EP3733988A1 - Thermisch isolierendes bauelement - Google Patents
Thermisch isolierendes bauelement Download PDFInfo
- Publication number
- EP3733988A1 EP3733988A1 EP19171908.7A EP19171908A EP3733988A1 EP 3733988 A1 EP3733988 A1 EP 3733988A1 EP 19171908 A EP19171908 A EP 19171908A EP 3733988 A1 EP3733988 A1 EP 3733988A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- support bearing
- transverse
- insulating body
- force element
- transverse force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004873 anchoring Methods 0.000 claims description 54
- 239000004567 concrete Substances 0.000 description 15
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 3
- 239000011151 fibre-reinforced plastic Substances 0.000 description 3
- 239000011372 high-strength concrete Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/003—Balconies; Decks
- E04B1/0038—Anchoring devices specially adapted therefor with means for preventing cold bridging
Definitions
- the invention relates to a thermally insulating component of the type specified in the preamble of claim 1.
- thermally insulating component which has thrust bearings.
- the component has U-shaped steel stirrups that form a shear reinforcement.
- the U-shaped ends of the steel brackets are each integrated into a pressure bearing and form a prefabricated unit with this.
- the thrust bearings protrude beyond the insulating body on both longitudinal sides of the insulating body and thereby form a thermally conductive connection between the two structural parts.
- the invention is based on the object of creating a thermally insulating component which has improved thermal insulation properties.
- thermally insulating component having the features of claim 1.
- the invention provides that the support bearing protrudes over the insulating body only on one of the two longitudinal sides.
- the support bearing is accordingly at a distance from the other longitudinal side. Because the at least one support bearing protrudes over the insulating body only on one longitudinal side, the heat transfer from the first to the second longitudinal side of the insulating body is reduced. This allows in a simple way improved thermal insulation properties can be achieved.
- the support bearing preferably acts as a deflection bearing that deflects the acting vertical transverse force into a horizontal tensile force.
- the horizontal tensile force is preferably absorbed by a section of the transverse force element anchored in the adjacent structural part.
- the thermally insulating component can also bridge a comparatively wide separating joint between the structural parts and transmit high shear forces between the structural parts.
- the at least one support bearing protrudes over the insulating body only on one of the two longitudinal sides enables the thermally insulating component to be installed without constraint.
- the transverse force element is in particular a transverse force bar.
- the transverse force rod is preferably made of steel or fiber-reinforced plastic, in particular carbon-fiber-reinforced or glass-fiber-reinforced plastic.
- the transverse force rod preferably has a round or angular, for example rectangular, cross section.
- the transverse force bar can also be formed by flat steel, in particular a steel strip.
- the transmissible transverse forces can be adjusted by suitable selection of the cross section of the transverse force rod.
- the transverse force element is preferably curved in the parting line.
- the at least one support bearing is preferably made of pourable or injectable material.
- the at least one support bearing can for example consist of concrete or mortar, preferably of high-strength or ultra-high-strength concrete or mortar, of ceramic or of plastic, in particular of fiber-reinforced plastic.
- the compressive strength of the at least one support bearing is preferably greater than the compressive strength of the surrounding concrete.
- the load-bearing capacity of the thermally insulating component is as a result, in particular greater than the load-bearing capacity of a thermally insulating component in which the transverse force element is supported by the surrounding in-situ concrete.
- At least one support bearing advantageously has a contact area with which the support bearing rests on the transverse force element. This enables a good transfer of forces between the support bearing and the transverse force element in a simple manner.
- the support bearing can be arranged adjacent to the transverse force element and rest against the transverse force element on one side.
- the transverse force element is at least partially embedded in the support bearing.
- the contact area advantageously extends over a partial circumference or the entire circumference of the transverse force element.
- the support bearing advantageously partially, in particular completely, surrounds the transverse force element in the contact area.
- the contact area is preferably aligned in such a way that the transverse force element can transfer both forces in the vertical direction and forces in the transverse direction of the thermally insulating component to the support bearing.
- the transverse force element By supporting the transverse force element in the vertical direction and in the transverse direction, high transverse forces can be transmitted via the transverse force element.
- the parting line can be made comparatively wide, so that a good insulating effect results.
- the transmission of forces both in the vertical direction and in the transverse direction can be achieved in particular by inclining the contact area to the vertical direction and the transverse direction.
- the contact area can also be designed to be curved or have a plurality of sections extending at an angle to one another in order to allow forces to be transmitted in several directions.
- the transverse force element advantageously has two anchoring sections which protrude from the insulating body on the longitudinal sides.
- the two anchoring sections advantageously protrude from the insulating body on opposite longitudinal sides.
- the two anchoring sections advantageously have an offset to one another in the vertical direction of the insulating body on the longitudinal sides of the insulating body.
- the transverse force element has advantageously a middle section which at least partially bridges the offset of the anchoring sections.
- the middle section preferably bridges at least 30%, in particular at least 50% of the offset of the anchoring sections with respect to one another.
- the middle section advantageously forms an angle of less than 45 °, in particular less than 30 °, with the vertical direction of the insulating body. In a particularly preferred embodiment, the middle section runs in the vertical direction.
- the anchoring sections advantageously run in the transverse direction.
- the middle section is advantageously inclined at 90 ° to the anchoring sections.
- the bisector between the middle section and the anchoring section advantageously intersects the support bearing. As a result, forces that act on the transverse force element can be effectively introduced into the at least one support bearing.
- the support bearing has an inner side facing the central section and a transverse side facing the anchoring section.
- the bisector between the central section and the anchoring section forms an angle with the bisector between the inside and the transverse side of the support bearing, which is preferably less than 45 °.
- the angle is preferably smaller than 30 °.
- the bisector between the middle section and the anchoring section coincides with the bisector between the inside and the transverse side of the support bearing.
- At least one support bearing has an inside facing the middle section, which with the middle section encloses an angle of 30 ° to 60 °, in particular of 40 ° to 50 °.
- the inside forms an angle of approximately 45 ° with the central section.
- At least one support bearing is located on the transverse force element from the middle section of the transverse force element up to a longitudinal side of the insulating body at.
- the middle section is advantageously connected to the anchoring section via a bend, and the support bearing rests against the bend.
- the support bearing rests on the bend and on the entire section of the transverse force element, which extends from the bend to the longitudinal side of the insulating body, on the transverse force element. This enables a good introduction of force.
- Two support bearings are advantageously in contact with a transverse force element, the two support bearings protruding from the insulating body on opposite longitudinal sides and forming a pair of support bearings. Both support bearings of the support bearing pair are advantageously designed identically.
- the support bearings of the support bearing pair preferably differ only in their installation position. This results in a simple structure and reduces the number of individual parts required.
- the bisector between the inside and the transverse side of the two support bearings of the support bearing pair advantageously enclose an angle of less than 20 ° with one another.
- the bisectors of the two support bearings of the support bearing pair preferably run parallel to one another.
- the at least one support bearing advantageously has an outer surface which protrudes from the insulating body.
- the outer surface is therefore visible from the outside of the insulating body.
- the outer surface can end flush with the longitudinal side of the insulating body or protrude beyond the longitudinal side of the insulating body.
- at least a section of the outer surface advantageously runs parallel to the vertical direction. Forces running in the transverse direction can be effectively introduced into the surrounding concrete via the section of the outer surface running parallel to the vertical direction.
- the at least one support bearing and the transverse force element are advantageously arranged in a common plane oriented in the vertical direction and in the transverse direction.
- the two support bearings of the support bearing pair and the transverse force element in a common plane aligned in the vertical direction and in the transverse direction.
- the at least one support bearing and the transverse force element accordingly lie in a common plane running perpendicular to the longitudinal direction of the insulating body.
- the common plane preferably divides the support bearing and the transverse force element in the middle.
- both support bearings of the support bearing pair are of identical design.
- the support bearings of the support bearing pair are advantageously arranged axially symmetrically to an axis running parallel to the longitudinal direction.
- the support bearings of the support bearing pair are accordingly advantageously rotated by 180 ° about an axis running parallel to the longitudinal direction.
- Fig. 1 shows a thermally insulating component 1 'according to the prior art.
- the thermally insulating component 1 ' is intended for use in a joint 4 between two load-bearing structural parts, namely between a building ceiling 3 and a balcony slab 2, which are shown in FIG Fig. 1 are shown schematically with a dashed line.
- the thermally insulating component 1 ′ has an insulating body 5, which has a first longitudinal side 9 and a second longitudinal side 10. The first long side 9 rests against the balcony slab 2 and the second long side 10 against the building ceiling 3.
- the insulating body 5 is essentially an elongated, cuboidal component with a longitudinal direction 6, a transverse direction 7 and a vertical direction 8.
- the longitudinal direction 6 runs horizontal and parallel to the longitudinal direction of the parting line 4.
- the transverse direction 7 runs horizontally and perpendicular to the longitudinal direction 6, and the vertical direction 8 runs vertically and perpendicular to the longitudinal direction 6 and to the transverse direction 7.
- the thermally insulating component 1 ′ has tension rods 51, which protrude through the insulating body 5 in the transverse direction 7, for the transmission of forces between the balcony slab 2 and the building ceiling 3.
- the tension rods 51 are arranged in an upper region of the insulating body 5.
- pressure rods 52 run, which are also straight.
- the pressure rods 52 also protrude through the insulating body 5.
- the thermally insulating component 1 ′ also has pressure bearings 54 and 55, which are provided for absorbing pressure forces.
- the thrust bearings 54 and 55 protrude completely through the insulating body 5 in the transverse direction 7 and protrude beyond the insulating body both on the first longitudinal side 9 and on the second longitudinal side 10.
- the thrust bearings 54 are designed as thrust thrust bearings and, in addition to compressive forces, can also absorb thrust forces in the vertical direction 8 of the insulating body 5.
- transverse force rods 53 are provided, which in the in Fig. 1
- the embodiment shown as an example for absorbing mutually acting stresses are each arranged in pairs and which have an offset in the vertical direction 8 between the first longitudinal side 9 and the second longitudinal side 10.
- a pull rod 51 and a compression rod 52 are arranged in pairs one above the other.
- the tension rods 51 and compression rods 52 are spaced apart from all other elements in the longitudinal direction 6.
- the tension rods 51 and compression rods 52 have a distance v measured in the longitudinal direction 6 from the adjacent transverse force rods 53.
- the thrust bearings 54 and 55 are also spaced from all other elements in the longitudinal direction 6.
- the pressure bearings 54 have a distance w measured in the longitudinal direction 6 from the tension rods 51 and pressure rods 52, which are arranged adjacent.
- the thrust bearings 54 have a distance x in the longitudinal direction 6 from adjacent transverse force rods 53.
