EP3631320A1 - Fluidheizgerät und verfahren zur herstellung eines solchen - Google Patents

Fluidheizgerät und verfahren zur herstellung eines solchen

Info

Publication number
EP3631320A1
EP3631320A1 EP18728826.1A EP18728826A EP3631320A1 EP 3631320 A1 EP3631320 A1 EP 3631320A1 EP 18728826 A EP18728826 A EP 18728826A EP 3631320 A1 EP3631320 A1 EP 3631320A1
Authority
EP
European Patent Office
Prior art keywords
polymer structure
metallic layer
μιτι
fluid
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18728826.1A
Other languages
English (en)
French (fr)
Inventor
Martin Zoske
Volodymyr Ilchenko
Christoph JÖRG
Bengt Meier
Mina KROMPIC
Patrick SPIELBERGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Webasto SE
Original Assignee
Webasto SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Webasto SE filed Critical Webasto SE
Publication of EP3631320A1 publication Critical patent/EP3631320A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2218Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters controlling the operation of electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2221Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating an intermediate liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2225Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/0072Special adaptations
    • F24H1/009Special adaptations for vehicle systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • F24H1/103Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance with bare resistances in direct contact with the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/121Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/20Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes
    • F24H1/201Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes using electric energy supply
    • F24H1/202Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes using electric energy supply with resistances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/18Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/286Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an organic material, e.g. plastic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • H05B3/50Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material heating conductor arranged in metal tubes, the radiating surface having heat-conducting fins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/54Heating elements having the shape of rods or tubes flexible
    • H05B3/56Heating cables
    • H05B3/565Heating cables flat cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/78Heating arrangements specially adapted for immersion heating
    • H05B3/82Fixedly-mounted immersion heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/779Heating equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00114Heating or cooling details
    • B60H2001/00128Electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2268Constructional features
    • B60H2001/2271Heat exchangers, burners, ignition devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2250/00Electrical heat generating means
    • F24H2250/04Positive or negative temperature coefficients, e.g. PTC, NTC
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/023Heaters of the type used for electrically heating the air blown in a vehicle compartment by the vehicle heating system
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/024Heaters using beehive flow through structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Definitions

  • the invention relates to a fluid heater and method for producing such.
  • Electric air heaters are usually based on ceramic heating elements with a comparatively strong temperature-dependent electrical resistance, through which a self-regulation of the heat release is possible.
  • These resistors are typically PTC ceramic elements (PTC for Positive Temperature Coefficient). These can be connected to heat exchanger surfaces of aluminum sheet and also be contacted electrically.
  • a PTC element comprises a PTC resistor, ie a
  • Temperature-dependent resistor with a positive temperature coefficient which conducts the electric current better at low temperatures than at high temperatures.
  • a mechanical and electrical connection of the PCT elements can be done for example by clamping on the heat exchanger.
  • Disadvantages of conventional air heaters with ceramic PTC elements include i.a. a complicated production due to a comparatively complicated heat exchanger production and a comparatively complicated
  • Heating element surface and heat exchanger sheet a comparatively high risk of short circuit, in particular due to a low geometric
  • the object is achieved by a method for (or) production of an electric fluid heater, in particular an air heater (or alternatively liquid, in particular water heater) for a vehicle, preferably motor vehicle, more preferably passenger cars or trucks (or even ship or aircraft), dissolved, preferably comprising at least one Fluidleitkanal for passing the fluid, wherein at least one conductive polymer structure containing a polymer component and a conductive component, in particular carbon component, with at least one metallic layer, in particular cohesively coated.
  • an electric fluid heater in particular an air heater (or alternatively liquid, in particular water heater) for a vehicle, preferably motor vehicle, more preferably passenger cars or trucks (or even ship or aircraft), dissolved, preferably comprising at least one Fluidleitkanal for passing the fluid, wherein at least one conductive polymer structure containing a polymer component and a conductive component, in particular carbon component, with at least one metallic layer, in particular cohesively coated.
  • Method can as a method step, the formation of the at least one
  • a compound is to be understood as meaning a compound in which the connection partners are protected by atomic and / or molecular forces
  • the compound is non-releasable (or non-destructive, that is, without, in particular irreversible, destruction of the connection partners solvable).
  • a material bond can also be a force and / or positive fit. In embodiments, however, if necessary
  • an interfacial connection should be present in particular if adherence over at least 50%, more preferably at least 80%, possibly (at least approximately) 100% of a contact surface is ensured between the connection partners.
  • a core idea of the invention is to use a metallic layer as
  • Polymer structure and metal layer is preferably comparatively durable and durable. Overall, in particular a thin contacting structure can be achieved with a low weight associated therewith.
  • the metal layer further preferably allows a solder connection with a contact electrode, which simplifies the manufacturing process as a whole.
  • a fluid heater or air heater is in particular a heater to understand that is designed as an assembly (assembly).
  • the fluid heater or air heater may be delimited by an appropriate housing to the outside. Within this housing are then preferably the
  • One volume of the fluid heater may be less than
  • Fluid heater have a fluid inlet and a fluid outlet through which the fluid (in particular the air) can flow in or out.
  • the fluid heater can also as
  • Liquid heater in particular water heater, be designed (for mobile applications).
  • a metallic layer is to be understood in particular as a layer comprising at least 50% by weight, preferably at least 80%, more preferably at least 95% by weight of metal (s).
  • the metallic layer can also be composed at least substantially completely of metal (s).
  • the metallic layer may be homogeneous (ie in particular without local material and / or density fluctuations) or inhomogeneous.
  • the metallic layer may be monolithic.
  • the metallic layer may be structured or unstructured.
  • the (respective, assigned to a particular, in particular per se integral or contiguous, polymer structure) metallic layer of (only) one or more separate (each for themselves coherent) part (s) be constructed.
  • the Metallic layer may have at least substantially constant thickness.
  • a maximum thickness is preferably not greater than a minimum thickness plus 20% (or plus 10%) of the minimum thickness.
  • the (respective) metallic layer can cover a (flat) surface of the polymer structure to at least 50%, preferably at least 80%, more preferably at least 90%. Overall, at least 50%, preferably at least 80%, more preferably at least 90%, of an (entire) surface area of the (respective overall contiguous) polymer structure may be covered with one or more metallic layers.
  • the metallic layer is preferably adhesively bonded to the polymer structure at least substantially over its entire area (or at least 50% or at least 80%) (with respect to a surface facing the polymer structure).
  • the metallic layer may be at least partially, in particular (in weight and / or surface) predominantly or completely, (first) on the
  • Polymer structure are built. Alternatively or additionally, the
  • metallic layer at least partially, in particular (weight and / or surface) predominantly or completely, preferably as a film, be completed before joining with the polymer structure or be, wherein the metallic layer (or their prefabricated portion) then preferably before Bonding with the polymer structure pretreated, in particular roughened.
  • the adhesion can be improved with the polymer structure.
  • the metallic layer preferably has a layer thickness of at least 10 nm, preferably at least 100 nm, more preferably at least 1 ⁇ , more preferably at least 10 ⁇ , optionally at least 25 ⁇ and / or at most 2 mm, preferably at most 500 ⁇ , more preferably at most 200th ⁇ , more preferably at most 150 ⁇ , possibly at most 50 ⁇ or at most 20 ⁇ or at most 15 ⁇ , on.
  • the metallic layer preferably comprises at least partially copper or a copper alloy.
  • a surface of the polymer structure may be pretreated, in particular structured, preferably in such a way that the conductive component (in particular the conductive component at least partially forming conductive particles) of the polymer structure is at least partially exposed.
  • the metallic layer is preferably provided with a contact electrode
  • Contact electrode may be an electrical lead, z. B. comprising a wire section and / or a Päd, act.
