EP3978661B1 - Siebriemchen - Google Patents
Siebriemchen Download PDFInfo
- Publication number
- EP3978661B1 EP3978661B1 EP21199023.9A EP21199023A EP3978661B1 EP 3978661 B1 EP3978661 B1 EP 3978661B1 EP 21199023 A EP21199023 A EP 21199023A EP 3978661 B1 EP3978661 B1 EP 3978661B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- filaments
- sieve
- transverse
- longitudinal
- apron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 claims description 73
- 238000009987 spinning Methods 0.000 claims description 9
- 239000004744 fabric Substances 0.000 description 15
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 238000010348 incorporation Methods 0.000 description 6
- 238000005056 compaction Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000007378 ring spinning Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H5/00—Drafting machines or arrangements ; Threading of roving into drafting machine
- D01H5/18—Drafting machines or arrangements without fallers or like pinned bars
- D01H5/70—Constructional features of drafting elements
- D01H5/86—Aprons; Apron supports; Apron tensioning arrangements
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
- D03D1/0094—Belts
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/40—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
- D03D15/43—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with differing diameters
Definitions
- the present invention relates to an endless screen belt for transporting a fiber structure to be compressed over a suction slot of a compression device of a spinning machine, which has a plurality of adjacent longitudinal filaments in the circumferential direction and a plurality of adjacent transverse filaments transversely to the circumferential direction, wherein there are gaps between adjacent longitudinal filaments and adjacent transverse filaments, which form free surfaces so that the screen belt is permeable to air.
- a fiber structure stretched in a drafting system leaves the drafting system with a certain width and is then twisted into a thread with a relatively small diameter.
- the thread contains edge fibers that are not properly integrated into the twisted thread and thus contribute little to the strength of the thread.
- a compression zone is arranged downstream of the drafting zone of the drafting system. In the compression zone, the fibers are compressed together, making the fiber structure narrower. The resulting thread is then more uniform, stronger and less hairy.
- One of the ways to compress the fiber structure is a suction pipe that is wrapped around an endless, air-permeable sieve belt.
- the sieve belt slides over a suction slot in the suction pipe that is arranged at an angle to the running direction of the fiber structure.
- the running direction of the fiber structure essentially corresponds to the circumferential direction of the sieve belt.
- the fiber structure is transported on the sieve belt and compressed along a suction edge of the suction slot.
- An air-permeable conveyor belt of this type is known for transporting a fiber structure to be compressed over a suction slot in a compression zone of a spinning machine.
- the conveyor belt is designed as a fabric belt and consists of longitudinal threads running in the direction of transport of the fiber structure and transverse threads running perpendicular to the direction of transport of the fiber structure.
- the clear distance between two longitudinal threads is greater than the clear distance between two transverse threads.
- the aim is to create a conveyor belt which, on the one hand, ensures a sufficiently large air flow and, on the other hand, prevents the suction of lost fibers as far as possible.
- a top apron of a drafting system of a spinning machine is known.
- This top apron has an inner ring layer and an outer ring layer that are inseparably connected to one another.
- the surface of the outer ring layer has an uneven texture, and the shape of the uneven texture is grainy and/or wavy.
- the properties of such a top apron of a drafting system that must be fulfilled are the opposite of the properties of a screen apron. While the fibers must be held in the top apron of the drafting system, they must be moved transversely to their longitudinal axis in a screen apron. In addition, the top aprons of a drafting system are not permeable to air.
- the JP 2009185436 A describes a double apron drafting system with upper aprons and/or lower aprons as guide aprons, which are made of a fabric whose warp threads and weft threads each have a thickness of no more than 0.2 mm and whose outside is covered with a layer of rubber-elastic material that has a thickness of no more than 0.3 mm. These aprons are also not permeable to air and must guide the fibers so that the fibers do not change their position. In contrast, with a sieve apron, the fibers are moved transversely to their longitudinal direction and the sieve apron is vacuumed in order to give the fibers a hold on the sieve apron.
- the object of the present invention is therefore to create a sieve belt which is wear-resistant and yet allows the fiber structure on the sieve belt to be moved very well transversely to the circumferential direction of the sieve belt.
- a sieve belt has an endless circumference for transporting a fiber structure to be compressed over a suction slot of a compression device of a spinning machine.
- a large number of adjacent longitudinal filaments are arranged in the circumferential direction of the sieve belt and a large number of adjacent transverse filaments are arranged transversely to the circumferential direction of the sieve belt.
- the longitudinal filaments have a thinner cross-section than the transverse filaments.
- the use of finer longitudinal filaments, which will generally be the weft filaments, and stronger transverse filaments, which will generally be the warp filaments, leads to significant advantages.
- the stronger transverse filament With the stronger transverse filament, the screen apron has a larger wear volume.
- the stronger transverse filament which lies transversely to the circumferential direction of the screen apron or transversely to the transport direction of the fiber structure, rests on the suction pipe, while the longitudinal filament is so tensioned that it is not pressed onto the suction pipe even under the load of a pressure roller. Wear therefore occurs first on the thicker transverse filament. This increases possible wear times and the service life of the screen apron is extended accordingly.
- the finer longitudinal filament also maintains the necessary low bending stiffness of the screen apron.
- the screen apron continues to run around the small radii of the suction pipe without a gap.
- Another advantage is that the fibers lie mainly on the back of the stronger and more closely spaced transverse filaments. This makes it easier for the fibers of the fiber structure to be moved across the spinning direction and thus more intensively compressed. If anything, the fibers are less hindered in their transverse movement by the longitudinal filaments because of their greater distance.
- a particular advantage of the invention is that the thinner longitudinal filament touches the suction pipe, if at all, with reduced contact force and only after the cross filaments have become worn after a certain period of operation.
- a screen belt consisting of both reinforced cross and reinforced longitudinal filaments could be advantageous in terms of wear, but it would have problems with the transverse displacement of the fibers and with the flexibility of the sieve belt in the circumferential direction and thus the gap-free nature between the suction pipe and the sieve belt, disadvantages which are avoided with the sieve belt according to the invention.
- a particularly advantageous design of the screen apron is when the longitudinal filaments are arranged within areas formed by turning points of the transverse filaments.
- a type of covering surface on the screen apron is thus spanned by the transverse filaments.
- the thinner longitudinal filaments mean that the fabric can be manufactured in such a way that the longitudinal filaments, at least when new, are always at most at the level of the transverse filaments, but preferably below the transverse filaments.
- the longitudinal filaments are therefore not exposed to the transverse filaments. They are preferably below the transverse filaments, but at most in the same covering surface as the transverse filaments. They are thus largely protected from wear by the thicker transverse filaments.
- the screen apron therefore remains usable for longer and retains the property of good transverse mobility of the fibers on the screen apron for a long time.
