-C6)alkylcarbonyl, (Ci-C6)Alkylsulfoximino, (Ci- C6)Alkylsulfoximino-(Ci-C6)alkyl, (Ci-C6)Alkylsulfoximino-(C2-C6)alkylcarbonyl, (Ci- Ce)Alkoxycarbonyl, (Ci-C6)Alkylcarbonyl, (C3-C6)Trialkylsilyl, (=0) (nur im Fall von Heterocyclyl) oder (=0)2 (nur im Fall von Heterocyclyl) substituiertes Aryl, Hetaryl oder Heterocyclyl steht,
R2, R3 unabhängig voneinander für Wasserstoff, Cyano, Halogen, Nitro, Acetyl, Hydroxy, Amino, SCN, Tri-(Ci-C6)alkylsilyl, (C3-C8)Cycloalkyl, (C3-C8)Cycloalkyl-(C3-C8)Cycloalkyl, (Ci-C6)Alkyl-(C3-C8)cycloalkyl, Halogen(C3-C8)cycloalkyl, (Ci-C6)Alkyl, (Ci-C6)Halogenalkyl, (Ci-C6)Cyanoalkyl, (Ci-Ce)Hydroxyalkyl, Hydroxycarbonyl-(Ci-C6)-alkoxy, (Ci- C6)Alkoxycarbonyl-(Ci-C6)alkyl, (Ci-C6)Alkoxy-(Ci-C6)alkyl, (C2-C6)Alkenyl, (C2- Ce)Halogenalkenyl, (C2-Ce)Cyanoalkenyl, (C2-C6)Alkinyl, (C2-C6)Halogenalkinyl, (C2- C6)Cyanoalkinyl, (Ci-C6)Alkoxy, (Ci-C6)Halogenalkoxy, (Ci-C6)Cyanoalkoxy, (Ci- C6)Alkoxycarbonyl-(Ci-C6)alkoxy, (Ci-C6)Alkoxy-(Ci-C6)alkoxy, (Ci-C6)Alkylhydroxyimino, (Ci-C6)Alkoxyimino, (Ci-C6)Alkyl-(Ci-C6)alkoxyimino, (Ci-C6)Halogenalkyl-(Ci-
C6)alkoxyimino, (Ci-C6)Alkylthio, (Ci-C6)Halogenalkylthio, (Ci-C6)Alkoxy-(Ci-C6)alkylthio, (Ci-C6)Alkylthio-(Ci-C6)alkyl, (Ci-C6)Alkylsulfinyl, (Ci-C6)Halogenalkylsulfinyl, (Ci- C6)Alkoxy-(Ci-C6)alkylsulfinyl, (Ci-C6)Alkylsulfinyl-(Ci-C6)alkyl, (Ci-C6)Alkylsulfonyl, (Ci- C6)Halogenalkylsulfonyl, (Ci-C6)Alkoxy-(Ci-C6)alkylsulfonyl, (Ci-C6)Alkylsulfonyl-(Ci- C6)alkyl, (Ci-C6)Alkylsulfonyloxy, (Ci-C6)Alkylcarbonyl, (Ci-C6)Alkylthiocarbonyl, (Ci- Ce)Halogenalkylcarbonyl, (Ci-C6)Alkylcarbonyloxy, (Ci-C6)Alkoxycarbonyl, (Ci- Ce)Halogenalkoxycarbonyl, Aminocarbonyl, (Ci-C6)Alkylaminocarbonyl, (Ci- C6)Alkylaminothiocarbonyl, Di-(Ci-C6)alkyl-aminocarbonyl, Di-(Ci-Ce)alkyl- aminothiocarbonyl, (C2-C6)Alkenylaminocarbonyl, Di-(C2-C6)-alkenylaminocarbonyl, (C3- C8)Cycloalkylaminocarbonyl, (Ci-C6)Alkylsulfonylamino, (Ci-C6)Alkylamino, Di-(Ci- C6)Alkylamino, Aminosulfonyl, (Ci-C6)Alkylaminosulfonyl, Di-(Ci-C6)alkyl-aminosulfonyl, (Ci-C6)Alkylsulfoximino, Aminothiocarbonyl, (Ci-C6)Alkylaminothiocarbonyl, Di-(Ci- C6)alkyl-aminothiocarbonyl, (C3-C8)Cycloalkylamino oder NHCO-(Ci-Ce)alkyl ((Ci- C6)Alkylcarbonylamino) stehen,
R7 für Wasserstoff, Cyano, Halogen, (Ci-C6)Alkyl, (Ci-C6)Halogenalkyl, (Ci-C6)Alkoxy oder (Ci-C6)Halogenalkoxy steht, R10 für Wasserstoff, Cyano, Halogen, (Ci-C6)Alkyl, (Ci-C6)Halogenalkyl, (Ci-C6)Alkoxy oder (Ci-C6)Halogenalkoxy steht,
R11 für Wasserstoff, Cyano, Halogen, (Ci-C6)Alkyl, (Ci-C6)Halogenalkyl, (Ci-C6)Alkoxy oder (Ci-C6)Halogenalkoxy steht, wobei mindestens einer der Substituenten R10 oder R11 für Wasserstoff stehen muss,
Q für ein teilweise gesättigtes oder gesättigtes heterozyklisches oder heteroaromatisches 8-, 9-, 10-, 11- oder 12-gliedriges annelliertes bicyclisches oder tricyclisches Ringsystem steht, wobei gegebenenfalls mindestens eine Carbonylgruppe enthalten sein kann und/oder wobei das Ringsystem gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiert ist, und wobei die Substituenten unabhängig voneinander ausgewählt sein können aus Cyano, Halogen, Nitro, Acetyl, Hydroxy, Amino, SCN, Tri-(Ci-C6)alkylsilyl, (C3-C8)Cycloalkyl, (C3- C8)Cycloalkyl-(C3-C8)Cycloalkyl, (Ci-C6)Alkyl-(C3-C8)cycloalkyl, Halogen(C3-C8)cycloalkyl, (Ci-C6)Alkyl, (Ci-C6)Halogenalkyl, (Ci-C6)Cyanoalkyl, (Ci-C6)Hydroxyalkyl, Hydroxycarbonyl-(Ci-C6)-alkoxy, (Ci-C6)Alkoxycarbonyl-(Ci-C6)alkyl, (Ci-C6)Alkoxy-(Ci- C6)alkyl, (C2-C6)Alkenyl, (C2-C6)Halogenalkenyl, (C2-C6)Cyanoalkenyl, (C2-C6)Alkinyl, (C2- C6)Alkinyloxy-(Ci-C4)alkyl, (C2-C6)Halogenalkinyl, (C2-C6)Cyanoalkinyl, (Ci-C6)Alkoxy, (Ci- C6)Halogenalkoxy, (Ci-C6)Halogenalkoxy-(Ci-C6)alkyl, (C2-C6)Alkenyloxy-(Ci-C6)alkyl, (C2- C6)Halogenalkenyloxy-(C i-Ce) alkyl, (C i -Ce)Cy anoalkoxy , (C i -Ce) Alkoxycarbonyl-(C i - Ce)alkoxy, (Ci-C6)Alkoxy-(Ci-C6)alkoxy, (Ci-C6)Alkylhydroxyimino, (Ci-C6)Alkoxyimino, (Ci-C6)Alkyl-(Ci-C6)alkoxyimino, (Ci-C6)Halogenalkyl-(Ci-C6)alkoxyimino, (Ci-C6)Alkylthio, (Ci-C6)Halogenalkylthio, (Ci-C6)Alkoxy-(Ci-C6)alkylthio, (Ci-C6)Alkylthio-(Ci-C6)alkyl, (Ci- C6)Alkylsulfinyl, (Ci-C6)Halogenalkylsulfinyl, (Ci-C6)Alkoxy-(Ci-C6)alkylsulfinyl, (Ci- C6)Alkylsulfinyl-(Ci-C6)alkyl, (Ci-C6)Alkylsulfonyl, (Ci-C6)Halogenalkylsulfonyl, (Ci- C6)Alkoxy-(Ci-C6)alkylsulfonyl, (Ci-C6)Alkylsulfonyl-(Ci-C6)alkyl, (Ci-C6)Alkylsulfonyloxy, (Ci-C6)Alkylcarbonyl, (Ci-C6)Alkylcarbonyl-(Ci-C6)alkyl, (Ci-C6)Alkylthiocarbonyl, (Ci- Ce)Halogenalkylcarbonyl, (Ci-C6)Alkylcarbonyloxy, (Ci-C6)Alkoxycarbonyl, (Ci- Ce)Halogenalkoxycarbonyl, Aminocarbonyl, (Ci-C6)Alkylaminocarbonyl, (Ci- C6)Alkylaminothiocarbonyl, Di-(Ci-C6)alkyl-aminocarbonyl, Di-(Ci-Ce)alkyl- aminothiocarbonyl, (C2-C6)Alkenylaminocarbonyl, Di-(C2-C6)-alkenylaminocarbonyl, (C3- C8)Cycloalkylaminocarbonyl, (Ci-C6)Alkylsulfonylamino, (Ci-C6)Alkylamino, Di-(Ci- C6)Alkylamino, Aminosulfonyl, (Ci-C6)Alkylaminosulfonyl, Di-(Ci-C6)alkyl-aminosulfonyl, (Ci-C6)Alkylsulfoximino, Aminothiocarbonyl, (Ci-C6)Alkylaminothiocarbonyl, Di-(Ci- C6)alkyl-aminothiocarbonyl, (C3-C8)Cycloalkylamino, NHCO-(Ci-C6)alkyl ((Ci-
CÖ) Alkylcarbonylamino) , oder wobei die Substituenten unabhängig voneinander ausgewählt sein können aus Phenyl oder einem 5- oder 6-gliedrigen heteroaromatischen Ring, wobei Phenyl oder der Ring gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Ci-C6-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C6-Cycloalkyl, Ci-Ce-Haloalkyl, C2-C6-Haloalkenyl, C2-C6-Haloalkinyl, C3-C6-Halocycloalkyl, Halogen, CN, NO2, Ci-C4-Alkoxy, Ci-C4-Haloalkoxy substituiert sein können, n für 0, 1 oder 2 steht, ausgenommen
