EP3730708A1 - Thermisch isolierendes verbindungselement und thermisch isolierendes bauelement - Google Patents

Thermisch isolierendes verbindungselement und thermisch isolierendes bauelement Download PDF

Info

Publication number
EP3730708A1
EP3730708A1 EP19170477.4A EP19170477A EP3730708A1 EP 3730708 A1 EP3730708 A1 EP 3730708A1 EP 19170477 A EP19170477 A EP 19170477A EP 3730708 A1 EP3730708 A1 EP 3730708A1
Authority
EP
European Patent Office
Prior art keywords
section
connecting element
element according
sections
insulating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19170477.4A
Other languages
English (en)
French (fr)
Inventor
Olivier Remy
Thorsten Heidolf
Robert Garke
Raimo Füllsack-Köditz
Miguel BRANCO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leviat GmbH
Original Assignee
Halfen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halfen GmbH and Co KG filed Critical Halfen GmbH and Co KG
Priority to EP19170477.4A priority Critical patent/EP3730708A1/de
Publication of EP3730708A1 publication Critical patent/EP3730708A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/003Balconies; Decks
    • E04B1/0038Anchoring devices specially adapted therefor with means for preventing cold bridging

Definitions

  • the invention relates to a thermally insulating connecting element of the type specified in the preamble of claim 1 and a thermally insulating component of the type specified in the preamble of claim 17.
  • thermally insulating component which comprises several connecting elements, namely tension rods.
  • Some of the connecting elements are made of non-metallic material, for example resin, in which basalt fibers are embedded.
  • the other part of the tension rods is made of steel.
  • the object of the invention is to provide a thermally insulating connecting element which has high strength with a good insulating effect.
  • Another object of the invention is to provide a thermally insulating component which can transmit high forces and has a good insulating effect.
  • Thermally insulating connecting elements in particular thermally insulating connecting elements for thermally insulating components, usually have anchoring sections which protrude into the supported structure and the supporting structure, for example into a balcony slab and a building ceiling, and which are cast into the surrounding concrete.
  • Such connecting elements usually have a central section which bridges a parting line between the supported structure and the supporting structure. It has now been shown that the surrounding concrete in the connecting sections plays a decisive role in the load-bearing effect. Only in the middle section does the connecting element have to absorb all the forces that occur.
  • the present invention now provides for a connecting element made of fiber-reinforced material, in which at least a partial cross-section extends in one piece and continuously through the first connecting section, the central section and the second connecting section, that the rigidity of the connecting element is greater in the central section than in the connecting sections.
  • connection element made of fiber-reinforced material does not provide for the connection element made of fiber-reinforced material to be combined with steel connection elements or with surrounding reinforcement elements such as nuts or the like made of steel, but rather to form the connection element made of fiber-reinforced material itself in the central section with greater rigidity. Because the rigidity of the thermally insulating connecting element is increased only in the central section, the additionally required amount of fiber-reinforced material is comparatively small, so that the connecting element can be produced comparatively cheaply. Because the connecting element consists entirely of fiber-reinforced material, a very good insulating effect can be achieved with high transferable forces at the same time.
  • the rigidity of the middle sections is preferably at least 110%, in particular at least 130%, preferably at least 150% of the rigidity of each connecting section.
  • the rigidity of the two connecting sections is preferably the same. However, provision can also be made to provide two connecting sections with different rigidity.
  • the partial cross-section which extends in one piece and continuously through the two connecting sections and the central section, preferably forms at least 30%, in particular at least 50% of the cross-section of the connecting element in at least one connecting section, in particular in both connecting sections.
  • the partial cross-section forms a continuous rod through the connecting sections and the central section, which is not interrupted.
  • the connecting element in the partial cross-section is not made from a plurality of sections connected to one another in the longitudinal direction of the connecting element.
  • the fiber reinforcement in the partial cross-section extends continuously through both connecting sections and the central section. This achieves a high level of rigidity.
  • the connecting element has at least one basic element and at least one reinforcing element connected to the basic element, the at least one basic element extending continuously through the connecting sections and the central section and forming at least part of the partial cross-section, and the at least one reinforcing element in the Central portion is arranged and does not extend into the connecting portions. Because the connecting element is made up of a base element and a reinforcement element, the desired stiffness properties and insulation properties can be matched in a simple manner by matching the cross-sections of the base element and reinforcing element.
  • the at least one basic element can be used and the at least one reinforcement element consists of the same fiber-reinforced material or of different fiber-reinforced materials.
  • the at least one reinforcing element can preferably be firmly bonded or mechanically fixed to the at least one base element.
  • the reinforcement element can for example be glued to the base element for a materially bonded connection or connected to the base element by a welding process, for example by ultrasonic welding.
  • a locking mechanism is provided as a mechanical fastening.
  • fastening via one or more separate fastening elements can also be advantageous.
  • Other types of connection between the reinforcing element and the base element can also be advantageous.
  • the connecting element is designed in one piece.
  • the supporting cross section of the connecting element is preferably reduced compared to the supporting cross section in the central section.
  • the reduction in the load-bearing cross section is preferably provided so that the reinforcing fibers forming the edge fibers do not extend continuously and in the longitudinal direction of the connecting element.
  • Edge fibers that do not run continuously can be produced, for example, if grooves or the like are milled into the circumference of the connecting element and so no edge fibers are arranged in the region of the groove.
  • a connecting element which has grooves over its entire length, for example to improve the anchoring in the surrounding concrete, provision is made to omit the grooves in the central section.
  • Edge fibers that are not aligned in the longitudinal direction of the connecting element can thereby be produced in particular when the connecting element is produced in a pultrusion process be that the fibers are placed in folds in the edge area of the connecting element so that the edge fibers run undulating.
  • a run of the edge fibers obliquely to the longitudinal direction for example by an approximately helical arrangement of the edge fibers, can be provided to reduce the load-bearing cross-section and thus to reduce the rigidity.
  • the connecting element is advantageously produced in a pultrusion process.
  • a connecting element made up of a base element and a reinforcement element all of the base elements and all of the reinforcement elements are preferably produced in a pultrusion process.
  • the connecting element preferably has a profile on its outside in at least one connecting section.
  • the profile can be designed in a wide variety of geometric shapes and improves the anchoring of the at least one connecting section in the surrounding concrete.
  • a profile on the connecting element can also be provided in the middle section. This is particularly advantageous if the connecting element is arranged in a thermally insulating component and the central section protrudes from the insulating body of the thermally insulating component in the installed state.
  • the central section can at least partially consist of a different material than the connecting sections.
  • the reinforcing element can in particular consist of a different material than the basic element. It can, however, also be provided to provide a one-piece connecting element which consists of different materials in the connecting sections and in the central section.
  • a base element which consists of different materials in the connecting sections and in the central section can also be advantageous.
  • different fiber reinforcements or different base materials in which the fibers are embedded can be provided in the individual sections.
  • the middle section advantageously consists at least partially of a material that has a higher fire resistance than the material of at least one connecting section.
  • the middle section advantageously consists at least partially of pourable or injectable material.
  • the middle section advantageously consists at least partially of mineral material, in particular of high-strength concrete or mortar or ultra-high-strength concrete or mortar.
  • the middle section preferably consists at least partially of a material which has a lower thermal conductivity than the material of at least one connecting section.
  • the base material of the fiber-reinforced material in which the fibers are embedded can be a plastic material or a mineral material.
  • the fiber-reinforced material preferably has glass fibers and / or basalt fibers and / or carbon fibers and / or aramid fibers as fiber reinforcement. Fibers made from other materials can also be advantageous for fiber reinforcement.
  • At least one connecting section is advantageously connected to the central section via a transition section, the cross section of the connecting element in the transition section increasing continuously from the connecting section to the central section. This avoids a notch effect at the transition between the connecting section and the central section.
  • the transition section can have a straight or curved, for example convex or concave, outer contour.
  • thermally insulating component for use in a separating joint between a supported structure and a supporting structure, in particular between a balcony slab and a building ceiling, with an insulating body, the insulating body having a longitudinal direction and longitudinally extending, opposite longitudinal sides, it is provided that at least one connecting element according to the invention extends through the insulating body.
  • the middle section protrudes from the insulating body on at least one longitudinal side, in particular on both longitudinal sides, of the insulating body.
  • the middle section is arranged completely within the insulating body.
  • Fig. 1 shows a perspective, schematic representation of a thermally insulating component 1, which is intended for use in a separating joint 4 between a supported structure and a supporting structure, in the exemplary embodiment between a schematically illustrated balcony slab 2 and a schematically illustrated building ceiling 3.
  • the thermally insulating component 1 comprises an insulating body 5, the is filled with insulating material.
  • the insulating body 5 is designed as an elongated box and has a longitudinal direction 6, which extends in the longitudinal direction of the parting line 4 and in the installed state in the horizontal direction, and a transverse direction 7, which in the installed state extends in the horizontal direction from the balcony slab 2 to the building ceiling 3 and vertically to the longitudinal direction 6 extends.
  • the insulating body 5 also has a vertical direction 8 which, in the installed state, is oriented vertically and perpendicular to the longitudinal direction 6 and perpendicular to the transverse direction 7.
  • the insulating body 5 has opposite longitudinal sides 9 and 10, which run approximately parallel to the longitudinal direction 6 and to the vertical direction 8.
  • connecting elements 13, 14, 15 are provided, which protrude on opposite longitudinal sides 9 and 10 of insulating body 5 from insulating body 5 into balcony slab 2 or building ceiling 3.
  • the connecting elements 13 are designed as tension rods and, when installed, are arranged in the upper region of the insulating body 5.
  • the connecting elements 14 are pressure rods which are arranged in the lower region of the insulating body 5.
  • the connecting elements 15 are transverse force bars which run in the building ceiling 3 in the upper area and in the balcony slab 2 in the lower area or in the balcony slab 2 in the upper area and in the building ceiling 3 in the lower area.
  • thrust bearings 16 and thrust thrust bearings 17 are provided to absorb compressive forces.
  • the type and arrangement as well as the design of the connecting elements 13, 14, 15, the thrust bearing 16 and the thrust thrust bearing 17 are to be adapted to the application of the thermally insulating component 1 and selected to be adapted to requirements. Individual types of connecting elements can therefore also be omitted or other types of connecting elements can be provided.
  • connecting elements 13, 14 and / or 15 shown only schematically, from fiber-reinforced material. Because the connecting elements 13, 14 and / or 15 are neither partially nor completely made of metal, a very good insulating effect can be achieved.
  • the fiber-reinforced material can have glass fibers and / or basalt fibers and / or carbon fibers and / or aramid fibers and / or steel fibers.
  • the base material in which the reinforcing fibers are embedded is not made of metal. As a result, embedded fibers, in particular steel fibers, are thermally separated from one another via the base material, and a good insulating effect results even when using steel fibers.
  • Fig. 2 shows schematically the arrangement of a connecting element 13 in an insulating body 5.
  • the insulating body 5 is only shown in part and can be viewed in the longitudinal direction 6 and in the vertical direction 8 ( Fig. 1 ) have a significantly larger extension.
  • the arrangement of the connecting element 13 in the vertical direction 8 is to be selected adapted to the application.