- the longitudinal filaments meander less than the transverse filaments.
- incorporation or crimping is the ratio of the length of a filament incorporated into the fabric to its length when stretched. The smaller the incorporation, the more stretched the filaments are in the fabric. In this case, this means that the particularly advantageous screen apron has a smaller incorporation of the longitudinal filaments than the transverse filaments. The distance between the turning points of the longitudinal filaments is therefore smaller than the distance between the turning points of the transverse filaments.
- the longitudinal filament is the weft filament, the screen apron is woven with a low weft incorporation.
- the longitudinal filament or weft filament meanders only very slightly or, if it runs essentially straight, hardly at all through the transverse filaments or the warp filaments. Minimal meandering is advantageous in order to obtain better slip resistance of the fabric.
- the longitudinal filaments run essentially in a straight line.
- the longitudinal filaments are therefore not or hardly incorporated into the fabric.
- the stability of the transverse filaments relative to one another is reduced, the wear resistance and the ability of the fibers to be moved very easily transversely on the screen belt is improved. The reason for this is that the time until the transverse filaments are worn to the point where they are the same height as the thinner longitudinal filaments, or until the screen belt tears, is extended.
- the distance between adjacent longitudinal filaments is greater than the distance between adjacent transverse filaments.
- the close distance between the transverse filaments is compensated for in terms of the mesh size by the larger distance between the longitudinal filaments.
- the free screen surface does not become too large due to the closer arrangement of the transverse filaments. If the screen surface is too large, the fibers would be sucked through more. It is therefore advantageous to create a screen surface which, on the one hand, ensures that the fibers adhere sufficiently to the screen belt, but on the other hand still allows the fibers to be moved sideways and, if possible, no fibers are sucked through the screen belt.
- the free area between the longitudinal filaments and the transverse filaments i.e. the screen area
- the free area between the longitudinal filaments and the transverse filaments is between 20% and 60%, preferably between 30% and 50% of the screen apron area.
- the suitable size of the screen area depends in particular on the type and size of the fibers of the fiber structure to be compacted.
- the cross filaments have a diameter that is between 10% and 80% larger than the diameter of the longitudinal filaments.
- the suitable diameter of the filaments depends, among other things, on the type and size of the fibers of the fiber structure to be compacted.
- the service life i.e. the duration of the wear resistance of the screen belt, and the ability of the fibers to be moved can be influenced by this.
- the screen belt has a plain weave or a twill weave. This makes the screen belt easy to manufacture.
- a plain weave the dimensional stability of the fabric is very good on the one hand and the adaptation to the suction pipe without a gap is very good on the other. This creates very good resistance to displacement and running stability.
- the twill weave running directions of the screen belt or different sides of the screen belt can be produced.
- the screen belt is antistatic. This can be done by coating the screen belt with an antistatic coating, for example with carbon. However, all or some of the filaments can also be made of antistatic material and woven into the screen belt.
- Figure 1 shows a schematic representation of a side view of a section of a drafting system 1 of a spinning machine, in particular a ring spinning machine with a compression device 2.
- the drafting system 1 comprises a pair of feed rollers 3, a pair of draft rollers 4 and a pair of output rollers 5.
- Each of the roller pairs 3, 4 and 5 is formed by an upper roller and a lower roller or a lower cylinder.
- each roller pair 3, 4 and 5 are pressed against each other and form a clamping point K1, K2 and K3 at their point of contact for a fiber bundle 6 running into the drafting system 1, whereby the clamping point K1 is formed by the feed roller pair 3, the clamping point K2 by the drafting roller pair 4 and the clamping point K3 by the output roller pair 5.
- a thread clamping point K4 is formed by a pressure roller 7 which presses against a suction pipe 8 which can be suctioned. Due to the different speeds of the roller pairs 3, 4 and 5, the fiber bundle 6 is stretched. During the stretching, the fiber bundle 6 is simultaneously transported through the drafting system 1. After leaving the drafting system 1, the stretched fiber band 1 reaches the compression device 2 in which it is compressed.
- the compression device 2 has a suction slot 9 between the clamping point K3 and the thread clamping point K4 on the suction pipe 8, on the edge of which the fibers of the fiber structure 6 are bundled or compressed.
- the stretched fiber structure 6 is transported in the transport direction T via the suction pipe 8 by means of a screen belt 10, which wraps around the suction pipe 8 and a deflection rod 11 in the circumferential direction U.
- the screen belt 10 is driven by the pressure roller 7.
- the pressure roller 7 is in turn set in rotation by means of elements not shown via the upper roller of the output roller pair 5. Negative pressure, which is present in the suction pipe 8 and sucks in the fiber structure 6 via the suction slot 9, also acts through the screen belt 10, which is permeable to air.
- the fiber structure 6, which forms a thread 12 after the clamping point K4 reaches a thread guide 13 and is guided further to a spinning device (not shown).
- the upper rollers can be lifted from the lower rollers of the roller pairs 3, 4 and 5 as well as the pressure roller 7.
- a loading arm 14 to which the upper rollers and the pressure roller 7 are attached in a known manner, is moved about a pivot point D in the direction of arrow P.
- Figure 2 shows a top view of the compaction device 2 with the sieve belt 10.
- the fiber structure 6 is transported together with the rotating sieve belt 10 in the circumferential direction U of the sieve belt or in the transport direction T of the fiber structure 6 via the suction pipe 8.
- the sieve belt 10 rests on the suction pipe 8 and slides over it.
- the sieve belt 10 is driven, as can be seen from Figure 1 visible, by the pressure roller 7, which is itself driven.
- the fiber structure 6 is sucked in the area of the suction slot 9 and compressed at an edge of the suction slot 9, which is inclined in relation to the transport direction T of the fiber structure 6.
- the screen belt 10 is permeable to air, so that the negative pressure in the suction pipe 8 can act on the fibers of the fiber structure 6 through the screen belt 10.
- the sliding contact of the screen belt 10 on the suction pipe 8 causes wear on the underside of the screen belt 10.
- Figure 3 shows an enlarged detail of a fabric of a screen apron 10 according to the invention in plain weave.
- the fabric of the screen apron 10 has adjacent longitudinal filaments 15 and adjacent transverse filaments 16.
- Fibers 17 of the fiber structure 6 are shown schematically lying on the screen apron 10.
- the fiber structure 6 accordingly lies on the screen apron 10 in the transport direction T of the fiber structure 6.
- the fibers 17 are aligned lengthwise in the circumferential direction U of the screen apron 10.
- Longitudinal filaments 15 and transverse filaments 16 are spaced apart from one another so that the sieve belt 10 is permeable to air by means of the resulting meshes.
- a distance AL between the longitudinal filaments 15 is greater than a distance AQ between the transverse filaments 16.