2-(3-Methylmercapto-2-naphthyl)-lH-imidazo[4,5-b]pyridin, 2-(3-Methylsulfinyl-2-naphthyl)- lH-imidazo[4,5-b]pyridin, 2-(3-Methylsulfanyl-2-naphthyl)-lH-imidazo[4,5-b]pyridine, 2-(l- Methylmercapto-2-naphthalenyl)imidazo[4,5-c]pyridin, 2-( 1 ,6-bis(Methylmercapto)-2- naphthalenyl)imidazo[4,5-c]pyridin, 5-Methoxy-2-(3-methylmercapto-naphth-2-yl)-lH- imidazo[4,5-b]pyridin.
2. Verbindungen der Formeln (I) oder (Γ) gemäß Anspruch 1, in welchen
R1 für (Ci-C4)Alkyl, (Ci-C4)Hydroxyalkyl, (Ci-C4)Halogenalkyl, (Ci-C4)Cyanoalkyl, (Ci- C4)Alkoxy-(Ci-C4)alkyl, (Ci-C4)Halogenalkoxy-(Ci-C4)alkyl, (C2-C4)Alkenyl, (C2- C4)Alkenyloxy-(Ci-C4)alkyl, (C2-C4)Halogenalkenyloxy-(Ci-C4)alkyl, (C2-C4)Halogenalkenyl, (C2-C4)Cyanoalkenyl, (C2-C4)Alkinyl, (C2-C4)Alkinyloxy-(Ci-C4)alkyl, (C2-
C4)Halogenalkinyloxy-(Ci-C4)alkyl, (C2-C4)Halogenalkinyl, (C2-C4)Cyanoalkinyl, (C3- C6)Cycloalkyl, (C3-C6)Cycloalkyl(C3-C6)cycloalkyl, (Ci-C4)Alkyl-(C3-C6)cycloalkyl, Halogen(C3-C6)cycloalkyl, (Ci-C4)Alkylamino, Di-(Ci-C4)alkyl-amino, (C3-
C6)Cycloalkylamino, (Ci-C )Alkylcarbonyl-amino, (Ci-C )Alkylthio-(Ci-C )alkyl, (Ci- C4)Halogenalkylthio-(Ci-C4)alkyl, (Ci-C4)Alkylsulfinyl-(Ci-C4)alkyl, (Ci-
C4)Halogenalkylsulfinyl-(Ci-C4)alkyl, (Ci-C4)Alkylsulfonyl-(Ci-C4)alkyl, (Ci-
C4)Alkylcarbonyl-(Ci-C4)alkyl, (Ci-C4)Halogenalkylcarbonyl-(Ci-C4)alkyl, (Ci-
C4)Alkylsulfonylamino, oder für jeweils gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Aryl, Hetaryl oder Heterocyclyl substituiertes (Ci-C )Alkyl, (Ci-C )Alkoxy, (C2-C )Alkenyl, (C2- C4)Alkinyl, (C3-C6)Cycloalkyl steht, wobei Aryl, Hetaryl oder Heterocyclyl jeweils gegebenenfalls einfach oder zweifach gleich oder verschieden durch Halogen, Cyano, Carbamoyl, Aminosulfonyl, (Ci-C )Alkyl, (C3-C )Cycloalkyl, (Ci-C )Alkoxy, (Ci- C4)Halogenalkyl, (Ci-C4)Halogenalkoxy, (Ci-C4)Alkylthio, (Ci-C4)Alkylsulfinyl, (Ci- C4)Alkylsulfonyl, (Ci-C4)Alkylsulfimino substituiert sein können, oder
R1 für jeweils gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Halogen, Cyano, Carbamoyl, (Ci-C4)Alkyl, (C3-C6)Cycloalkyl, (Ci-C4)-Alkoxy, (Ci- C4)Halogenalkyl, (Ci-C4)Halogenalkoxy, (Ci-C4)Alkylthio, (Ci-C4)Alkylsulfinyl, (Ci- C )Alkylsulfonyl, (Ci-C )Alkylsulfimino, (Ci-C )Alkylsulfoximino, (Ci-C )Alkylcarbonyl, (C3- C4)Trialkylsilyl, (=0) (nur im Fall von Heterocyclyl) oder (=0)2 (nur im Fall von Heterocyclyl) substituiertes Aryl, Hetaryl oder Heterocyclyl steht,
R2, R3 unabhängig voneinander für Wasserstoff, Cyano, Halogen, Nitro, Acetyl, Hydroxy, Amino, SCN, Tri-(Ci-C4)alkylsilyl, (C3-C6)Cycloalkyl, (C3-C6)Cycloalkyl-(C3-C6)cycloalkyl, (Ci-C4)Alkyl-(C3-C6)cycloalkyl, Halogen(C3-C6)cycloalkyl, (Ci-C4)Alkyl, (Ci-C4)Halogenalkyl, (Ci-C4)Cyanoalkyl, (Ci-C4)Hydroxyalkyl, (Ci-C4)Alkoxy-(Ci-C4)alkyl, (C2-C4)Alkenyl, (C2- C4)Halogenalkenyl, (C2-C4)Cyanoalkenyl, (C2-C4)Alkinyl, (C2-C4)Halogenalkinyl, (C2- C4)Cyanoalkinyl, (Ci-C4)Alkoxy, (Ci-C4)Halogenalkoxy, (Ci-C4)Cyanoalkoxy, (Ci-C4)Alkoxy- (Ci-C )alkoxy, (Ci-C )Alkylhydroxyimino, (Ci-C )Alkoxyimino, (Ci-C )Alkyl-(Ci- C4)alkoxyimino, (Ci-C4)Halogenalkyl-(Ci-C4)alkoxyimino, (Ci-C4)Alkylthio, (Ci- C4)Halogenalkylthio, (Ci-C4)Alkylthio-(Ci-C4)alkyl, (Ci-C4)Alkylsulfinyl, (Ci- C4)Halogenalkylsulfinyl, (Ci-C4)Alkylsulfinyl-(Ci-C4)alkyl, (Ci-C4)Alkylsulfonyl, (Ci- C4)Halogenalkylsulfonyl, (Ci-C4)Alkylsulfonyl-(Ci-C4)alkyl, (Ci-C4)Alkylsulfonyloxy, (Ci- C4)Alkylcarbonyl, (Ci-C4)Halogenalkylcarbonyl, Aminocarbonyl, Aminothiocarbonyl, (Ci- C4)Alkylaminocarbonyl, Di-(Ci-C4)alkyl-aminocarbonyl, (Ci-C4)Alkylsulfonylamino, (Ci- C4)Alkylamino, Di-(Ci-C4)Alkylamino, Aminosulfonyl, (Ci-C4)Alkylaminosulfonyl, Di-(Ci- C4)alkyl-aminosulfonyl, Aminothiocarbonyl oder NHCO-(Ci-C4)alkyl ((Ci- C4)Alkylcarbonylamino) stehen,
R7 für Wasserstoff, Cyano, Halogen, (Ci-C4)Alkyl, (Ci-C4)Halogenalkyl, (Ci-C4)Alkoxy oder (Ci-C4)Halogenalkoxy steht,
R10 für Wasserstoff, Cyano, Halogen, (Ci-C4)Alkyl, (Ci-C4)Halogenalkyl, (Ci-C4)Alkoxy oder (Ci-C4)Halogenalkoxy steht,
R11 für Wasserstoff, Cyano, Halogen, (Ci-C4)Alkyl, (Ci-C4)Halogenalkyl, (Ci-C4)Alkoxy oder (Ci-C4)Halogenalkoxy steht, wobei mindestens einer der Substituenten R10 oder R11 für Wasserstoff stehen muss,
Q für ein heteroaromatisches 8-, 9-, 10-, 11- oder 12-gliedriges annelliertes bicyclisches oder tricyclisches Ringsystem steht, wobei das Ringsystem gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiert ist, und wobei die Substituenten unabhängig voneinander ausgewählt sein können aus Cyano, Halogen, Nitro, Acetyl, Hydroxy, Amino, SCN, Tri-(Ci-C6)alkylsilyl, (C3-C8)Cycloalkyl, (C3-C8)Cycloalkyl-(C3-C8)Cycloalkyl, (Ci- C6)Alkyl-(C3-C8)cycloalkyl, Halogen(C3-C8)cycloalkyl, (Ci-C6)Alkyl, (Ci-C6)Halogenalkyl, (Ci-C6)Cyanoalkyl, (Ci-C6)Hydroxyalkyl, (Ci-C6)Alkoxy-(Ci-C6)alkyl, (C2-C6)Alkenyl, (C2- C6)Halogenalkenyl, (C2-C6)Cyanoalkenyl, (C2-C6)Alkinyl, (C2-C6)Alkinyloxy-(Ci-C4)alkyl, (C2- Ce)Halogenalkinyl, (Ci-Ce)Alkoxy, (Ci-Ce)Halogenalkoxy, (Ci-C6)Halogenalkoxy-(Ci-C6)alkyl, (C2-C6)Alkenyloxy-(Ci-C6)alkyl, (C2-C6)Halogenalkenyloxy-(Ci-C6)alkyl, (Ci-Ce)Cyanoalkoxy, (Ci-C6)Alkoxy-(Ci-C6)alkoxy, (Ci-C6)Alkylhydroxyimino, (Ci-C6)Alkoxyimino, (Ci-Ce)Alkyl- (Ci-C6)alkoxyimino, (Ci-C6)Alkylthio, (Ci-C6)Halogenalkylthio, (Ci-C6)Alkoxy-(Ci- C6)alkylthio, (Ci-C6)Alkylthio-(Ci-C6)alkyl, (Ci-C6)Alkylsulfinyl, (Ci-C6)Halogenalkylsulfinyl, (Ci-C6)Alkoxy-(Ci-C6)alkylsulfinyl, (Ci-C6)Alkylsulfinyl-(Ci-C6)alkyl, (Ci-C6)Alkylsulfonyl, (Ci-C6)Halogenalkylsulfonyl, (Ci-C6)Alkoxy-(Ci-C6)alkylsulfonyl, (Ci-C6)Alkylsulfonyl-(Ci- C6)alkyl, (Ci-C6)Alkylsulfonyloxy, (Ci-C6)Alkylcarbonyl, (Ci-C6)Alkylcarbonyl-(Ci-C6)alkyl, (Ci-C6)Alkylthiocarbonyl, (Ci-C6)Halogenalkylcarbonyl, (Ci-C6)Alkylcarbonyloxy, (Ci- C6)Alkoxycarbonyl, (Ci-C6)Halogenalkoxycarbonyl, Aminocarbonyl, (Ci-