  • the connecting element 13 is in the embodiment according to Fig. 2 constructed from a base element 26 and a reinforcement element 27 held on the base element 26.
  • the base element 26 has a length l 1 which, in the exemplary embodiment, corresponds to the total length of the connecting element 13.
  • the reinforcing element 27 has a length l 2 which is smaller than the length l 1 .
  • the base element 26 protrudes at both ends of the reinforcement element 27.
  • the sections of the base element 26 which protrude beyond the reinforcement element 27 form connecting sections 21 and 23, at which the connecting element 13 is surrounded and embedded in the surrounding concrete by the balcony slab 2 and building ceilings 3.
  • the length l 2 of the reinforcement element 27 larger than the extension of the insulating body 5 in the transverse direction 7, so that the central section 22 protrudes from the insulating body 5 on both longitudinal sides 9 and 10 of the insulating body 5.
  • the connecting portions 21 and 23 each have a length l 3 .
  • the length l 3 corresponds to at least 5 times the in Fig. 3
  • the length l 3 is at least as large as the length l 2 , in particular greater than the length l 2 , so that the connecting element 13, 14, 15 is well anchored in the surrounding concrete results.
  • the rigidity in the central section 22 is advantageously at least 110%, in particular at least 130%, preferably at least 150 % of the rigidity of each connecting portion 21 and 23.
  • the base element 26 can have a profile 28, which can be formed, for example, by grooves milled in the base element 26.
  • the grooves run perpendicular to a longitudinal direction 50 of the connecting element 13.
  • a helical design of the grooves can also be provided.
  • Another type of profiling that improves the anchorage in the surrounding concrete can also be advantageous.
  • a partial cross-section 25 of the base element 26 extends over the entire length of the connecting element 13 from a first end 18 to a second end 19 of the connecting element 13.
  • the ends 18 and 19 are arranged on the connecting sections 21 and 23 in the exemplary embodiment.
  • the partial cross-section 25 extends over the entire length of the connecting element 13 extends to reduce the cross section of the profile.
  • the partial cross section 25 is advantageously at least 30%, in particular at least 50% of the cross section of the connecting element in at least one, in particular in both connecting sections 21 and 23.
  • Fig. 3 shows the design of base element 26 and reinforcement element 27 in detail.
  • the base element 26 and reinforcement element 27 when joined together form an approximately circular cross section, the outer circumference of the reinforcement element 27 being at a slightly greater distance from a longitudinal center axis 49 of the connecting element 13 than the base element 26.
  • the reinforcement element 27 is mechanical on the base element 26 in the exemplary embodiment, namely via a snap connection held.
  • latching lugs 30 are formed on the reinforcement element 27, which protrude into corresponding recesses 36 of the reinforcement element 27.
  • the base element 26 and the reinforcement element 27 are formed with an approximately constant cross section over their entire length, with the exception of a possibly introduced profile 28.
  • the latching lugs 30 are designed as webs which extend over the entire length of the reinforcing element 27.
  • the base element 26 is designed with an approximately T-shaped or mushroom-shaped cross section.
  • the reinforcement element 27 has an approximately C-shaped cross section, the ends of the C forming the latching lugs 30.
  • the arrangement of the connecting element 13 on the insulating body 5 is also shown in FIG Fig. 4 shown. It can be seen here that the middle section 22 protrudes from the insulating body 5 on both longitudinal sides 9 and 10 of the insulating body 5.
  • Fig. 5 shows an alternative arrangement of an embodiment of a connecting element 13, in which the middle section 22 is arranged completely in the insulating body 5. Only the connecting sections 21 and 23 protrude from the insulating body 5. The openings through which the connecting element 13 protrudes from the insulating body 5 are matched in their size to the connecting sections 21 and 23. This keeps the Central section 22 the connecting element 13 in its position in the insulating body 5. The connecting element 13 cannot be pulled out of the insulating body 5.
  • the middle section 22 ends at the longitudinal sides 9 and 10 of the insulating body 5.
  • the described arrangement variants of the middle section 22 with respect to the insulating body 5 are advantageous for all of the described exemplary embodiments of connecting elements 13, 14, 15.
  • the illustrated embodiment of a connecting element 13 has a base element 26 and a reinforcing element 27.
  • the base element 26 is designed as a rod with a circular cross section. However, a different cross section can also be advantageous.
  • the reinforcing element 27 has an approximately C-shaped cross section and runs on a longitudinal side of the base element 26. How Fig. 7 shows, forms in the embodiment according to Figures 5 to 7 the reinforcing element 27 with the base element 26 does not have an undercut, for example by means of locking lugs.
  • a material connection in particular by gluing or by a welding process, preferably by ultrasonic welding, can be provided.
  • the base element 26 has a diameter d.
  • the reinforcing element 27 has a thickness b which is significantly smaller than the diameter d.
  • the rigidity in the central section is preferably at most 5 times, in particular at most 3 times, the rigidity in the connecting sections 21 and 23.
  • Fig. 8 shows a variant embodiment of the reinforcement element 27 of FIG Figures 5 to 7 .
  • the reinforcing element 27 has a thickness b which, based on the in Fig. 8 Diameter d of a base element 26 shown schematically is greater than in the exemplary embodiment according to Figures 5 to 7 .
  • the thickness b can for example be 10% to 30% of the diameter d.
  • the reinforcing element 27 extends over an angle ⁇ of more than 180 ° around the longitudinal center axis 49 on the circumference of the base element 26, so that the reinforcement element 27 forms an undercut with the base element 26 and can be snapped onto the base element 26.
  • a material bond in particular a chemical connection, can be provided.
  • the embodiment according to Figures 9 to 11 shows a base element 26 with a rectangular, preferably square diameter, which is surrounded in the middle section 22 on three longitudinal sides by a reinforcing element 27.
  • the reinforcing element 27 is also angular on its outer circumference, so that a rectangular cross section of the connecting element 13 also results in the central section 22.
  • the reinforcing element 27 has approximately the same wall thickness on all three longitudinal sides of the base element.
  • a diameter a of the connecting element 13 in the central section 22 is greater than a diameter d of the base body 26.
  • the diameters a and d are each the largest diameter of the respective section.
  • the in Fig. 10 The rectangular cross-section shown, the diameters a and d are measured between opposite edges.
  • the Figures 12 to 14 show an embodiment of a connecting element 13, which has a base element 26 and two reinforcing elements 27 arranged thereon.
  • the reinforcement elements 27 are of identical design and, as in the exemplary embodiment, can be similar to that in FIGS Figures 7 and 8
  • Reinforcing element 27 shown may be designed with an approximately C-shaped cross section. However, a different design of the reinforcing elements 27 can also be advantageous.
  • the shape of the base element 26 corresponds approximately to two rods with a circular cross-section, which are connected to one another on one longitudinal side. The largest diameter d of the base element 26 is in Fig. 13 shown.
  • the approximately C-shaped reinforcing element 27 is arranged on the two longitudinal sides facing away from the connection point.
  • two basic elements 26 are provided which are fixed to a common reinforcing element 27.
  • the reinforcement element 27 is approximately H-shaped and has two legs 31 which are connected to one another via a central web 32. How Fig. 17 shows are in the variant according to the Figures 15 to 17 the basic elements 26 on the circumference encompassed by the reinforcing element 27 over less than 180 °, so that there is no positive connection.
  • the reinforcement element 27 can be fixed to the base elements 26, for example, by means of a chemical bond such as an adhesive or ultrasonic welding.
  • the largest diameter d of the connecting section 21, 23 corresponds to the distance between the longitudinal sides of the basic elements 26, which are arranged at a distance from one another.
  • the largest diameter d is the largest extension of the connecting section 21, 23 perpendicular to the longitudinal direction 50 of the connecting element 13.
  • the reinforcing element 27 engages around each base element 26 over an angle ⁇ of more than 180 ° of its circumference, so that a form-fitting connection results.
  • the legs 31 are rounded at their ends. Also a design with edges according to Fig. 17 can be beneficial.
  • the Figures 19 to 21 show a further exemplary embodiment of a connecting element 13.
  • the connecting element 13 has a central section 22 and the two connecting sections 21 and 23.
  • the connecting element 13 has a diameter d that is greater than the diameter a in the central section 22.
  • the reduced rigidity of the connecting sections 21 and 23 compared to the central section 22 is achieved by a special arrangement of the reinforcing fibers 33, 37.
  • the fibers 33 and 37 are shown schematically in the exemplary embodiments.
  • individual, in particular essentially all, fibers 33 and 37 extend over the entire length of the connecting element 13.
  • the fibers 33 and 37 are embedded in resin.
  • the reinforcing fibers 37 run elongated and parallel to the longitudinal direction 50.
  • the reinforcing fibers 37 are not interrupted.
  • the edge fibers 33 which lie outside the partial cross-section 25, are inclined in sections to the longitudinal direction 50.
  • An angle ⁇ is shown as an example, which an edge fiber 33 encloses with the longitudinal direction 50.
  • the edge fibers 33 run in a wave shape and form a helically encircling elevation 34, which at the same time serves to anchor in the surrounding concrete.
  • the undulating course of the edge fibers 33 is advantageously produced in that the edge fibers 33 are pressed less strongly in sections, so that the elevations 34 result. Due to the wavy course of the edge fibers 33 in the longitudinal section, the edge fibers 33 cannot or only slightly absorb the tensile forces acting on the connecting element 13, since the edge fibers 33 can stretch or be compressed in the longitudinal direction 50 when tensile forces or compressive forces are applied. As a result, a reduced rigidity is achieved in the connecting sections 21 and 23. If the base material is plastic, the long-chain molecules of the base material can be aligned accordingly, so that the base material in which the edge fibers 33 run also has a lower rigidity in the connecting sections 21 and 23 than in the central section 22.
  • Figures 22 to 24 show an exemplary embodiment of a connecting element 13 in which grooves 35 are introduced, preferably milled, into connecting sections 21 and 23.
  • the grooves 35 are formed circumferentially and thereby interrupt the edge fibers 33, as in FIG Fig. 24 is shown. Only the fibers 37 of the partial cross-section 25 thus contribute to the load-bearing cross section. In the middle section 22 all fibers carry including the edge fibers 33 contribute to the strength, so that there is increased rigidity in the central section 22.
  • one or more helically extending grooves 35 can also be provided.
  • the edge fibers 33 are both interrupted, ie not arranged continuously, and, as in FIG Fig. 21 shown, are arranged inclined to the longitudinal direction 50, for example by a wave-shaped arrangement or by a helical arrangement.
  • the Figures 25 and 26 schematically show embodiment variants for a transition section 29 which extends between a connecting section 21 and the central section 22.
  • a corresponding transition section 29 is preferably also provided between the middle section 22 and the connecting section 23.
  • the transition section 29 runs conically, so that there is a continuous increase in the diameter from the connecting section 21 to the central section 22.
  • a course of the outer contour that is arched in relation to the longitudinal direction 50 is provided in the transition section 29.
  • the outer contour can be convex in section or, as in Fig. 26 indicated by a dashed line, are concave.
  • the transition section 29 can be formed by a further element connected to the base element 26 and the reinforcement element 27, or it can be molded onto the base element 26 or the reinforcement element 27. In the embodiments according to Figures 19 to 24 the transition section 29 can be formed by corresponding shaping of the connecting element 13, 14, 15.
  • the rigidity in the central section 22 is at least 110%, in particular at least 130%, preferably at least 150% of the rigidity of each connecting section 21, 23.
  • the partial cross-section 25 preferably forms in at least one connecting section 21, 23, in particular in both connecting sections at least 30%, in particular at least 50% of the cross section of the connecting element 13, 14, 15.
  • a profile 28 of any design can be provided in any arrangement in one or more further sections.
  • the middle section 22 consists at least partially of a material that has a higher fire resistance than the material of at least one connecting section 21 and 23. This can be achieved in particular by a different material of the reinforcement element 27 than that of the base element 26.
  • the higher fire resistance can be achieved in particular by choosing a different base material or by choosing a different composition of the reinforcing fibers 37, 33.
  • the middle section 22 preferably consists at least partially, in particular completely, of mineral material, in particular of high-strength or ultra-high-strength concrete or mortar.
  • the reinforcement element 27 is advantageously made of concrete or mortar, in particular of high-strength or ultra-high-strength concrete or mortar.
  • the middle section 22 preferably consists at least partially of a material that has a lower thermal conductivity than the material of at least one connecting section 21 and 23.
  • the connecting element 13, 14, 15 can also be provided for other purposes, for example for fixing facade panels or as a reinforcement element for concrete.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Abstract