- the distance AL can be, for example, about 400 ⁇ m and the distance AQ, for example, 100 ⁇ m.
- a sieve surface 18 created in this way has rectangular meshes with the dimensions of the distances AL and AQ between the longitudinal filaments 15 and the transverse filaments 16.
- the small mesh size in the circumferential direction U or transport direction T results in a low fiber loss.
- the large mesh size transverse to the fiber direction enables a large volume flow of the suction air and a good compaction effect of the fiber structure 6.
- the free area between the longitudinal filaments 15 and the transverse filaments 16, the screen area 18, is in particular between 20% and 60%, preferably between 30% and 50% of the total screen apron area.
- the longitudinal filaments 15 have a diameter DL which is significantly smaller than a diameter DQ of the transverse filaments 16.
- the transverse filaments 16 preferably have a diameter DQ which is between 10% and 80% larger than the diameter DL of the longitudinal filaments 15.
- the transverse filaments 16 can have a diameter DQ of approximately 150 ⁇ m and the longitudinal filaments 15 can have a diameter DL of approximately 100 ⁇ m. This difference in diameter means that the sieve belt 10 rests on the suction pipe 8 essentially on the surfaces of the transverse filaments 16. The wear will therefore affect the transverse filaments 16 first. Only when these have been worn down to a height that is the same as the longitudinal filaments 15 will the longitudinal filaments 15 also be included in the wear.
- Figure 4a shows a section through a fabric of a screen belt 10 in the transport direction T of the fiber structure 6 or in the circumferential direction U of the Sieve belt 10.
- the fibers 17 of the fiber structure 6 would accordingly lie along the plane of the drawing on the sieve belt 10.
- the diameter DL of the longitudinal filaments 15 is smaller than the diameter DQ of the transverse filaments 16.
- imaginary surfaces F, which rest on turning points WQ of the transverse filaments 16 are spaced from turning points WL of the longitudinal filaments 15.
- the underside of the sieve belt 10 essentially lies on the suction pipe 8 with the turning points WQ of the transverse filaments 16.
- the pressure roller 7 On the top side of the sieve belt 10, the pressure roller 7 also essentially accesses the turning points WQ of the transverse filaments 16.
- the wear will therefore mainly occur on the transverse filaments 16, since the thinner longitudinal filaments 15, which also meander less, are spaced a distance a from these surfaces F and thus generally have no contact with the suction pipe 8 and the pressure roller 7.
- the distance AWL of the turning points WL from each other is therefore smaller than the distance AWQ of the turning points WQ from each other.
- the turning points WL are located between the two surfaces F.
- FIG 4b is a section through a fabric of a screen belt 10 transverse to the transport direction T of the fiber structure 6 or transverse to the circumferential direction U of the screen belt 10.
- the fibers 17 of the fiber structure 6 would thus lie perpendicular to the plane of the drawing on the screen belt 10.
- the imaginary surface F resting on the turning points WQ is spaced a distance a from the turning points WL of the longitudinal filaments 15. This creates points of attack for the sliding of the screen belt 10 over the suction pipe 8 and for the drive by the pressure roller 7 essentially on the thicker transverse filaments 16.
- the thinner longitudinal filaments 15 are located on each side of the screen belt 10 at a distance a from the respective surface F.
- the thinner longitudinal filaments 15 are thus separated by the thicker Transverse filaments 16 are protected because they are not exposed to the transverse filaments 16 in the fabric of the sieve belt 10.
- the present invention is not limited to the embodiments shown and described.
- thickness and spacing ratios of the longitudinal filaments 15 and transverse filaments 16 other than those shown are possible.
- the incorporation of the longitudinal filaments 15 can also be more or less than shown in the embodiments.
- the spacing a it is also possible within the scope of the invention for the spacing a to be reduced to the value "0". This can be achieved by incorporating the longitudinal filaments 15 more deeply.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Spinning Or Twisting Of Yarns (AREA)
Description
- Die vorliegende Erfindung betrifft ein endloses Siebriemchen zum Transportieren eines zu verdichtenden Faserverbandes über einem Saugschlitz einer Verdichtungseinrichtung einer Spinnmaschine, das in Umfangsrichtung eine Vielzahl von benachbarten Längsfilamenten und quer zur Umfangsrichtung eine Vielzahl von benachbarten Querfilamenten aufweist, wobei zwischen benachbarten Längsfilamenten und benachbarten Querfilamenten Abstände vorhanden sind, welche freie Flächen bilden, damit das Siebriemchen luftdurchlässig ist.
- Ein in einem Streckwerk verstreckter Faserverband verlässt das Streckwerk mit einer bestimmten Breite und wird anschließend zu einem Faden mit relativ kleinem Durchmesser zusammengedreht. Der Faden enthält Randfasern, die nicht ordnungsgemäß in den verdrehten Faden eingebunden werden und somit allenfalls wenig zur Festigkeit des Fadens beitragen. Um die Festigkeit des Fadens zu steigern, wird der Verzugszone des Streckwerks eine Verdichtungszone nachgeordnet. In der Verdichtungszone werden die Fasern zueinander verdichtet, wodurch der Faserverband schmäler wird. Der daraus entstehende Faden wird dann gleichmäßiger, fester und weniger haarig.
- Zum Verdichten des Faserverbandes dient unter anderem ein Saugrohr, das von einem endlosen, luftdurchlässigen Siebriemchen umschlungen ist. Das Siebriemchen gleitet über einen schräg zur Laufrichtung des Faserverbandes angeordneten Saugschlitz des Saugrohres. Die Laufrichtung des Faserverbandes entspricht im Wesentlichen der Umfangsrichtung des Siebriemchens. Auf dem Siebriemchen wird der Faserverband transportiert und entlang einer Saugkante des Saugschlitzes komprimiert.
- Aus der
DE 10 104 182 A1 ist ein derartiges luftdurchlässiges Transportband zum Transportieren eines zu verdichtenden Faserverbandes über einen Saugschlitz einer Verdichtungszone einer Spinnmaschine bekannt. Das Transportband ist als Gewebeband ausgebildet und besteht aus in Transportrichtung des Faserverbandes verlaufenden Längsfäden sowie quer zur Transportrichtung des Faserverbandes verlaufenden Querfäden. Der lichte Abstand zweier Längsfäden voneinander ist größer als der lichte Abstand zweier Querfäden. Es soll damit ein Transportband geschaffen werden, welches einerseits einen ausreichend großen Luftdurchsatz gewährleistet und andererseits möglichst das Absaugen von Verlustfasern verhindert. - Nachteilig bei diesem Siebriemchen ist es, dass es im Laufe seines Einsatzes relativ schnell verschleißt. Außerdem ist die Beweglichkeit der Fasern auf der Oberfläche des Siebriemchens in Querrichtung eingeschränkt. Das Komprimieren des Faserverbandes an der Saugkante kann daher schwierig sein.