C6)Alkylaminocarbonyl, (Ci-C6)Alkylaminothiocarbonyl, Di-(Ci-C6)alkyl-aminocarbonyl, Di- (Ci-C6)alkyl-aminothiocarbonyl, (C3-C8)Cycloalkylaminocarbonyl, (Ci-C6)Alkylsulfonylamino, (Ci-C6)Alkylamino, Di-(Ci-C6)Alkylamino, Aminosulfonyl, (Ci-C6)Alkylaminosulfonyl, Di- (Ci-C6)alkyl-aminosulfonyl, (Ci-C6)Alkylsulfoximino, Aminothiocarbonyl, (Ci- C6)Alkylaminothiocarbonyl, Di-(Ci-C6)alkyl-aminothiocarbonyl, (C3-C8)Cycloalkylamino, NHCO-(C i -C6)alkyl ((C i -C6) Alkylcarbonylamino) , oder wobei die Substituenten unabhängig voneinander ausgewählt sein können aus Phenyl oder einem 5- oder 6-gliedrigen heteroaromatischen Ring, wobei Phenyl oder der Ring gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Ci-Cö-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C6-Cycloalkyl, Ci-Ce-Haloalkyl, C2-C6-Haloalkenyl, C2-C6-Haloalkinyl, C3-C6-Halocycloalkyl, Halogen, CN, Ci-C4-Alkoxy, Ci-C4-Haloalkoxy substituiert sein können, n für 0, 1 oder 2 steht, ausgenommen
2-(3-Methylmercapto-2-naphthyl)-lH-imidazo[4,5-b]pyridin, 2-(3-Methylsulfinyl-2-naphthyl)- lH-imidazo[4,5-b]pyridin, 2-(3-Methylsulfanyl-2-naphthyl)-lH-imidazo[4,5-b]pyridine, 2-(l- Methylmercapto-2-naphthalenyl)imidazo[4,5-c]pyridin, 2-( 1 ,6-bis(Methylmercapto)-2- naphthalenyl)imidazo[4,5-c]pyridin, 5-Methoxy-2-(3-methylmercapto-naphth-2-yl)-lH- imidazo[4,5-b]pyridin.
3. Verbindungen der Formeln (I) oder (Γ) gemäß Anspruch 1, in welchen
R1 für (Ci-C4)Alkyl, (Ci-C4)Hydroxyalkyl, (Ci-C4)Halogenalkyl, (C2-C4)Alkenyl, (C2- C4)Halogenalkenyl, (C2-C4)Alkinyl, (C2-C4)Halogenalkinyl, (C3-C6)Cycloalkyl, (Ci- C4)Alkylthio-(Ci-C4)alkyl, (Ci-C4)Alkylsulfinyl-(Ci-C4)alkyl oder (Ci-C4)Alkylsulfonyl-(Ci- C4)alkyl steht,
R2, R3 unabhängig voneinander für Wasserstoff, Cyano, Halogen, Nitro, Hydroxy, Amino, SCN, Tri-(Ci-C4)alkylsilyl, (C3-C6)Cycloalkyl, (C3-C6)Cycloalkyl-(C3-C6)cycloalkyl, (Ci- C4)Alkyl-(C3-C6)cycloalkyl, Halogen(C3-C6)cycloalkyl, (Ci-C4)Alkyl, (Ci-C4)Halogenalkyl, (Ci-C4)Cyanoalkyl, (Ci-C4)Alkoxy-(Ci-C4)alkyl, (C2-C4)Alkenyl, (C2-C4)Halogenalkenyl, (C2- C )Cyanoalkenyl, (C2-C )Alkinyl, (C2-C )Halogenalkinyl, (C2-C )Cyanoalkinyl, (Ci-C )Alkoxy, (Ci-C4)Halogenalkoxy, (Ci-C4)Cyanoalkoxy, (Ci-C4)Alkylhydroxyimino, (Ci-C4)Alkoxyimino, (Ci-C4)Alkyl-(Ci-C4)alkoxyimino, (Ci-C4)Alkylthio, (Ci-C4)Halogenalkylthio, (Ci- C4)Alkylsulfinyl, (Ci-C4)Halogenalkylsulfinyl, (Ci-C4)Alkylsulfonyl, (Ci-
C4)Halogenalkylsulfonyl, (Ci-C4)Alkylsulfonyloxy, (Ci-C4)Alkylcarbonyl, (Ci- C4)Halogenalkylcarbonyl, Aminocarbonyl, (Ci-C4)Alkylaminocarbonyl, Di-(Ci-C4)alkyl- aminocarbonyl, (Ci-C4)Alkylsulfonylamino, (Ci-C4)Alkylamino, Di-(Ci-C4)Alkylamino, Aminosulfonyl, (Ci-C4)Alkylaminosulfonyl, Di-(Ci-C4)alkyl-aminosulfonyl oder NHCO-(Ci- C4)alkyl ((Ci-C4)Alkylcarbonylamino) stehen,
Q für ein heteroaromatisches 9-gliedriges oder 12-gliedriges annelliertes bicyclisches oder tricyclisches Ringsystem aus der Reihe Ql bis Q20 steht,
WO 2017/174414 PCT/EP2017/057397
Figure imgf000108_0001
Figure imgf000108_0002
Figure imgf000108_0003
Figure imgf000108_0004
Figure imgf000108_0005
Q19 Q20
R4 für (Ci-C4)Alkyl, (Ci-C4)Halogenalkyl, (Ci-C4)Cyanoalkyl, (Ci-C4)Hydroxyalkyl, (Ci- C4)Alkoxy-(Ci-C4)alkyl, (Ci-C4)Halogenalkoxy-(Ci-C4)alkyl, (C2-C4)Alkenyl, (C2- C4)Alkenyloxy-(Ci-C4)alkyl, (C2-C4)Halogenalkenyloxy-(Ci-C4)alkyl, (C2-C4)Halogenalkenyl, (C2-C4)Cyanoalkenyl, (C2-C4)Alkinyl, (C2-C4)Alkinyloxy-(Ci-C4)alkyl, (C2-C4)Halogenalkinyl, (C3-C6)Cycloalkyl, (C3-C6)Cycloalkyl-(C3-C6)cycloalkyl, (Ci-C4)Alkyl-(C3-C6)cycloalkyl, Halogen(C3-C6)cycloalkyl, (Ci-C4)Alkylthio-(Ci-C4)alkyl, (Ci-C4)Alkylsulfinyl-(Ci-C4)alkyl, (Ci-C4)Alkylsulfonyl-(Ci-C4)alkyl oder (Ci-C4)Alkylcarbonyl-(Ci-C4)alkyl steht,
R5, R6 unabhängig voneinander für Wasserstoff, Cyano, Halogen, (Ci-C4)Alkyl, (Ci- C4)Halogenalkyl, (C2-C4)Alkenyl, (C2-C4)Halogenalkenyl, (C2-C4)Alkinyl, (C2- C4)Halogenalkinyl, (C3-C6)Cycloalkyl, (C3-C6)Cycloalkyl-(C3-C6)cycloalkyl, (Ci-C4)Alkyl-(C3- C6)cycloalkyl, (Ci-C )Alkoxy, (Ci-C )Halogenalkoxy, (Ci-C )Alkoxyimino, (Ci-C )Alkylthio, (Ci-C4)Halogenalkylthio, (Ci-C4)Alkylsulfinyl, (Ci-C4)Halogenalkylsulfinyl, (Ci- C )Alkylsulfonyl, (Ci-C )Halogenalkylsulfonyl, (Ci-C )Alkylsulfonyloxy, (Ci- C4)Alkylcarbonyl, (Ci-C4)Halogenalkylcarbonyl, Aminocarbonyl, (Ci-C4)Alkylaminocarbonyl, Di-(Ci-C4)alkyl-aminocarbonyl, (Ci-C4)Alkylsulfonylamino, (Ci-C4)Alkylamino, Di-(Ci- C4)Alkylamino, Aminosulfonyl, (Ci-C4)Alkylaminosulfonyl oder Di-(Ci-C4)alkylaminosulfonyl stehen,
R7 für Wasserstoff, Cyano, Fluor, Chlor, Brom, (Ci-C4)Alkyl, (Ci-C4)Halogenalkyl, (Ci- C4)Alkoxy oder (Ci-C4)Halogenalkoxy steht,
R10 für Wasserstoff, Cyano, Fluor, Chlor, Brom, (Ci-C4)Alkyl, (Ci-C4)Halogenalkyl, (Ci- C4)Alkoxy oder (Ci-C4)Halogenalkoxy steht,
R11 für Wasserstoff, Cyano, Fluor, Chlor, Brom, Methyl, Trifluormethyl, Methoxy oder Trifluormethoxy steht, wobei mindestens einer der Substituenten R10 oder R11 für Wasserstoff stehen muss, n für 0, 1 oder 2 steht.