Ein thermisches isolierendes Verbindungselement (13, 14, 15), insbesondere zur Übertragung von Kräften von einer getragenen Struktur in eine Tragstruktur, ist stabförmig ausgebildet und weist einen ersten Verbindungsabschnitt (21), einen zweiten Verbindungsabschnitt (23) sowie einen zwischen den Verbindungsabschnitten (21, 23) angeordneten Mittelabschnitt (22) auf. Die Länge (l<sub>3</sub>) jedes Verbindungsabschnitts (21, 23) entspricht mindestens dem 5fachen des größten Durchmessers (d) dieses Verbindungsabschnitts (21, 23). Das Verbindungselement (13, 14, 15) besteht aus faserverstärktem Material. Mindestens ein Teilquerschnitt (25) des Verbindungselements (13, 14, 15) erstreckt sich einteilig und durchgehend durch den ersten Verbindungsabschnitt (21), den Mittelabschnitt (22) und den zweiten Verbindungsabschnitt (23). Die Steifigkeit des Verbindungselements (13, 14, 15) ist im Mittelabschnitt (22) größer als in den Verbindungsabschnitten (21, 23). Ein thermisches isolierendes Bauelement (1) weist ein Verbindungselement (13, 14, 15) auf, das sich durch den Isolierkörper (5) erstreckt.