- Aus der
CN 111254529 A ist ein Oberriemchen eines Streckwerks einer Spinnmaschine bekannt. Dieses Oberriemchen weist eine innere Ringschicht und eine äußere Ringschicht auf, die unlösbar miteinander verbunden sind. Die Oberfläche der äußeren Ringschicht weist eine ungleichmäßige Textur auf, und die Form der ungleichmäßigen Textur ist körnig und/oder gewellt. Die Eigenschaften eines solchen Oberriemchens eines Streckwerks, welche erfüllt werden müssen, sind gegensätzlich zu den Eigenschaften eines Siebriemchens. Während bei dem Oberriemchen des Streckwerks die Fasern gehalten werden müssen, sollen sie bei einem Siebriemchen quer zu ihrer Längsachse Richtung verschoben werden, außerdem sind obere Riemchen eines Streckwerks nicht luftdurchlässig. - Die
JP 2009185436 A - Aufgabe der vorliegenden Erfindung ist es somit, ein Siebriemchen zu schaffen, das verschleißfest ist und dennoch ermöglicht, dass der Faserverband auf dem Siebriemchen sehr gut quer zur Umfangsrichtung des Siebriemchens verschoben werden kann.
- Die Aufgabe wird gelöst durch ein Siebriemchen mit den Merkmalen des Patentanspruchs 1.
- Ein Siebriemchen weist zum Transportieren eines zu verdichtenden Faserverbandes über einem Saugschlitz einer Verdichtungseinrichtung einer Spinnmaschine einen endlosen Umfang auf. In Umfangsrichtung des Siebriemchens sind eine Vielzahl von benachbarten Längsfilamenten und quer zur Umfangsrichtung des Siebriemchens sind eine Vielzahl von benachbarten Querfilamenten angeordnet. Zwischen benachbarten Längsfilamenten und benachbarten Querfilamenten sind Abstände vorhanden, welche freie Flächen, sogenannte Siebflächen, bilden, damit das Siebriemchen luftdurchlässig ist. Diese Abstände können auch Maschenweite genannt werden. Erfindungsgemäß weisen die Längsfilamente einen dünneren Querschnitt als die Querfilamente auf.
- Bei dem erfindungsgemäßen Siebriemchen führt die Verwendung von feineren Längsfilamenten, welche in der Regel die Schussfilamente sein werden, und stärkeren Querfilamenten, welche in der Regel die Kettfilamente sein werden, zu wesentlichen Vorteilen. Mit dem stärkeren Querfilament weist das Siebriemchen ein größeres Verschleißvolumen auf. Der Grund hierfür ist, dass das stärkere, quer zur Umfangsrichtung des Siebriemchens bzw. quer zur Transportrichtung des Faserverbandes liegende Querfilament auf dem Saugrohr aufliegt, während das Längsfilament so gespannt ist, dass es auch unter der Belastung einer Andrückwalze nicht auf das Saugrohr gedrückt wird. Der Verschleiß erfolgt demnach zuerst an dem dickeren Querfilament. Dadurch werden mögliche Verschleißzeiten erhöht und die Lebensdauer des Siebriemchens entsprechend verlängert. Auch bleibt mit dem feineren Längsfilament die notwendige niedrige Biegesteifigkeit des Siebriemchens erhalten. Das Siebriemchen läuft weiterhin spaltlos um die kleinen Radien des Saugrohres. Ein weiterer Vorteil ist, dass die Fasern hauptsächlich auf dem Rücken der stärkeren und enger beabstandeten Querfilamente liegen. Die Fasern des Faserverbandes können hierdurch leichter quer zur Spinnrichtung verschoben und somit intensiver verdichtet werden. Wenn überhaupt werden die Fasern in ihrer Querbewegung von den Längsfilamenten wegen ihres größeren Abstandes entsprechend weniger behindert.
- Ein besonderer Vorteil der Erfindung ist es, dass das dünnere Längsfilament das Saugrohr, wenn überhaupt, dann mit reduzierter Anpresskraft berührt und erst nachdem es an den Querfilamenten nach einer bestimmten Betriebszeit zu einem entsprechenden Verschleiß gekommen ist. Ein Siebriemchen, welches sowohl aus verstärkten Quer- als auch verstärkten Längsfilamenten besteht, könnte hinsichtlich des Verschleißes zwar vorteilhaft sein, jedoch hätte es hinsichtlich Querverschiebbarkeit der Fasern und hinsichtlich der Flexibilität des Siebriemchens in Umfangsrichtung und somit der Spaltfreiheit zwischen Saugrohr und Siebriemchen Nachteile, die mit dem erfindungsgemäßen Siebriemchen vermieden werden.
- Eine ganz besonders vorteilhafte Ausführung des Siebriemchens ist es, wenn die Längsfilamente innerhalb durch Wendepunkte der Querfilamente gebildete Flächen angeordnet sind. Eine Art Deckfläche auf dem Siebriemchen wird somit durch die Querfilamente aufgespannt. Durch die dünneren Längsfilamente kann das Gewebe so hergestellt sein, dass die Längsfilamente, zumindest im Neuzustand, stets höchstens auf Höhe der Querfilamente, vorzugsweise aber unterhalb der Querfilamente liegen. Die Längsfilamente sind dementsprechend nicht exponiert gegenüber den Querfilamenten. Sie liegen vorzugsweise unterhalb den Querfilamenten, höchstens aber in derselben Deckfläche wie die Querfilamente. Sie werden somit durch die dickeren Querfilamente vor einem Verschleiß weitgehend geschützt. Das Siebriemchen bleibt dadurch länger einsatzfähig und behält lange die Eigenschaft einer guten Querverschieblichkeit der Fasern auf dem Siebriemchen.
- Vorteilhaft ist es, wenn die Längsfilamente schwächer mäandrieren als die Querfilamente. Dies kann auch als Einarbeitung bzw. Crimp bezeichnet werden. Unter Einarbeitung ist das Verhältnis der Länge eines ins Gewebe eingearbeiteten Filaments zu dessen Länge im gestreckten Zustand zu verstehen. Je kleiner die Einarbeitung ist, desto gestreckter liegen die Filamente im Gewebe. Dies bedeutet im vorliegenden Fall, dass das besonders vorteilhafte Siebriemchen eine kleinere Einarbeitung der Längsfilamente als der Querfilamente aufweist. Der Abstand der Wendepunkte der Längsfilamente ist somit geringer als der Abstand der Wendepunkte der Querfilamente. Das Siebriemchen wird, wenn das Längsfilament das Schussfilament ist, mit einer geringen Schusseinarbeitung verwoben. Das Längsfilament bzw. das Schussfilament mäandriert nur sehr schwach oder, wenn es im Wesentlichen geradlinig verläuft, sogar so gut wie gar nicht durch die Querfilamente bzw. die Kettfilamente hindurch. Ein minimales Mäandrieren ist vorteilhaft, um eine bessere Verschiebefestigkeit des Gewebes zu erhalten.