- the thrust bearings 55 have a distance y measured in the longitudinal direction 6 from adjacent tension rods 51 or compression rods 52 on.
- the thrust bearings 55 are at a distance z from adjacent transverse force rods 53.
- the distances w, x, y and z can be of different sizes.
- Fig. 2 shows a thermally insulating component 1 according to the invention in a side view of the longitudinal side 10.
- the design of the insulating body 5, the position of the longitudinal direction 6, transverse direction 7 and vertical direction 8, the position of the longitudinal sides 9 and 10 and the arrangement of the insulating body 5 in the Parting joint 4 between load-bearing parts of the building, in particular between the balcony slab 2 and the building ceiling 3, corresponds to that of FIG Fig. 1 the arrangement described for the prior art, to which reference is hereby made.
- the same reference symbols designate elements that correspond to one another in all figures.
- the thermally insulating component 1 shows in the exemplary embodiment Fig. 2 at least two support bearings 14 which have a distance e from one another in the longitudinal direction 6 of the insulating body 5. Each support bearing 14 is arranged on a transverse force element 15. Each transverse force element 15 is arranged with the assigned support bearing 14 in a plane 40 running perpendicular to the longitudinal direction 10. The support bearings 14 have a width g measured in the longitudinal direction 6, which is shown in the exemplary embodiment Fig. 2 is constant over the height of the support bearing 14.
- a thermally insulating component 1 with only one transverse force element 15, which is supported on at least one support bearing 13, 14, can, however, be advantageous.
- Fig. 3 shows the thermally insulating component 1 in a sectional illustration perpendicular to the longitudinal direction 6 in a sectional plane which corresponds to the plane 40.
- two support bearings 13 and 14 are provided in the plane 40, which form a pair of support bearings 16.
- the two support bearings 13 and 14 support the transverse force element 15 in a force-transmitting manner.
- the support bearings 13 and 14 and the transverse force element 15 are preferably designed symmetrically to the plane 40.
- the support bearing 13 projects beyond the insulating body 5 exclusively on the first longitudinal side 9.
- the support bearing 13 has an in Fig. 4 drawn distance n.
- the second support bearing 14 protrudes beyond the insulating body 5 exclusively on the longitudinal side 10.
- the support bearing 14 has an in Fig. 4 drawn distance n. There is no direct connection between the support bearings 13 and 14.
- the support bearings 13 and 14 are at a distance m from one another.
- the distance m can advantageously be 10% to 50% of a height h of the insulating body 5 measured in the vertical direction 8.
- the support bearings 13 and 14 are preferably made of concrete or mortar, in particular of high-strength concrete or mortar, particularly preferably of ultra-high-strength concrete or mortar.
- the support bearings 13 and 14 can in particular consist of fiber-reinforced material.
- the support bearings 13, 14 can also consist of ceramic or plastic, in particular fiber-reinforced plastic.
- the material of the support bearings 13, 14 has a higher strength than the surrounding concrete of the balcony slab 2 or the building ceiling 3.
- the transverse force element 15 is preferably designed as a rod.
- the rod has a round cross section with a diameter d.
- a different cross-sectional shape, in particular a rectangular cross-sectional shape, of the transverse force element 15 can also be advantageous.
- the transverse force element 15 can in particular be designed as a band with a flat rectangular cross-section.
- the transverse force element 15 has a first anchoring section 23, which in the exemplary embodiment is designed as a straight rod and protrudes into the concrete slab 2 in the installed state.
- a second anchoring section 24 projects into the building ceiling 3 in the installed state.
- the second anchoring section 24 is also straight in the exemplary embodiment.
- the anchoring sections 23 and 24 advantageously run in the transverse direction 7.
- the insulating body 5 has an underside 11 lying at the bottom in the installed state and an upper side 12 lying at the top.
- the first anchoring section 23 runs at a distance b, measured in the vertical direction 8, from the underside 11 of the insulating body 5.
- the distance b is measured from the longitudinal center axis of the anchoring section 23.
- the anchoring section 24 is at a distance c from the top of the insulating body 5.
- the distance c is also measured from the longitudinal center axis of the anchoring section 24.
- the first anchoring section 23 runs closer to the underside 11 in relation to the vertical direction 8 and the second anchoring section 24 runs closer to the upper side 12. This results in an offset a of the anchoring sections 23 and 24 in the vertical direction 8.
- the two anchoring sections 23 and 24 are connected to one another via a central section 25 which runs in the insulating body 5.
- the middle section 25 bridges at least part of the offset a between the anchoring sections 23 and 24.
- the middle section 25 has a length u which in the exemplary embodiment is more than 30%, in particular more than 50% of the offset a.
- the distances b and c are advantageously smaller than the offset a.
- the middle section 25 is connected to the anchoring sections 23 and 24 respectively via a bend 27.
- the transverse force element 15 has an inner radius r.
- the support bearings 13 and 14 have a corresponding outer radius and lie against the bends 27.
- the first support bearing 13 has a transverse side 28 facing the anchoring section 23, which in the exemplary embodiment forms the underside of the first support bearing 13.
- the second support bearing 14 has a transverse side 29 facing the anchoring section 24, which in the exemplary embodiment forms the upper side of the second support bearing 14.
- the support bearings 13, 14 rest with their transverse sides 28, 29 facing the anchoring sections 23, 24 against the sections of the anchoring sections 23 and 24 adjoining the bends 27.
- the support bearings 13 and 14 are located in the exemplary embodiment Fig. 3 at least up to the point on the transverse force element 15 at which the transverse force element 15 emerges from the insulating body 5 on the longitudinal sides 9 and 10.
- the support bearings 13 and 14 also rest on the anchoring sections 23 and 24 in a section of the transverse force element 15 that extends outside the insulating body 5.
- Transverse forces acting on the transverse force element 15 are at least partially introduced into the support bearings 13 and 14 at the bends 27 and diverted from the balcony slab 2 and building ceiling 3 as at least partially horizontally acting force into the surrounding concrete.
- the transverse force element 15, in particular the central section 25, is supported via the support bearings 13 and 14 to absorb transverse forces on the surrounding concrete.
- the support bearings 13 and 14 have inner sides 19 facing one another.
- the inner sides 19 are adjacent and at a distance from the central section 25.
- the inner sides 19 of the two support bearings 13 and 14 run parallel to one another in the exemplary embodiment.
- the inner sides 19 form an angle ⁇ with the central section 25, which is preferably from 30 ° to 60 °, in particular from 40 ° to 50 °. In the exemplary embodiment, an angle of 45 ° is provided.
- the support bearings 13 and 14 in the illustrated schematic sectional view perpendicular to the longitudinal direction 6 have an approximately triangular shape.
- the support bearings 13 and 14 have a height k which is measured in the vertical direction 8 and which is preferably smaller than the offset a between the anchoring sections 23 and 24.
- the middle section 25 preferably forms an angle of less than 30 °, in particular of less than 15 °, with the vertical direction 8.
- the central section 25 runs in the vertical direction 8, so that the angle between the vertical direction 8 and the center distance 25 is 0 °.
- the support bearings 13 and 14 each have a projection 17 and 18, respectively, which protrudes from the insulating body 5 via the longitudinal sides 9 and 10, respectively.
- Each projection 17, 18 has a protrusion f measured in the transverse direction 7 from the associated longitudinal side 9, 10.
- the support bearings 13 and 14 each have an outer surface 26 from which the projection 17 or 18 rises.
- the outer surface 26 runs parallel to the vertical direction 8. It is advantageously provided that the outer surface 26 is arched about an axis running parallel to the vertical direction 8. In the exemplary embodiment, the outer surfaces 26 protrude from the insulating body 5. However, provision can also be made for the outer surfaces 26 to be arranged flush in the longitudinal sides 9, 10.
- the support bearing 13 has a transverse side 28 pointing downwards.
- the transverse side 28 runs parallel to the transverse direction 7 and merges into the inner side 19 via a contact area 20.
- the support bearing 13 rests against the transverse force element 15, in the exemplary embodiment on the bend 27 of the transverse force element 15.
- the contact area 27 extends over the entire length of the transverse side 28 of the support bearing 13.
- the support bearing 13 supports the transverse force element 15 in both the transverse direction 7 and in the vertical direction 8, so that forces from the transverse force element 15 on the support bearing 13 in the vertical direction 8 as well as forces in the transverse direction 7 can be transmitted.
- the support bearing 13 also rests on the transverse force element 15 in an area which is located outside the insulating body 5.
- the support bearing 14 is rotated through 180 ° relative to the support bearing 13 about an axis running parallel to the longitudinal direction 6.
- the support bearing 14 has an upper side 29 which merges into the inner surface 19 via a contact area 21.
- the top 29 runs parallel to the transverse side 28 of the support bearing 13 and in the transverse direction 7.
- the support bearing 14 rests on the transverse force element 15, so that forces in both the vertical direction 8 and in the transverse direction 7 from the transverse force element 15 to the support bearing 14 can be transmitted.
- the transverse force element 15 can transmit forces acting downwards to the support bearing 13 and forces acting upwards to the support bearing 14. To transmit forces in the opposite direction, the transverse force element 15 with the support bearings 13 and 14 must be installed rotated by 180 ° about an axis lying parallel to the transverse direction 7.
- the support bearings 13 and 14 are identical, that is to say as identical parts, and only differ in their installation position.
- the support bearing 14 has an angle bisector 33, which in the plane 40 is the angle bisector between the transverse side 29 and the inside 19.
- the anchoring section 24 encloses an angle bisector 34 with the central section 25.
- the bisector 34 intersects the support bearing 14.
- the bisector 33 and 34 enclose an angle ⁇ which is advantageously smaller than 45 °, in particular smaller than 30 °.
- Fig. 5 shows an embodiment variant for a thermally insulating component 1.
- the thermally insulating component 1 comprises an insulating body 5, a transverse force element 15 and support bearings 14.
- the support bearings 14 have a width g measured in the longitudinal direction 6, which is constant over the height of the support bearings 14. However, it can also be provided that the width g changes in the vertical direction 8.
- a support bearing 13 and a support bearing 14 are arranged on each transverse force element 15.
- the support bearings 13 and 14 are approximately rectangular in a cross section perpendicular to the longitudinal direction 6 and have inner sides 19 facing the middle section 25 and the middle section 25 and the transverse sides 28, 29 facing away from each other support bearing 13, 14. Both the inner sides 19 and the transverse sides 28, 29 of the support bearings 13 and 14 each run parallel to one another.
- the inner sides 19 of the two support bearings 13 and 14 run at a distance m from one another.
- the transverse side 28 or 29 and the inner side 19 of each support bearing 13, 14 are connected to one another via an outer side 30.