  • the metallic layer is preferably at least partially by spraying, in particular thermal spraying, and / or lamination, in particular thermal lamination and / or lamination by (preferably conductive) adhesion promoter, and / or vapor deposition, in particular by PVD (PVD for physical vapor deposition), and / or galvanic and / or by welding, preferably ultrasonic welding applied.
  • spraying in particular thermal spraying, and / or lamination
  • thermal lamination and / or lamination by (preferably conductive) adhesion promoter, and / or vapor deposition, in particular by PVD (PVD for physical vapor deposition), and / or galvanic and / or by welding, preferably ultrasonic welding applied.
  • the (respective) metallic layer is (at least partially) applied by the thermal spraying method.
  • the material to be applied is first melted before it (via a
  • the metallic layer can be produced over a comparatively wide range of possible layer thicknesses and adheres well to the polymer structure, with only a comparatively small electrical transition resistance occurring at a material boundary.
  • a metal layer produced in the thermal spraying process is particularly well suited as an electrical connection layer between polymer structure and contact electrode, in particular for heaters, in which a good current carrying capacity of a contact layer is required.
  • a metallic foil may be laminated to the polymer structure.
  • the material of the polymer structure is preferably thermally melted on the surface, in particular in order to achieve or improve a mechanical or electrical connection between the metal foil and the material of the polymer structure.
  • the metal foil can be applied to the polymer structure surface by applying pressure by pressing the metal foil.
  • the metal foil may comprise, for example, copper or a copper alloy.
  • a layer thickness can be at least 30 ⁇ and / or highest 110 ⁇ .
  • a surface of the metal foil may at least on a contact side to the polymer structure in terms of their
  • Polymer structure with a surface of the metal foil causes.
  • the toothing or the comparatively large contact surface can allow a low electrical contact resistance and a good mechanical
  • Adhesion between the polymer structure and the metal foil Adhesion between the polymer structure and the metal foil.
  • a surface (s) of the material of the polymer structure may be pretreated by means of an appropriate method such that the surface of the polymer structure is in the
  • Polymer matrix embedded conductive structures are at least partially exposed and thus an improved electrical contact can be made.
  • a metal foil (at least partially) by means of adhesion promoter on the polymer structure (for electrical contacting) are laminated. Via the applied metal foil, the polymer structure can be connected to a (contact) electrode and thus reliably electrically contacted.
  • the bonding agent (glue) can be good for a good
  • an electrically conductive adhesive may optionally be used as adhesion promoter.
  • An electrically non-conductive adhesive is also conceivable in principle. Then, if necessary, an electrical contact must be ensured in another way (for example, by a particularly thin formation of the adhesive layer and / or by partially free-lying areas in which no adhesive layer is provided).
  • the layer thickness can be at least 30 ⁇ and / or at most 110 ⁇ , wherein a surface on a
  • the surface treatment of the metal foil can produce a rough surface structure, which preferably brings about a toothing of the adhesion promoter with the foil surface. Gearing and large contact surface cause a low electrical contact resistance and a comparatively good mechanical adhesion between the
  • pretreated to at least partially expose the conductive structures embedded on a surface in a polymer matrix (in particular filler particles) and thus to produce a good electrical contact.
  • the metallic layer may be applied (at least in part) to the polymer structure in the PVD process.
  • the PVD (Physical Vapor Deposition) process refers to the physical deposition of thin metal layers through the vapor phase.
  • the applied layer can be very thin (possibly thinner than 15 ⁇ ) are formed and adheres relatively well on the material of the polymer structure, with only a small electrical contact resistance occurs at the material interface. Therefore, a metal layer produced in the PVD process is particularly well suited as an electrical intermediate layer between the polymer structure and at least one contact electrode, in particular for heating elements in which a good
  • a surface treatment of the polymer structure can take place under vacuum conditions, if appropriate in the plasma process, and ensure a low contact resistance at the interface of both materials.
  • the metallic layer may be applied (at least in part) to the polymer structure by means of a galvanic process. This is an electrolytic process.
  • Deposition can be made metallic coatings on the polymer structure. If necessary, the applied layer can be made comparatively thin (for example up to 50 ⁇ m) and adheres well to the polymer structure, with only a small electrical contact resistance occurring at a material interface.
  • the metal layer produced by electroplating is particularly well suited as an electrical intermediate layer between polymer structure and contact electrode, in particular for heaters, in which a good current carrying capacity of the Contact layer is needed without the material of the polymer structure
  • Ultrasonic welding can be applied to the polymer structure.
  • Ultrasonic welding is understood as a welding process that connects the two joining partners by means of high-frequency mechanical vibrations.
  • the ultrasonic process can be intermittent, semi-continuous or continuous.
  • the surface of the metallic layer (eg metallic foil) prior to application to the polymer structure may be patterned, activated and / or roughened to improve adhesion.
  • Polymer structure in particular a conductive component (conductive particles) of the polymer structure can be achieved.
  • Ultrasonic welding is process-reliable and suitable for mass production. It may also be preferred to use polymeric materials which are difficult or impossible to melt and / or react negatively to increased heat.
  • a sonotrode or a plurality of sonotrodes can / can be designed as stamps and / or as rotating rollers.
  • two sonotrodes are provided to connect the polymer structure on both sides with a corresponding connection electrode.
  • the two sonotrodes can then be arranged opposite each other so that during the process, the polymer structure and the electrodes to be connected therewith lie between the two sonotrodes.
  • the sonotrodes can be configured as rotating rollers.
  • an electric fluid heater in particular an air heater (alternatively liquid, in particular water heater), for a vehicle, in particular a motor vehicle, preferably produced by the method described above, preferably comprising at least one fluid guide channel, at least one conductive polymer structure containing a polymer component and a conductive component, in particular carbon component, and at least one, in particular materially bonded, connected to the polymer component metallic layer.
  • an electric fluid heater in particular an air heater (alternatively liquid, in particular water heater)
  • a vehicle in particular a motor vehicle, preferably produced by the method described above, preferably comprising at least one fluid guide channel, at least one conductive polymer structure containing a polymer component and a conductive component, in particular carbon component, and at least one, in particular materially bonded, connected to the polymer component metallic layer.
  • the present structure may be formed at least in sections, possibly completely, dimensionally stable (self-supporting).
  • the polymer structure is formed as a (solid) block.
  • a thickness of the polymer structure may be at least 1 mm or at least 3 mm.
  • the polymer structure can be or are formed at least in sections, possibly completely, flexibly, preferably as a film or strip (or arrangement of a plurality of strips).
  • the polymer structure in terms of weight either predominantly dimensionally stable or predominantly flexible.
  • a flexible embodiment is understood in particular to be an embodiment in which the polymer structure does not retain its shape when it is placed on an uneven surface or is placed on only one edge.
  • the polymer structure may have a thickness of less than 0.1 mm, preferably less than 0.01 mm.
  • the conductive component in particular carbon component, can in
  • Particle shape and / or as a (carbon) skeleton (skeleton) are present.
  • Carbon component may be in the form of carbon black and / or graphite and / or graphene and / or carbon fibers and / or carbon nanotubes.
  • the polymer structure may include an electrical insulating polymer component.
  • the metallic layer is preferably at least partially by spraying, in particular thermal spraying, and / or lamination, in particular thermal lamination and / or lamination by preferably conductive Adhesive, and / or vapor deposition, in particular by PVD, and / or galvanically and / or by welding, in particular ultrasonic welding applied.
  • the above object is achieved in particular by a method for operating a fluid heating device of the above type and / or produced by the method of the above type, wherein fluid,
  • the above object is achieved in particular by the use of a fluid heater of the above type or produced by a method of the above type for heating a fluid, preferably air, in particular in a motor vehicle, preferably for a motor vehicle interior.
  • the polymer structure may (especially if it is not self-supporting
  • a substrate for example, applied (printed).
  • a screen printing or doctoring can be used.