- Auch ist es von Vorteil, wenn die Längsfilamente im Wesentlichen geradlinig verlaufen. Die Längsfilamente sind somit nicht oder kaum in das Gewebe eingearbeitet. Die Stabilität der Querfilamente zueinander ist damit zwar reduziert, die Verschleißfestigkeit und die Fähigkeit, dass die Fasern auf dem Siebriemchen sehr leicht quer zu verschieben sind, ist aber hierdurch verbessert. Der Grund hierfür ist, dass die Dauer bis die Querfilamente soweit verschlissen sind, dass sie in gleicher Höhe wie die dünneren Längsfilamente sind, bzw. bis das Siebriemchen reißt, verlängert ist.
- Des Weiteren ist es vorteilhaft, wenn der Abstand benachbarter Längsfilamente größer ist als der Abstand benachbarter Querfilamente. Der enge Abstand der Querfilamente wird in Hinsicht auf die Maschenweite durch den größeren Abstand der Längsfilamente kompensiert. Umgekehrt wird die freie Siebfläche durch die engere Anordnung der Querfilamente nicht zu groß. Bei einer zu großen Siebfläche würden die Fasern vermehrt durch diese durchgesaugt werden. Es ist daher vorteilhaft eine Siebfläche zu schaffen, welche einerseits das Anhaften der Fasern auf dem Siebriemchen ausreichend schafft, andererseits aber das seitliche Verschieben der Fasern weiterhin ermöglicht und möglichst keine Fasern durch das Siebriemchen hindurch abgesaugt werden.
- Vorteilhaft ist es dementsprechend, wenn die freie Fläche zwischen den Längsfilamenten und den Querfilamenten, also die Siebfläche, zwischen 20 % und 60 %, vorzugsweise zwischen 30 % und 50 % der Siebriemchenfläche beträgt. Die geeignete Größe der Siebfläche hängt insbesondere von der Art und Größe der zu verdichtenden Fasern des Faserverbandes ab.
- Auch ist es äußert vorteilhaft, wenn die Querfilamente einen Durchmesser aufweisen, der zwischen 10 % und 80 % größer ist als der Durchmesser der Längsfilamente. Auch hier hängt der geeignete Durchmesser der Filamente unter anderem von der Art und Größe der zu verdichtenden Fasern des Faserverbandes ab. Außerdem ist die Standzeit, also die Dauer der Verschleißfestigkeit des Siebriemchens, und die Verschiebbarkeit der Fasern hierdurch zu beeinflussen.
- Besonders vorteilhaft ist es, wenn das Siebriemchen eine Leinwandbindung oder eine Köperbindung aufweist. Hierdurch kann das Siebriemchen einfach hergestellt werden. Mit einer Leinwandbindung ist einerseits die Formstabilität des Gewebes und andererseits die Anpassung an das Saugrohr ohne Spalt sehr gut. Es wird damit eine sehr gute Verschiebefestigkeit und Laufstabilität erzeugt. Mit der Köperbindung können Laufrichtungen des Siebriemchens oder unterschiedliche Seiten des Siebriemchens hergestellt werden.
- Vorteile bringt es zudem mit sich, wenn das Siebriemchen antistatisch ausgerüstet ist. Dies kann mit einer antistatischen Beschichtung des Siebriemchens, beispielsweise mit Karbon, erfolgen. Es können aber auch alle oder einzelne der Filamente aus antistatischem Material hergestellt und in das Siebriemchen eingewoben sein.
- Besonders vorteilhaft ist es, wenn imaginäre Flächen, welche auf den Wendepunkten der Querfilamente aufliegen, beabstandet zu Wendepunkten der Längsfilamente sind, wodurch die dünneren Längsfilamente in einem Abstand zwischen diesen Flächen angeordnet sind. Dadurch entsteht eine Struktur auf der Oberfläche der Siebriemchen, welche besonders vorteilhaft für die Bewegung der Fasern während der Verdichtung des Faserbandes ist.
- Weitere Vorteile der Erfindung sind in den nachfolgenden Ausführungsbeispielen beschrieben. Es zeigt:
- Figur 1
- eine Seitenansicht auf ein Streckwerk einer Spinnmaschine mit einer Verdichtungseinrichtung,
- Figur 2
- eine Draufsicht auf eine Verdichtungseinrichtung mit einem Siebriemchen,
- Figur 3
- einen vergrößerten Ausschnitt auf ein Gewebe eines Siebriemchens,
- Figur 4a
- einen Schnitt durch ein Gewebe eines Siebriemchens in Umfangsrichtung des Siebriemchens und
- Figur 4b
- einen Schnitt durch ein Gewebe eines Siebriemchens quer zur Umfangsrichtung des Siebriemchens.
- Bei der nachfolgenden Beschreibung der Ausführungsbeispiele werden für Merkmale, die in ihrer Ausgestaltung und/oder Wirkweise identisch und/oder zumindest vergleichbar sind, gleiche Bezugszeichen verwendet. Sofern diese nicht nochmals detailliert erläutert werden, entspricht deren Ausgestaltung und/oder Wirkweise der Ausgestaltung und Wirkweise den vorstehend bereits beschriebenen Merkmalen.