- the inner sides 19 are inclined at an angle ⁇ to the central section 25, which is preferably from 30 ° to 60 °, in particular from 40 ° to 50 °. In the exemplary embodiment, an angle ⁇ of 45 ° is provided and the central section 25 runs parallel to the vertical direction 8.
- the bisector 34 between one of the anchoring sections 23, 24 and the central section 25 and the bisector 33 between one of the transverse sides 28, 29 and the inside 19 of each support bearing 13, 14 coincide.
- the angle between the bisector 33 and 34 is 0 °.
- the bisector 33 between a transverse side 28, 29 and an inside 19 is a straight line due to the parallel course of the transverse side 28, 29 and inside 19, which runs centrally between the transverse side 28, 29 and the inside 19 of a support bearing 13, 14.
- the support bearings 13 and 14 have projections 17 and 18, which protrude beyond the associated longitudinal sides 9 and 10 by a projection f.
- the support bearings 13, 14 have a width i measured between the transverse sides 28, 29 and the inner sides 19, which is greater than the diameter d ( Fig. 3 ) of the transverse force element 15 is. However, the width i is smaller than the offset a of the anchoring sections 23 and 24 ( Fig. 3 ).
- the support bearings 13 and 14 rest with contact areas 20, 21 on the bends 27 of the transverse force element 15. Both the contact areas 20 and 21 and the bends 27 run in a radius. Due to the contact with the bend 27, both forces in the horizontal direction and forces in the vertical direction can be transmitted from the transverse force element 15 to the support bearings 13 and 14.
- the contact areas 20 and 21 of the support bearings 13 and 14 are convexly curved following the bend 27.
- the support bearings 13 and 14 from Fig. 6 are advantageously designed identically and installed in a rotated orientation to one another.
- the Figures 7 and 8 show a further embodiment of a thermally insulating component 1.
- the thermally insulating component 1 has an insulating body 5, which has support bearings 13 and transverse force elements 15.
- the width g of the support bearing 13 measured in the longitudinal direction 6 increases in the direction of the in
- Fig. 8 contact area 20 shown.
- the width i of the support bearing 13 also increases, as Fig. 8 shows, from the outside 30 in the direction of the contact area 20. From the contact area 20 in the direction of the outer surface 30, the cross-sectional area of the support bearing 13 thus increases. This allows the pressure transmission area to the adjacent concrete of balcony slab 2 or building ceiling 3 to be increased in a simple manner.
- the middle section 25 of the transverse force element 15 forms an angle ⁇ with the vertical direction 8 which is greater than 0 °.
- the angle ⁇ is advantageously less than 45 °, in particular less than 30 °.
- the support bearing 13 has an angle bisector 33 between the inner side 19 and the transverse side 28 facing the anchoring section 23.
- the bisector 34 between the central section 25 and the anchoring section 23 forms an angle ⁇ with the bisector 33 which is greater than 0 °.
- the angle ⁇ is advantageously less than 45 °, in particular less than 30 °.
- the bisector 34 intersects the support bearing 13 only in the contact area 20 directly adjacent to the bend 27.
- the Figures 9 and 10 show a further embodiment of a thermally insulating component 1 with an insulating body 5
- the thermally insulating component 1 has support bearings 13 and 14 and a transverse force element 15, which are held in the insulating body 5.
- the support bearings 13 and 14 correspond to the support bearings 13 and 14, which are in the Figures 2 to 4 are shown.
- the Shear force element 15 has an anchoring section 24 which runs straight and protrudes into building ceiling 3.
- the transverse force element 15 also has an anchoring section 23 which is angled and has a thickening, preferably an anchor head or the like, at its free end.
- the anchoring section 23 runs in the balcony slab 2 parallel to the vertical direction 8.
- Another form of anchoring section 23 and 24, in particular curved or inclined rods which have thickened areas for anchoring, can also be advantageous.
- the Figures 11 and 12 show a further exemplary embodiment of a thermally insulating component 1.
- the thermally insulating component 1 has support bearings 14, transverse force elements 15, tension rods 51 and compression rods 52.
- tension rods 51 and a compression rod 52 are arranged in a common plane 41.
- a support bearing 14 and a transverse force element 15 are arranged in a common plane 40.
- the tension rods 51 and compression rods 52 are at a distance s from an adjacent transverse force element 15, which is measured in the longitudinal direction 6 of the thermally insulating component 1.
- the transverse force element 15 is at a distance t from the next tension rod 51.
- the distances s and t can be the same or different.
- At least one transverse force element 15 and a support bearing 14 arranged on it can be combined in any suitable manner with other elements for force transmission such as pressure bearings, pressure thrust bearings, tension rods, compression rods and transverse force rods in order to adapt the thermally insulating component 1 to the loads that occur.
- the transverse force element 15 has a bend 27 arranged in the insulating body 5 and a second bend 27 arranged in the balcony slab 2.
- the support bearing 14 is supported on the bend 27 in the insulating body 5.
- the support takes place via the surrounding concrete of the balcony slab 2.
- the support bearing 14 has a transverse side 29 which rests on the anchoring section 24.
- the transverse side 29 protrudes into the concrete of the building ceiling 3.
- the support bearing 14 also has an inner side 19 which faces the central section 25.
- the inside 19 runs parallel to the vertical direction 8.
- the inside 19 and the transverse side 29 enclose an angle bisector 33.
- the middle section 25 and the anchoring section 24 enclose an angle bisector 34.
- the bisectors 33 and 34 enclose an angle ⁇ which is less than 45 °, in particular less than 30 °.
- An angle ⁇ of 0 ° that is to say an embodiment in which the bisectors 33 and 34 coincide in a view in the longitudinal direction 6 of the thermally insulating component 1, can also be advantageous.
- the cross-sectional area of the support bearing 14 increases from the contact area 21 to the outside 30.
- the support bearing 14 has an underside 35 which connects the inside 19 to the outside 30.
- the bottom 35 extends at an angle of more than 90 ° to the inside 19 and at an angle of less than 90 ° to the outside 30. This forms the increasing cross-sectional area of the support bearing 14.
- the middle section 25 forms an angle ⁇ with the vertical direction 8 which is more than 0 °.
- the angle ⁇ is approximately 30 °.
- the at least one support bearing 13, 14 and the transverse force element 15 can be combined with any known elements for transmitting forces between the longitudinal sides 9 and 10 of the insulating body 5. Further elements for force transmission are preferably arranged at a distance in the longitudinal direction 6 from the transverse force element 15 with the pair of support bearings 16 arranged thereon.
- all of the support bearings 13, 14 project beyond the insulating body 5 on only one longitudinal side 9, 10 of the insulating body 5 and are at a distance n from the other longitudinal side 9, 10 of the insulating body 5.
- the support bearings 13, 14 can end flush with one longitudinal side 9, 10 of the insulating body 5 or protrude beyond the longitudinal side 9, 10 of the insulating body 5.
- the insulating body 5 can have any desired structure.
- the insulating body 5 can be formed by a box which is composed of one or more individual parts and is arranged in the insulating material.
- the insulating body 5 can also be formed from dimensionally stable thermally insulating material.
- the bisectors 33 and 34 and the angles between the bisectors are measured in a sectional plane perpendicular to the longitudinal direction 6.
- the bisectors 33, 34 are the straight lines that bisect the angle that the specified elements limit.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Building Environments (AREA)
Abstract
Description
- Die Erfindung betrifft ein thermisch isolierendes Bauelement der im Oberbegriff des Anspruchs 1 angegebenen Gattung.
- Aus der
DE 10 2016 123 390 A1 ist ein thermisch isolierendes Bauelement bekannt, das Drucklager aufweist. Das Bauelement weist U-förmige Stahlbügel auf, die eine Querkraftbewehrung bilden. Die U-förmigen Enden der Stahlbügel sind jeweils in ein Drucklager eingebunden und bilden mit diesem eine vorgefertigte Einheit. Die Drucklager stehen an beiden Längsseiten des Isolierkörpers über den Isolierkörper hervor und bilden dadurch eine wärmeleitende Verbindung zwischen den beiden Bauwerksteilen. - Der Erfindung liegt die Aufgabe zugrunde, ein thermisch isolierendes Bauelement zu schaffen, das verbesserte Wärmedämmeigenschaften aufweist.
- Diese Aufgabe wird durch ein thermisch isolierendes Bauelement mit den Merkmalen des Anspruchs 1 gelöst.
- Die Erfindung sieht vor, dass das Stützlager nur an einer der beiden Längsseiten über den Isolierkörper hervorsteht. Zur anderen Längsseite weist das Stützlager demnach einen Abstand auf. Dadurch, dass das mindestens eine Stützlager nur an einer Längsseite über den Isolierkörper hervorsteht, ist die Wärmeübertragung von der ersten zur zweiten Längsseite des Isolierkörpers verringert. Dadurch können auf einfache Weise verbesserte Wärmedämmeigenschaften erreicht werden. Das Stützlager wirkt vorzugsweise als Umlenklager, das die einwirkende vertikale Querkraft in eine horizontale Zugkraft umlenkt. Die horizontale Zugkraft wird vorzugsweise von einem im angrenzenden Bauwerksteil verankerten Abschnitt des Querkraftelements aufgenommen. Dadurch, dass das mindestens eine Stützlager Teil des thermisch isolierenden Bauelements ist und die Abstützung des Querkraftelements nicht ausschließlich durch den umgebenden Beton erfolgt, kann das thermisch isolierende Bauelement auch eine vergleichsweise breite Trennfuge zwischen den Bauwerksteilen überbrücken und hohe Querkräfte zwischen den Bauwerksteilen übertragen.
- Dadurch, dass das mindestens eine Stützlager nur an einer der beiden Längsseiten über den Isolierkörper hervorsteht, ist ein zwängungsfreier Einbau des thermisch isolierenden Bauelements möglich.
- Das Querkraftelement ist insbesondere ein Querkraftstab. Der Querkraftstab besteht vorzugsweise aus Stahl oder faserverstärktem Kunststoff, insbesondere kohlefaserverstärktem oder glasfaserverstärktem Kunststoff. Der Querkraftstab weist vorzugsweise einen runden oder eckigen, beispielsweise rechteckigen Querschnitt auf. Der Querkraftstab kann auch durch Flachstahl, insbesondere ein Stahlband, gebildet sein. Durch geeignete Wahl des Querschnitts des Querkraftstabs können die übertragbaren Querkräfte eingestellt werden. Das Querkraftelement verläuft in der Trennfuge vorzugsweise gebogen.