  • Such a substrate can simultaneously as a heat exchanger surface for heating the
  • this surface can still be increased by unevenness, in particular projections, such as ribs and / or fins on the substrate.
  • the substrate or the substrates can / at least partially, preferably be made entirely of plastic, in particular a polymer such as, for example, polyether ketone and / or polyamide. Particularly preferred is a production of polyethylene (PE) and / or polypropylene (PP) and / or polyetheretherketone (PEEK) and / or (short) fiber-reinforced polyamide (for example PA-GF).
  • PE polyethylene
  • PP polypropylene
  • PEEK polyetheretherketone
  • PA-GF fiber-reinforced polyamide
  • the substrate may be made of an electrically insulating material.
  • An electrically insulating material is in particular a material to be understood, having at room temperature (25 ° C), an electrical conductivity of less than 10 "1 S 1 irr 1 (possibly less than 10" 8 S 1 m "1). Accordingly, is under an electrical conductor or a material (or coating) with electrical conductivity to understand a material that is an electrical
  • the substrate may be formed as a plate, in particular plastic plate, and / or a thickness of at least 0.1 mm, preferably at least 0.5 mm, more preferably at least 1.0 mm and / or at most 5.0 mm, more preferably at most 3 , 0 mm.
  • the respective thickness is an average thickness or a thickness of the largest area of constant thickness.
  • the polymer structure eg polymer coating
  • a corresponding paste for the production thereof can (as especially crystalline
  • Binder comprise at least one polymer, preferably based on at least one olefin; and / or at least one copolymer of at least one olefin and at least one monomer which can be copolymerized therewith, e.g. As ethylene / acrylic acid and / or ethylene / ethyl acrylate and / or
  • polyacetylene or polyalkenylene such as.
  • polyoctenamer polyoctenamer
  • fluoropolymer such as.
  • polyvinylidene fluoride and / or copolymers thereof As polyvinylidene fluoride and / or copolymers thereof.
  • the polymer structure (eg, polymer coating) may be cured in an oven (at elevated temperature).
  • the (respective) polymer structure is preferably above at least 20%, more preferably at least 50%, further
  • the polymer structure may have or may have a continuous area (without interruptions), such as gaps (apertures), or recesses.
  • the polymer structure eg polymer coating
  • Carbon component such as. B. the carbon particles.
  • the respective polymer structure (eg polymer coating) may be (at least on average) thinner than a corresponding substrate, for example by a factor of 1.1; more preferably by a factor of 1.5.
  • conductive with regard to the conductive components of the air heater is to be understood as an abbreviation for “electrically conductive”.
  • the (respective) polymer structure is preferably a conductive layer with PTC behavior.
  • the fluid heater is preferably designed for operation in the low-voltage range (eg ⁇ 100 volts or ⁇ 60 volts).
  • the fluid heater may be designed for the high-voltage range (eg> 100 volts, preferably> 400 volts, possibly greater than 800 volts).
  • the air heater may be designed for operation with DC and / or AC voltage and / or PWM.
  • a (layer) thickness of the respective polymer structure can be ⁇ 1 mm, preferably ⁇ 0.5 mm, even more preferably ⁇ 0.2 mm.
  • the polymer structure (eg, polymer coating) and / or the substrate may be at least substantially planar. If surveys (recesses) are provided, these may be less than 10% of one
  • the carbon content in the polymer structure may be configured to allow flow of current (eg, in particulate form, with the particles correspondingly touching or in close proximity to one another).
  • At least 3, preferably at least 5 heating elements can be provided, each of which has its own polymer structure and optionally one or two or more metallic layers.
  • the above object is achieved by a heating element having the features described above and / or below.
  • the heating element can form the mentioned fluid channels completely or partially or (per se) be formed without fluid channels. In the latter case, corresponding fluid channels can be used when necessary
  • Fig. 1 is a schematic section of an inventive
  • Fig. 2 is a schematic representation of a method for producing a fluid heater according to the invention.
  • Fig. 1 shows a detail of an embodiment of a fluid heater according to the invention.
  • the fluid heater comprises an electrically conductive
  • Polymer structure 10 of a PPTC material a first metallic layer 11 on a first side of the polymer structure 10 and a second metallic layer 12 on a second (opposite) side of the polymer structure 10.
  • the metallic layers are preferably full-surface, cohesively with the Connected polymer structure.
  • the metallic layers 11, 12 are each connected to a connection electrode (contact electrode) 13 or 14, so that an electric current can flow through the polymer structure 10 via the metallic layers 11, 12.
  • FIG. 2 shows a polymer structure 10 which is connected on both sides to a first metallic layer 11 and a second metallic layer 12.
  • the arrows 18 indicate a direction of rotation of the roller-shaped sonotrodes 15, 16.
  • the material for the metallic layers 11, 12 can be unrolled, for example, from a storage roll and / or guided by deflection rollers in the direction of polymer structure 10 (not shown in FIG. 1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Resistance Heating (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Surface Heating Bodies (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines elektrischen Fluidheizgerätes, insbesondere eines Luftheizgerätes für ein Kraftfahrzeug, umfassend mindestens einen Fluidleitkanal zum Durchleiten des Fluides, wobei mindestens eine leitfähige Polymerstruktur (10), die eine Polymerkomponente und eine leitfähige Komponente, insbesondere Kohlenstoffkomponente, enthält, mit mindestens einer metallischen Schicht (11, 12), insbesondere stoffschlüssig, beschichtet wird.

Description

dheizgerät und Verfahren zur Herstellung eines solchen
Beschreibung
Die Erfindung betrifft ein Fluidheizgerät und Verfahren zur Herstellung eines solchen.
Elektrische Luftheizgeräte (insbesondere solche, die in mobilen Anwendungen eingesetzt werden) basieren zumeist auf keramischen Heiz-Elementen mit einem vergleichsweise stark temperaturabhängigen elektrischen Widerstand, durch den eine Selbstregelung der Wärmeabgabe ermöglicht wird. Bei diesen Widerständen handelt es sich üblicherweise um Keramik-PTC-Elemente (PTC für Positive Temperature Coefficient). Diese können mit Wärmeübertrager-Flächen aus Aluminiumblech verbunden werden und darüber auch elektrisch kontaktiert werden. Ein PTC-Element umfasst einen PTC-Widerstand, also einen
temperaturabhängigen Widerstand mit einem positiven Temperaturkoeffizienten, der bei tiefen Temperaturen den elektrischen Strom besser leitet als bei hohen Temperaturen. Eine mechanische und elektrische Anbindung der PCT-Elemente kann beispielsweise durch Anklemmen an den Wärmeübertrager erfolgen.
Nachteile von herkömmlichen Luftheizgeräten mit Keramik-PTC-Elementen sind u.a. eine aufwändige Herstellung aufgrund einer vergleichsweise komplizierten Wärmeübertrager-Fertigung und eines vergleichsweise aufwendigen
Zusammenbaus von einzelnen Heizelementen und Wärmeübertragerblechen, insbesondere hinsichtlich der elektrischen Kontaktierung der Heizelemente; eine üblicherweise notwendige Sortierung der Keramik-Elemente aufgrund von
Fertigungstoleranzen; eine vergleichsweise geringe Heizleistung durch eine lokale Wärmeerzeugung bzw. inhomogene Temperaturverteilung in den Keramik- Elementen (einen geringen Temperaturgradienten zwischen
Heizelementoberfläche und Wärmeübertragerblech); eine vergleichsweise hohe Kurzschlussgefahr, insbesondere aufgrund eines geringen geometrischen
Abstands von Bauteilen mit einer hohen Spannungsdifferenz; und eine wenig prozesssichere Kontaktierung der Heizelemente. Es ist Aufgabe der Erfindung, ein einfach durchführbares Verfahren zur
Herstellung eines effizienten Fluidheizgerätes, insbesondere Luftheizgerätes für ein Kraftfahrzeug, vorzuschlagen. Weiterhin ist es Aufgabe der Erfindung ein Fluidheizgerät, insbesondere Luftheizgerät für ein Kraftfahrzeug, vorzuschlagen, das effizient arbeitet und einfach in der Herstellung ist. Gemäß weiteren Aspekten soll auch ein entsprechendes Kraftfahrzeug, ein entsprechendes Verfahren zum Betreiben eines Fluidheizgerätes sowie eine Verwendung eines Fluidheizgerätes vorgeschlagen werden.