Verbindungen der Formeln (I) oder (Γ) gemäß Anspruch 1, in welchen
R1 für (Ci-C4)Alkyl, (Ci-C4)Halogenalkyl oder (C3-C6)Cycloalkyl steht, R2, R3 unabhängig voneinander für Wasserstoff, Cyano, Halogen, (Ci-C4)Alkyl, (Ci- C4)Halogenalkyl, (Ci-C4)Halogenalkoxy, (Ci-C4)Alkylthio, (Ci-C4)Alkylsulfinyl, (Ci- C4)Alkylsulfonyl, (Ci-C4)Halogenalkylthio, (Ci-C4)Halogenalkylsulfinyl, (Ci- C4)Halogenalkylsulfonyl oder NHCO-(Ci-C4)alkyl ((Ci-C4)Alkylcarbonylarnino) stehen,
Q für ein heteroaromatisches 9-gliedriges oder 12-gliedriges annelliertes bicyclisches oder tricyclisches Ringsystem aus der Reihe Q2, Q3, Q5, Q6, Q8, Q9, Q10, QU, Q14, Q15, Q16 oder Q19 steht,
Figure imgf000110_0001
R4 für (Ci-C4)Alkyl oder (Ci-C4)Alkyoxy-(Ci-C4)alkyl steht,
R5 für Wasserstoff, Cyano, Halogen, (Ci-C4)Alkyl, (Ci-C4)Halogenalkyl, (C3- C6)Cycloalkyl, (C3-C6)Cycloalkyl-(C3-C6)cycloalkyl, (Ci-C4)Alkyl-(C3-C6)cycloalkyl, (Ci- C )Alkoxy, (Ci-C )Halogenalkoxy, (Ci-C )Alkoxyimino, (Ci-C )Alkylhio, (Ci- C4)Halogenalkylthio, (Ci-C4)Alkylsulfinyl, (Ci-C4)Halogenalkylsulfinyl, (Ci-C4)Alkylsulfonyl, (Ci-C4)Halogenalkylsulfonyl, (Ci-C4)Alkylcarbonyl, (Ci-C4)Halogenalkylcarbonyl, (Ci- C4)Alkylaminocarbonyl, Di-(Ci-C4)alkyl-aminocarbonyl, (Ci-C4)Alkylsulfonylamino, (Ci- C4)Alkylaminosulfonyl oder Di-(Ci-C4)alkylaminosulfonyl steht,
R6 für Wasserstoff steht,
R7 für Wasserstoff, Cyano, Fluor, Chlor, Brom, Methyl oder Trifluormethyl steht, R10 für Wasserstoff, Cyano, Fluor, Chlor, Brom, Methyl oder Trifluormethyl steht, R11 für Wasserstoff, Cyano, Fluor, Chlor, Brom, Methyl oder Trifluormethyl steht, wobei mindestens einer der Substituenten R10 oder R11 für Wasserstoff stehen muss, n für 0, 1 oder 2 steht.
Verbindungen der Formeln (I) oder (Γ) gemäß Anspruch 1, in welchen
R1 für Methyl, Ethyl, n-Propyl, i-Propyl, cyclo-Propyl, n-Butyl, i-Butyl, tert. -Butyl, cyclo- Butyl, Fluormethyl, Difluormethyl, Trifluormethyl, Fluorethyl, Difluorethyl, Trifluorethyl, Tetrafluorethyl oder Pentafluorethyl steht,
R2, R3 unabhängig voneinander für Wasserstoff, Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, Methoxy, Trifluormethyl, Trifluormethoxy, Trifluormethylthio, Trifluormethylsulfinyl oder Trifluoralkylsulfonyl stehen,
Q für ein heteroaromatisches 9-gliedriges annelliertes bicyclisches Ringsystem aus der
Reihe Q2, Q3, Q10, Q14 oder Q16 steht,
Figure imgf000111_0001
Q14 Q16 R4 für Methyl, Ethyl, i-Propyl, Methoxymethyl oder Methoxyethyl steht,
R5 für Fluor, Chlor, Brom, Fluormethyl, Difluormethyl, Trifluormethyl, Fluorethyl (CH2CFH2, CHFCH3), Difluorethyl (CF2CH3, CH2CHF2, CHFCFH2), Trifluorethyl, (CH2CF3, CHFCHF2, CF2CFH2), Tetrafluorethyl (CHFCF3, CF2CHF2), Pentafluorethyl, Trifluormethoxy, Difluorchlormethoxy, Dichlorfluormethoxy, Trifluormethylthio, Trifluormethylsulfinyl oder Trifluormethylsulfonyl steht,
R6 für Wasserstoff steht,
R7 für Wasserstoff, Fluor, Chlor oder Trifluormethyl steht,
R10 für Wasserstoff, Fluor, Chlor oder Trifluormethyl steht,
R11 für Wasserstoff, Fluor, Chlor oder Trifluormethyl steht, wobei mindestens einer der Substituenten R10 oder R11 für Wasserstoff stehen muss, n steht hervorgehoben für 0, 1 oder 2.
6. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher R1 für Ethyl steht,
R2 für Chlor steht
R3 für Wasserstoff steht,
Q für ein heteroaromatisches 9-gliedriges annelliertes bicyclisches Ringsystem aus der Reihe Q3 steht,
R4 für Methyl steht,
R5 für Trifluormethyl steht,
R6 für Wasserstoff steht,
R7 für Wasserstoff steht, n für 0 oder 2 steht.
7. Verbindungen der Formel (Γ) gemäß Anspruch 1, in welcher R1 Ethyl steht,
R2 für Wasserstoff steht, R3 für Wasserstoff steht,
Q für ein heteroaiOinatisches 9-gliedriges annelliertes bicyclisches Ringsystem aus Reihe Q3 steht,
R4 für Methyl steht,
R5 für Trifluormethyl steht,
R6 für Wasserstoff steht,
R10 für Wasserstoff steht,
R11 für Wasserstoff steht, n für 2 steht.
Verbindungen der Formel (Γ) gemäß Anspruch 1, in welcher
R1, R2, R\ R10, R11, Q und n die in Anspruch 1, 2, 3, 4, 5 oder 7 angegebenen Bedeutun haben.
Verbindungen der Formel (I) gemäß Anspruch 1 , in welcher
R2 für Chlor steht,
R3 für Wasserstoff steht,
R7 für Wasserstoff steht, wobei sich folgende Struktur ergibt:
Figure imgf000113_0001
und Q, R1 und n die in Anspruch 1, 2, 3, 4, 5 oder 6 angegebenen Bedeutungen haben. Verbindungen der Formeln (I) oder (Γ) gemäß Anspruch 1, mit den folgenden Strukturen 11. Agrochemische Formulierung enthaltend Verbindungen der Formel (I) oder der Formel (Γ) gemäß Anspruch 1 , sowie Streckmittel und/oder oberflächenaktive Substanzen. 12. Agrochemische Formulierung gemäß Anspruch 11 zusätzlich enthaltend einen weiteren agrochemischen Wirkstoff.
13. Verfahren zur Bekämpfung von tierischen Schädlingen dadurch gekennzeichnet, dass man eine Verbindung der Formel (I) oder der Formel (Γ) gemäß Anspruch 1 oder eine agrochemische Formulierung gemäß einem der Ansprüche 11 oder 12 auf die tierischen Schädlinge und/oder ihren Lebensraum einwirken lässt.
14. Verwendung von Verbindungen der Formel (I) oder der Formel (Γ) gemäß Anspruch 1 oder von agrochemischen Formulierungen gemäß einem der Ansprüche 11 oder 12 zur Bekämpfung von tierischen Schädlingen.
PCT/EP2017/057397 2016-04-05 2017-03-29 Naphthalin-derivate als schädlingsbekämpfungsmittel WO2017174414A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16163912 2016-04-05
EP16163912.5 2016-04-05