Description

  • Die Erfindung betrifft ein thermisch isolierendes Verbindungselement der im Oberbegriff des Anspruchs 1 angegebenen Gattung sowie ein thermisch isolierendes Bauelement der im Oberbegriff des Anspruchs 17 angegebenen Gattung.
  • Aus der WO 2017/121658 A1 ist ein thermisch isolierendes Bauelement bekannt, das mehrere Verbindungselemente, nämlich Zugstäbe, umfasst. Ein Teil der Verbindungselemente besteht aus nichtmetallischem Material, beispielsweise aus Harz, in das Basaltfasern eingebettet sind. Der andere Teil der Zugstäbe besteht aus Stahl.
  • Aus der WO 2005/035892 A1 ist es auch bekannt, im Bereich der Trennfuge ein Verbindungselement aus glasfaserverstärktem Kunststoff in Stahlmuttern einzuschrauben, die die Trennfuge durchragen. Dadurch wird die mechanische Belastbarkeit erhöht. Durch Verwendung von Stahlmuttern sinkt jedoch gleichzeitig die Isolierwirkung.
  • Aufgabe der Erfindung ist es, ein thermisch isolierendes Verbindungselement anzugeben, das eine hohe Festigkeit bei guter Isolierwirkung aufweist. Eine weitere Aufgabe der Erfindung besteht darin, ein thermisch isolierendes Bauelement anzugeben, das hohe Kräfte übertragen kann und eine gute Isolierwirkung aufweist.
  • Thermisch isolierende Verbindungselemente, insbesondere thermisch isolierende Verbindungselemente für thermisch isolierende Bauelemente weisen üblicherweise Verankerungsabschnitte auf, die in die getragene Struktur und die Tragstruktur, beispielsweise in eine Balkonplatte und eine Gebäudedecke, ragen, und die in den umgebenden Beton eingegossen sind. Derartige Verbindungselemente besitzen üblicherweise einen Mittelabschnitt, der eine Trennfuge zwischen getragener Struktur und Tragstruktur überbrückt. Es hat sich nun gezeigt, dass in den Verbindungsabschnitten der umgebende Beton maßgeblich an der Tragwirkung teilhat. Lediglich im Mittelabschnitt muss das Verbindungselement allein alle auftretenden Kräfte aufnehmen.
  • Die vorliegende Erfindung sieht nun für ein Verbindungselement aus faserverstärktem Material, bei dem sich zumindest ein Teilquerschnitt einteilig und durchgehend durch den ersten Verbindungsabschnitt, den Mittelabschnitt und den zweiten Verbindungsabschnitt erstreckt, vor, dass die Steifigkeit des Verbindungselements im Mittelabschnitt größer als in den Verbindungsabschnitten ist.
  • Im Unterschied zum Stand der Technik sieht die vorliegende Erfindung demnach nicht vor, das Verbindungselement aus faserverstärktem Material mit Stahlverbindungselementen oder mit umgebenden Verstärkungselementen wie Muttern oder dgl. aus Stahl zu kombinieren, sondern das Verbindungselement aus faserverstärktem Material selbst im Mittelabschnitt mit größerer Steifigkeit auszubilden. Dadurch, dass lediglich im Mittelabschnitt die Steifigkeit des thermisch isolierenden Verbindungselements erhöht wird, ist die zusätzlich benötigte Menge an faserverstärktem Material vergleichsweise gering, so dass das Verbindungselement vergleichsweise günstig herstellbar ist. Dadurch, dass das Verbindungselement vollständig aus faserverstärktem Material besteht, kann eine sehr gute Isolierwirkung bei gleichzeitig hohen übertragbaren Kräften erreicht werden.
  • Die Steifigkeit der Mittelabschnitte beträgt vorzugsweise mindestens 110%, insbesondere mindestens 130%, bevorzugt mindestens 150% der Steifigkeit jedes Verbindungsabschnitts. Die Steifigkeit der beiden Verbindungsabschnitte ist dabei bevorzugt gleich groß. Es kann jedoch auch vorgesehen sein, zwei Verbindungsabschnitte mit unterschiedlicher Steifigkeit vorzusehen.
  • Der Teilquerschnitt, der sich einteilig und durchgehend durch die beiden Verbindungsabschnitte und den Mittelabschnitt erstreckt, bildet vorzugsweise in mindestens einem Verbindungsabschnitt, insbesondere in beiden Verbindungsabschnitten mindestens 30%, insbesondere mindestens 50% des Querschnitts des Verbindungselements. Der Teilquerschnitt bildet einen durchgehenden Stab durch die Verbindungsabschnitte und den Mittelabschnitt, der nicht unterbrochen ist. Beispielsweise ist das Verbindungselement in dem Teilquerschnitt nicht aus mehreren in Längsrichtung des Verbindungselements miteinander verbundenen Abschnitten hergestellt. Dadurch erstreckt sich die Faserbewehrung in dem Teilquerschnitt durchgehend durch beide Verbindungsabschnitte und den Mittelabschnitt. Dadurch wird eine hohe Steifigkeit erreicht.
  • Eine einfache Gestaltung ergibt sich, wenn das Verbindungselement mindestens ein Grundelement und mindestens ein mit dem Grundelement verbundenes Verstärkungselement aufweist, wobei das mindestens eine Grundelement sich durchgehend durch die Verbindungsabschnitte und den Mittelabschnitt erstreckt und zumindest einen Teil des Teilquerschnitts bildet und wobei das mindestens eine Verstärkungselement im Mittelabschnitt angeordnet ist und sich nicht in die Verbindungsabschnitte erstreckt. Dadurch, dass das Verbindungselement aus Grundelement und Verstärkungselement aufgebaut ist, kann durch Abstimmung der Querschnitte von Grundelement und Verstärkungselement auf einfache Weise eine Abstimmung der gewünschten Steifigkeitseigenschaften und Isoliereigenschaften erreicht werden. Zur Abstimmung der Steifigkeits- und/oder der isolierenden Eigenschaften des Verbindungselements und zur Erzielung weiterer gewünschter Eigenschaften können das mindestens eine Grundelement und das mindestens eine Verstärkungselement aus dem gleichen faserverstärkten Material oder aus unterschiedlichen faserverstärkten Materialien bestehen. Das mindestens eine Verstärkungselement kann vorzugsweise stoffschlüssig oder mechanisch an dem mindestens einen Grundelement fixiert sein. Das Verstärkungselement kann zur stoffschlüssigen Verbindung beispielsweise an dem Grundelement verklebt oder durch einen Schweißvorgang, beispielsweise durch Ultraschallschweißen, mit dem Grundelement verbunden sein. Als mechanische Befestigung ist insbesondere eine Verrastung vorgesehen. Auch eine Befestigung über eines oder mehrere separate Befestigungselemente kann jedoch vorteilhaft sein. Auch andere Arten der Verbindung von Verstärkungselement und Grundelement miteinander können vorteilhaft sein.
  • In alternativer Ausführung ist vorteilhaft vorgesehen, dass das Verbindungselement einteilig ausgebildet ist. Vorzugsweise ist bei einteiliger Gestaltung des Verbindungselements an den Verbindungsabschnitten der tragende Querschnitt des Verbindungselements gegenüber dem tragenden Querschnitt im Mittelabschnitt verringert. Die Verringerung des tragenden Querschnitts ist vorzugsweise so vorgesehen, dass die die Randfasern bildenden verstärkenden Fasern sich nicht durchgehend und in Längsrichtung des Verbindungselements erstrecken. Sowohl über eine in Längsrichtung unterbrochene Anordnung der Randfasern als auch durch eine Ausrichtung der Randfasern zumindest abschnittsweise in einer Richtung, die zur Längsrichtung geneigt ist, kann erreicht werden, dass die Randfasern nur im verringerten Maße zur Festigkeit des Verbindungselements beitragen, so dass die Steifigkeit des Verbindungselements in den Verbindungsabschnitten dadurch verringert ist. Nicht durchgehend verlaufende Randfasern können beispielsweise hergestellt werden, wenn am Umfang des Verbindungselements Nuten oder dgl. eingefräst und so im Bereich der Nut keine Randfasern angeordnet sind. Ausgehend von einem Verbindungselement, das über seine gesamte Länge Nuten aufweist, beispielsweise zur Verbesserung der Verankerung im umgebenden Beton, ist vorgesehen, die Nuten im Mittelabschnitt wegzulassen. Nicht in Längsrichtung des Verbindungselements ausgerichtete Randfasern können insbesondere bei Herstellung des Verbindungselements in einem Pultrusionsverfahren dadurch hergestellt werden, dass die Fasern im Randbereich des Verbindungselements in Falten gelegt werden, so dass die Randfasern wellenförmig verlaufen. Auch ein Verlauf der Randfasern schräg zur Längsrichtung, beispielsweise durch eine näherungsweise wendelförmige Anordnung der Randfasern, kann zur Verringerung des tragenden Querschnitts und damit zur Verringerung der Steifigkeit vorgesehen sein.
  • Vorteilhaft ist das Verbindungselement in einem Pultrusionsverfahren hergestellt. Bei einem Verbindungselement aus Grundelement und Verstärkungselement sind bevorzugt alle Grundelemente und alle Verstärkungselemente in einem Pultrusionsverfahren hergestellt.
  • Das Verbindungselement weist vorzugsweise in mindestens einem Verbindungsabschnitt ein Profil an seiner Außenseite auf. Das Profil kann in vielfältiger geometrischer Form gestaltet sein und verbessert die Verankerung des mindestens einen Verbindungsabschnitts im umgebenden Beton. Auch im Mittelabschnitt kann ein Profil am Verbindungselement vorgesehen sein. Dies ist insbesondere dann vorteilhaft, wenn das Verbindungselement in einem thermisch isolierenden Bauelement angeordnet wird und der Mittelabschnitt im Einbauzustand aus dem Isolierkörper des thermisch isolierenden Bauelements ragt.
  • Zur Anpassung an gewünschte Eigenschaften kann der Mittelabschnitt zumindest teilweise aus einem anderen Material bestehen als die Verbindungsabschnitte. Hierzu kann insbesondere das Verstärkungselement aus einem anderen Material als das Grundelement bestehen. Es kann jedoch auch vorgesehen sein, ein einteilig gestaltetes Verbindungselement vorzusehen, das in den Verbindungsabschnitten und im Mittelabschnitt aus unterschiedlichen Materialien besteht. Auch ein Grundelement, das in den Verbindungsabschnitten und im Mittelabschnitt aus unterschiedlichen Materialien besteht, kann vorteilhaft sein. Insbesondere können unterschiedliche Faserbewehrungen oder unterschiedliche Grundmaterialien, in die die Fasern eingebettet sind, in den einzelnen Abschnitten vorgesehen sein.
  • Vorteilhaft besteht der Mittelabschnitt zumindest teilweise aus einem Material, das eine höhere Feuerbeständigkeit aufweist als das Material mindestens eines Verbindungsabschnitts. Der Mittelabschnitt besteht vorteilhaft zumindest teilweise aus gieß- oder spritzfähigem Material. Der Mittelabschnitt besteht vorteilhaft zumindest teilweise aus mineralischem Material, insbesondere aus hochfestem Beton bzw. Mörtel oder ultrahochfestem Beton bzw. Mörtel. Vorzugsweise besteht der Mittelabschnitt zumindest teilweise aus einem Material, das eine niedrigere thermische Leitfähigkeit aufweist als das Material mindestens eines Verbindungsabschnitts.
  • Das Grundmaterial des faserverstärkten Materials, in das die Fasern eingebettet sind, kann ein Kunststoffmaterial oder ein mineralisches Material sein. Vorzugsweise weist das faserverstärkte Material Glasfasern und/oder Basaltfasern und/oder Kohlefasern und/oder Aramidfasern als Faserverstärkung auf. Auch Fasern aus anderen Materialen können für die Faserverstärkung vorteilhaft sein.
  • Vorteilhaft ist mindestens ein Verbindungsabschnitt über einen Übergangsabschnitt mit dem Mittelabschnitt verbunden, wobei der Querschnitt des Verbindungselements im Übergangsabschnitt sich vom Verbindungsabschnitt zum Mittelabschnitt kontinuierlich vergrößert. Dadurch wird eine Kerbwirkung am Übergang zwischen Verbindungsabschnitt und Mittelabschnitt vermieden. Der Übergangsabschnitt kann dabei eine gerade oder gewölbte, beispielsweise konvexe oder konkave Außenkontur aufweisen.
  • Für ein thermisch isolierendes Bauelement zum Einsatz in einer Trennfuge zwischen einer getragenen Struktur und einer Tragstruktur, insbesondere zwischen einer Balkonplatte und einer Gebäudedecke, mit einem Isolierkörper, wobei der Isolierkörper eine Längsrichtung und in Längsrichtung verlaufende, einander gegenüberliegende Längsseiten besitzt, ist vorgesehen, dass sich mindestens ein erfindungsgemäßes Verbindungselement durch den Isolierkörper erstreckt.
  • In vorteilhafter Ausführungsvariante ist vorgesehen, dass der Mittelabschnitt an mindestens einer Längsseite, insbesondere an beiden Längsseiten des Isolierkörpers aus dem Isolierkörper ragt. In vorteilhafter alternativer Gestaltung ist vorgesehen, dass der Mittelabschnitt vollständig innerhalb des Isolierkörpers angeordnet ist. Vorteilhaft hält der Mittelabschnitt das Verbindungselement dadurch im Isolierkörper.