Diese Aufgabe wird insbesondere durch ein Verfahren nach Anspruch 1 gelöst.
Insbesondere wird die Aufgabe durch ein Verfahren zur (bzw. einer) Herstellung eines elektrischen Fluidheizgerätes, insbesondere eines Luftheizgerätes (oder alternativ Flüssigkeits-, insbesondere Wasserheizgerätes) für ein Fahrzeug, vorzugsweise Kraftfahrzeug, weiter vorzugsweise Personenkraftwagen oder Lastkraftwagen (oder auch Schiff oder Flugzeug), gelöst, umfassend vorzugsweise mindestens einen Fluidleitkanal zum Durchleiten des Fluides, wobei mindestens eine leitfähige Polymerstruktur, die eine Polymerkomponente und eine leitfähige Komponente, insbesondere Kohlenstoffkomponente enthält, mit mindestens einer metallischen Schicht, insbesondere stoffschlüssig, beschichtet wird. Das
Verfahren kann als Verfahrensschritt das Ausbilden des mindestens einen
Fluidkanals umfassen.
Unter einem Stoffschluss ist insbesondere eine Verbindung zu verstehen, bei der die Verbindungspartner durch atomare und/oder molekulare Kräfte
zusammengehalten werden. Vorzugsweise ist die Verbindung nicht-lösbar (bzw. nicht zerstörungsfrei, d . h. ohne, insbesondere irreversible, Zerstörung der Verbindungspartner lösbar). Zusätzlich zu einem Stoffschluss kann auch ein Kraft- und/oder Formschluss vorliegen. In Ausführungsformen liegt jedoch ggf.
ausschließlich ein Stoffschluss vor. Weiterhin soll ein Stoffschluss insbesondere dann vorliegen, wenn zwischen den Verbindungspartnern ein Aneinanderhaften über mindestens 50 %, weiter vorzugsweise mindestens 80 %, ggf. (zumindest annähernd) 100 % einer Berührungsfläche gewährleistet ist.
Ein Kerngedanke der Erfindung liegt darin, eine metallische Schicht als
Kontaktierungs- und/oder Wärmeübertragungsschicht bereitzustellen und diese, insbesondere stoffschlüssig, mit der Polymerstruktur zu verbinden. Dadurch kann auf einfache Art und Weise ein vergleichsweise kompaktes und effizient arbeitendes Heizgerät hergestellt werden. Insbesondere wird eine einfache, gut automatisierbare (großserientaugliche) Kontaktierung zwischen Metall und Polymerstruktur ermöglicht. Eine (mechanische) Verbindung zwischen
Polymerstruktur und Metallschicht ist vorzugsweise vergleichsweise haltbar und langlebig. Insgesamt kann insbesondere eine dünne Kontaktierungsstruktur mit einem damit verbundenen geringen Gewicht erzielt werden. Ein
Kontaktwiderstand zwischen metallischer Schicht und Polymerstruktur ist gering. Die Metallschicht ermöglicht weiterhin bevorzugtermaßen eine Lötverbindung mit einer Kontaktelektrode, was das Herstellungsverfahren insgesamt vereinfacht.
Unter einem Fluidheizgerät bzw. Luftheizgerät ist insbesondere ein Heizgerät zu verstehen, das als Baugruppe (Baueinheit) ausgebildet ist. Das Fluidheizgerät bzw. Luftheizgerät kann durch ein entsprechendes Gehäuse nach außen abgegrenzt sein. Innerhalb dieses Gehäuses sind dann vorzugsweise die
Polymerstruktur, die mindestens eine Anschlusselektrode und der mindestens eine Fluidkanal vorgesehen. Ein Volumen des Fluidheizgerätes kann kleiner als
2500 cm3, vorzugsweise kleiner als 1000 cm3 sein. Weiterhin kann das
Fluidheizgerät einen Fluideingang und einen Fluidausgang aufweisen, durch den das Fluid (insbesondere die Luft) ein- bzw. ausströmen kann. Alternativ zur Ausbildung als Luftheizgerät kann das Fluidheizgerät auch als
Flüssigkeitsheizgerät, insbesondere Wasserheizgerät, (für mobile Anwendungen) ausgebildet sein.
Unter einer metallischen Schicht ist insbesondere eine Schicht zu verstehen, die mindestens 50 Gew.-%, vorzugsweise mindestens 80.-%, weiter vorzugsweise mindestens 95 Gew.-% Metall(e) umfasst. Die metallische Schicht kann auch zumindest im Wesentlichen vollständig aus Metall(en) aufgebaut sein. Die metallische Schicht kann homogen (also insbesondere ohne lokale Material- und/oder Dichteschwankungen) oder inhomogen ausgebildet sein. Weiterhin kann die metallische Schicht monolithisch ausgebildet sein. Die metallische Schicht kann strukturiert sein oder unstrukturiert sein. Weiterhin kann die (jeweilige, einer bestimmten, insbesondere per se einstückigen bzw. zusammenhängenden, Polymerstruktur zugeordnete) metallische Schicht aus (nur) einem oder mehreren getrennten (jeweils für sich zusammenhängenden) Teil(en) aufgebaut sein. Die metallische Schicht kann zumindest im Wesentlichen eine konstante Dicke aufweisen. Insofern die Dicke schwankt, ist eine maximale Dicke vorzugsweise nicht größer als eine minimale Dicke plus 20 % (oder plus 10 %) von der minimalen Dicke. Weiterhin kann die (jeweilige) metallische Schicht eine (ebene) Fläche der Polymerstruktur zu mindestens 50 %, vorzugsweise mindestens 80 %, weiter vorzugsweise mindestens 90 % bedecken. Insgesamt können mindestens 50 %, vorzugsweise mindestens 80 %, weiter vorzugswies mindestens 90 %, einer (gesamten) Oberfläche der (jeweiligen gesamten zusammenhängenden) Polymerstruktur mit einer oder mehreren metallischen Schicht(en) bedeckt sein.
Die metallische Schicht wird vorzugsweise zumindest im Wesentlichen vollflächig (oder zu mindestens 50 % oder zu mindestens 80 %) (in Bezug auf eine der Polymerstruktur zugewandten Fläche) mit der Polymerstruktur stoffschlüssig verbunden. Dadurch können ein besonders fester Verbund sowie ein effizienter Betrieb des Fluidheizgeräts ermöglicht werden.
Die metallische Schicht kann zumindest teilweise, insbesondere (gewichts- und/oder flächenmäßig) überwiegend oder vollständig, (erst) auf der
Polymerstruktur aufgebaut werden. Alternativ oder zusätzlich kann die
metallische Schicht zumindest teilweise, insbesondere (gewichts- und/oder flächenmäßig) überwiegend oder vollständig, vorzugsweise als Folie, bereits vor dem Verbinden mit der Polymerstruktur fertiggestellt werden bzw. sein, wobei die metallische Schicht (bzw. deren vorgefertigter Anteil) dann vorzugsweise vor dem Verbinden mit der Polymerstruktur vorbehandelt, insbesondere aufgeraut wird. Durch eine derartige Vorbehandlung kann die Haftung (Verzahnung) mit der Polymerstruktur verbessert werden.