-
Figur 1 zeigt eine schematische Darstellung einer Seitenansicht eines Schnittes eines Streckwerkes 1 einer Spinnmaschine, im Besonderen einer Ringspinnmaschine mit einer Verdichtungseinrichtung 2. Das Streckwerk 1 umfasst ein Einzugswalzenpaar 3, ein Verzugswalzenpaar 4 und ein Ausgangswalzenpaar 5. Jedes der Walzenpaare 3, 4 und 5 wird gebildet durch eine Oberwalze und eine Unterwalze bzw. einen Unterzylinder. Die beiden Walzen jedes Walzenpaares 3, 4 und 5 werden gegeneinandergepresst und bilden an ihrem Berührungspunkt jeweils eine Klemmstelle K1, K2 und K3 für einen in das Streckwerk 1 einlaufenden Faserverband 6, wobei die Klemmstelle K1 durch das Einzugswalzenpaar 3, die Klemmstelle K2 durch das Verzugswalzenpaar 4 und die Klemmstelle K3 durch das Ausgangswalzenpaar 5 gebildet ist. Ein Fadenklemmpunkt K4 ist durch eine Andrückwalze 7 gebildet, die gegen ein besaugbares Saugrohr 8 drückt. Bedingt durch die unterschiedlichen Drehzahlen der Walzenpaare 3, 4 und 5 wird der Faserverband 6 verstreckt. Während der Verstreckung wird der Faserverband 6 gleichzeitig durch das Streckwerk 1 transportiert. Nach dem Verlassen des Streckwerks 1 gelangt das verstreckte Faserband 1 zu der Verdichtungseinrichtung 2, in der es verdichtet wird. - Die Verdichtungseinrichtung 2 weist zwischen der Klemmstelle K3 und dem Fadenklemmpunkt K4 an dem Saugrohr 8 einen Saugschlitz 9 auf, an dessen Kante die Fasern des Faserverbands 6 gebündelt bzw. verdichtet werden. Der verstreckte Faserverband 6 wird dabei in Transportrichtung T mittels eines Siebriemchens 10, welches das Saugrohr 8 und eine Umlenkstange 11 in Umfangsrichtung U umschlingt, über das Saugrohr 8 transportiert. Das Siebriemchen 10 wird mittels der Andrückwalze 7 angetrieben. Die Andrückwalze 7 wird ihrerseits mittels nicht dargestellter Elemente über die Oberwalze des Ausgangswalzenpaares 5 in Drehbewegung versetzt. Unterdruck, welcher in dem Saugrohr 8 anliegt und über den Saugschlitz 9 den Faserverband 6 ansaugt, wirkt auch durch das Siebriemchen 10 hindurch, welches luftdurchlässig ist.
- Nach der Verdichtungseinrichtung 2 gelangt der Faserverband 6, der nach der Klemmstelle K4 einen Faden 12 bildet, zu einem Fadenführer 13 und wird weitergeführt zu einer nicht dargestellten Spinnvorrichtung.
- Zum Öffnen des Streckwerks 1 können die Oberwalzen von den Unterwalzen der Walzenpaare 3, 4 und 5 sowie die Andrückwalze 7 angehoben werden. Hierfür und zum wieder Schließen des Streckwerkes 1 wird ein Belastungsarm 14, an dem die Oberwalzen und die Andrückwalze 7 in bekannter Weise befestigt sind, um einen Drehpunkt D in Pfeilrichtung P bewegt.
-
Figur 2 zeigt eine Draufsicht auf die Verdichtungseinrichtung 2 mit dem Siebriemchen 10. Der Faserverband 6 wird zusammen mit dem sich drehenden Siebriemchen 10 in Umfangsrichtung U des Siebriemchens bzw. in Transportrichtung T des Faserverbandes 6 über das Saugrohr 8 transportiert. Das Siebriemchen 10 liegt dabei auf dem Saugrohr 8 auf und gleitet über dieses hinweg. Angetrieben wird das Siebriemchen 10, wie ausFigur 1 ersichtlich, durch die ihrerseits angetriebene Andrückwalze 7. Der Faserverband 6 wird im Bereich des Saugschlitzes 9 angesaugt und an einer Kante des in Bezug auf die Transportrichtung T des Faserverbandes 6 schräg gestellten Saugschlitzes 9 komprimiert. Hierfür ist das Siebriemchen 10 luftdurchlässig, sodass der in dem Saugrohr 8 anliegende Unterdruck durch das Siebriemchen 10 hindurch auf die Fasern des Faserverbandes 6 einwirken kann. Insbesondere durch den gleitenden Kontakt des Siebriemchens 10 auf dem Saugrohr 8 entsteht ein Verschleiß auf der Unterseite des Siebriemchens 10. -
Figur 3 zeigt einen vergrößerten Ausschnitt auf ein Gewebe eines erfindungsgemäßen Siebriemchens 10 in Leinwandbindung. Das Gewebe des Siebriemchens 10 weist dabei benachbarte Längsfilamente 15 und benachbarte Querfilamente 16 auf. Auf dem Siebriemchen 10 aufliegend sind Fasern 17 des Faserverbandes 6 schematisch dargestellt. Der Faserverband 6 liegt dementsprechend in Transportrichtung T des Faserverbandes 6 auf dem Siebriemchen 10 auf. Die Fasern 17 sind in Umfangsrichtung U des Siebriemchens 10 längs ausgerichtet. - Längsfilamente 15 und Querfilamente 16 sind jeweils voneinander beabstandet, sodass das Siebriemchen 10 mittels den dadurch entstehenden Maschen luftdurchlässig ist. Ein Abstand AL zwischen den Längsfilamenten 15 ist größer als ein Abstand AQ zwischen den Querfilamenten 16. Der Abstand AL kann beispielsweise etwa 400 µm und der Abstand AQ beispielsweise 100 µm betragen. Eine hierdurch entstehende Siebfläche 18 hat zwischen den Längsfilamenten 15 und den Querfilamenten 16 rechteckige Maschen mit den Maßen der Abstände AL und AQ. Durch die kleine Maschenweite in Umfangsrichtung U bzw. Transportrichtung T entsteht ein geringer Faserverlust. Die große Maschenweite quer zur Faserrichtung ermöglicht einen großen Volumenstrom der Saugluft und eine gute Verdichtungswirkung des Faserverbandes 6. Die freie Fläche zwischen den Längsfilamenten 15 und den Querfilamenten 16, die Siebfläche 18, beträgt insbesondere zwischen 20 % und 60 %, vorzugsweise zwischen 30 % und 50 % der gesamten Siebriemchenfläche.
- Die Längsfilamente 15 weisen einen Durchmesser DL auf, welcher wesentlich geringer ist als ein Durchmesser DQ der Querfilamente 16. Die Querfilamente 16 weisen dabei vorzugsweise einen Durchmesser DQ auf, der zwischen 10 % und 80 % größer ist als der Durchmesser DL der Längsfilamente 15. So können beispielsweise die Querfilamente 16 einen Durchmesser DQ von etwa 150 µm und die Längsfilamente 15 einen Durchmesser DL von etwa 100 µm aufweisen. Durch diesen Durchmesserunterschied wird bewirkt, dass eine Auflage des Siebriemchens 10 auf dem Saugrohr 8 im Wesentlichen auf den Oberflächen der Querfilamente 16 erfolgt. Der Verschleiß wird somit zuerst die Querfilamente 16 erfassen. Erst wenn diese auf eine Höhe abgetragen sind, dass sie gleich mit den Längsfilamenten 15 sind, werden auch die Längsfilamente 15 in den Verschleiß mit einbezogen.