- Das mindestens eine Stützlager besteht vorzugsweise aus gieß- oder spritzfähigem Material. Das mindestens eine Stützlager kann beispielsweise aus Beton bzw. Mörtel, bevorzugt aus hochfestem oder ultrahochfestem Beton bzw. Mörtel, aus Keramik oder aus Kunststoff, insbesondere aus faserverstärktem Kunststoff bestehen. Die Druckfestigkeit des mindestens einen Stützlagers ist vorzugsweise größer als die Druckfestigkeit des umgebenden Betons. Die Tragfähigkeit des thermisch isolierenden Bauelements ist dadurch insbesondere größer als die Tragfähigkeit eines thermisch isolierenden Bauelements, bei dem das Querkraftelement vom umgebenden Ortbeton abgestützt ist.
- Vorteilhaft weist mindestens ein Stützlager einen Kontaktbereich auf, mit dem das Stützlager an dem Querkraftelement anliegt. Dadurch wird auf einfache Weise eine gute Übertragung der Kräfte zwischen Stützlager und Querkraftelement ermöglicht. Das Stützlager kann dabei benachbart zu dem Querkraftelement angeordnet sein und an einer Seite an dem Querkraftelement anliegen. In alternativer Gestaltung kann auch vorgesehen sein, dass das Querkraftelement zumindest teilweise in das Stützlager eingebettet ist. Der Kontaktbereich erstreckt sich in diesem Fall vorteilhaft über einen Teilumfang oder den gesamten Umfang des Querkraftelements. Das Stützlager umgibt das Querkraftelement im Kontaktbereich vorteilhaft teilweise, insbesondere vollständig.
- Der Kontaktbereich ist vorzugsweise so ausgerichtet, dass das Querkraftelement sowohl Kräfte in Hochrichtung als auch Kräfte in Querrichtung des thermisch isolierenden Bauelements auf das Stützlager übertragen kann. Durch die Abstützung des Querkraftelements in Hochrichtung und in Querrichtung können hohe Querkräfte über das Querkraftelement übertragen werden. Durch die Abstützung des Querkraftelements kann die Trennfuge vergleichsweise breit ausgebildet sein, so dass sich eine gute Dämmwirkung ergibt. Die Übertragung von Kräften sowohl in Hochrichtung als auch in Querrichtung lässt sich insbesondere durch Neigung des Kontaktbereichs zur Hochrichtung und Querrichtung erreichen. Der Kontaktbereich kann auch gebogen ausgeführt sein oder mehrere zueinander winklig verlaufende Abschnitte aufweisen, um eine Übertragung von Kräften in mehrere Richtungen zu erlauben.
- Vorteilhaft weist das Querkraftelement zwei Verankerungsabschnitte auf, die an den Längsseiten aus dem Isolierkörper ragen. Die beiden Verankerungsabschnitte ragen vorteilhaft an gegenüberliegenden Längsseiten aus dem Isolierkörper. Die beiden Verankerungsabschnitte weisen in Hochrichtung des Isolierkörpers an den Längsseiten des Isolierkörpers vorteilhaft einen Versatz zueinander auf. Das Querkraftelement weist vorteilhaft einen Mittelabschnitt auf, der den Versatz der Verankerungsabschnitte zumindest teilweise überbrückt. Bevorzugt überbrückt der Mittelabschnitt mindestens 30%, insbesondere mindestens 50% des Versatzes der Verankerungsabschnitte zueinander. Der Mittelabschnitt schließt mit der Hochrichtung des Isolierkörpers vorteilhaft einen Winkel von weniger als 45°, insbesondere von weniger als 30°, ein. In besonders bevorzugter Gestaltung verläuft der Mittelabschnitt in Hochrichtung. Die Verankerungsabschnitte verlaufen vorteilhaft in Querrichtung. Der Mittelabschnitt ist vorteilhaft zu den Verankerungsabschnitten um 90° geneigt.
- Vorteilhaft schneidet die Winkelhalbierende zwischen dem Mittelabschnitt und dem Verankerungsabschnitt das Stützlager. Dadurch können Kräfte, die auf das Querkraftelement einwirken, gut in das mindestens eine Stützlager eingeleitet werden.
- Das Stützlager weist eine dem Mittelabschnitt zugewandte Innenseite und eine dem Verankerungsabschnitt zugewandte Querseite auf. Die Winkelhalbierende zwischen dem Mittelabschnitt und dem Verankerungsabschnitt schließt mit der Winkelhalbierenden zwischen der Innenseite und der Querseite des Stützlagers einen Winkel ein, der vorzugsweise kleiner als 45° ist. Bevorzugt ist der Winkel kleiner als 30°. In besonders bevorzugter Ausführung fällt die Winkelhalbierende zwischen dem Mittelabschnitt und dem Verankerungsabschnitt mit der Winkelhalbierenden zwischen der Innenseite und der Querseite des Stützlagers zusammen.
- Vorteilhaft weist mindestens ein Stützlager eine dem Mittelabschnitt zugewandte Innenseite auf, die mit dem Mittelabschnitt einen Winkel von 30° bis 60°, insbesondere von 40° bis 50°, einschließt. In besonders bevorzugter Gestaltung schließt die Innenseite mit dem Mittelabschnitt einen Winkel von etwa 45° ein.
- In vorteilhafter Gestaltung liegt mindestens ein Stützlager vom Mittelabschnitt des Querkraftelements bis zu einer Längsseite des Isolierkörpers an dem Querkraftelement an. Vorteilhaft ist der Mittelabschnitt über eine Biegung mit dem Verankerungsabschnitt verbunden, und das Stützlager liegt an der Biegung an. Insbesondere liegt das Stützlager an der Biegung und an dem gesamten Abschnitt des Querkraftelements, der sich von der Biegung bis zur Längsseite des Isolierkörpers erstreckt, an dem Querkraftelement an. Dadurch wird eine gute Krafteinleitung ermöglicht.
- Vorteilhaft liegen zwei Stützlager an einem Querkraftelement an, wobei die beiden Stützlager an gegenüberliegenden Längsseiten aus dem Isolierkörper ragen und ein Stützlagerpaar bilden. Vorteilhaft sind beide Stützlager des Stützlagerpaars identisch ausgebildet. Die Stützlager des Stützlagerpaars unterscheiden sich vorzugsweise lediglich in ihrer Einbaulage. Dadurch wird ein einfacher Aufbau erreicht und die Anzahl der benötigten Einzelteile verringert.
- Die Winkelhalbierenden zwischen der Innenseite und der Querseite der beiden Stützlager des Stützlagerpaars schließen vorteilhaft einen Winkel von weniger als 20° miteinander ein. Bevorzugt verlaufen die Winkelhalbierenden der beiden Stützlager des Stützlagerpaars parallel zueinander.
- Vorteilhaft weist das mindestens eine Stützlager eine Außenfläche auf, die aus dem Isolierkörper ragt. Die Außenfläche ist demnach von der Außenseite des Isolierkörpers sichtbar. Die Außenfläche kann dabei bündig mit der Längsseite des Isolierkörpers abschließen oder über die Längsseite des Isolierkörpers hinausragen. Vorteilhaft verläuft bei mindestens einem Stützlager zumindest ein Abschnitt der Außenfläche parallel zur Hochrichtung. Über den parallel zur Hochrichtung verlaufenden Abschnitt der Außenfläche können in Querrichtung verlaufende Kräfte gut in den umgebenden Beton eingeleitet werden.
- Vorteilhaft sind das mindestens eine Stützlager und das Querkraftelement in einer gemeinsamen, in Hochrichtung und in Querrichtung ausgerichteten Ebene angeordnet. Vorteilhaft sind die beiden Stützlager des Stützlagerpaars und das Querkraftelement in einer gemeinsamen, in Hochrichtung und in Querrichtung ausgerichteten Ebene angeordnet. Das mindestens eine Stützlager und das Querkraftelement liegen demnach in einer gemeinsamen, senkrecht zur Längsrichtung des Isolierkörpers verlaufenden Ebene. Vorzugsweise teilt die gemeinsame Ebene die Stützlager und das Querkraftelement mittig. In besonders bevorzugter Gestaltung sind beide Stützlager des Stützlagerpaars identisch ausgebildet. Die Stützlager des Stützlagerpaars sind vorteilhaft achsensymmetrisch zu einer parallel zur Längsrichtung verlaufenden Achse angeordnet. Die Stützlager des Stützlagerpaars sind demnach vorteilhaft um 180° um eine parallel zur Längsrichtung verlaufende Achse zueinander gedreht.
- Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung erläutert. Es zeigen:
- Fig. 1
- eine perspektivische Darstellung eines thermisch isolierenden Bauelements nach dem Stand der Technik,
- Fig. 2
- eine schematische Seitenansicht eines erfindungsgemäßen thermisch isolierenden Bauelements,
- Fig. 3
- eine schematische Schnittdarstellung des thermisch isolierenden Bauelements aus
Fig. 2 entlang der Linie III-III inFig. 2 , - Fig. 4
- eine ausschnittsweise, vergrößerte Darstellung des thermisch isolierenden Bauelements aus
Fig. 3 , - Fig. 5
- eine schematische Seitenansicht eines Ausführungsbeispiels eines thermisch isolierenden Bauelements,
- Fig. 6
- eine schematische Schnittdarstellung des thermisch isolierenden Bauelements aus
Fig. 5 entlang der Linie VI-VI inFig. 5 , - Fig. 7
- eine schematische Seitenansicht eines Ausführungsbeispiels eines thermisch isolierenden Bauelements,
- Fig. 8
- eine schematische Schnittdarstellung des thermisch isolierenden Bauelements aus
Fig. 7 entlang der Linie VIII-VIII inFig. 7 , - Fig. 9
- eine schematische Seitenansicht eines Ausführungsbeispiels eines thermisch isolierenden Bauelements,
- Fig. 10
- eine schematische Schnittdarstellung des thermisch isolierenden Bauelements aus
Fig. 9 entlang der Linie X-X inFig. 9 , - Fig. 11
- eine schematische Seitenansicht eines Ausführungsbeispiels eines thermisch isolierenden Bauelements,
- Fig. 12
- eine schematische Schnittdarstellung des thermisch isolierenden Bauelements aus
Fig. 11 entlang der Linie XII-XII inFig. 11 . -
Fig. 1 zeigt ein thermisch isolierendes Bauelement 1' nach dem Stand der Technik. Das thermisch isolierende Bauelement 1' ist zum Einsatz in einer Trennfuge 4 zwischen zwei lastaufhehmenden Bauwerksteilen, nämlich zwischen einer Gebäudedecke 3 und einer Balkonplatte 2, vorgesehen, die inFig. 1 schematisch mit gestrichelter Linie dargestellt sind. Das thermisch isolierende Bauelement 1' besitzt einen Isolierkörper 5, der eine erste Längsseite 9 und eine zweite Längsseite 10 aufweist. Die erste Längsseite 9 liegt an der Balkonplatte 2 an und die zweite Längsseite 10 an der Gebäudedecke 3. Der Isolierkörper 5 ist im Wesentlichen ein längliches, quaderförmiges Bauteil mit einer Längsrichtung 6, einer Querrichtung 7 und einer Hochrichtung 8. In Einbaulage verläuft die Längsrichtung 6 horizontal und parallel zur Längsrichtung der Trennfuge 4. Die Querrichtung 7 verläuft horizontal und senkrecht zur Längsrichtung 6, und die Hochrichtung 8 verläuft vertikal und senkrecht zur Längsrichtung 6 und zur Querrichtung 7. - Das thermisch isolierende Bauelement 1' weist zur Übertragung von Kräften zwischen Balkonplatte 2 und Gebäudedecke 3 Zugstäbe 51 auf, die den Isolierkörper 5 in Querrichtung 7 durchragen. Die Zugstäbe 51 sind in einem oberen Bereich des Isolierkörpers 5 angeordnet. Im unteren Bereich des Isolierkörpers 5 verlaufen Druckstäbe 52, die ebenfalls gerade ausgebildet sind. Auch die Druckstäbe 52 durchragen den Isolierkörper 5. Das thermisch isolierende Bauelement 1' weist außerdem Drucklager 54 und 55 auf, die zur Aufnahme von Druckkräften vorgesehen sind. Die Drucklager 54 und 55 durchragen den Isolierkörper 5 in Querrichtung 7 vollständig und stehen sowohl an der ersten Längsseite 9 als auch an der zweiten Längsseite 10 über den Isolierkörper hervor. Die Drucklager 54 sind als Druckschublager ausgebildet und können neben Druckkräften auch Schubkräfte in Hochrichtung 8 des Isolierkörpers 5 aufnehmen. Zur Aufnahme von Querkräften in Hochrichtung 8 sind Querkraftstäbe 53 vorgesehen, die in der in
Fig. 1 exemplarisch dargestellten Ausführung zur Aufnahme wechselseitig wirkender Beanspruchungen jeweils paarweise angeordnet sind und die zwischen der ersten Längsseite 9 und der zweiten Längsseite 10 einen Versatz in Hochrichtung 8 zueinander aufweisen. - Wie
Fig. 1 zeigt, sind jeweils ein Zugstab 51 und ein Druckstab 52 paarweise übereinander angeordnet. Die Zugstäbe 51 und Druckstäbe 52 weisen zu allen anderen Elementen Abstände in Längsrichtung 6 auf. Zu den benachbarten Querkraftstäben 53 weisen die Zugstäbe 51 und Druckstäbe 52 einen in Längsrichtung 6 gemessenen Abstand v auf. Auch die Drucklager 54 und 55 weisen zu allen anderen Elementen Abstände in Längsrichtung 6 auf. Die Drucklager 54 weisen zu den Zugstäben 51 und Druckstäben 52, die benachbart angeordnet sind, einen in Längsrichtung 6 gemessenen Abstand w auf. Die Drucklager 54 weisen zu benachbart angeordneten Querkraftstäben 53 einen Abstand x in Längsrichtung 6 auf. Die Drucklager 55 weisen zu benachbarten Zugstäben 51 bzw. Druckstäben 52 einen in Längsrichtung 6 gemessenen Abstand y auf. Die Drucklager 55 weisen zu benachbarten Querkraftstäben 53 einen Abstand z auf. Die Abstände w, x, y und z können unterschiedlich groß sein. -
Fig. 2 zeigt ein thermisch isolierendes Bauelement 1 nach der Erfindung in einer Seitenansicht auf die Längsseite 10. Die Gestaltung des Isolierkörpers 5, die Lage der Längsrichtung 6, Querrichtung 7 und Hochrichtung 8, die Lage der Längsseiten 9 und 10 und die Anordnung des Isolierkörpers 5 in der Trennfuge 4 zwischen lastaufhehmenden Gebäudeteilen, insbesondere zwischen der Balkonplatte 2 und der Gebäudedecke 3, entspricht der zuFig. 1 zum Stand der Technik beschriebenen Anordnung, auf die hiermit Bezug genommen wird. Gleiche Bezugszeichen bezeichnen in allen Figuren einander entsprechende Elemente. - Das thermisch isolierende Bauelement 1 weist im Ausführungsbeispiel nach
Fig. 2 mindestens zwei Stützlager 14 auf, die in Längsrichtung 6 des Isolierkörpers 5 einen Abstand e zueinander aufweisen. Jedes Stützlager 14 ist an einem Querkraftelement 15 angeordnet. Jedes Querkraftelement 15 ist mit dem zugeordneten Stützlager 14 in einer senkrecht zur Längsrichtung 10 verlaufenden Ebene 40 angeordnet. Die Stützlager 14 weisen eine in Längsrichtung 6 gemessene Breite g auf, die im Ausführungsbeispiel nachFig. 2 über die Höhe der Stützlager 14 konstant ist. Auch ein thermisch isolierendes Bauelement 1 mit nur einem Querkraftelement 15, das sich an mindestens einem Stützlager 13, 14 abstützt, kann jedoch vorteilhaft sein. -
Fig. 3 zeigt das thermisch isolierende Bauelement 1 in einer Schnittdarstellung senkrecht zur Längsrichtung 6 in einer Schnittebene, die der Ebene 40 entspricht. WieFig. 3 zeigt, sind zwei Stützlager 13 und 14 in der Ebene 40 vorgesehen, die ein Stützlagerpaar 16 bilden. Die beiden Stützlager 13 und 14 stützen das Querkraftelement 15 kraftübertragend ab. Die Stützlager 13 und 14 und das Querkraftelement 15 sind vorzugsweise symmetrisch zu der Ebene 40 ausgebildet. Das Stützlager 13 steht ausschließlich an der ersten Längsseite 9 über den Isolierkörper 5 über. Zur zweiten Längsseite 10 weist das Stützlager 13 einen inFig. 4 eingezeichneten Abstand n auf. Das zweite Stützlager 14 steht ausschließlich an der Längsseite 10 über den Isolierkörper 5 vor. Zur ersten Längsseite 9 weist das Stützlager 14 einen inFig. 4 eingezeichneten Abstand n auf. Eine unmittelbare Verbindung zwischen den Stützlagern 13 und 14 besteht nicht. Die Stützlager 13 und 14 weisen einen Abstand m zueinander auf. Der Abstand m kann vorteilhaft 10% bis 50% einer in Hochrichtung 8 gemessenen Höhe h des Isolierkörpers 5 betragen. - Im Ausführungsbeispiel bestehen die Stützlager 13 und 14 vorzugsweise aus Beton oder Mörtel, insbesondere aus hochfestem Beton oder Mörtel, besonders bevorzugt aus ultrahochfestem Beton oder Mörtel. Die Stützlager 13 und 14 können insbesondere aus faserverstärktem Material bestehen. Die Stützlager 13, 14 können auch aus Keramik oder Kunststoff, insbesondere faserverstärktem Kunststoff bestehen. Das Material der Stützlager 13, 14 weist eine höhere Festigkeit auf als der umgebende Beton der Balkonplatte 2 bzw. der Gebäudedecke 3. Das Querkraftelement 15 ist bevorzugt als Stab ausgebildet. Im Ausführungsbeispiel weist der Stab einen runden Querschnitt mit einem Durchmesser d auf. Auch eine andere Querschnittsform, insbesondere eine rechteckige Querschnittsform des Querkraftelements 15 kann jedoch vorteilhaft sein. Das Querkraftelement 15 kann insbesondere als Band mit flachem Rechteckquerschnitt ausgebildet sein.
- Das Querkraftelement 15 weist einen ersten Verankerungsabschnitt 23 auf, der im Ausführungsbeispiel als gerader Stab ausgebildet ist und im Einbauzustand in die Betonplatte 2 ragt. Ein zweiter Verankerungsabschnitt 24 ragt im Einbauzustand in die Gebäudedecke 3. Auch der zweite Verankerungsabschnitt 24 ist im Ausführungsbeispiel gerade ausgebildet. Die Verankerungsabschnitte 23 und 24 verlaufen vorteilhaft in Querrichtung 7. Der Isolierkörper 5 weist eine im Einbauzustand unten liegende Unterseite 11 sowie eine oben liegende Oberseite 12 auf. Der erste Verankerungsabschnitt 23 verläuft in einem in Hochrichtung 8 gemessenen Abstand b zu der Unterseite 11 des Isolierkörpers 5. Der Abstand b ist dabei zur Längsmittelachse des Verankerungsabschnitts 23 gemessen. Der Verankerungsabschnitt 24 weist einen Abstand c zur Oberseite des Isolierkörpers 5 auf. Auch der Abstand c ist zur Längsmittelachse des Verankerungsabschnitts 24 gemessen. Der erste Verankerungsabschnitt 23 verläuft bezogen auf die Hochrichtung 8 näher an der Unterseite 11 und der zweite Verankerungsabschnitt 24 näher an der Oberseite 12. Dadurch ergibt sich ein Versatz a der Verankerungsabschnitte 23 und 24 in Hochrichtung 8.
- Die beiden Verankerungsabschnitte 23 und 24 sind über einen Mittelabschnitt 25 miteinander verbunden, der im Isolierkörper 5 verläuft. Der Mittelabschnitt 25 überbrückt mindestens einen Teil des Versatzes a zwischen den Verankerungsabschnitten 23 und 24. Wie
Fig. 4 zeigt, weist der Mittelabschnitt 25 eine Länge u auf, die im Ausführungsbeispiel mehr als 30%, insbesondere mehr als 50% des Versatzes a beträgt. Die Abstände b und c sind vorteilhaft kleiner als der Versatz a. Wie dieFig. 3 und4 zeigen, ist der Mittelabschnitt 25 über jeweils eine Biegung 27 mit den Verankerungsabschnitten 23 bzw. 24 verbunden. An den Biegungen 27 weist das Querkraftelement 15 einen Innenradius r auf. Die Stützlager 13 und 14 weisen einen entsprechenden Außenradius auf und liegen an den Biegungen 27 an. Das erste Stützlager 13 weist eine dem Verankerungsabschnitt 23 zugewandte Querseite 28 auf, die im Ausführungsbeispiel die Unterseite des ersten Stützlagers 13 bildet. Das zweite Stützlager 14 weist eine dem Verankerungsabschnitt 24 zugewandte Querseite 29 auf, die im Ausführungsbeispiel die Oberseite des zweiten Stützlagers 14 bildet. Im Ausführungsbeispiel liegen die Stützlager 13, 14 mit ihren den Verankerungsabschnitten 23, 24 zugewandten Querseiten 28, 29 an den an die Biegungen 27 anschließenden Abschnitten der Verankerungsabschnitte 23 und 24 an. Die Stützlager 13 und 14 liegen im Ausführungsbeispiel nachFig. 3 mindestens bis zu der Stelle am Querkraftelement 15 an, an der das Querkraftelement 15 an den Längsseiten 9 und 10 aus dem Isolierkörper 5 austritt. Im Ausführungsbeispiel ist vorgesehen, dass die Stützlager 13 und 14 auch in einem außerhalb des Isolierkörpers 5 verlaufenden Abschnitt des Querkraftelements 15 an den Verankerungsabschnitten 23 und 24 anliegen. - Auf das Querkraftelement 15 einwirkende Querkräfte werden an den Biegungen 27 zumindest teilweise in die Stützlager 13 und 14 eingeleitet und als mindestens teilweise horizontal wirkende Kraft in den umgebenden Beton von Balkonplatte 2 und Gebäudedecke 3 abgeleitet. Über die Stützlager 13 und 14 stützt sich das Querkraftelement 15, insbesondere der Mittelabschnitt 25, zur Aufnahme von Querkräften am umgebenden Beton ab.