Die metallische Schicht weist vorzugsweise eine Schichtdicke von mindestens 10 nm, vorzugsweise mindestens 100 nm, weiter vorzugsweise mindestens 1 μιτι, weiter vorzugsweise mindestens 10 μιτι, ggf. mindestens 25 μιτι und/oder höchstens 2 mm, vorzugsweise höchstens 500 μιτι, weiter vorzugsweise höchstens 200 μιτι, weiter vorzugsweise höchstens 150 μιτι, ggf. höchstens 50 μιτι oder höchstens 20 μιτι oder höchstens 15 μιτι, auf.
Die metallische Schicht umfasst vorzugsweise zumindest teilweise Kupfer oder eine Kupferlegierung. In Ausführungsformen kann eine Oberfläche der Polymerstruktur vorbehandelt, insbesondere strukturiert, werden, vorzugsweise derart, dass die leitfähige Komponente (insbesondere die leitfähige Komponente zumindest teilweise ausbildende leitfähige Partikel) der Polymerstruktur zumindest teilweise freigelegt wird (werden). Dadurch kann auf einfache Art und Weise ein guter (mechanischer bzw. elektrischer) Kontakt zwischen Polymerstruktur und metallischer Schicht erreicht werden.
Die metallische Schicht wird vorzugsweise mit einer Kontaktelektrode,
insbesondere durch Löten, verbunden und/oder als Zwischenschicht zwischen Polymerstruktur und einer/der Kontaktelektrode ausgebildet. Bei der
Kontaktelektrode kann es sich um eine elektrische Zuleitung, z. B. umfassend einen Drahtabschnitt und/oder ein Päd, handeln.
Die metallische Schicht wird vorzugsweise zumindest teilweise durch Aufspritzen, insbesondere thermisches Aufspritzen, und/oder Auflaminieren, insbesondere thermisches Auflaminieren und/oder Auflaminieren per (vorzugsweise leitfähigen) Haftvermittler, und/oder Aufdampfen, insbesondere per PVD (PVD für Physical Vapor Deposition), und/oder galvanisch und/oder durch Schweißen, vorzugsweise Ultraschallschweißen, aufgebracht.
Ausführungsgemäß wird die (jeweilige) metallische Schicht (zumindest teilweise) im thermischen Spritzverfahren aufgebracht. Beim thermischen Spritzen wird der aufzubringende Werkstoff zunächst aufgeschmolzen, bevor er (über einen
Gasstrom; partikelweise) auf die zu beschichtende Oberfläche der
Polymerstruktur aufgebracht wird. Die metallische Schicht kann hierbei über einen vergleichsweise weiten Bereich möglicher Schichtdicken erzeugt werden und haftet gut auf der Polymerstruktur, wobei nur ein vergleichsweise geringer elektrischer Übergangwiderstand an einer Materialgrenze auftritt. Eine im thermischen Spritzverfahren erzeugte Metallschicht eignet sich besonders gut als elektrische Verbindungsschicht zwischen Polymerstruktur und Kontaktelektrode, insbesondere für Heizgeräte, bei denen eine gute Stromtragfähigkeit einer Kontaktschicht benötigt wird .
In Ausführungsformen kann eine metallische Folie auf die Polymerstruktur auflaminiert werden. Dabei wird das Material der Polymerstruktur vorzugsweise an der Oberfläche thermisch aufgeschmolzen, insbesondere um eine mechanische bzw. elektrische Verbindung zwischen der Metallfolie und dem Material der Polymerstruktur zu erreichen bzw. zu verbessern. Die Metallfolie kann unter Aufbringung von Druck durch Verpressen der Metallfolie auf die Polymerstruktur- Oberfläche aufgebracht werden. Die Metallfolie kann beispielsweise Kupfer oder eine Kupferlegierung umfassen. Ein Schichtdicke kann mindestens 30 μιτι und/oder höchsten 110 μιτι betragen. Eine Oberfläche der Metallfolie kann zumindest auf einer Kontaktseite zur Polymerstruktur hinsichtlich ihrer
Oberflächenbeschaffenheit vorbehandelt (aufgeraut) sein. Die
Oberflächenbehandlung der Metallfolie erzeugt vorzugsweise eine raue
Oberflächenstruktur, die insbesondere eine Verzahnung des Materials der
Polymerstruktur mit einer Oberfläche der Metallfolie bewirkt. Die Verzahnung bzw. die vergleichsweise große Kontaktoberfläche können einen geringen elektrischen Kontaktwiderstand ermöglichen sowie eine gute mechanische
Haftung zwischen der Polymerstruktur und der Metallfolie. Ggf. kann eine/die Oberfläche des Materials der Polymerstruktur mittels eines entsprechenden Verfahrens derart vorbehandelt werden, dass die an der Oberfläche in die
Polymermatrix eingebetteten leitfähigen Strukturen (insbesondere leitfähigen Füllstoffpartikel) zumindest teilweise freigelegt werden und somit ein verbesserter elektrischer Kontakt hergestellt werden kann.
In weiteren Ausführungsformen kann eine Metallfolie (zumindest teilweise) mittels Haftvermittler auf die Polymerstruktur (zur elektrischen Kontaktierung) auflaminiert werden. Über die aufgebrachte Metallfolie kann die Polymerstruktur mit einer (Kontakt-) Elektrode verbunden werden und damit zuverlässig elektrisch kontaktiert werden. Der Haftvermittler (Klebstoff) kann für eine gute
mechanische bzw. elektrische Verbindung zwischen Metallfolie und
Polymerstruktur sorgen. Um einen elektrischen Kontakt sicherzustellen oder zu verbessern kann ggf. ein elektrisch leitfähiger Klebstoff als Haftvermittler verwendet werden. Auch ein elektrisch nichtleitfähiger Klebstoff ist grundsätzlich denkbar. Dann muss ggf. auf andere Art und Weise ein elektrischer Kontakt sichergestellt werden (beispielsweise durch besonders dünne Ausbildung der Klebstoffschicht und/oder durch teilweise freibleibende Bereiche, in denen keine Klebstoffschicht vorgesehen ist). Die Schichtdicke kann mindestens 30 μιτι und/oder höchstens 110 μιτι betragen, wobei eine Oberfläche auf einer
Kontaktseite zur Polymerstruktur hin hinsichtlich ihrer Oberflächenbeschaffenheit vorbehandelt sein kann. Die Oberflächenbehandlung der Metallfolie kann insbesondere eine raue Oberflächenstruktur erzeugen, die vorzugsweise eine Verzahnung des Haftvermittlers mit der Folienoberfläche bewirkt. Verzahnung und große Kontaktoberfläche bewirken einen geringen elektrischen Kontaktwiderstand und eine vergleichsweise gute mechanische Haftung zwischen der
Polymerstruktur und der Metallfolie. Auch hier kann die Oberfläche der
Polymerstruktur vorzugsweise mittels eines entsprechenden Verfahrens
vorbehandelt werden, um die an einer Oberfläche in eine Polymermatrix eingebetteten leitfähigen Strukturen (insbesondere Füllstoffpartikel) zumindest teilweise freizulegen und somit einen guten elektrischen Kontakt herzustellen.
In weiteren Ausführungsformen kann die metallische Schicht (zumindest teilweise) im PVD-Verfahren auf die Polymerstruktur aufgebracht werden. Das PVD-Verfahren (PVD für Physical Vapor Deposition) bezeichnet die physikalische Abscheidung dünner Metallschichten über die Dampfphase. Die aufgebrachte Schicht kann sehr dünn (ggf. dünner als 15 μιτι) ausgebildet werden und haftet vergleichsweise gut auf dem Material der Polymerstruktur, wobei nur ein geringer elektrischer Übergangswiderstand an der Materialgrenzfläche auftritt. Daher eignet sich eine im PVD-Verfahren erzeugte Metallschicht besonders gut als elektrische Zwischenschicht zwischen der Polymerstruktur und mindestens einer Kontaktelektrode, insbesondere für Heizelemente, bei denen eine gute
Stromtragfähigkeit der Kontaktschicht benötigt wird. Eine Oberflächenbehandlung der Polymerstruktur kann unter Vakuumbedingen, ggf. im Plasmaverfahren, erfolgen und einen geringen Übergangswiderstand an der Grenzfläche beider Materialien sicherstellen.