-
Figur 4a zeigt einen Schnitt durch ein Gewebe eines Siebriemchens 10 in Transportrichtung T des Faserverbandes 6 bzw. in Umfangsrichtung U des Siebriemchens 10. Die Fasern 17 des Faserverbandes 6 würden dementsprechend entlang der Zeichenebene auf dem Siebriemchen 10 liegen. Auch aus dieser Darstellung ist ersichtlich, dass der Durchmesser DL der Längsfilamente 15 kleiner ist als der Durchmesser DQ der Querfilamente 16. Dementsprechend sind imaginäre Flächen F, welche auf Wendepunkten WQ der Querfilamente 16 aufliegen, beabstandet zu Wendepunkten WL der Längsfilamente 15. Dementsprechend liegt die Unterseite des Siebriemchens 10 im Wesentlichen mit den Wendepunkten WQ der Querfilamente 16 auf dem Saugrohr 8 auf. An der Oberseite des Siebriemchens 10 greift ebenso die Andrückwalze 7 im Wesentlichen auch auf die Wendepunkte WQ der Querfilamente 16 zu. Der Verschleiß wird dementsprechend im Wesentlichen an den Querfilamenten 16 erfolgen, da die dünneren Längsfilamente 15, die zudem geringer mäandrieren, in einem Abstand a von diesen Flächen F beabstandet sind und somit in der Regel keinen Kontakt mit dem Saugrohr 8 und der Andrückwalze 7 haben. Der Abstand AWL der Wendepunkte WL voneinander ist somit geringer als der Abstand AWQ der Wendepunkte WQ voneinander. Die Wendepunkte WL liegen zwischen den beiden Flächen F. - In
Figur 4b ist ein Schnitt durch ein Gewebe eines Siebriemchens 10 quer zur Transportrichtung T des Faserverbandes 6 bzw. quer zur Umfangsrichtung U des Siebriemchens 10 dargestellt. Die Fasern 17 des Faserverbandes 6 würden somit senkrecht zur Zeichenebene auf dem Siebriemchen 10 liegen. Auch hier ist, ebenso wie inFigur 4a , zu erkennen, dass die auf den Wendepunkten WQ aufliegende imaginäre Fläche F in einem Abstand a beabstandet von den Wendepunkten WL der Längsfilamente 15 ist. Hierdurch entstehen Angriffspunkte für das Gleiten des Siebriemchens 10 über das Saugrohr 8 und für den Antrieb durch die Andrückwalze 7 im Wesentlichen auf den dickeren Querfilamenten 16. Die dünneren Längsfilamente 15 befinden sich auf jeder Seite des Siebriemchens 10 im Abstand a von der jeweiligen Fläche F. Die dünneren Längsfilamente 15 sind somit durch die dickeren Querfilamente 16 geschützt, da sie gegenüber den Querfilamenten 16 nicht exponiert in dem Gewebe des Siebriemchens 10 angeordnet sind. - Aus der Darstellung der
Figuren 4a und 4b ist auch ersichtlich, dass die Längsfilamente schwächer mäandrieren als die Querfilamente. Je nach Ausführungsform kann sogar auf das Mäandrieren weitgehend vollständig verzichtet werden. Die Längsfilamente verlaufen dann vollständig oder zumindest nahezu geradlinig. - Die vorliegende Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele beschränkt. So sind insbesondere andere als die dargestellten Dicken- und Abstandsverhältnisse der Längsfilamente 15 und Querfilamente 16 möglich. Auch die Einarbeitung der Längsfilamente 15 kann stärker oder geringer als in den Ausführungsbeispielen dargestellt erfolgen. Trotz der unterschiedlichen Durchmesser der Längsfilamente 15 und Querfilamente 16 ist es auch im Rahmen der Erfindung möglich, dass der Abstand a bis auf den Wert "0" reduziert wird. Dies kann durch eine stärkere Einarbeitung der Längsfilamente 15 bewirkt werden.
- Abwandlungen im Rahmen der Patentansprüche sind ebenso möglich wie eine Kombination der Merkmale, auch wenn sie in unterschiedlichen Ausführungsbeispielen dargestellt und beschrieben sind.
-
- 1
- Streckwerk
- 2
- Verdichtungseinrichtung
- 3
- Einzugswalzenpaar
- 4
- Verzugswalzenpaar
- 5
- Ausgangswalzenpaar
- 6
- Faserverband
- 7
- Andrückwalze
- 8
- Saugrohr
- 9
- Saugschlitz
- 10
- Siebriemchen
- 11
- Umlenkstange
- 12
- Faden
- 13
- Fadenführer
- 14
- Belastungsarm
- 15
- Längsfilamente
- 16
- Querfilamente
- 17
- Fasern
- 18
- Siebfläche
- a
- Abstand
- AQ
- Abstand Querfilamente
- AL
- Abstand Längsfilamente
- AWL
- Abstand
- AWQ
- Abstand
- DQ
- Durchmesser Querfilamente
- DL
- Durchmesser Längsfilamente
- D
- Drehpunkt
- F
- Fläche
- K1
- Klemmstelle
- K2
- Klemmstelle
- K3
- Klemmstelle
- K4
- Fadenklemmpunkt
- L
- Laufrichtung
- P
- Pfeilrichtung
- WQ
- Wendepunkt Querfilamente
- WL
- Wendepunkt Längsfilamente
Claims (10)
- Siebriemchen zum Transportieren eines zu verdichtenden Faserverbandes (6) über einem Saugschlitz (9) einer Verdichtungseinrichtung (2) einer Spinnmaschine, mit endlosem Umfang, das in Umfangsrichtung (U) eine Vielzahl von benachbarten Längsfilamenten (15) und quer zur Umfangsrichtung (U) eine Vielzahl von benachbarten Querfilamenten (16) aufweist und zwischen benachbarten Längsfilamenten (15) und benachbarten Querfilamenten (16) Abstände (AL, AQ) vorhanden sind, welche freie Flächen bilden, damit das Siebriemchen (10) luftdurchlässig ist, dadurch gekennzeichnet, dass die benachbarten Längsfilamente (15) einen dünneren Querschnitt als die benachbarten Querfilamente (16) aufweisen.
- Siebriemchen nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass die Längsfilamente (15) innerhalb durch Wendepunkte (WQ) der Querfilamente (16) gebildete Flächen (F) angeordnet sind.
- Siebriemchen nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Längsfilamente (15) schwächer mäandrieren als die Querfilamente (16), wodurch ein Abstand (AWL) der Wendepunkte (WL) der Längsfilamente (15) geringer ist als ein Abstand (AWQ) der Wendepunkte (WQ) der Querfilamente (16).
- Siebriemchen nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Längsfilamente (15) im Wesentlichen geradlinig verlaufen.
- Siebriemchen nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Abstand (AL) benachbarter Längsfilamente (15) größer ist als der Abstand (AQ) benachbarter Querfilamente (16).
- Siebriemchen nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die freie Fläche zwischen den Längsfilamenten (15) und den Querfilamenten (16) zwischen 20 % und 60 %, vorzugsweise zwischen 30 % und 50 % der Siebriemchenfläche beträgt.