- Die Stützlager 13 und 14 weisen einander zugewandte Innenseiten 19 auf. Die Innenseiten 19 liegen benachbart und mit Abstand zum Mittelabschnitt 25. Die Innenseiten 19 der beiden Stützlager 13 und 14 verlaufen im Ausführungsbeispiel parallel zueinander. Die Innenseiten 19 schließen mit dem Mittelabschnitt 25 einen Winkel α ein, der vorzugsweise von 30° bis 60°, insbesondere von 40° bis 50°, beträgt. Im Ausführungsbeispiel ist ein Winkel von 45° vorgesehen.
- Wie
Fig. 3 auch zeigt, weisen die Stützlager 13 und 14 in der dargestellten schematischen Schnittdarstellung senkrecht zur Längsrichtung 6 eine näherungsweise dreieckige Gestalt auf. Die Stützlager 13 und 14 weisen eine Höhe k auf, die in Hochrichtung 8 gemessen ist und die vorzugsweise kleiner als der Versatz a zwischen den Verankerungsabschnitten 23 und 24 ist. - Der Mittelabschnitt 25 schließt mit der Hochrichtung 8 vorzugsweise einen Winkel von weniger als 30°, insbesondere von weniger als 15°, ein. Im Ausführungsbeispiel verläuft der Mittelabschnitt 25 in Hochrichtung 8, so dass der Winkel zwischen der Hochrichtung 8 und dem Mittelabstand 25 0° beträgt.
- Wie die vergrößerte Darstellung in
Fig. 4 zeigt, besitzen die Stützlager 13 und 14 jeweils einen Vorsprung 17 bzw. 18, der über die Längsseiten 9 bzw. 10 aus dem Isolierkörper 5 vorsteht. Jeder Vorsprung 17, 18 besitzt gegenüber der zugeordneten Längsseite 9, 10 einen in Querrichtung 7 gemessenen Überstand f. Die Stützlager 13 und 14 weisen jeweils eine Außenfläche 26 auf, aus der sich der Vorsprung 17 bzw. 18 erhebt. - Die Außenfläche 26 verläuft parallel zur Hochrichtung 8. Dabei ist vorteilhaft vorgesehen, dass die Außenfläche 26 um eine parallel zur Hochrichtung 8 verlaufende Achse gewölbt ist. Die Außenflächen 26 ragen im Ausführungsbeispiel aus dem Isolierkörper 5. Es kann jedoch auch vorgesehen sein, dass die Außenflächen 26 bündig in den Längsseiten 9, 10 angeordnet sind.
- Wie
Fig. 4 auch zeigt, weist das Stützlager 13 eine nach unten weisende Querseite 28 auf. Die Querseite 28 verläuft parallel zur Querrichtung 7 und geht über einen Kontaktbereich 20 in die Innenseite 19 über. Am Kontaktbereich 20 liegt das Stützlager 13 am Querkraftelement 15, im Ausführungsbeispiel an der Biegung 27 des Querkraftelements 15, an. Der Kontaktbereich 27 erstreckt sich im Ausführungsbeispiel über die gesamte Länge der Querseite 28 des Stützlagers 13. Das Stützlager 13 stützt das Querkraftelement 15 dadurch sowohl in Querrichtung 7 als auch in Hochrichtung 8 ab, so dass vom Querkraftelement 15 auf das Stützlager 13 sowohl Kräfte in Hochrichtung 8 als auch Kräfte in Querrichtung 7 übertragen werden können. Das Stützlager 13 liegt im Ausführungsbeispiel auch in einem Bereich, der sich außerhalb des Isolierkörpers 5 befindet, am Querkraftelement 15 an. - Das Stützlager 14 ist gegenüber dem Stützlager 13 um eine parallel zur Längsrichtung 6 verlaufende Achse um 180° gedreht. Das Stützlager 14 weist eine Oberseite 29 auf, die über einen Kontaktbereich 21 in die Innenfläche 19 übergeht. Die Oberseite 29 verläuft parallel zur Querseite 28 des Stützlagers 13 und in Querrichtung 7. An der Biegung 27 und der Querseite 29 liegt das Stützlager 14 am Querkraftelement 15 an, so dass sowohl Kräfte in Hochrichtung 8 als auch in Querrichtung 7 vom Querkraftelement 15auf das Stützlager 14 übertragen werden können.
- Das Querkraftelement 15 kann auf das Stützlager 13 nach unten wirkende Kräfte übertragen und auf das Stützlager 14 nach oben wirkende Kräfte. Zur Übertragung von Kräften in Gegenrichtung ist das Querkraftelement 15 mit den Stützlagern 13 und 14 um eine parallel zur Querrichtung 7 liegende Achse um 180° gedreht einzubauen. In besonders bevorzugter Gestaltung sind die Stützlager 13 und 14 identisch, also als Gleichteile, ausgebildet und unterscheiden sich lediglich in ihrer Einbaulage.
- Das Stützlager 14 weist eine Winkelhalbierende 33 auf, die in der Ebene 40 die Winkelhalbierende zwischen der Querseite 29 und der Innenseite 19 ist. Der Verankerungsabschnitt 24 schließt mit dem Mittelabschnitt 25 eine Winkelhalbierende 34 ein. Die Winkelhalbierende 34 schneidet das Stützlager 14. Die Winkelhalbierenden 33 und 34 schließen einen Winkel β ein, der vorteilhaft kleiner als 45°, insbesondere kleiner als 30° ist.
-
Fig. 5 zeigt eine Ausführungsvariante für ein thermisch isolierendes Bauelement 1. Das thermisch isolierende Bauelement 1 umfasst einen Isolierkörper 5, ein Querkraftelement 15 sowie Stützlager 14. Die Stützlager 14 weisen eine in Längsrichtung 6 gemessene Breite g auf, die über die Höhe der Stützlager 14 konstant ist. Es kann jedoch auch vorgesehen sein, dass sich die Breite g in Hochrichtung 8 ändert. - Wie
Fig. 6 zeigt, sind an jedem Querkraftelement 15 ein Stützlager 13 und ein Stützlager 14 angeordnet. Die Stützlager 13 und 14, die in einer gemeinsamen Ebene 40 angeordnet sind, bilden ein Stützlagerpaar 16. Die Stützlager 13 und 14 sind in einem Querschnitt senkrecht zur Längsrichtung 6 etwa rechteckig ausgebildet und weisen dem Mittelabschnitt 25 zugewandte Innenseiten 19 sowie dem Mittelabschnitt 25 und dem jeweils anderen Stützlager 13, 14 abgewandte Querseiten 28, 29 auf. Sowohl die Innenseiten 19 als auch die Querseiten 28, 29 der Stützlager 13 und 14 verlaufen jeweils parallel zueinander. Die Innenseiten 19 der beiden Stützlager 13 und 14 verlaufen dabei in dem Abstand m zueinander. Die Querseite 28 bzw. 29 und die Innenseite 19 jedes Stützlagers 13, 14 sind über eine Außenseite 30 miteinander verbunden. Die Innenseiten 19 sind um einen Winkel α zum Mittelabschnitt 25 geneigt, der vorzugsweise von 30° bis 60°, insbesondere von 40° bis 50°, beträgt. Im Ausführungsbeispiel ist ein Winkel α von 45° vorgesehen und der Mittelabschnitt 25 verläuft parallel zur Hochrichtung 8. - Auch eine Neigung des Mittelabschnitts 25 zur Hochrichtung 8 kann jedoch vorteilhaft sein.