  • Ausführungsbeispiele der Erfindung werden im Folgenden anhand der Zeichnung erläutert. Es zeigen:
  • Fig. 1
    eine schematische Darstellung eines thermisch isolierenden Bauelements in einer Trennfuge,
    Fig. 2
    eine ausschnittsweise schematische perspektivische Darstellung eines thermisch isolierenden Bauelements,
    Fig. 3
    eine Ansicht auf die Stirnseite eines Verbindungselements des thermisch isolierenden Bauelements nach Fig. 2,
    Fig. 4
    eine schematische perspektivische Darstellung der Anordnung aus Fig. 2,
    Fig. 5
    eine ausschnittsweise schematische perspektivische Darstellung eines Ausführungsbeispiels eines thermisch isolierenden Bauelements,
    Fig. 6
    eine perspektivische Darstellung des Verbindungselements aus Fig. 5,
    Fig. 7
    eine Ansicht auf die Stirnseite des Verbindungselements aus Fig. 6,
    Fig. 8
    eine Ansicht auf die Stirnseite einer alternativen Gestaltung des Verbindungselements aus Fig. 6,
    Fig. 9
    eine perspektivische Darstellung eines alternativen Verbindungselements,
    Fig. 10
    eine Ansicht auf die Stirnseite des Verbindungselements aus Fig. 9,
    Fig. 11
    eine perspektivische Darstellung des Verbindungselements aus Fig. 9,
    Fig. 12
    eine perspektivische Darstellung eines weiteren Ausführungsbeispiels eines Verbindungselements,
    Fig. 13
    eine Ansicht auf die Stirnseite des Verbindungselements aus Fig. 12,
    Fig. 14
    eine perspektivische Darstellung des Verbindungselements aus Fig. 12,
    Fig. 15 und 16
    perspektivische Darstellungen eines weiteren Ausführungsbeispiels eines Verbindungselements,
    Fig. 17
    eine Ansicht auf die Stirnseite des Verbindungselements aus den Figuren 15 und 16,
    Fig. 18
    eine Ausführungsvariante des Verstärkungselements des Verbindungselements aus den Figuren 15 bis 17,
    Fig. 19
    eine weitere Ausführungsvariante eines Verbindungselements in perspektivischer Darstellung,
    Fig. 20
    eine Ansicht auf die Stirnseite des Verbindungselements aus Fig. 19,
    Fig. 21
    eine vergrößerte schematische Darstellung eines Ausschnitts des Verbindungselements aus Fig. 19 im Bereich zwischen Verbindungsabschnitt und Mittelabschnitt,
    Fig. 22
    eine perspektivische Darstellung eines weiteren Ausführungsbeispiels eines Verbindungselements,
    Fig. 23
    eine Ansicht auf die Stirnseite des Verbindungselements aus Fig. 22,
    Fig. 24
    eine vergrößerte, schematische Darstellung eines Ausschnitts des Verbindungselements aus Fig. 22 im Bereich zwischen Mittelabschnitt und Verbindungsabschnitt,
    Fig. 25 und 26
    schematische Darstellungen von Ausführungsvarianten für den Übergangsabschnitt zwischen Verbindungsabschnitt und Mittelabschnitt.
  • Fig. 1 zeigt in perspektivischer, schematischer Darstellung ein thermisch isolierendes Bauelement 1, das zum Einsatz in einer Trennfuge 4 zwischen einer getragenen Struktur und einer Tragstruktur, im Ausführungsbeispiel zwischen einer schematisch dargestellten Balkonplatte 2 und einer schematisch dargestellten Gebäudedecke 3, vorgesehen ist. Das thermisch isolierende Bauelement 1 umfasst einen Isolierkörper 5, der mit Isoliermaterial gefüllt ist. Der Isolierkörper 5 ist als länglicher Kasten ausgebildet und besitzt eine Längsrichtung 6, die sich in Längsrichtung der Trennfuge 4 und im Einbauzustand in horizontaler Richtung erstreckt, sowie eine Querrichtung 7, die sich im Einbauzustand in horizontaler Richtung von der Balkonplatte 2 zur Gebäudedecke 3 und senkrecht zur Längsrichtung 6 erstreckt. Der Isolierkörper 5 besitzt außerdem eine Hochrichtung 8, die im Einbauzustand vertikal ausgerichtet ist und senkrecht zur Längsrichtung 6 und senkrecht zur Querrichtung 7 verläuft.
  • Der Isolierkörper 5 weist einander gegenüberliegende Längsseiten 9 und 10 auf, die näherungsweise parallel zur Längsrichtung 6 und zur Hochrichtung 8 verlaufen. Zur Übertragung von Kräften zwischen Balkonplatte 2 und Gebäudedecke 3 sind Verbindungselemente 13, 14, 15 vorgesehen, die an gegenüberliegenden Längsseiten 9 und 10 des Isolierkörpers 5 aus dem Isolierkörper 5 in die Balkonplatte 2 bzw. die Gebäudedecke 3 ragen.
  • Die Verbindungselemente 13 sind im Ausführungsbeispiel als Zugstäbe ausgebildet und im Einbauzustand im oberen Bereich des Isolierkörpers 5 angeordnet. Die Verbindungselemente 14 sind im Ausführungsbeispiel Druckstäbe, die im unteren Bereich des Isolierkörpers 5 angeordnet sind. Die Verbindungselemente 15 sind Querkraftstäbe, die in der Gebäudedecke 3 im oberen und in der Balkonplatte 2 im unteren Bereich bzw. in der Balkonplatte 2 im oberen und in der Gebäudedecke 3 im unteren Bereich verlaufen. Zur Aufnahme von Druckkräften sind außerdem Drucklager 16 sowie Druckschublager 17 vorgesehen. Art und Anordnung sowie Auslegung der Verbindungselemente 13, 14, 15, der Drucklager 16 und der Druckschublager 17 sind auf den Einsatzfall des thermisch isolierenden Bauelements 1 anzupassen und an den Bedarf angepasst auszuwählen. Einzelne Arten von Verbindungselementen können daher auch entfallen oder es können weitere Arten von Verbindungselementen vorgesehen sein.
  • Um eine gute Isolierwirkung durch das thermisch isolierende Bauelement 1 zu erreichen, ist erfindungsgemäß vorgesehen, die in Fig. 1 lediglich schematisch dargestellten Verbindungselemente 13, 14 und/oder 15 aus faserverstärktem Material auszubilden. Dadurch, dass die Verbindungselemente 13, 14 und/oder 15 weder teilweise noch vollständig aus Metall bestehen, kann eine sehr gute Isolierwirkung erreicht werden. Das faserverstärkte Material kann dabei Glasfasern und/oder Basaltfasern und/oder Kohlefasern und/oder Aramidfasern und/oder Stahlfasern aufweisen. Das Grundmaterial, in dem die verstärkenden Fasern eingebettet sind, besteht nicht aus Metall. Dadurch sind eingebettete Fasern, insbesondere Stahlfasern voneinander über das Grundmaterial thermisch getrennt, und es ergibt sich auch bei Verwendung von Stahlfasern eine gute Isolierwirkung.
  • Fig. 2 zeigt schematisch die Anordnung eines Verbindungselements 13 in einem Isolierkörper 5. Der Isolierkörper 5 ist dabei lediglich ausschnittsweise dargestellt und kann in Längsrichtung 6 und in Hochrichtung 8 (Fig. 1) eine deutlich größere Erstreckung aufweisen. Die Anordnung des Verbindungselements 13 in Hochrichtung 8 ist auf den Einsatzfall angepasst zu wählen.
  • Das Verbindungselement 13 ist im Ausführungsbeispiel nach Fig. 2 aus einem Grundelement 26 und einem am Grundelement 26 gehaltenen Verstärkungselement 27 aufgebaut. Das Grundelement 26 besitzt eine Länge l1, die im Ausführungsbeispiel der Gesamtlänge des Verbindungselements 13 entspricht. Das Verstärkungselement 27 besitzt eine Länge l2, die kleiner als die Länge l1 ist. Das Grundelement 26 ragt im Ausführungsbeispiel an beiden Enden des Verstärkungselements 27 hervor. Die Abschnitte des Grundelements 26, die über das Verstärkungselement 27 hervorragen, bilden Verbindungsabschnitte 21 und 23, an denen das Verbindungselement 13 im umgebenden Beton von Balkonplatte 2 und Gebäudedecken 3 umgeben und eingebettet ist. Der dazwischen liegende Bereich, in dem sich sowohl das Grundelement 26 als auch das Verstärkungselement 27 erstrecken, bildet einen Mittelabschnitt 22, der durch den Isolierkörper 5 ragt. Im Ausführungsbeispiel ist die Länge l2 des Verstärkungselements 27 größer als die Erstreckung des Isolierkörpers 5 in Querrichtung 7, so dass der Mittelabschnitt 22 an beiden Längsseiten 9 und 10 des Isolierkörpers 5 aus dem Isolierkörper 5 ragt.
  • Wie Fig. 2 zeigt, besitzen die Verbindungsabschnitte 21 und 23 jeweils eine Länge l3. Die Länge l3 entspricht mindestens dem 5fachen des in Fig. 3 dargestellten größten Durchmessers d des jeweiligen Verbindungsabschnitts 21, 23. Bevorzugt ist die Länge l3 mindestens so groß wie die Länge l2, insbesondere größer als die Länge l2, so dass sich eine gute Verankerung des Verbindungselements 13, 14, 15 im umgebenden Beton ergibt.
  • Dadurch, dass das Verstärkungselement 27 im Mittelabschnitt 22 angeordnet und fest mit dem Grundelement 26 verbunden ist, ergibt sich im Mittelabschnitt 22 eine erhöhte Steifigkeit des Verbindungselements 13. Vorteilhaft beträgt die Steifigkeit im Mittelabschnitt 22 mindestens 110%, insbesondere mindestens 130%, bevorzugt mindestens 150% der Steifigkeit jedes Verbindungsabschnitts 21 und 23.
  • Wie Fig. 2 zeigt, kann das Grundelement 26 ein Profil 28 aufweisen, das beispielsweise durch im Grundelement 26 eingefräste Nuten gebildet sein kann. Im Ausführungsbeispiel verlaufen die Nuten senkrecht zu einer Längsrichtung 50 des Verbindungselements 13. Auch eine wendelförmige Gestaltung der Nuten kann jedoch vorgesehen sein. Auch eine andere Art der Profilierung, die die Verankerung im umgebenden Beton verbessert, kann vorteilhaft sein.
  • Wie Fig. 2 zeigt, erstreckt sich ein Teilquerschnitt 25 des Grundelements 26 über die gesamte Länge des Verbindungselements 13 von einem ersten Ende 18 bis zu einem zweiten Ende 19 des Verbindungselements 13. Die Enden 18 und 19 sind dabei im Ausführungsbespiel an den Verbindungsabschnitten 21 und 23 angeordnet. Ist ein Profil 28 vorgesehen, so ist der Teilquerschnitt 25, der sich über die gesamte Länge des Verbindungselements 13 erstreckt, um den Querschnitt des Profils verringert. Der Teilquerschnitt 25 beträgt vorteilhaft mindestens 30%, insbesondere mindestens 50% des Querschnitts des Verbindungselements in mindestens einem, insbesondere in beiden Verbindungsabschnitten 21 und 23.
  • Fig. 3 zeigt die Gestaltung von Grundelement 26 und Verstärkungselement 27 im Einzelnen. Grundelement 26 und Verstärkungselement 27 bilden zusammengefügt näherungsweise einen kreisförmigen Querschnitt, wobei der Außenumfang des Verstärkungselements 27 einen geringfügig größeren Abstand zu einer Längsmittelachse 49 des Verbindungselements 13 aufweist als das Grundelement 26. Das Verstärkungselement 27 ist am Grundelement 26 im Ausführungsbeispiel mechanisch, nämlich über eine Schnappverbindung gehalten. Dazu sind am Verstärkungselement 27 Rastnasen 30 ausgebildet, die in entsprechende Vertiefungen 36 des Verstärkungselements 27 ragen. Das Grundelement 26 und das Verstärkungselement 27 sind - bis auf ein ggf. eingebrachtes Profil 28 - mit über ihre gesamte Länge näherungsweise konstantem Querschnitt ausgebildet. Die Rastnasen 30 sind als Stege ausgebildet, die sich über die gesamte Länge des Verstärkungselements 27 erstrecken. Das Grundelement 26 ist im Ausführungsbeispiel mit näherungsweise T- oder pilzförmigem Querschnitt ausgebildet. Das Verstärkungselement 27 besitzt einen näherungsweise C-förmigen Querschnitt, wobei die Enden des C die Rastnasen 30 bilden. Die Anordnung des Verbindungselements 13 am Isolierkörper 5 ist auch in Fig. 4 dargestellt. Hier ist erkennbar, dass der Mittelabschnitt 22 an beiden Längsseiten 9 und 10 des Isolierkörpers 5 aus dem Isolierkörper 5 ragt.
  • Fig. 5 zeigt eine alternative Anordnung einer Ausführungsvariante eines Verbindungselements 13, bei dem der Mittelabschnitt 22 vollständig im Isolierkörper 5 angeordnet ist. Nur die Verbindungsabschnitte 21 und 23 ragen aus dem Isolierkörper 5. Die Öffnungen, durch die das Verbindungselement 13 aus dem Isolierkörper 5 ragt, sind in ihrer Größe auf die Verbindungsabschnitte 21 und 23 abgestimmt. Dadurch hält der Mittelabschnitt 22 das Verbindungselement 13 in seiner Lage im Isolierkörper 5. Das Verbindungselement 13 kann nicht aus dem Isolierkörper 5 gezogen werden.
  • Es kann auch vorgesehen sein, dass der Mittelabschnitt 22 an den Längsseiten 9 und 10 des Isolierkörpers 5 endet. Die beschriebenen Anordnungsvarianten des Mittelabschnitts 22 bezüglich des Isolierkörpers 5 sind für alle beschriebenen Ausführungsbeispiele von Verbindungselementen 13, 14, 15 vorteilhaft.