In Ausführungsformen kann die metallische Schicht (zumindest teilweise) mittels eines galvanischen Verfahrens auf die Polymerstruktur aufgebracht werden. Dabei handelt es sich um einen elektrolytischen Prozess. Durch elektrochemische
Abscheidung können metallische Überzüge auf der Polymerstruktur hergestellt werden. Die aufgebrachte Schicht kann ggf. vergleichsweise dünn ausgebildet werden (beispielsweise bis 50 μιτι) und haftet gut auf der Polymerstruktur, wobei nur ein geringer elektrischer Übergangswiderstand an einer Materialgrenzfläche auftritt. Die durch Galvanisieren erzeugt Metallschicht eignet sich besonders gut als elektrische Zwischenschicht zwischen Polymerstruktur und Kontaktelektrode, insbesondere für Heizgeräte, bei denen eine gute Stromtragfähigkeit der Kontaktschicht benötigt wird, ohne das Material der Polymerstruktur beim
Herstellungsprozess thermisch zu schädigen. Insbesondere kann durch ein derartiges Verfahren ein guter elektrischer Kontakt zwischen der metallischen Schicht und der Polymerstruktur, insbesondere einer leitfähigen Komponente (leitfähige Partikel) der Polymerstruktur, erreicht werden.
Weiterhin kann die metallische Schicht (zumindest teilweise) mittels
Ultraschallschweißung auf die Polymerstruktur aufgebracht werden. Als
Ultraschallschweißung wird eine Schweißverfahren verstanden, das die beiden Fügepartner mittels hochfrequenter mechanischer Schwingungen miteinander verbindet. Der Ultraschallprozess kann intermittierend, semi-kontinuierlich oder kontinuierlich ablaufen. So kann z. B. eine entsprechende Sonotrode als Stempel oder als rotierende Walze ausgeformt sein. Die Oberfläche der metallischen Schicht (z. B. metallischen Folie) vor dem Aufbringen auf die Polymerstruktur kann strukturiert, aktiviert und/oder aufgeraut sein, um eine Haftung zu verbessern. Durch ein Verbinden mittels Ultraschall kann eine zuverlässige Verbindung zwischen Polymerstruktur und metallischer Schicht erreicht werden, insbesondere ohne das Material der Polymerstruktur beim Herstellungsprozess thermisch zu schädigen. Insbesondere kann durch ein derartiges Verfahren ein guter elektrischer Kontakt zwischen der metallischen Schicht und der
Polymerstruktur, insbesondere einer leitfähigen Komponente (leitfähige Partikel) der Polymerstruktur erreicht werden. Ultraschallschweißen ist prozesssicher umsetzbar und für die Großserienfertigung geeignet. Es können bevorzugt auch polymere Materialien verwendet werden, die schwer oder gar nicht aufschmelzen und/oder negativ auf erhöhte Wärmeeinwirkung reagieren.
Eine Sonotrode oder mehrere Sonotroden kann/können als Stempel und/oder als rotierende Walzen ausgebildet sein. In einer konkreten Ausführungsform sind zwei Sonotroden vorgesehen, um die Polymerstruktur beidseitig mit einer entsprechenden Anschlusselektrode zu verbinden. Die beiden Sonotroden können dann gegenüberliegend angeordnet sein, so dass während des Verfahrens, die Polymerstruktur und die damit zu verbindenden Elektroden zwischen den beiden Sonotroden liegen. Insbesondere in diesem Fall können die Sonotroden als rotierende Walzen ausgestaltet sein. Gemäß einem weiteren Aspekt der Erfindung wird die obige Aufgabe insbesondere durch ein elektrisches Fluidheizgerät, insbesondere Luftheizgerät (alternativ Flüssigkeits-, insbesondere Wasserheizgerät), für ein Fahrzeug, insbesondere Kraftfahrzeug, vorzugsweise hergestellt nach dem oben beschriebenen Verfahren, gelöst, vorzugsweise umfassend mindestens einen Fluidleitkanal, mindestens eine leitfähige Polymerstruktur, die eine Polymerkomponente und eine leitfähige Komponente, insbesondere Kohlenstoffkomponente, enthält, sowie mindestens eine, insbesondere stoffschlüssig, mit der Polymerkomponente verbundene metallische Schicht.
In Ausführungsformen kann die vorliegende Struktur zumindest abschnittsweise, ggf. vollständig, formstabil (sich selbst tragend) ausgebildet sein. Optional ist die Polymerstruktur als (fester) Block ausgebildet. Eine Dicke der Polymerstruktur kann mindestens 1 mm oder mindestens 3 mm betragen. Alternativ oder zusätzlich kann die Polymerstruktur zumindest abschnittsweise, ggf. vollständig, flexibel, vorzugsweise als Folie oder Streifen (oder Anordnung mehrerer Streifen) ausgebildet sein bzw. werden. Wenn die Polymerstruktur sowohl
(abschnittsweise) formstabil als auch (abschnittsweise) flexibel ausgebildet sind, kann die Polymerstruktur (gewichtsmäßig) entweder überwiegend formstabil oder überwiegend flexibel ausgebildet sein. Unter einer flexiblen Ausbildung ist insbesondere eine Ausbildung zu verstehen, bei der die Polymerstruktur ihre Form nicht behält, wenn sie auf eine unebene Fläche gelegt wird bzw. nur an einem Rand aufgelegt wird. Insbesondere in diesem Fall kann die Polymerstruktur eine Dicke von weniger als 0,1 mm, vorzugsweise weniger als 0,01 mm aufweisen.
Die leitfähige Komponente, insbesondere Kohlenstoffkomponente, kann in
Partikelform und/oder als (Kohlenstoff-)Gerüst (Skelett) vorliegen. Die
Kohlenstoffkomponente kann in Form von Ruß und/oder Graphit und/oder Graphen und/oder Kohlenstofffasern und/oder Kohlenstoff-Nanoröhren vorliegen.
Die Polymerstruktur kann eine elektrische isolierende Polymerkomponente aufweisen.
Die metallische Schicht ist vorzugsweise zumindest teilweise durch Aufspritzen, insbesondere thermisches Aufspritzen, und/oder Auflaminieren, insbesondere thermisches Auflaminieren und/oder Auflaminieren per vorzugsweise leitfähigen Haftvermittler, und/oder Aufdampfen, insbesondere per PVD, und/oder galvanisch und/oder durch Schweißen, insbesondere Ultraschallschweißen, aufgebracht.
Gemäß einem weiteren Aspekt der Erfindung wird die obige Aufgabe insbesondere gelöst durch ein Verfahren zum Betreiben eines Fluidheizgerätes der obigen Art und/oder hergestellt nach dem Verfahren der obigen Art, wobei Fluid,
insbesondere Luft durch das Fluidheizgerät strömt und dabei aufgeheizt wird.
Gemäß einem weiteren Aspekt der Erfindung wird die obige Aufgabe insbesondere gelöst durch die Verwendung eines Fluidheizgerätes der obigen Art oder hergestellt nach einem Verfahren der obigen Art zum Aufheizen eines Fluids, vorzugsweise von Luft, insbesondere in einem Kraftfahrzeug, vorzugsweise für einen Kraftfahrzeuginnenraum.