- Siebriemchen nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Querfilamente (16) einen Durchmesser (DQ) aufweisen, der zwischen 10 % und 80 % größer ist als der Durchmesser (DL) der Längsfilamente (15).
- Siebriemchen nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Siebriemchen (10) eine Leinwandbindung oder eine Köperbindung aufweist.
- Siebriemchen nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Siebriemchen (10) antistatisch ausgerüstet ist.
- Siebriemchen nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass imaginäre Flächen (F), welche auf den Wendepunkten (WQ) der Querfilamente (16) aufliegen, beabstandet zu Wendepunkten (WL) der Längsfilamente (15) sind, wodurch die dünneren Längsfilamente (15) in einem Abstand (a) von diesen Flächen (F) angeordnet sind.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020125521.7A DE102020125521A1 (de) | 2020-09-30 | 2020-09-30 | Siebriemchen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3978661A1 EP3978661A1 (de) | 2022-04-06 |
EP3978661B1 true EP3978661B1 (de) | 2024-04-10 |
Family
ID=77951621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21199023.9A Active EP3978661B1 (de) | 2020-09-30 | 2021-09-27 | Siebriemchen |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3978661B1 (de) |
CN (1) | CN114318597A (de) |
DE (1) | DE102020125521A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021132482A1 (de) * | 2021-12-09 | 2023-06-15 | Rieter Components Germany Gmbh | Verdichtungseinrichtung einer Spinnmaschine sowie Transportriemchen und Zwischenriemchen |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05305754A (ja) | 1992-04-30 | 1993-11-19 | Fujicopian Co Ltd | インクリボン |
DE19837182B4 (de) | 1998-08-17 | 2007-01-25 | Stahlecker, Fritz | Transportband zum Transportieren eines zu verdichtenden Faserverbandes |
DE10018002A1 (de) | 2000-04-11 | 2001-10-25 | Stahlecker Fritz | Transportband zum Transportieren eines zu verdichtenden Faserverbandes |
DE10104182B4 (de) | 2001-01-24 | 2012-03-29 | Maschinenfabrik Rieter Ag | Transportband zum Transportieren eines zu verdichtenden Faserverbandes |
CN1187241C (zh) | 2003-04-28 | 2005-02-02 | 宁波德昌精密纺织机械有限公司 | 一种紧密纺纱器的透气环形输送带 |
CN1556267A (zh) | 2003-12-31 | 2004-12-22 | 无锡莱福纶生物材料有限公司 | 一种紧密型纺纱用网格状吸聚圈及其织造方法 |
JP4524233B2 (ja) | 2005-09-22 | 2010-08-11 | イチカワ株式会社 | シュープレス用ベルト |
DE202007013020U1 (de) | 2007-09-17 | 2007-11-22 | Sefar Ag | Siebriemchen für ein Streckwerk einer Spinnmaschine sowie Streckvorrichtung mit einem Siebriemchen |
DE102008009230A1 (de) * | 2008-02-04 | 2009-08-06 | Wilhelm Stahlecker Gmbh | Führungsriemchen für Doppelriemchenstreckwerke und Doppelriemchenstreckwerk |
CN102605487A (zh) | 2011-09-07 | 2012-07-25 | 常熟市迅达粉末冶金有限公司 | 一种抗静电紧密纺用网格圈 |
DE102014106745A1 (de) | 2014-05-13 | 2015-11-19 | Maschinenfabrik Rieter Ag | Siebriemchen |
CN204281941U (zh) | 2014-12-01 | 2015-04-22 | 安徽省潜山县八一纺织器材厂 | 适用于环锭细纱机紧密纺装置的节能网格圈 |
CN111254529A (zh) * | 2019-10-01 | 2020-06-09 | 李岚 | 一种细纱机牵伸机构上皮圈 |
-
2020
- 2020-09-30 DE DE102020125521.7A patent/DE102020125521A1/de active Pending
-
2021
- 2021-09-27 EP EP21199023.9A patent/EP3978661B1/de active Active
- 2021-09-27 CN CN202111133098.4A patent/CN114318597A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
EP3978661A1 (de) | 2022-04-06 |
DE102020125521A1 (de) | 2022-03-31 |
CN114318597A (zh) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3727563C1 (de) | Pressmantel einer Entwaesserungspresse fuer Papierherstellungsmaschinen od.dgl. | |
EP1953275B1 (de) | Streckwerk mit Verdichtungszone | |
DE2419751A1 (de) | Flaechige gebilde als drahtgliedergurt | |
CH693214A5 (de) | Vorrichtung zum Verdichten eines verstreckten Faserverbandes. | |
EP1795636A1 (de) | Weblitze für bandartige Kettfäden | |
EP3978661B1 (de) | Siebriemchen | |
EP2813604B1 (de) | Spinndüse sowie damit ausgerüstete Spinnstelle einer Luftspinnmaschine | |
DE19911333B4 (de) | Vorrichtung zum Verdichten eines verstreckten Faserverbandes | |
AT501434A1 (de) | Vlieszuführvorrichtung | |
DE20221912U1 (de) | Spinnmaschine mit Verdichtungseinrichtung | |
DE10104182B4 (de) | Transportband zum Transportieren eines zu verdichtenden Faserverbandes | |
DE102007003525A1 (de) | Saugkanal für eine Faserbündelungseinrichtung | |
EP3839287A1 (de) | Riemen als endloses zugmittel für förderbänder von ballenpressen oder ballenwicklern | |
CH698478A2 (de) | Führungsriemchen für Doppelriemchenstreckwerke und Doppelriemchenstreckwerk. | |
EP2881501B1 (de) | Siebriemchen für eine Verdichtungseinrichtung | |
DE102007023172A1 (de) | Transportband zum Transportieren eines Faserverbandes | |
DE10104783A1 (de) | Vorrichtung an einer Spinnmaschine zum Verdichten eines Faserverbandes | |
DE10042689A1 (de) | Vorrichtung zum Verdichten eines Faserverbandes | |
DE102005058756A1 (de) | Saugkanal für eine Faserbündelungseinrichtung | |
DE102007063263A1 (de) | Saugkanal für eine Faserbündelungseinrichtung | |
WO2020025210A1 (de) | Pressmantel, dessen verwendung sowie presswalze und schuhpresse | |
DE102019126077A1 (de) | Pressmantel, dessen Verwendung sowie Presswalze und Schuhpresse | |
DE10029301A1 (de) | Transportband zum Transportieren eines zu verdichtenden Faserverbandes | |
EP3830335B1 (de) | Pressmantel, dessen verwendung sowie presswalze und schuhpresse | |
WO2023105004A1 (de) | Verdichtungseinrichtung einer spinnmaschine sowie transportriemchen und zwischenriemchen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220915 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231114 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502021003280 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240409 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240410 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: RIETER AG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240926 Year of fee payment: 4 |