  • Das in den Figuren 5 bis 7 dargestellte Ausführungsbeispiel eines Verbindungselements 13 weist ein Grundelement 26 und ein Verstärkungselement 27 auf. Das Grundelement 26 ist als Stab mit kreisförmigem Querschnitt ausgebildet. Auch ein anderer Querschnitt kann jedoch vorteilhaft sein. Das Verstärkungselement 27 besitzt einen näherungsweise C-förmigen Querschnitt und verläuft an einer Längsseite des Grundelements 26. Wie Fig. 7 zeigt, bildet im Ausführungsbeispiel nach den Figuren 5 bis 7 das Verstärkungselement 27 mit dem Grundelement 26 keinen Hinterschnitt, beispielsweise über Rastnasen. Zur Fixierung des Verstärkungselements 27 am Grundelement 26 kann beispielsweise eine stoffschlüssige Verbindung, insbesondere durch Kleben oder durch ein Schweißverfahren, bevorzugt durch Ultraschallschweißen, vorgesehen sein. Auch eine andere Art der Verbindung kann jedoch vorgesehen sein. Das Grundelement 26 besitzt einen Durchmesser d. Das Verstärkungselement 27 besitzt eine Dicke b, die deutlich kleiner als der Durchmesser d ist. Die Steifigkeit im Mittelabschnitt beträgt vorzugsweise höchstens das 5fache, insbesondere höchstens das 3fache der Steifigkeit in den Verbindungsabschnitten 21 und 23.
  • Fig. 8 zeigt eine Ausführungsvariante des Verstärkungselements 27 der Figuren 5 bis 7. Das Verstärkungselement 27 weist eine Dicke b auf, die bezogen auf den in Fig. 8 schematisch darstellten Durchmesser d eines Grundelements 26 größer ist als im Ausführungsbeispiel nach den Figuren 5 bis 7. Die Dicke b kann beispielsweise 10% bis 30% des Durchmessers d betragen. Wie Fig. 8 auch zeigt, erstreckt sich das Verstärkungselement 27 über einen Winkel α von mehr als 180° um die Längsmittelachse 49 am Umfang des Grundelements 26, so dass das Verstärkungselement 27 mit dem Grundelement 26 einen Hinterschnitt bildet und am Grundelement 26 aufgeschnappt werden kann. Alternativ oder zusätzlich kann auch beim Ausführungsbeispiel nach Fig. 8 eine stoffschlüssige, insbesondere eine chemische Verbindung vorgesehen sein.
  • Das Ausführungsbeispiel gemäß Figuren 9 bis 11 zeigt ein Grundelement 26 mit rechteckigem, vorzugsweise quadratischem Durchmesser, das im Mittelabschnitt 22 an drei Längsseiten von einem Verstärkungselement 27 umgeben ist. Auch das Verstärkungselement 27 ist an seinem Außenumfang eckig ausgebildet, so dass sich auch im Mittelabschnitt 22 ein rechteckiger Querschnitt des Verbindungselements 13 ergibt. Im Ausführungsbeispiel weist das Verstärkungselement 27 an allen drei Längsseiten des Grundelements näherungsweise die gleiche Wandstärke auf. Wie Fig. 10 zeigt, ist ein Durchmesser a des Verbindungselements 13 im Mittelabschnitt 22 größer als ein Durchmesser d des Grundkörpers 26. Die Durchmesser a und d sind dabei jeweils die größten Durchmesser des jeweiligen Abschnitts. Bei dem in Fig. 10 dargestellten rechteckigen Querschnitt sind die Durchmesser a und d zwischen gegenüberliegenden Kanten gemessen.
  • Die Figuren 12 bis 14 zeigen ein Ausführungsbeispiel eines Verbindungselements 13, das ein Grundelement 26 und zwei daran angeordnete Verstärkungselemente 27 aufweist. Die Verstärkungselemente 27 sind identisch ausgebildet und können wie im Ausführungsbeispiel beispielsweise ähnlich zu dem in den Figuren 7 und 8 dargestellten Verstärkungselement 27 mit näherungsweise C-förmigem Querschnitt ausgeführt sein. Auch eine andere Gestaltung der Verstärkungselemente 27 kann jedoch vorteilhaft sein. Das Grundelement 26 entspricht in seiner Gestalt näherungsweise zwei Stäben mit kreisförmigem Querschnitt, die an einer Längsseite miteinander verbunden sind. Der größte Durchmesser d des Grundelements 26 ist in Fig. 13 dargestellt. An den beiden der Verbindungsstelle abgewandten Längsseiten ist jeweils das näherungsweise C-förmige Verstärkungselement 27 angeordnet.
  • Beim Ausführungsbeispiel nach den Figuren 15 bis 17 sind zwei Grundelemente 26 vorgesehen, die an einem gemeinsamen Verstärkungselement 27 fixiert sind. Das Verstärkungselement 27 ist näherungsweise H-förmig ausgebildet und besitzt zwei Schenkel 31, die über einen Mittelsteg 32 miteinander verbunden sind. Wie Fig. 17 zeigt, sind in der Ausführungsvariante nach den Figuren 15 bis 17 die Grundelemente 26 am Umfang über weniger als 180° vom Verstärkungselement 27 umgriffen, so dass sich keine formschlüssige Verbindung ergibt. Das Verstärkungselement 27 kann an den Grundelementen 26 beispielsweise über eine chemische Verbindung wie über Klebstoff oder Ultraschallschweißen fixiert sein. Der größte Durchmesser d des Verbindungsabschnitts 21, 23 entspricht dem Abstand der entfernt zueinander angeordneten Längsseiten der Grundelemente 26. Der größte Durchmesser d ist die größte Erstreckung des Verbindungsabschnitts 21, 23 senkrecht zur Längsrichtung 50 des Verbindungselements 13.
  • Beim Ausführungsbeispiel nach Fig. 18, das eine leicht abgewandelte Ausführungsvariante des Ausführungsbeispiels nach den Figuren 15 bis 17 darstellt, umgreift das Verstärkungselement 27 jedes Grundelement 26 über einen Winkel α von mehr als 180° seines Umfangs, so dass sich eine formschlüssige Verbindung ergibt. Im Ausführungsbeispiel nach Fig. 18 sind die Schenkel 31 an ihren Enden abgerundet. Auch eine Gestaltung mit Kanten gemäß Fig. 17 kann vorteilhaft sein.
  • Die Figuren 19 bis 21 zeigen ein weiteres Ausführungsbeispiel eines Verbindungselements 13. Das Verbindungselement 13 besitzt einen Mittelabschnitt 22 und die beiden Verbindungsabschnitte 21 und 23. In den Verbindungsabschnitten 23 weist das Verbindungselement 13 einen Durchmesser d auf, der größer als der Durchmesser a im Mittelabschnitt 22 ist. Die verringerte Steifigkeit der Verbindungsabschnitte 21 und 23 gegenüber dem Mittelabschnitt 22 wird durch eine spezielle Anordnung der verstärkenden Fasern 33, 37 erreicht. Dies ist in Fig. 21 schematisch dargestellt. Die Fasern 33 und 37 sind in den Ausführungsbeispielen schematisch dargestellt. Vorzugsweise erstrecken sich einzelne, insbesondere im Wesentlichen alle Fasern 33 und 37 über die gesamte Länge des Verbindungselements 13. In bevorzugter Ausführung sind die Fasern 33 und 37 in Harz eingebettet.
  • In einem Teilquerschnitt 25, der sich über die gesamte Länge des Verbindungselements 13 von einem Ende 18 zum anderen Ende 19 erstreckt, verlaufen die verstärkenden Fasern 37 gestreckt und parallel zur Längsrichtung 50. Die verstärkenden Fasern 37 sind nicht unterbrochen. In den Verbindungsabschnitten 21 und 23 sind die Randfasern 33, die außerhalb des Teilquerschnitts 25 liegen, zur Längsrichtung 50 abschnittsweise geneigt. In Fig. 21 ist exemplarisch ein Winkel β dargestellt, den eine Randfaser 33 mit der Längsrichtung 50 einschließt. Die Randfasern 33 verlaufen wellenförmig und bilden eine wendelförmig umlaufende Erhebung 34, die gleichzeitig zur Verankerung im umgebenden Beton dient. Der wellenförmige Verlauf der Randfasern 33 wird vorteilhaft dadurch hergestellt, dass die Randfasern 33 abschnittsweise weniger stark gedrückt werden, so dass sich die Erhebungen 34 ergeben. Durch den im Längsschnitt wellenförmigen Verlauf der Randfasern 33 können die Randfasern 33 die auf das Verbindungselement 13 einwirkenden Zugkräfte nicht oder nur geringfügig aufnehmen, da sich bei Einwirkung von Zugkräften oder Druckkräften in Längsrichtung 50 die Randfasern 33 strecken oder zusammengestaucht werden können. Dadurch wird in den Verbindungsabschnitten 21 und 23 eine verringerte Steifigkeit erreicht. Ist das Grundmaterial Kunststoff, so können die langkettigen Moleküle des Grundmaterials entsprechend ausgerichtet sein, so dass auch das Grundmaterial, in dem die Randfasern 33 verlaufen, in den Verbindungsabschnitten 21 und 23 eine geringere Steifigkeit aufweist als im Mittelabschnitt 22.
  • Figuren 22 bis 24 zeigen ein Ausführungsbeispiel eines Verbindungselements 13, bei dem in den Verbindungsabschnitten 21 und 23 Nuten 35 eingebracht, vorzugsweise eingefräst sind. Die Nuten 35 sind umlaufend ausgebildet und unterbrechen dadurch die Randfasern 33, wie in Fig. 24 dargestellt ist. Zum tragenden Querschnitt tragen damit nur die Fasern 37 des Teilquerschnitts 25 bei. Im Mittelabschnitt 22 tragen alle Fasern einschließlich der Randfasern 33 zur Festigkeit bei, so dass sich im Mittelabschnitt 22 eine erhöhte Steifigkeit ergibt. Anstatt einer einzelnen Nut 35 können auch eine oder mehrere wendelförmig verlaufende Nuten 35 vorgesehen sein. Es kann auch vorgesehen sein, dass die Randfasern 33 sowohl unterbrochen, also nicht durchgehend angeordnet, als auch, wie in Fig. 21 dargestellt, zur Längsrichtung 50 geneigt angeordnet sind, beispielsweise durch wellenförmige Anordnung oder durch wendelförmige Anordnung.
  • Die Figuren 25 und 26 zeigen schematisch Ausführungsvarianten für einen Übergangsabschnitt 29, der sich zwischen einem Verbindungsabschnitt 21 und dem Mittelabschnitt 22 erstreckt. Ein entsprechender Übergangsabschnitt 29 ist vorzugsweise auch zwischen dem Mittelabschnitt 22 und dem Verbindungsabschnitt 23 vorgesehen. Im Ausführungsbeispiel nach Fig. 25 verläuft der Übergangsabschnitt 29 konisch, so dass sich eine kontinuierliche Vergrößerung des Durchmessers vom Verbindungsabschnitt 21 zum Mittelabschnitt 22 ergibt. Im Ausführungsbeispiel nach Fig. 26 ist ein zur Längsrichtung 50 gewölbter Verlauf der Außenkontur im Übergangsabschnitt 29 vorgesehen. Dabei kann die Außenkontur im Schnitt konvex oder, wie in Fig. 26 mit gestrichelter Linie angedeutet, konkav verlaufen. Der Übergangsabschnitt 29 kann durch ein weiteres, mit dem Grundelement 26 und dem Verstärkungselement 27 verbundenes Element gebildet sein oder am Grundelement 26 oder dem Verstärkungselement 27 angeformt sein. Bei den Ausführungsbeispielen nach den Figuren 19 bis 24 kann der Übergangsabschnitt 29 durch entsprechende Formgebung des Verbindungselements 13, 14, 15 gebildet werden.
  • Vorteilhafte Ausführungsvarianten ergeben sich durch beliebige Kombination der beschriebenen Ausführungsbeispiele miteinander. In allen Ausführungsbeispielen ist vorgesehen, dass die Steifigkeit im Mittelabschnitt 22 mindestens 110%, insbesondere mindestens 130%, bevorzugt mindestens 150% der Steifigkeit jedes Verbindungsabschnitts 21, 23 beträgt. Der Teilquerschnitt 25 bildet vorzugsweise in mindestens einem Verbindungsabschnitt 21, 23, insbesondere in beiden Verbindungsabschnitten mindestens 30%, insbesondere mindestens 50% des Querschnitts des Verbindungselements 13, 14, 15. In allen Ausführungsbeispielen kann zusätzlich zu dargestellten Profilen 28 in beliebiger Anordnung in einem oder mehreren weiteren Abschnitten ein Profil 28 beliebiger Gestaltung vorgesehen sein.
  • Für alle Ausführungsbeispiele ist vorgesehen, dass der Mittelabschnitt 22 zumindest teilweise aus einem Material besteht, das eine höhere Feuerbeständigkeit aufweist als das Material mindestens eines Verbindungsabschnitts 21 und 23. Dies kann insbesondere durch ein anderes Material des Verstärkungselements 27 als das des Grundelements 26 erreicht werden. Bei der in den Figuren 19 bis 24 gezeigten einteiligen Gestaltung eines Verbindungselements 13 kann die höhere Feuerbeständigkeit insbesondere durch Wahl eines anderen Grundmaterials oder durch Wahl einer anderen Zusammensetzung der verstärkenden Fasern 37, 33 erreicht werden. Der Mittelabschnitt 22 besteht vorzugsweise zumindest teilweise, insbesondere vollständig aus mineralischem Material, insbesondere aus hochfestem oder ultrahochfestem Beton oder Mörtel. Vorteilhaft besteht das Verstärkungselement 27 aus Beton oder Mörtel, insbesondere aus hochfestem oder ultrahochfestem Beton oder Mörtel. Der Mittelabschnitt 22 besteht vorzugsweise zumindest teilweise aus einem Material, das eine niedrigere thermische Leitfähigkeit aufweist als das Material mindestens eines Verbindungsabschnitts 21 und 23.
  • Das Verbindungselement 13, 14, 15 kann auch für andere Einsatzzwecke, beispielsweise zur Fixierung von Fassadenplatten oder als Bewehrungselement für Beton, vorgesehen sein.