Die Polymerstruktur kann (insbesondere, wenn sie nicht-selbsttragend
ausgebildet ist) auf ein (ggf. elektrisch isolierendes und/oder gegenüber der Polymerstruktur elektrisch isoliertes) Substrat aufgebracht, beispielsweise aufgetragen (aufgedruckt) werden. Zum Auftragen kann beispielsweise ein Siebdruckverfahren oder auch Rakeln verwendet werden. Ein derartiges Substrat kann gleichzeitig als Wärmeübertrager-Fläche zur Aufheizung des
vorbeiströmenden Fluids (der vorbeiströmenden Luft) genutzt werden. Optional kann diese Oberfläche noch durch Unebenheiten, insbesondere Vorsprünge, wie Rippen und/oder Finnen auf dem Substrat vergrößert werden.
Das Substrat bzw. die Substrate kann/können zumindest abschnittsweise vorzugsweise vollständig, aus Kunststoff, insbesondere einem Polymer wie beispielsweise Polyetherketon und/oder Polyamid, gefertigt sein. Besonders bevorzugt ist eine Fertigung aus Polyethylen (PE) und/oder Polypropylen (PP) und/oder Polyetheretherketon (PEEK) und/oder (kurz-) faserverstärktem Polyamid (z. B. PA-GF).
Das Substrat kann aus einem elektrisch isolierenden Material gefertigt sein.
Unter einem elektrisch isolierenden Material ist insbesondere ein Material zu verstehen, das bei Raumtemperatur (25 °C) eine elektrische Leitfähigkeit von weniger als 10"1 S 1 irr1 (ggf. weniger als 10"8 S 1 m"1) aufweist. Entsprechend ist unter einem elektrischen Leiter bzw. einem Material (oder Beschichtung) mit elektrischer Leitfähigkeit ein Material zu verstehen, das eine elektrische
Leitfähigkeit von vorzugsweise mindestens 10 S 1 irr1, weiter vorzugsweise mindestens 103 S 1 irr1 (bei Raumtemperatur von insbesondere 25 °C) beträgt.
Das Substrat kann als Platte, insbesondere Kunststoffplatte, ausgebildet sein und/oder eine Dicke von mindestens 0,1 mm, vorzugsweise mindestens 0,5 mm, weiter vorzugsweise mindestens 1,0 mm und/oder höchstens 5,0 mm, weiter vorzugsweise höchstens 3,0 mm aufweisen. Bei der jeweiligen Dicke handelt es sich insbesondere um eine durchschnittliche Dicke oder eine Dicke des größten Bereichs mit konstanter Dicke.
Die Polymerstruktur (z. B. Polymerbeschichtung) und/oder eine entsprechende Paste zu deren Herstellung kann/können (als insbesondere kristallines
Bindemittel) mindestens ein Polymer umfassen, vorzugsweise basierend auf mindestens einem Olefin; und/oder mindestens einem Copolymer von mindestens einem Olefin und mindestens einem Monomer, das damit copolymerisiert werden kann, z. B. Ethylen/Acrylsäure und/oder Ethylen/Ethylacrylat und/oder
Ethylen/Vinylacetat; und/oder mindestens einem Polyalkenamer (Polyacetylen bzw. Polyalkenylen), wie z. B. Polyoctenamer; und/oder mindestens einem, insbesondere schmelzverformbaren, Fluorpolymer, wie z. B. Polyvinylidenfluorid und/oder Copolymere davon.
Die Polymerstruktur (z. B. Polymerbeschichtung) kann in einem Ofen (bei erhöhter Temperatur) ausgehärtet sein bzw. werden.
Die (jeweilige) Polymerstruktur (z. B. Polymerbeschichtung) ist vorzugsweise über mindestens 20 %, weiter vorzugsweise mindestens 50 %, noch weiter
vorzugsweise mindestens 80 % einer der Polymerstruktur (z. B.
Polymerbeschichtung) zugewandten Oberfläche des Substrats mit dem
(jeweiligen) Substrat in Kontakt. Dadurch kann effektiv Wärme über das Substrat (das dann als weiterer Wärmeübertrager dient) übertragen werden.
Im Allgemeinen kann/können die Polymerstruktur (z. B. Polymerbeschichtung) eine durchgehende Fläche (ohne Unterbrechungen) aufweisen oder strukturiert sein, beispielsweise Lücken (Durchbrüche) aufweisen oder Ausnehmungen. Vorzugsweise umfasst die Polymerstruktur (z. B. Polymerbeschichtung)
mindestens 5 Gew.-%, vorzugsweise mindestens 10 Gew.-%, noch weiter vorzugsweise mindestens 15 Gew.-%, noch weiter vorzugsweise mindestens 20 Gew.-% und/oder weniger als 50 % Kohlenstoff (ggf. ohne Berücksichtigung eines Kohlenstoffanteils des Polymers als solchen) bzw. die
Kohlenstoffkomponente, wie z. B. die Kohlenstoffpartikel.
Die jeweilige Polymerstruktur (z. B. Polymerbeschichtung) kann (zumindest im Durchschnitt) dünner sein als ein entsprechendes Substrat, beispielsweise um den Faktor 1,1; weiter vorzugsweise um den Faktor 1,5.
Grundsätzlich ist der Begriff„leitfähig" hinsichtlich der leitfähigen Komponenten des Luftheizgerätes als Abkürzung für„elektrisch leitfähig" zu verstehen.
Die (jeweilige) Polymerstruktur (z. B. Polymerbeschichtung) ist vorzugsweise eine leitfähige Schicht mit PTC-Verhalten.
Das Fluidheizgerät ist vorzugsweise für einen Betrieb im Niedervoltbereich (z. B. < 100 Volt oder < 60 Volt) ausgelegt. Alternativ kann das Fluidheizgerät für den Hochvoltbereich (z. B. > 100 Volt, vorzugsweise > 400 Volt, ggf. größer 800 V) ausgelegt sein.
Das Luftheizgerät kann für einen Betrieb mit Gleich- und/oder Wechselspannung und/oder PWM ausgelegt sein.
Eine (Schicht-) Dicke der jeweiligen Polymerstruktur (z. B. Polymerbeschichtung) kann < 1 mm, vorzugsweise < 0,5 mm, noch weiter vorzugsweise < 0,2 mm betragen.
Die Polymerstruktur (z. B. Polymerbeschichtung) und/oder das Substrat kann/können zumindest im Wesentlichen plan ausgebildet sein. Falls Erhebungen (Vertiefungen) vorgesehen sind, können diese weniger als 10 % einer
(durchschnittlichen) Dicke der jeweiligen Beschichtung bzw. des jeweiligen Substrats betragen. Der Kohlenstoffanteil in der Polymerstruktur (z. B. Polymerbeschichtung) kann so ausgebildet sein, dass er einen Stromfluss erlaubt (z. B. in Partikelform, wobei sich die Partikel entsprechend berühren oder nahe beieinanderliegen).
Es können mindestens 3, vorzugsweise mindestens 5 Heizelemente vorgesehen sein, die jeweils eine eigene Polymerstruktur und ggf. eine oder zwei oder mehr metallische Schicht(en) umfassen.
Gemäß einem weiteren (optional unabhängigen) Aspekt der Erfindung wird die obige Aufgabe durch ein Heizelement mit den oben und/oder nachfolgend erläuterten Merkmalen gelöst. Das Heizelement kann die erwähnten Fluidkanäle vollständig oder teilweise ausbilden oder (per se) ohne Fluidkanäle ausgebildet sein. Im letzteren Fall können dann entsprechende Fluidkanäle ggf. beim
Zusammenbau mehrerer Heizelemente bei der Herstellung des Fluidheizgerätes entstehen.
Weitere Ausführungsformen ergeben sich aus den Unteransprüchen.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen beschrieben, die anhand der beigefügten Figuren näher erläutert werden. Hierbei zeigen :
Fig. 1 einen schematischen Ausschnitt aus einem erfindungsgemäßen
Fluidheizgerät gemäß der Erfindung; und
Fig. 2 eine schematische Darstellung eines Verfahrens zur Herstellung eines erfindungsgemäßen Fluidheizgerätes.