- Im Ausführungsbeispiel nach
Fig. 6 fallen die Winkelhalbierende 34 zwischen einem der Verankerungsabschnitte 23, 24 und dem Mittelabschnitt 25 und die Winkelhalbierende 33 zwischen einer der Querseiten 28, 29 und der Innenseite 19 jedes Stützlagers 13, 14 zusammen. Der Winkel zwischen den Winkelhalbierenden 33 und 34 beträgt 0°. Die Winkelhalbierende 33 zwischen einer Querseite 28, 29 und einer Innenseite 19 ist aufgrund des parallelen Verlaufs von Querseite 28, 29 und Innenseite 19 eine Gerade, die mittig zwischen der Querseite 28, 29 und der Innenseite 19 eines Stützlagers 13, 14 verläuft. - Die Stützlager 13 und 14 besitzen Vorsprünge 17 und 18, die über die zugeordneten Längsseiten 9 und 10 um einen Überstand f überstehen. Die Stützlager 13, 14 besitzen eine zwischen den Querseiten 28, 29 und den Innenseiten 19 gemessene Breite i, die größer als der Durchmesser d (
Fig. 3 ) des Querkraftelements 15 ist. Die Breite i ist jedoch kleiner als der Versatz a der Verankerungsabschnitte 23 und 24 (Fig. 3 ). Die Stützlager 13 und 14 liegen mit Kontaktbereichen 20, 21 an den Biegungen 27 des Querkraftelements 15 an. Sowohl die Kontaktbereiche 20 und 21 als auch die Biegungen 27 verlaufen in einem Radius. Aufgrund der Anlage an der Biegung 27 können sowohl Kräfte in Horizontalrichtung als auch Kräfte in Vertikalrichtung vom Querkraftelement 15 auf die Stützlager 13 und 14 übertragen werden. Im Ausführungsbeispiel sind die Kontaktbereiche 20 und 21 der Stützlager 13 und 14 der Biegung 27 folgend konvex gewölbt ausgebildet. Die Stützlager 13 und 14 ausFig. 6 sind vorteilhaft identisch ausgebildet und in gedreht zueinander verlaufender Orientierung eingebaut. - Die
Figuren 7 und 8 zeigen ein weiteres Ausführungsbeispiel eines thermisch isolierenden Bauelements 1. WieFig. 7 zeigt, weist das thermisch isolierende Bauelement 1 einen Isolierkörper 5 auf, der Stützlager 13 und Querkraftelemente 15 besitzt. Die in Längsrichtung 6 gemessene Breite g der Stützlager 13 nimmt in Richtung auf den in -
Fig. 8 gezeigten Kontaktbereich 20 ab. Auch die Breite i des Stützlagers 13 nimmt, wieFig. 8 zeigt, von der Außenseite 30 in Richtung auf den Kontaktbereich 20 ab. Vom Kontaktbereich 20 in Richtung auf die Außenfläche 30 vergrößert sich damit die Querschnittsfläche des Stützlagers 13. Dadurch kann auf einfache Weise die Druckübertragungsfläche zum angrenzenden Beton von Balkonplatte 2 oder Gebäudedecke 3 vergrößert werden. - Beim Ausführungsbeispiel nach den
Figuren 7 und 8 schließt der Mittelabschnitt 25 des Querkraftelements 15 mit der Hochrichtung 8 einen Winkel γ ein, der größer als 0° ist. Der Winkel γ beträgt vorteilhaft weniger als 45°, insbesondere weniger als 30°. Das Stützlager 13 weist zwischen der Innenseite 19 und der dem Verankerungsabschnitt 23 zugewandt liegenden Querseite 28 eine Winkelhalbierende 33 auf. Die Winkelhalbierende 34 zwischen dem Mittelabschnitt 25 und dem Verankerungsabschnitt 23 schließt mit der Winkelhalbierenden 33 einen Winkel β ein, der größer als 0° ist. Der Winkel β ist vorteilhaft kleiner als 45°, insbesondere kleiner als 30°. Im Ausführungsbeispiel nach denFiguren 7 und 8 schneidet die Winkelhalbierende 34 das Stützlager 13 lediglich in dem unmittelbar an die Biegung 27 angrenzenden Kontaktbereich 20. An der Biegung 27, die zwischen dem Verankerungsabschnitt 24 und dem Mittelabschnitt 25 liegt, ist kein separates Stützlager vorgesehen. Die Biegung 27 liegt im umgebenden Beton der Gebäudedecke 3. An der Biegung 27 zwischen Verankerungsabschnitt 24 und Mittelabschnitt 25 bildet damit der umgebende Beton der Gebäudedecke 3 selbst das Stützlager. Am Verankerungsabschnitt 24 ist das Stützlager demnach nicht Teil des thermisch isolierenden Bauelements 1. - Die
Figuren 9 und 10 zeigen ein weiteres Ausführungsbeispiel eines thermisch isolierenden Bauelements 1 mit einem Isolierkörper 5. Wie dieFiguren 9 und 10 zeigen, weist das thermisch isolierende Bauelement 1 Stützlager 13 und 14 sowie ein Querkraftelement 15 auf, die im Isolierkörper 5 gehalten sind. Die Stützlager 13 und 14 entsprechen den Stützlagern 13 und 14, die in denFiguren 2 bis 4 dargestellt sind. Das Querkraftelement 15 weist einen Verankerungsabschnitt 24 auf, der gerade verläuft und in die Gebäudedecke 3 ragt. Das Querkraftelement 15 weist außerdem einen Verankerungsabschnitt 23 auf, der abgewinkelt ausgebildet ist und an seinem freien Ende eine Verdickung, vorzugsweise einen Ankerkopf oder dergleichen aufweist. Der Verankerungsabschnitt 23 verläuft in der Balkonplatte 2 parallel zur Hochrichtung 8. Auch eine andere Form von Verankerungsabschnitt 23 und 24, insbesondere gebogene oder schräg verlaufende Stäbe, die Verdickungen zur Verankerung aufweisen, können vorteilhaft sein. - Die
Figuren 11 und 12 zeigen ein weiteres Ausführungsbeispiel eines thermisch isolierenden Bauelements 1. Das thermisch isolierende Bauelement 1 weist Stützlager 14, Querkraftelemente 15, Zugstäbe 51 und Druckstäbe 52 auf. Jeweils ein Zugstab 51 und ein Druckstab 52 sind in einer gemeinsamen Ebene 41 angeordnet. Jeweils ein Stützlager 14 und ein Querkraftelement 15 sind in einer gemeinsamen Ebene 40 angeordnet. Die Zugstäbe 51 und Druckstäbe 52 weisen zu einem benachbarten Querkraftelement 15 einen Abstand s auf, der in Längsrichtung 6 des thermisch isolierenden Bauelements 1 gemessen ist. Das Querkraftelement 15 weist zu dem nächsten Zugstab 51 einen Abstand t auf. Die Abstände s und t können gleich groß oder unterschiedlich groß sein. Mindestens ein Querkraftelement 15 und ein daran angeordnetes Stützlager 14 können in beliebiger, geeigneter Weise mit anderen Elementen zur Kraftübertragung wie beispielsweise Drucklagern, Druckschublagern, Zugstäben, Druckstäben und Querkraftstäben kombiniert werden, um das thermisch isolierende Bauelement 1 an die auftretenden Belastungen anzupassen. - Wie
Figur 12 zeigt, weist das Querkraftelement 15 eine im Isolierkörper 5 angeordnete Biegung 27 sowie eine zweite in der Balkonplatte 2 angeordnete Biegung 27 auf. An der Biegung 27 im Isolierkörper 5 stützt sich das Stützlager 14 ab. An der in der Balkonplatte 2 angeordneten Biegung 27 erfolgt die Abstützung über den umgebenden Beton der Balkonplatte 2. - Das Stützlager 14 weist eine Querseite 29 auf, die am Verankerungsabschnitt 24 anliegt. Die Querseite 29 ragt bis in den Beton der Gebäudedecke 3. Das Stützlager 14 weist außerdem eine Innenseite 19 auf, die dem Mittelabschnitt 25 zugewandt liegt. Im Ausführungsbeispiel verläuft die Innenseite 19 parallel zur Hochrichtung 8. Die Innenseite 19 und die Querseite 29 schließen eine Winkelhalbierende 33 ein. Der Mittelabschnitt 25 und der Verankerungsabschnitt 24 schließen eine Winkelhalbierende 34 ein. Die Winkelhalbierenden 33 und 34 schließen einen Winkel β ein, der weniger als 45°, insbesondere weniger als 30° beträgt. Auch ein Winkel β von 0°, also eine Ausführung, bei der die Winkelhalbierenden 33 und 34 in einer Ansicht in Längsrichtung 6 des thermisch isolierenden Bauelements 1 zusammenfallen, kann vorteilhaft sein.
- Wie
Figur 12 zeigt, vergrößert sich die Querschnittsfläche des Stützlagers 14 vom Kontaktbereich 21 zur Außenseite 30 hin. Das Stützlager 14 weist eine Unterseite 35 auf, die die Innenseite 19 mit der Außenseite 30 verbindet. Die Unterseite 35 verläuft im Ausführungsbeispiel unter einem Winkel von mehr als 90° zur Innenseite 19 und unter einem Winkel von weniger als 90° zur Außenseite 30. Dadurch wird die sich vergrößernde Querschnittsfläche des Stützlagers 14 gebildet. - Wie
Figur 12 auch zeigt, schließt der Mittelabschnitt 25 mit der Hochrichtung 8 einen Winkel γ ein, der mehr als 0° beträgt. Im Ausführungsbeispiel beträgt der Winkel γ etwa 30°. - Auch eine andere Gestaltung der Stützlager 13 und 14 und der Stützlagerpaare 16 kann vorteilhaft sein. Das mindestens eine Stützlager 13, 14 und das Querkraftelement 15 können mit beliebigen bekannten Elementen zur Übertragung von Kräften zwischen den Längsseiten 9 und 10 des Isolierkörpers 5 kombiniert werden. Bevorzugt sind weitere Elemente zur Kraftübertragung mit einem Abstand in Längsrichtung 6 zu dem Querkraftelement 15 mit dem daran angeordneten Stützlagerpaar 16 angeordnet.
- Wie die Figuren zeigen, stehen alle Stützlager 13, 14 nur an einer Längsseite 9, 10 des Isolierkörpers 5 über den Isolierkörper 5 über und weisen zur anderen Längsseite 9, 10 des Isolierkörpers 5 einen Abstand n auf. Die Stützlager 13, 14 können bündig mit der einen Längsseite 9, 10 des Isolierkörpers 5 abschließen oder über die Längsseite 9, 10 des Isolierkörpers 5 überstehen.
- Die Merkmale aller gezeigten Ausführungsbeispiele können in beliebiger Weise miteinander kombiniert werden, um weitere vorteilhafte Ausführungsformen zu bilden. Der Isolierkörper 5 kann jeden beliebigen Aufbau aufweisen. Der Isolierkörper 5 kann durch einen Kasten gebildet sein, der aus einem oder mehreren Einzelteilen zusammengesetzt ist und in dem Isoliermaterial angeordnet ist. Der Isolierkörper 5 kann auch aus formstabilem thermisch isolierenden Material gebildet sein.
- In allen Ausführungsbeispielen sind die Winkelhalbierenden 33 und 34 und die Winkel zwischen den Winkelhalbierenden in einer Schnittebene senkrecht zur Längsrichtung 6 gemessen. Die Winkelhalbierenden 33, 34 sind die Geraden, die den Winkel, den die angegebenen Elemente begrenzen, halbieren.