Claims (19)

  1. Thermisch isolierendes Verbindungselement, insbesondere zur Übertragung von Kräften von einer getragenen Struktur in eine Tragstruktur wie von einer Balkonplatte (2) in eine Gebäudedecke (3), wobei das Verbindungselement (13, 14, 15) stabförmig ausgebildet ist und einen ersten Verbindungsabschnitt (21), einen zweiten Verbindungsabschnitt (23) und einen zwischen den Verbindungsabschnitten (21, 23) angeordneten Mittelabschnitt (22) aufweist, wobei die Länge (l3) jedes Verbindungsabschnitts (21, 23) mindestens dem 5fachen des größten Durchmessers (d) dieses Verbindungsabschnitts (21, 23) entspricht, wobei das Verbindungselement (13, 14, 15) aus faserverstärktem Material besteht und wobei zumindest ein Teilquerschnitt (25) des Verbindungselements (13, 14, 15) sich einteilig und durchgehend durch den ersten Verbindungsabschnitt (21), den Mittelabschnitt (22) und den zweiten Verbindungsabschnitt (23) erstreckt, dadurch gekennzeichnet, dass die Steifigkeit des Verbindungselements (13, 14, 15) im Mittelabschnitt (22) größer als in den Verbindungsabschnitten (21, 23) ist.
  2. Verbindungselement nach Anspruch 1,
    dadurch gekennzeichnet, dass die Steifigkeit im Mittelabschnitt (22) mindestens 110%, insbesondere mindestens 130%, bevorzugt mindestens 150% der Steifigkeit jedes Verbindungsabschnitts (21, 23) beträgt.
  3. Verbindungselement nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass der Teilquerschnitt (25) in zumindest einem Verbindungsabschnitt (21, 23), insbesondere in beiden Verbindungsabschnitten (21, 23) mindestens 30% des Querschnitts des Verbindungselements (13, 14, 15) bildet.
  4. Verbindungselement nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass das Verbindungselement (13, 14, 15) mindestens ein Grundelement (26) und mindestens ein mit dem Grundelement (26) verbundenes Verstärkungselement (27) aufweist, wobei das mindestens eine Grundelement (26) sich durchgehend durch die Verbindungsabschnitte (21, 23) und den Mittelabschnitt (24) erstreckt und zumindest einen Teil des Teilquerschnitts (25) bildet und wobei das mindestens eine Verstärkungselement (27) im Mittelabschnitt (24) angeordnet ist und sich nicht in die Verbindungsabschnitte (21, 23) erstreckt.
  5. Verbindungselement nach Anspruch 4,
    dadurch gekennzeichnet, dass das mindestens eine Grundelement (26) und das mindestens eine Verstärkungselement (27) aus dem gleichen faserverstärkten Material bestehen.
  6. Verbindungselement nach Anspruch 4,
    dadurch gekennzeichnet, dass das mindestens eine Grundelement (26) und das mindestens eine Verstärkungselement (27) aus unterschiedlichen faserverstärkten Materialien bestehen.
  7. Verbindungselement nach einem der Ansprüche 4 bis 6,
    dadurch gekennzeichnet, dass das mindestens eine Verstärkungselement (27) stoffschlüssig oder mechanisch an dem mindestens einen Grundelement (26) fixiert ist.
  8. Verbindungselement nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass das Verbindungselement (13, 14, 15) einteilig ausgebildet ist.
  9. Verbindungselement nach Anspruch 8,
    dadurch gekennzeichnet, dass an den Verbindungsabschnitten (21, 23) der tragende Querschnitt des Verbindungselements (13, 14, 15) gegenüber dem tragenden Querschnitt im Mittelabschnitt (22) verringert ist.
  10. Verbindungselement nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, dass das Verbindungselement (13, 14, 15) in einem Pultrusionsverfahren hergestellt ist.
  11. Verbindungselement nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass das Verbindungselement (13, 14, 15) in mindestens einem Verbindungsabschnitt (21, 23) ein Profil (28) an seiner Außenseite aufweist.
  12. Verbindungselement nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet, dass der Mittelabschnitt (22) zumindest teilweise aus einem Material besteht, das eine höhere Feuerbeständigkeit aufweist als das Material mindestens eines Verbindungsabschnitts (21, 23).
  13. Verbindungselement nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet, dass der Mittelabschnitt (22) zumindest teilweise, insbesondere vollständig aus mineralischem Material besteht.
  14. Verbindungselement nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet, dass der Mittelabschnitt (22) zumindest teilweise aus einem Material besteht, das eine niedrigere thermische Leitfähigkeit aufweist als das Material mindestens eines Verbindungsabschnitts (21, 23).
  15. Verbindungselement nach einem der Ansprüche 1 bis 14,
    dadurch gekennzeichnet, dass das faserverstärkte Material Glasfasern und/oder Basaltfasern und/oder Kohlefasern und/oder Aramidfasern aufweist.
  16. Verbindungselement nach einem der Ansprüche 1 bis 15,
    dadurch gekennzeichnet, dass mindestens ein Verbindungsabschnitt (21, 23) über einen Übergangsabschnitt (29) mit dem Mittelabschnitt (22) verbunden ist, wobei der Querschnitt des Verbindungselements (13, 14, 15) im Übergangsabschnitt (29) sich vom Verbindungsabschnitt (21, 23) zum Mittelabschnitt (22) kontinuierlich vergrößert.
  17. Thermisch isolierendes Bauelement zum Einsatz in einer Trennfuge (4) zwischen einer getragenen Struktur und einer Tragstruktur, insbesondere zwischen einer Balkonplatte (2) und einer Gebäudedecke (3), mit einem Isolierkörper (5), wobei der Isolierkörper (5) eine Längsrichtung (6) und in Längsrichtung (6) verlaufende, einander gegenüberliegende Längsseiten (9, 10) besitzt,
    dadurch gekennzeichnet, dass sich mindestens ein Verbindungselement (13, 14, 15) nach einem der Ansprüche 1 bis 16 durch den Isolierkörper (5) erstreckt.
  18. Bauelement nach Anspruch 17,
    dadurch gekennzeichnet, dass der Mittelabschnitt (22) an mindestens einer Längsseite (9, 10), insbesondere an beiden Längsseiten (9, 10) des Isolierkörpers (5) aus dem Isolierkörper (5) ragt.
  19. Bauelement nach Anspruch 17,
    dadurch gekennzeichnet, dass der Mittelabschnitt (22) vollständig innerhalb des Isolierkörpers (5) angeordnet ist.
EP19170477.4A 2019-04-23 2019-04-23 Thermisch isolierendes verbindungselement und thermisch isolierendes bauelement Pending EP3730708A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19170477.4A EP3730708A1 (de) 2019-04-23 2019-04-23 Thermisch isolierendes verbindungselement und thermisch isolierendes bauelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19170477.4A EP3730708A1 (de) 2019-04-23 2019-04-23 Thermisch isolierendes verbindungselement und thermisch isolierendes bauelement