Publications (1)

Publication Number Publication Date
WO2017174414A1 true WO2017174414A1 (de) 2017-10-12

Family

ID=55697079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/057397 WO2017174414A1 (de) 2016-04-05 2017-03-29 Naphthalin-derivate als schädlingsbekämpfungsmittel

Country Status (1)

Country Link
WO (1) WO2017174414A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138050A1 (de) 2017-01-26 2018-08-02 Bayer Aktiengesellschaft Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2019162174A1 (de) 2018-02-21 2019-08-29 Bayer Aktiengesellschaft Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
US10544163B2 (en) 2016-03-10 2020-01-28 Nissan Chemical Corporation Condensed heterocyclic compounds and pesticides
US10561145B2 (en) 2016-07-19 2020-02-18 Bayer Cropscience Aktiengesellschaft Fused bicyclic heterocycle derivatives as pesticides
US10660334B2 (en) 2016-08-15 2020-05-26 Bayer Cropscience Aktiengesellschaft Fused bicyclic heterocycle derivatives as pesticides
US10765116B2 (en) 2016-11-23 2020-09-08 Bayer Cropscience Aktiengesellschaft 2-[3-(alkylsulfonyl)-2H-indazol-2-yl]-3H-imidazo[4,5-B]pyridine derivatives and similar compounds as pesticides

Citations (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820062A (en) 1954-08-11 1958-01-14 Pure Oil Co Preparation of organic thiols
DE3225386A1 (de) * 1982-07-07 1984-01-12 Beiersdorf Ag, 2000 Hamburg Substituierte naphthyl-imidazo (4,5-b) pyridine, verfahren zu ihrer herstellung und ihre verwendung sowie diese verbindungen enthaltende zubereitungen
EP0142235A1 (de) * 1983-09-08 1985-05-22 Eli Lilly And Company Naphthalenylimidazopyridin und Derivate und deren Herstellung
EP0184738A2 (de) * 1984-12-12 1986-06-18 Dr. Karl Thomae GmbH Neue Imidazoderivate, diese Verbindungen enthaltende Arzneimittel und Verfahren zu ihrer Herstellung
US5374646A (en) 1989-12-01 1994-12-20 Glaxo Group Limited Benzofuran derivatives
US5576335A (en) 1994-02-01 1996-11-19 Nisshin Flour Milling Co., Ltd. Urea derivatives and their use as ACAT inhibitors
US20030069257A1 (en) 2000-12-21 2003-04-10 Guiying Li Benzimidazole and pyridylimidazole derivatives
WO2003106457A1 (en) 2002-06-14 2003-12-24 Syngenta Limited Spiroindolinepiperidine derivatives
WO2004099160A1 (en) 2003-05-12 2004-11-18 Sumitomo Chemical Company, Limited Pyrimidine compounds and pests controlling composition containing the same
WO2005066177A1 (en) 2003-12-31 2005-07-21 Schering-Plough Ltd. Control of parasites in animals by the use of imidazo[1,2-b]pyridazine derivatives
WO2005100353A1 (en) 2004-04-15 2005-10-27 Almirall Prodesfarma, Sa Condensed pyridine derivatives useful as a28 adenosine receptor antagonists
WO2006003494A2 (en) 2004-06-28 2006-01-12 Syngenta Participations Ag Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides
US20060025633A1 (en) 2002-09-25 2006-02-02 Georges Fremy Catalytic method of producing mercaptans from thioethers
WO2006043635A1 (ja) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. 3-トリアゾリルフェニルスルフィド誘導体及びそれを有効成分として含有する殺虫・殺ダニ・殺線虫剤
US20060111591A1 (en) 2002-09-25 2006-05-25 Georges Fremy Catalytic method of producing alkyl mercaptans by adding hydrogen sulphide to an olefin
WO2006065703A1 (en) 2004-12-13 2006-06-22 Sunesis Pharmaceuticals, Inc. Pyrido pyrimidinones, dihydro pyrimido pyrimidinones and pteridinones useful as raf kinase inhibitors
WO2007040280A1 (ja) 2005-10-06 2007-04-12 Nippon Soda Co., Ltd. 環状アミン化合物および有害生物防除剤
CN101337940A (zh) 2008-08-12 2009-01-07 国家农药创制工程技术研究中心 具杀虫活性的含氮杂环二氯烯丙醚类化合物
CN101337937A (zh) 2008-08-12 2009-01-07 国家农药创制工程技术研究中心 具有杀虫活性的n-苯基-3-取代氨基吡唑类化合物
US20090203705A1 (en) 2008-01-29 2009-08-13 Matteo Biagetti Spiro Compounds As NPY Y5 Receptor Antagonists
WO2009131237A1 (ja) 2008-04-21 2009-10-29 住友化学株式会社 有害節足動物防除組成物および縮合複素環化合物
JP2010018586A (ja) 2008-07-14 2010-01-28 Meiji Seika Kaisha Ltd Pf1364物質、その製造方法、生産菌株、及び、それを有効成分とする農園芸用殺虫剤
WO2010052161A2 (en) 2008-11-06 2010-05-14 Syngenta Participations Ag Herbicidal compositions
WO2010051926A2 (de) 2008-11-05 2010-05-14 Bayer Cropscience Aktiengesellschaft Halogen-substituierte verbindungen als pestizide
CN101715774A (zh) 2008-10-09 2010-06-02 浙江化工科技集团有限公司 一个具有杀虫活性化合物制备及用途
WO2010091310A1 (en) 2009-02-06 2010-08-12 Elan Pharmaceuticals, Inc. Inhibitors of jun n-terminal kinase
US20100234603A1 (en) 2009-03-13 2010-09-16 Xin Linghu Process for Making Substituted Aryl Sulfone Intermediates
US20100234604A1 (en) 2009-03-13 2010-09-16 Xin Linghu Process for Making Substituted Aryl Sulfone Intermediates
WO2010114262A2 (en) 2009-03-31 2010-10-07 Dow Advanced Display Materials,Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010125985A1 (en) 2009-04-28 2010-11-04 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use thereof
WO2011037929A2 (en) 2009-09-24 2011-03-31 The Scripps Research Institute Pd(ii)-catalyzed hydroxylation of arenes with o2 or air