Claims (15)
- Thermisch isolierendes Bauelement zum Einsatz in einer Trennfuge (4) zwischen lastaufhehmenden Bauwerksteilen, insbesondere zwischen einer Gebäudedecke (3) und einer Balkonplatte (2), mit einem Isolierkörper (5), wobei der Isolierkörper (5) eine Längsrichtung (6) und in Längsrichtung (6) verlaufende, einander gegenüberliegende Längsseiten (9, 10) besitzt, wobei der Isolierkörper (5) eine quer zu den Längsseiten (9, 10) verlaufende Querrichtung (7) und eine senkrecht zur Längsrichtung (6) und senkrecht zur Querrichtung (7) verlaufende Hochrichtung (8) besitzt, wobei der Isolierkörper (5) mindestens ein Stützlager (13, 14) und mindestens ein Querkräfte aufnehmendes Querkraftelement (15) aufweist, wobei das Querkraftelement (15) sich zur Übertragung von Querkräften an dem mindestens einen Stützlager (13, 14) abstützt,
dadurch gekennzeichnet, dass das Stützlager (13, 14) nur an einer der beiden Längsseiten (9, 10) über den Isolierkörper (5) hervorsteht. - Bauelement nach Anspruch 1,
dadurch gekennzeichnet, dass das mindestens eine Stützlager (13, 14) einen Kontaktbereich (20, 21) aufweist, mit dem das Stützlager (13, 14) an dem Querkraftelement (15) anliegt. - Bauelement nach Anspruch 2,
dadurch gekennzeichnet, dass der Kontaktbereich (20, 21) so ausgerichtet ist, dass das Querkraftelement (15) sowohl Kräfte in Hochrichtung (8) als auch Kräfte in Querrichtung (7) auf das Stützlager (13, 14) übertragen kann. - Bauelement nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass das Querkraftelement (15) zwei Verankerungsabschnitte (23, 24) aufweist, die an den Längsseiten (9, 10) aus dem Isolierkörper (5) ragen, wobei die beiden Verankerungsabschnitte (23, 24) an den Längsseiten (9, 10) in Hochrichtung (8) des Isolierkörpers (5) einen Versatz (a) zueinander aufweisen, und wobei das Querkraftelement (15) einen Mittelabschnitt (25) aufweist, der den Versatz (a) der Verankerungsabschnitte (23, 24) zumindest teilweise überbrückt. - Bauelement nach Anspruch 4,
dadurch gekennzeichnet, dass der Mittelabschnitt (25) mit der Hochrichtung (8) einen Winkel (γ) von weniger als 45°, insbesondere von weniger als 30° einschließt. - Bauelement nach Anspruch 4 oder 5,
dadurch gekennzeichnet, dass die Winkelhalbierende (34) zwischen dem Mittelabschnitt (25) und dem Verankerungsabschnitt (23, 24) das Stützlager (13, 14) schneidet. - Bauelement nach einem der Ansprüche 4 bis 6,
dadurch gekennzeichnet, dass das Stützlager (13, 14) eine dem Mittelabschnitt (25) zugewandte Innenseite (19) und eine dem Verankerungsabschnitt (23, 24) zugewandte Querseite (28, 29) aufweist und dass die Winkelhalbierende (34) zwischen dem Mittelabschnitt (25) und dem Verankerungsabschnitt (23, 24) mit der Winkelhalbierenden (33) zwischen der Innenseite (19) und der Querseite (28, 29) des Stützlagers (13, 14) einen Winkel (β) einschließt, der kleiner als 45° ist. - Bauelement nach einem der Ansprüche 4 bis 7,
dadurch gekennzeichnet, dass das mindestens eine Stützlager (13, 14) eine dem Mittelabschnitt (25) zugewandte Innenseite (19) aufweist, die mit dem Mittelabschnitt (25) einen Winkel (a) von 30° bis 60°, insbesondere von 40° bis 50° einschließt. - Bauelement nach einem der Ansprüche 4 bis 8,
dadurch gekennzeichnet, dass der Mittelabschnitt (25) über eine Biegung (27) mit dem Verankerungsabschnitt (23, 24) verbunden ist und dass das Stützlager (13, 14) an der Biegung (27) anliegt. - Bauelement nach einem der Ansprüche 4 bis 9,
dadurch gekennzeichnet, dass mindestens ein Stützlager (13, 14) vom Mittelabschnitt (25) des Querkraftelements (15) bis zu einer Längsseite (9, 10) des Isolierkörpers (5) an dem Querkraftelement (15) anliegt. - Bauelement nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, dass zwei Stützlager (13, 14) an einem Querkraftelement (15) anliegen, wobei die beiden Stützlager (13, 14) an gegenüberliegenden Längsseiten (9, 10) aus dem Isolierkörper (5) ragen und ein Stützlagerpaar (16) bilden. - Bauelement nach Anspruch 11,
dadurch gekennzeichnet, dass beide Stützlager (13, 14) des Stützlagerpaars (16) identisch ausgebildet sind. - Bauelement nach Anspruch 11 oder 12,
dadurch gekennzeichnet, dass die Winkelhalbierenden (34) zwischen der Innenseite (19) und der Querseite (28, 29) der beiden Stützlager (13, 14) des Stützlagerpaars (16) einen Winkel von weniger als 20° einschließen, vorzugsweise parallel zueinander verlaufen. - Bauelement nach einem der Ansprüche 1 bis 13,
dadurch gekennzeichnet, dass das Stützlager (13, 14) eine Außenfläche (26, 30) aufweist, die aus dem Isolierkörper (5) ragt. - Bauelement nach einem der Ansprüche 1 bis 14,
dadurch gekennzeichnet, dass das mindestens eine Stützlager (13, 14) und das Querkraftelement (15) in einer gemeinsamen, in Hochrichtung (8) und in Querrichtung (7) ausgerichteten Ebene (40) angeordnet sind.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19171908.7A EP3733988B1 (de) | 2019-04-30 | 2019-04-30 | Thermisch isolierendes bauelement |
PL19171908.7T PL3733988T3 (pl) | 2019-04-30 | 2019-04-30 | Termoizolacyjny element budowlany |
FIEP19171908.7T FI3733988T3 (fi) | 2019-04-30 | 2019-04-30 | Lämpöä eristävä rakennuselementti |
ES19171908T ES2961720T3 (es) | 2019-04-30 | 2019-04-30 | Elemento constructivo termoaislante |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19171908.7A EP3733988B1 (de) | 2019-04-30 | 2019-04-30 | Thermisch isolierendes bauelement |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3733988A1 true EP3733988A1 (de) | 2020-11-04 |
EP3733988B1 EP3733988B1 (de) | 2023-09-27 |
Family
ID=66349331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19171908.7A Active EP3733988B1 (de) | 2019-04-30 | 2019-04-30 | Thermisch isolierendes bauelement |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3733988B1 (de) |
ES (1) | ES2961720T3 (de) |
FI (1) | FI3733988T3 (de) |
PL (1) | PL3733988T3 (de) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0133875A1 (de) * | 1983-08-03 | 1985-03-13 | Eberhard Schöck | Bauelement zur Wärmedämmung bei Gebäuden |
DE3509890A1 (de) * | 1985-03-19 | 1986-09-25 | Eberhard Ing.(grad.) 7570 Baden-Baden Schöck | Verfahren zur koerperschalldaemmung zwischen gebaeudeteilen und bauelement zur koerperschalldaemmung |
DE19542282A1 (de) * | 1995-11-14 | 1997-05-15 | Schoeck Bauteile Gmbh | Bauelement zur Schalldämmung |
DE102016123390A1 (de) | 2016-12-02 | 2018-06-07 | H-Bau Technik Gmbh | Stoffmischung zur Herstellung eines Betonbauteils, Verwendung einer solchen Stoffmischung, Betonbauteil aus einer solchen Mischung, sowie wärmedämmendes Bauelement mit einem solchen Betonbauteil |
-
2019
- 2019-04-30 EP EP19171908.7A patent/EP3733988B1/de active Active
- 2019-04-30 FI FIEP19171908.7T patent/FI3733988T3/fi active
- 2019-04-30 PL PL19171908.7T patent/PL3733988T3/pl unknown
- 2019-04-30 ES ES19171908T patent/ES2961720T3/es active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0133875A1 (de) * | 1983-08-03 | 1985-03-13 | Eberhard Schöck | Bauelement zur Wärmedämmung bei Gebäuden |
DE3509890A1 (de) * | 1985-03-19 | 1986-09-25 | Eberhard Ing.(grad.) 7570 Baden-Baden Schöck | Verfahren zur koerperschalldaemmung zwischen gebaeudeteilen und bauelement zur koerperschalldaemmung |
DE19542282A1 (de) * | 1995-11-14 | 1997-05-15 | Schoeck Bauteile Gmbh | Bauelement zur Schalldämmung |
DE102016123390A1 (de) | 2016-12-02 | 2018-06-07 | H-Bau Technik Gmbh | Stoffmischung zur Herstellung eines Betonbauteils, Verwendung einer solchen Stoffmischung, Betonbauteil aus einer solchen Mischung, sowie wärmedämmendes Bauelement mit einem solchen Betonbauteil |
Also Published As
Publication number | Publication date |
---|---|
ES2961720T3 (es) | 2024-03-13 |
FI3733988T3 (fi) | 2023-12-01 |
EP3733988B1 (de) | 2023-09-27 |
PL3733988T3 (pl) | 2024-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1040238B1 (de) | Schubbewehrung für flachdecken und dübelleiste hierfür | |
DE19711813C2 (de) | Thermisch isolierendes Bauelement | |
EP3385462A1 (de) | Thermisch isolierendes bauelement | |
DE4102332A1 (de) | Balkonanschluss | |
DE19543768A1 (de) | Balkonanschluß | |
EP3733988B1 (de) | Thermisch isolierendes bauelement | |
EP0133875B1 (de) | Bauelement zur Wärmedämmung bei Gebäuden | |
DE19640652A1 (de) | Bauelement zur Wärmedämmung | |
CH666505A5 (en) | Expansion component bridging reinforced-concrete seam - comprises second oblong member fixed at ends to first and third ones | |
EP1270833B1 (de) | Bauelement zur Wärmedämmung | |
EP4050170B1 (de) | Bauwerk mit thermisch isolierendem bauelement | |
DE19718021B4 (de) | Thermisch isolierendes Bauelement | |
EP0933482A2 (de) | Fertigbauteil für eine auskragende Balkonplatte | |
EP3315678B1 (de) | Fertigbauteil zum anschluss einer betonkragplatte an ein bauwerk | |
EP1229176A2 (de) | Kragplattenanschlusselement | |
DE102004040584A1 (de) | Bauelement zur Schubbewehrung | |
EP3617415B1 (de) | Durchstanzbewehrungselement und bauwerk mit einer platte mit einem durchstanzbewehrungselement | |
EP3569783B1 (de) | Bauelement zur thermischen isolierung | |
DE19831026A1 (de) | Tragende Seilkonstruktion | |
EP2096220B1 (de) | Vorgespanntes Hohlplattenelement | |
EP2080841A2 (de) | Kragplattenanschlusselement | |
DE19530572A1 (de) | Gebäude-Tragkonstruktion | |
EP3153635B1 (de) | Thermisch isolierendes bauelement | |
CH675605A5 (de) | ||
EP3839162A1 (de) | Thermisch isolierendes bauelement zum einsatz in einer trennfuge zwischen zwei bauwerksteilen und bauwerk |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210429 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LEVIAT GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230503 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230522 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019009460 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20230927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2961720 Country of ref document: ES Kind code of ref document: T3 Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240127 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240129 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240418 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019009460 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240419 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240524 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240419 Year of fee payment: 6 Ref country code: CZ Payment date: 20240422 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20240422 Year of fee payment: 6 Ref country code: IT Payment date: 20240424 Year of fee payment: 6 Ref country code: FR Payment date: 20240425 Year of fee payment: 6 Ref country code: FI Payment date: 20240425 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240411 Year of fee payment: 6 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240418 Year of fee payment: 6 Ref country code: BE Payment date: 20240418 Year of fee payment: 6 |
|
26N | No opposition filed |
Effective date: 20240628 |