Publications (1)

Publication Number Publication Date
EP3730708A1 true EP3730708A1 (de) 2020-10-28

Family

ID=66248557

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19170477.4A Pending EP3730708A1 (de) 2019-04-23 2019-04-23 Thermisch isolierendes verbindungselement und thermisch isolierendes bauelement

Country Status (1)

Country Link
EP (1) EP3730708A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0568813A1 (de) * 1992-05-02 1993-11-10 SCHÖCK BAUTEILE GmbH Bauelement zur Wärmedämmung bei Gebäuden
WO2005035892A1 (de) 2003-10-10 2005-04-21 Hitek Construction Ag Vorrichtung mit einem stab aus faserverstärktem kunststoff zur übertragung einer last durch eine wärmedämmschicht hindurch
US20160002920A1 (en) * 2014-07-07 2016-01-07 Composite Technologies Corporation Compression transfer member
WO2017121658A1 (en) 2016-01-12 2017-07-20 Plakabeton S.A. Construction element for connecting thermally insulated parts of a building
DE102016113558A1 (de) * 2016-07-22 2018-01-25 Schöck Bauteile GmbH Bauelement zur Wärmedämmung
EP3656938A1 (de) * 2018-11-20 2020-05-27 Schöck Bauteile GmbH Bauelement zur wärmebrückenarmen anbindung eines vorkragenden aussenteils an eine gebäudehülle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0568813A1 (de) * 1992-05-02 1993-11-10 SCHÖCK BAUTEILE GmbH Bauelement zur Wärmedämmung bei Gebäuden
WO2005035892A1 (de) 2003-10-10 2005-04-21 Hitek Construction Ag Vorrichtung mit einem stab aus faserverstärktem kunststoff zur übertragung einer last durch eine wärmedämmschicht hindurch
EP1680559A1 (de) * 2003-10-10 2006-07-19 Hitek Construction Ag Vorrichtung mit einem stab aus faserverstärktem kunststoff zur übertragung einer last durch eine wärmedämmschicht hindurch
US20160002920A1 (en) * 2014-07-07 2016-01-07 Composite Technologies Corporation Compression transfer member
WO2017121658A1 (en) 2016-01-12 2017-07-20 Plakabeton S.A. Construction element for connecting thermally insulated parts of a building
DE102016113558A1 (de) * 2016-07-22 2018-01-25 Schöck Bauteile GmbH Bauelement zur Wärmedämmung
EP3656938A1 (de) * 2018-11-20 2020-05-27 Schöck Bauteile GmbH Bauelement zur wärmebrückenarmen anbindung eines vorkragenden aussenteils an eine gebäudehülle

Similar Documents

Publication Publication Date Title
EP1007809A1 (de) Verstärkungsvorrichtung für tragstrukturen
EP1612339B1 (de) Bauelement zur Wärmedämmung
EP2824249B1 (de) Thermisch isolierendes Bauelement
DE102006052648B4 (de) Traganker zur Befestigung von Fassadenelementen an einer Gebäudewand, Gebäudewandkonstruktion sowie Verwendung eines Tragankers
DE4102332A1 (de) Balkonanschluss
EP2436845B1 (de) Anordnung zum kraftschlüssigen Anschluss eines Bauteil an einen Baukörper, insbesondere eines Balkons an ein Gebäude
EP0086751B1 (de) Auf Zug beanspruchbarer Anker
EP3730708A1 (de) Thermisch isolierendes verbindungselement und thermisch isolierendes bauelement
EP1932978A1 (de) Bewehrungselement für die Aufnahme von Kräften in betonierten Platten im Bereich von Stützelementen
DE102006010951A1 (de) Tragsystem aus Stahl für Dachkonstruktionen
EP0959188B1 (de) Kragplatten- und/oder Fugenelement für bewehrte Baukonstruktionen
EP1098043A1 (de) Bauelement zur schallgedämmten Verbindung von Bauteilen
EP0745734A1 (de) Kragplatten- und/oder Fugenelement für bewehrte Baukonstruktionen
EP1703036A1 (de) Bauelement zur Schub- bzw. Durchstanzbewehrung
EP0745733A1 (de) Kragplatten- und/oder Fugenelement für bewehrte baukonstruktionen
EP1457619A1 (de) Bewehrungselement für den Betonbau
DE102013019497B4 (de) Als Beton-Stahl-Verbundkonstruktion ausgebildete Dach- oder Deckenplatte
DE102021103589B4 (de) Betonbewehrungselement
EP4050170B1 (de) Bauwerk mit thermisch isolierendem bauelement
DE3942060C2 (de) Abstandhalter
DE102020114611B3 (de) Schalungsanordnung
EP2096220B1 (de) Vorgespanntes Hohlplattenelement
EP4001533A1 (de) Befestigungsschiene
EP3733988A1 (de) Thermisch isolierendes bauelement
EP4310271A1 (de) Konsolanker

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210422

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEVIAT GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

17Q First examination report despatched

Effective date: 20230615

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240909