WO2011040629A1 (en) 2009-09-30 2011-04-07 Sumitomo Chemical Company, Limited Composition and method for controlling arthropod pests
WO2011043404A1 (en) 2009-10-07 2011-04-14 Sumitomo Chemical Company, Limited Heterocyclic compound and its use for control of an arthropod pest
WO2011075643A1 (en) 2009-12-18 2011-06-23 Incyte Corporation Substituted heteroaryl fused derivatives as pi3k inhibitors
WO2011085575A1 (zh) 2010-01-15 2011-07-21 江苏省农药研究所股份有限公司 邻杂环甲酰苯胺类化合物及其合成方法和应用
WO2011132633A1 (ja) 2010-04-19 2011-10-27 第一三共株式会社 置換5-ヒドロキシピリミジン-4-カルボキサミド化合物
WO2012029672A1 (ja) 2010-08-31 2012-03-08 Meiji Seikaファルマ株式会社 有害生物防除剤
WO2012034403A1 (zh) 2010-09-14 2012-03-22 中化蓝天集团有限公司 一种含一氟甲氧基吡唑的邻甲酰氨基苯甲酰胺类化合物、其合成方法及应用
CN102391261A (zh) 2011-10-14 2012-03-28 上海交通大学 一种n-取代噁二嗪类化合物及其制备方法和应用
WO2012066061A1 (en) 2010-11-19 2012-05-24 F. Hoffmann-La Roche Ag Pyrazolopyridines and pyrazolopyridines and their use as tyk2 inhibitors
WO2012074135A1 (en) 2010-12-01 2012-06-07 Sumitomo Chemical Company, Limited Pyrimidine compound and use for pest control thereof
WO2012086848A1 (en) 2010-12-24 2012-06-28 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use for pest control thereof
WO2012088411A1 (en) 2010-12-22 2012-06-28 Pamlico Pharmaceutical Inc. 2-arylimidazo[1,2-b]pyridazine, 2-phenylimidazo[1,2-a]pyridine, and 2-phenylimidazo[1,2-a]pyrazine derivatives
US20120258951A1 (en) 2009-12-18 2012-10-11 Mitsubishi Tanage Pharma Corporation Novel antiplatelet agent
US20120302573A1 (en) 2011-05-25 2012-11-29 Paul Francis Jackson Methods of inhibiting pro matrix metalloproteinase activation
WO2012168733A1 (en) 2011-06-10 2012-12-13 Ucl Business Plc Substituted 8 - amino - imidazo [1, 2-a] pyrazines as antibacterial agents
WO2013003298A2 (en) 2011-06-29 2013-01-03 Bristol-Myers Squibb Company Inhibitors of pde10
WO2013018928A1 (en) 2011-08-04 2013-02-07 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use thereof for pest control
WO2013050317A1 (en) 2011-10-03 2013-04-11 Syngenta Limited Polymorphs of an isoxazoline derivative
CN103109816A (zh) 2013-01-25 2013-05-22 青岛科技大学 硫代苯甲酰胺类化合物及其应用
WO2013099041A1 (ja) 2011-12-28 2013-07-04 富士フイルム株式会社 新規なニコチンアミド誘導体またはその塩
CN103232431A (zh) 2013-01-25 2013-08-07 青岛科技大学 一种二卤代吡唑酰胺类化合物及其应用
WO2013144213A1 (en) 2012-03-30 2013-10-03 Basf Se N-substituted pyridinylidene compounds and derivatives for combating animal pests
EP2647626A1 (de) 2012-04-03 2013-10-09 Syngenta Participations AG. 1-Aza-spiro[4.5]dec-3-en- und 1,8-Diaza-spiro[4.5]dec-3-enderivate als Pestizide
WO2013162715A2 (en) 2012-04-27 2013-10-31 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
EP2671582A1 (de) 2011-02-01 2013-12-11 Kyowa Hakko Kirin Co., Ltd. Kondensierte heterocyclische derivate
WO2013191113A1 (ja) 2012-06-18 2013-12-27 住友化学株式会社 縮合複素環化合物
CN103524422A (zh) 2013-10-11 2014-01-22 中国农业科学院植物保护研究所 苯并咪唑衍生物及其制备方法和用途
US20140213448A1 (en) 2012-04-27 2014-07-31 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
WO2014142292A1 (ja) 2013-03-15 2014-09-18 日本農薬株式会社 縮合複素環化合物又はその塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法
WO2014145169A2 (en) 2013-03-15 2014-09-18 Gi-Gasification International (Luxembourg), S.A. Systems, methods and apparatuses for a compact reactor with finned panels
US20140275503A1 (en) 2013-03-13 2014-09-18 Dow Agrosciences Llc Process for the preparation of certain triaryl rhamnose carbamates
WO2014148451A1 (ja) 2013-03-19 2014-09-25 日本農薬株式会社 縮合複素環化合物又はその塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法
WO2014163257A1 (ko) 2013-04-03 2014-10-09 건국대학교기술지주 주식회사 신규 전염성 f낭병 바이러스 ibd k7주 및 이를 이용한 전염성 f낭병 백신
WO2014187762A1 (en) 2013-05-23 2014-11-27 F. Hoffmann-La Roche Ag 2-phenylimidazo[1,2-a]pyrimidines as imaging agents
WO2015000715A1 (en) 2013-07-02 2015-01-08 Syngenta Participations Ag Pesticidally active bi- or tricyclic heterocycles with sulfur containing substituents
WO2015058021A1 (en) 2013-10-17 2015-04-23 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
WO2015058028A1 (en) 2013-10-17 2015-04-23 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
WO2015121136A1 (de) 2014-02-17 2015-08-20 Bayer Cropscience Ag 2-(het)aryl-substituierte kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2016039441A1 (ja) 2014-09-12 2016-03-17 日本農薬株式会社 イミダゾピリダジン化合物又はその塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法
WO2016091731A1 (en) 2014-12-11 2016-06-16 Syngenta Participations Ag Pesticidally active tetracyclic derivatives with sulfur containing substituents
WO2016107742A1 (en) 2014-12-29 2016-07-07 Syngenta Participations Ag Pesticidally active tetracyclic derivatives with sulfur containing substituents
WO2016124563A1 (de) 2015-02-05 2016-08-11 Bayer Cropscience Aktiengesellschsaft 2-(het)aryl-substituierte kondensierte bicyclische heterocyclen-derivate als schädlings-bekämpfungsmittel
WO2016124557A1 (de) 2015-02-05 2016-08-11 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituierte kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel

Patent Citations (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820062A (en) 1954-08-11 1958-01-14 Pure Oil Co Preparation of organic thiols
DE3225386A1 (de) * 1982-07-07 1984-01-12 Beiersdorf Ag, 2000 Hamburg Substituierte naphthyl-imidazo (4,5-b) pyridine, verfahren zu ihrer herstellung und ihre verwendung sowie diese verbindungen enthaltende zubereitungen
EP0142235A1 (de) * 1983-09-08 1985-05-22 Eli Lilly And Company Naphthalenylimidazopyridin und Derivate und deren Herstellung
EP0184738A2 (de) * 1984-12-12 1986-06-18 Dr. Karl Thomae GmbH Neue Imidazoderivate, diese Verbindungen enthaltende Arzneimittel und Verfahren zu ihrer Herstellung
US5374646A (en) 1989-12-01 1994-12-20 Glaxo Group Limited Benzofuran derivatives
US5576335A (en) 1994-02-01 1996-11-19 Nisshin Flour Milling Co., Ltd. Urea derivatives and their use as ACAT inhibitors
US20030069257A1 (en) 2000-12-21 2003-04-10 Guiying Li Benzimidazole and pyridylimidazole derivatives
WO2003106457A1 (en) 2002-06-14 2003-12-24 Syngenta Limited Spiroindolinepiperidine derivatives
US20060025633A1 (en) 2002-09-25 2006-02-02 Georges Fremy Catalytic method of producing mercaptans from thioethers
US20060111591A1 (en) 2002-09-25 2006-05-25 Georges Fremy Catalytic method of producing alkyl mercaptans by adding hydrogen sulphide to an olefin
WO2004099160A1 (en) 2003-05-12 2004-11-18 Sumitomo Chemical Company, Limited Pyrimidine compounds and pests controlling composition containing the same
WO2005066177A1 (en) 2003-12-31 2005-07-21 Schering-Plough Ltd. Control of parasites in animals by the use of imidazo[1,2-b]pyridazine derivatives
WO2005100353A1 (en) 2004-04-15 2005-10-27 Almirall Prodesfarma, Sa Condensed pyridine derivatives useful as a28 adenosine receptor antagonists
WO2006003494A2 (en) 2004-06-28 2006-01-12 Syngenta Participations Ag Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides
WO2006043635A1 (ja) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. 3-トリアゾリルフェニルスルフィド誘導体及びそれを有効成分として含有する殺虫・殺ダニ・殺線虫剤
WO2006065703A1 (en) 2004-12-13 2006-06-22 Sunesis Pharmaceuticals, Inc. Pyrido pyrimidinones, dihydro pyrimido pyrimidinones and pteridinones useful as raf kinase inhibitors
WO2007040280A1 (ja) 2005-10-06 2007-04-12 Nippon Soda Co., Ltd. 環状アミン化合物および有害生物防除剤
WO2007040282A1 (ja) 2005-10-06 2007-04-12 Nippon Soda Co., Ltd. 架橋環状アミン化合物および有害生物防除剤
US20090203705A1 (en) 2008-01-29 2009-08-13 Matteo Biagetti Spiro Compounds As NPY Y5 Receptor Antagonists
WO2009131237A1 (ja) 2008-04-21 2009-10-29 住友化学株式会社 有害節足動物防除組成物および縮合複素環化合物
JP2010018586A (ja) 2008-07-14 2010-01-28 Meiji Seika Kaisha Ltd Pf1364物質、その製造方法、生産菌株、及び、それを有効成分とする農園芸用殺虫剤
CN101337940A (zh) 2008-08-12 2009-01-07 国家农药创制工程技术研究中心 具杀虫活性的含氮杂环二氯烯丙醚类化合物
CN101337937A (zh) 2008-08-12 2009-01-07 国家农药创制工程技术研究中心 具有杀虫活性的n-苯基-3-取代氨基吡唑类化合物
CN101715774A (zh) 2008-10-09 2010-06-02 浙江化工科技集团有限公司 一个具有杀虫活性化合物制备及用途
WO2010051926A2 (de) 2008-11-05 2010-05-14 Bayer Cropscience Aktiengesellschaft Halogen-substituierte verbindungen als pestizide
WO2010052161A2 (en) 2008-11-06 2010-05-14 Syngenta Participations Ag Herbicidal compositions
WO2010091310A1 (en) 2009-02-06 2010-08-12 Elan Pharmaceuticals, Inc. Inhibitors of jun n-terminal kinase
US20100234603A1 (en) 2009-03-13 2010-09-16 Xin Linghu Process for Making Substituted Aryl Sulfone Intermediates
US20100234604A1 (en) 2009-03-13 2010-09-16 Xin Linghu Process for Making Substituted Aryl Sulfone Intermediates
WO2010114262A2 (en) 2009-03-31 2010-10-07 Dow Advanced Display Materials,Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010125985A1 (en) 2009-04-28 2010-11-04 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use thereof
WO2011037929A2 (en) 2009-09-24 2011-03-31 The Scripps Research Institute Pd(ii)-catalyzed hydroxylation of arenes with o2 or air
WO2011040629A1 (en) 2009-09-30 2011-04-07 Sumitomo Chemical Company, Limited Composition and method for controlling arthropod pests
WO2011043404A1 (en) 2009-10-07 2011-04-14 Sumitomo Chemical Company, Limited Heterocyclic compound and its use for control of an arthropod pest
WO2011075643A1 (en) 2009-12-18 2011-06-23 Incyte Corporation Substituted heteroaryl fused derivatives as pi3k inhibitors
US20120258951A1 (en) 2009-12-18 2012-10-11 Mitsubishi Tanage Pharma Corporation Novel antiplatelet agent
WO2011085575A1 (zh) 2010-01-15 2011-07-21 江苏省农药研究所股份有限公司 邻杂环甲酰苯胺类化合物及其合成方法和应用
WO2011132633A1 (ja) 2010-04-19 2011-10-27 第一三共株式会社 置換5-ヒドロキシピリミジン-4-カルボキサミド化合物
WO2012029672A1 (ja) 2010-08-31 2012-03-08 Meiji Seikaファルマ株式会社 有害生物防除剤
WO2012034403A1 (zh) 2010-09-14 2012-03-22 中化蓝天集团有限公司 一种含一氟甲氧基吡唑的邻甲酰氨基苯甲酰胺类化合物、其合成方法及应用
WO2012066061A1 (en) 2010-11-19 2012-05-24 F. Hoffmann-La Roche Ag Pyrazolopyridines and pyrazolopyridines and their use as tyk2 inhibitors
WO2012074135A1 (en) 2010-12-01 2012-06-07 Sumitomo Chemical Company, Limited Pyrimidine compound and use for pest control thereof
WO2012088411A1 (en) 2010-12-22 2012-06-28 Pamlico Pharmaceutical Inc. 2-arylimidazo[1,2-b]pyridazine, 2-phenylimidazo[1,2-a]pyridine, and 2-phenylimidazo[1,2-a]pyrazine derivatives
WO2012086848A1 (en) 2010-12-24 2012-06-28 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use for pest control thereof
EP2671582A1 (de) 2011-02-01 2013-12-11 Kyowa Hakko Kirin Co., Ltd. Kondensierte heterocyclische derivate
US20120302573A1 (en) 2011-05-25 2012-11-29 Paul Francis Jackson Methods of inhibiting pro matrix metalloproteinase activation
WO2012168733A1 (en) 2011-06-10 2012-12-13 Ucl Business Plc Substituted 8 - amino - imidazo [1, 2-a] pyrazines as antibacterial agents
WO2013003298A2 (en) 2011-06-29 2013-01-03 Bristol-Myers Squibb Company Inhibitors of pde10
WO2013018928A1 (en) 2011-08-04 2013-02-07 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use thereof for pest control
WO2013050317A1 (en) 2011-10-03 2013-04-11 Syngenta Limited Polymorphs of an isoxazoline derivative
CN102391261A (zh) 2011-10-14 2012-03-28 上海交通大学 一种n-取代噁二嗪类化合物及其制备方法和应用
WO2013099041A1 (ja) 2011-12-28 2013-07-04 富士フイルム株式会社 新規なニコチンアミド誘導体またはその塩
WO2013144213A1 (en) 2012-03-30 2013-10-03 Basf Se N-substituted pyridinylidene compounds and derivatives for combating animal pests
EP2647626A1 (de) 2012-04-03 2013-10-09 Syngenta Participations AG. 1-Aza-spiro[4.5]dec-3-en- und 1,8-Diaza-spiro[4.5]dec-3-enderivate als Pestizide
US20140213448A1 (en) 2012-04-27 2014-07-31 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
WO2013162715A2 (en) 2012-04-27 2013-10-31 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
WO2013162716A2 (en) 2012-04-27 2013-10-31 Dow Agrosciences Llc Pesticidal compositions and processes related thereto
WO2013191113A1 (ja) 2012-06-18 2013-12-27 住友化学株式会社 縮合複素環化合物
CN103232431A (zh) 2013-01-25 2013-08-07 青岛科技大学 一种二卤代吡唑酰胺类化合物及其应用
CN103109816A (zh) 2013-01-25 2013-05-22 青岛科技大学 硫代苯甲酰胺类化合物及其应用
US20140275503A1 (en) 2013-03-13 2014-09-18 Dow Agrosciences Llc Process for the preparation of certain triaryl rhamnose carbamates
WO2014142292A1 (ja) 2013-03-15 2014-09-18 日本農薬株式会社 縮合複素環化合物又はその塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法
WO2014145169A2 (en) 2013-03-15 2014-09-18 Gi-Gasification International (Luxembourg), S.A. Systems, methods and apparatuses for a compact reactor with finned panels
WO2014148451A1 (ja) 2013-03-19 2014-09-25 日本農薬株式会社 縮合複素環化合物又はその塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法
WO2014163257A1 (ko) 2013-04-03 2014-10-09 건국대학교기술지주 주식회사 신규 전염성 f낭병 바이러스 ibd k7주 및 이를 이용한 전염성 f낭병 백신
WO2014187762A1 (en) 2013-05-23 2014-11-27 F. Hoffmann-La Roche Ag 2-phenylimidazo[1,2-a]pyrimidines as imaging agents
WO2015000715A1 (en) 2013-07-02 2015-01-08 Syngenta Participations Ag Pesticidally active bi- or tricyclic heterocycles with sulfur containing substituents
CN103524422A (zh) 2013-10-11 2014-01-22 中国农业科学院植物保护研究所 苯并咪唑衍生物及其制备方法和用途
WO2015058021A1 (en) 2013-10-17 2015-04-23 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
WO2015058028A1 (en) 2013-10-17 2015-04-23 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
WO2015121136A1 (de) 2014-02-17 2015-08-20 Bayer Cropscience Ag 2-(het)aryl-substituierte kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2016039441A1 (ja) 2014-09-12 2016-03-17 日本農薬株式会社 イミダゾピリダジン化合物又はその塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法
WO2016091731A1 (en) 2014-12-11 2016-06-16 Syngenta Participations Ag Pesticidally active tetracyclic derivatives with sulfur containing substituents
WO2016107742A1 (en) 2014-12-29 2016-07-07 Syngenta Participations Ag Pesticidally active tetracyclic derivatives with sulfur containing substituents
WO2016124563A1 (de) 2015-02-05 2016-08-11 Bayer Cropscience Aktiengesellschsaft 2-(het)aryl-substituierte kondensierte bicyclische heterocyclen-derivate als schädlings-bekämpfungsmittel
WO2016124557A1 (de) 2015-02-05 2016-08-11 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituierte kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel

Non-Patent Citations (77)

* Cited by examiner, † Cited by third party
Title
"Pesticide Specifications, Manual on development and use of FAO and WHO specifications for pesticides, FAO Plant Production and Protection Papers", 2004, FAO/WHO JOINT MEETING ON PESTICIDE SPECIFICATIONS, ISBN: 9251048576
"The Pesticide Manual, 16th ed.", 2012, BRITISH CROP PROTECTION COUNCIL
ANALOGIE ZU DEN IN JOURNAL OF ORGANIC CHEMISTRY, vol. 70, 2005, pages 2696 - 2700
ANGEWANDTE CHEMIE INT. ED., vol. 50, 2011, pages 8944 - 8947
ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 51, 2012, pages 10812 - 10815
ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 54, 2015, pages 10773 - 10777
ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 54, 2015, pages 12163 - 12166
ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 55, 2016, pages 413 - 417
ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 53, 2014, pages 1841 - 1844
ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 53, 2014, pages 8980 - 8984
ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 53, 2014, pages 9860 - 9864
ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 54, 2015, pages 2255 - 2259
APPLIED CATALYSIS, A: GENERAL, vol. 381, 2010, pages 161 - 168
BAUR ET AL., PESTICIDE SCIENCE, vol. 51, 1997, pages 131 - 152
BIOORGANIC AND MEDICINAL CHEMISTRY LETTERS, vol. 13, 2003, pages 1093 - 1096
BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, vol. 4, 1958, pages 447 - 450
CATALYSIS COMMUNICATIONS, vol. 59, 2015, pages 122 - 126
CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 29, 1981, pages 3249 - 3255
CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 53, 2005, pages 1540 - 1546
CHEMICAL COMMUNICATIONS, vol. 1, 2006, pages 97 - 99
CHEMICAL COMMUNICATIONS, vol. 13, 2000, pages 1163 - 1164
CHEMICAL ENGINEERING JOURNAL, vol. 271, 2015, pages 269 - 275
CHEMISTRY - A EUROPEAN JOURNAL, vol. 21, 2015, pages 7030 - 7034
CHEMISTRY - AN ASIAN JOURNAL, vol. 10, 2015, pages 1618 - 1621
CHEMISTRY-A EUROPEAN JOURNAL, vol. 19, 2013, pages 7944 - 7960
CHEMMEDCHEM, vol. 5, 2010, pages 65 - 78
CHEMSUSCHEM, vol. 8, 2015, pages 1916 - 1925
CHINESE JOURNAL OF CHEMISTRY, vol. 30, 2012, pages 1647 - 1657
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, vol. 5, 2014, pages 888 - 895
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 45, 2010, pages 2214 - 2222
GREEN PROCESSING AND SYNTHESIS, vol. 4, 2015, pages 91 - 96
HELVETICA CHIMICA ACTA, vol. 95, 2012, pages 1953 - 1969
HETEROCYCLES, vol. 86, 2012, pages 425 - 433
HUAXUE SHIJI, vol. 34, 2012, pages 571 - 573
HUBEI DAXUE XUEBAO, ZIRAN KEXUEBAN, vol. 32, 2010, pages 62 - 64
INDIAN JOURNAL OF CHEMISTRY, SECTION B: ORGANIC CHEMISTRY INCLUDING MEDICINAL CHEMISTRY, vol. 17B, 1979, pages 329 - 332
INTERNATIONAL JOURNAL OF ORGANIC CHEMISTRY, vol. 3, 2013, pages 1 - 7
J. MED. CHEM., vol. 31, 1988, pages 1590 - 1595
JOURNAL OF FLUORINE CHEMISTRY, vol. 156, 2013, pages 9 - 14
JOURNAL OF MATERIALS CHEMISTRY A: MATERIALS FOR ENERGY AND SUSTAINABILITY, vol. 2, 2014, pages 13905 - 13915
JOURNAL OF ORGANIC CHEMISTRY, vol. 58, 1993, pages 6429 - 6437
JOURNAL OF ORGANIC CHEMISTRY, vol. 68, 2003, pages 6238 - 6250
JOURNAL OF ORGANIC CHEMISTRY, vol. 70, 2005, pages 2696 - 2700
JOURNAL OF ORGANIC CHEMISTRY, vol. 76, 2011, pages 10068 - 10077
JOURNAL OF ORGANIC CHEMISTRY, vol. 76, 2011, pages 7204 - 7215
JOURNAL OF ORGANIC CHEMISTRY, vol. 78, 2013, pages 11606 - 11611
JOURNAL OF ORGANIC CHEMISTRY, vol. 79, 2014, pages 1529 - 1541
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, 2009, pages 2056 - 2057
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 136, 2014, pages 15414 - 15421
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 136, 2014, pages 2236 - 2239
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 44, 1922, pages 1329
JOURNAL OFT HE AMERICAN CHEMICAL SOCIETY, vol. 70, 1948, pages 3135 - 3136
JOURNAL OFTHE AMERICAN CHEMICAL SOCIETY, vol. 128, 2006, pages 9340 - 9341
ORGANIC LETTERS, vol. 1, 1999, pages 1415 - 1417
ORGANIC LETTERS, vol. 13, 2011, pages 320 - 323
ORGANIC LETTERS, vol. 17, 2015, pages 4180 - 4183
ORGANIC LETTERS, vol. 17, 2015, pages 4654 - 4657
ORGANIC LETTERS, vol. 9, 2007, pages 4143 - 4146
ORGANIC REAKTIONS (HOBOKEN, NJ, UNITED STATES, vol. 71, 2008, pages 1 - 737
ORGANIC SYNTHESES, vol. 50, 1970, pages 77 - 80
ORGANIC SYNTHESIS, vol. 57, 1977, pages 88 - 92
R. WEGLER: "Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel", vol. 2, 1970, SPRINGER VERLAG, pages: 401 - 412
RCS ADVANCES, vol. 5, 2015, pages 79699 - 79702
SCIENCE OF SYNTHESIS, vol. 45B, 2010, pages 745 - 854
SCIENCE OF SYNTHESIS, vol. 45B, 2010, pages 745 - 8548
SYNTHESIS, vol. 12, 2000, pages 1677 - 1680
SYNTHESIS, vol. 6, 1987, pages 586 - 587
SYNTHETIC COMMUNICATIONS, vol. 44, 2014, pages 2386 - 2392
SYNTHETIC COMMUNICATIONS, vol. 44, 2014, pages 836 - 846
TETRAHEDRON LETTERS, vol. 44, 2003, pages 7613 - 7615
TETRAHEDRON LETTERS, vol. 45, 2004, pages 5653 - 5656
TETRAHEDRON LETTERS, vol. 47, 2006, pages 565 - 567
TETRAHEDRON LETTERS, vol. 9, 1979, pages 821 - 824
TETRAHEDRON, vol. 47, 1991, pages 3499 - 3510
TETRAHEDRON, vol. 49, 1993, pages 10997 - 11008
TETRAHEDRON, vol. 71, 2015, pages 6744 - 6748
XUEBAO, ZIRAN KEXUEBAN, vol. 32, 2010, pages 62 - 64

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544163B2 (en) 2016-03-10 2020-01-28 Nissan Chemical Corporation Condensed heterocyclic compounds and pesticides
US10640518B2 (en) 2016-03-10 2020-05-05 Nissan Chemical Corporation Condensed heterocyclic compounds and pesticides
US10759815B2 (en) 2016-03-10 2020-09-01 Nissan Chemical Corporation Condensed heterocyclic compounds and pesticides
US10561145B2 (en) 2016-07-19 2020-02-18 Bayer Cropscience Aktiengesellschaft Fused bicyclic heterocycle derivatives as pesticides
US10660334B2 (en) 2016-08-15 2020-05-26 Bayer Cropscience Aktiengesellschaft Fused bicyclic heterocycle derivatives as pesticides
US10765116B2 (en) 2016-11-23 2020-09-08 Bayer Cropscience Aktiengesellschaft 2-[3-(alkylsulfonyl)-2H-indazol-2-yl]-3H-imidazo[4,5-B]pyridine derivatives and similar compounds as pesticides
WO2018138050A1 (de) 2017-01-26 2018-08-02 Bayer Aktiengesellschaft Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2019162174A1 (de) 2018-02-21 2019-08-29 Bayer Aktiengesellschaft Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
US11019821B2 (en) 2018-02-21 2021-06-01 Bayer Aktiengesellschaft Fused bicyclic heterocycle derivatives as pesticides

Similar Documents

Publication Publication Date Title
EP3515921B1 (de) Pyrazolo[1,5-a]pyridin- derivative und ihre verwendung als schädlingsbekämpfungsmittel
WO2017072039A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
EP3544978A1 (de) 2-[3-(alkylsulfonyl)-2h-indazol-2-yl]-3h-imidazo[4,5-b]pyridin-derivate und ähnliche verbindungen als schädlingsbekämpfungsmittel
WO2017093180A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2017125340A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
EP3577113A1 (de) Aryl- oder heteroaryl-substituierte imidazopyridinderivate und deren anwendung als schädlingsbekämpfungsmittel
WO2018033455A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
EP3931192B1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
EP3755700A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2019068572A1 (de) Heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2018130437A1 (de) Heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2017121674A1 (de) Heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2017174414A1 (de) Naphthalin-derivate als schädlingsbekämpfungsmittel
WO2018138050A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
EP3487860A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2018130443A1 (de) Heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2017144341A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2019175046A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
EP3672966A1 (de) Heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2017137337A1 (de) Substituierte imidazolyl-carboxamide als schädlingsbekämpfungsmittel
WO2020053282A1 (de) Heterocyclen-derivate als schädlingsbekämpfungsmittel
EP3241830A1 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2018202501A1 (de) 2-(het)aryl-substituierte kondensierte heterocyclen-derivate als schädlingsbekämpfungsmittel
EP3305786A2 (de) Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel
WO2018202494A1 (de) 2-(het)aryl-substituierte kondensierte heterocyclen-derivate als schädlingsbekämpfungsmittel

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17713968

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17713968

Country of ref document: EP

Kind code of ref document: A1