In der nachfolgenden Beschreibung werden für gleiche und gleichwirkende Teile dieselben Bezugsziffern verwendet.
Fig. 1 zeigt einen Ausschnitt einer Ausführungsform eines erfindungsgemäßen Fluidheizgerätes. Das Fluidheizgerät umfasst eine elektrisch leitfähige
Polymerstruktur 10 aus einem PPTC-Material, eine erste metallische Schicht 11 auf einer ersten Seite der Polymerstruktur 10 und eine zweite metallische Schicht 12 auf einer zweiten (gegenüberliegenden) Seite der Polymerstruktur 10. Die metallischen Schichten sind vorzugsweise vollflächig, stoffschlüssig mit der Polymerstruktur verbunden. Weiterhin sind die metallischen Schichten 11, 12 jeweils mit einer Anschlusselektrode (Kontaktelektrode) 13 bzw. 14 verbunden, so dass ein elektrischer Strom über die metallischen Schichten 11, 12 durch die Polymerstruktur 10 fließen kann.
Fig. 2 zeigt eine Polymerstruktur 10, die beidseitig mit einer ersten metallischen Schicht 11 und einer zweiten metallischen Schicht 12 verbunden wird.
Dies geschieht hier in einem kontinuierlichen Verfahren. Dazu wird die Anordnung der Polymerstruktur 10 mit den beiden metallischen Schichten (Metallfolien) 11, 12 zwischen zwei Sonotroden 15, 16 gebracht. Durch eine entsprechende ultraschallinduzierte Bewegung gemäß den Pfeilen 17 wird dann eine
Ultraschallverschweißung durchgeführt. Die Pfeile 18 zeigen eine Drehrichtung der walzenförmigen Sonotroden 15, 16 an. Das Material für die metallischen Schichten 11, 12 kann beispielsweise von einer Aufbewahrungsrolle abgerollt werden und/oder durch Umlenkrollen entsprechend in Richtung Polymerstruktur 10 geführt werden (nicht in Fig. 1 gezeigt).
An dieser Stelle sei darauf hingewiesen, dass alle oben beschriebenen Teile für sich alleine gesehen und in jeder Kombination, insbesondere die in den
Zeichnungen dargestellten Details, als erfindungswesentlich beansprucht werden. Abänderungen hiervon sind dem Fachmann geläufig.
Bezugszeichenliste
10 Polymerstruktur
11 metallische Schicht
12 metallische Schicht
13 Kontaktelektrode
14 Kontaktelektrode
15 Sonotrode
16 Sonotrode
17 Pfeil
18 Pfeil

Claims

Ansprüche
1. Verfahren zur Herstellung eines elektrischen Fluidheizgerätes, insbesondere eines Luftheizgerätes für ein Kraftfahrzeug, umfassend mindestens einen Fluidleitkanal zum Durchleiten des Fluides, wobei mindestens eine leitfähige Polymerstruktur (10), die eine Polymerkomponente und eine leitfähige Komponente, insbesondere Kohlenstoffkomponente, enthält, mit mindestens einer metallischen Schicht (11, 12), insbesondere stoffschlüssig, beschichtet wird.
2. Verfahren nach Anspruch 1,
d a d u rch g e ke n n ze i c h n et, dass
die metallische Schicht (11, 12) zumindest im Wesentlichen vollflächig mit der Polymerstruktur (10) stoffschlüssig verbunden wird.
3. Verfahren nach Anspruch 1 oder 2,
d a d u rch g e ke n n ze i c h n et, dass
die metallische Schicht (11, 12) zumindest teilweise, insbesondere
überwiegend oder vollständig, erst auf der Polymerstruktur (10) aufgebaut wird und/oder
zumindest teilweise, insbesondere überwiegend oder vollständig,
vorzugsweise als Folie, bereits vor dem Verbinden mit der Polymerstruktur (10) fertiggestellt wird oder ist, wobei die metallische Schicht (11, 12) vorzugsweise vor dem Verbinden mit der Polymerstruktur (10) vorbehandelt, insbesondere aufgeraut, ist oder wird.
4. Verfahren nach einem der vorhergehenden Ansprüche,
d a d u rch g e ke n n ze i c h n et, dass
die metallische Schicht (11, 12) eine Schichtdicke von mindestens 10 nm, vorzugsweise mindestens 100 nm, weiter vorzugsweise mindestens 1 μιτι, weiter vorzugsweise mindestens 10 μιτι, ggf. mindestens 25 μιτι und/oder höchstens 2 mm, vorzugsweise höchstens 500 μιτι, weiter vorzugsweise höchstens 200 μιτι, weiter vorzugsweise höchstens 150 μιτι, ggf. höchstens 50 μιτι oder höchstens 20 μιτι oder höchstens 15 μιτι, aufweist.
5. Verfahren nach einem der vorhergehenden Ansprüche,
d a d u rch g e ke n n ze i c h n et, dass
die metallische Schicht (11,12) zumindest teilweise Kupfer oder eine
Kupferlegierung umfasst.
6. Verfahren nach einem der vorhergehenden Ansprüche,
d a d u rc h g e ke n n ze i c h n et, dass
eine Oberfläche der Polymerstruktur (10) derart vorbehandelt, insbesondere strukturiert wird, dass die leitfähige Komponente der Polymerstruktur (10), insbesondere leitfähige Partikel der Polymerstruktur (10), zumindest teilweise freigelegt wird/werden.
7. Verfahren nach einem der vorhergehenden Ansprüche,
d a d u rch g e ke n n ze i c h n et, dass
die metallische Schicht (11, 12) mit einer Kontaktelektrode (13, 14), insbesondere durch Löten, verbunden wird und/oder als Zwischenschicht zwischen Polymerstruktur (10) und Kontaktelektrode (13, 14) ausgebildet wird.
8. Verfahren nach einem der vorhergehenden Ansprüche,
d a d u rch g e ke n n ze i c h n et, dass
die metallische Schicht (11, 12) zumindest teilweise durch Aufspritzen, insbesondere thermisches Aufspritzen, und/oder Auflaminieren,
insbesondere thermisches Auflaminieren und/oder Auflaminieren per vorzugsweise leitfähigen Haftvermittler, und/oder Aufdampfen, insbesondere per PVD, und/oder galvanisch und/oder durch Schweißen, vorzugsweise Ultraschallschweißen, aufgebracht wird.
9. Elektrisches Fluidheizgerät, insbesondere Luftheizgerät für ein
Kraftfahrzeug, vorzugsweise hergestellt mit dem Verfahren nach einem der vorhergehenden Ansprüche, umfassend mindestens einen Fluidleitkanal, mindestens eine leitfähige Polymerstruktur (10), die eine
Polymerkomponente und eine leitfähige Komponente, insbesondere
Kohlenstoffkomponente, enthält, sowie mindestens eine, insbesondere stoffschlüssig, mit der Polymerkomponente verbundene metallische Schicht (11, 12).
10. Fluidheizgerät nach Anspruch 9,
d a d u rch g e ke n n ze i c h n et, dass,
die Polymerstruktur (10) zumindest abschnittsweise formstabil,
vorzugsweise als Block, und/oder zumindest abschnittsweise flexibel, vorzugsweise als Folie, ausgebildet ist.
11. Fluidheizgerät nach einem der vorhergehenden Ansprüche 9 oder 10,
d a d u rc h g e ke n n ze i c h n et, dass
die leitfähige Komponente in Partikelform und/oder als Gerüst vorliegt und/oder
in Form von Ruß und/oder Graphit und/oder Graphen und/oder
Kohlen stoff fasern und/oder Kohlenstoff-Nanoröhren vorliegt und/oder die Polymerstruktur (10) eine elektrische isolierende Polymerkomponente aufweist.
12. Fluidheizgerät nach einem der vorhergehenden Ansprüche 9 bis 11,
d a d u rch g e ke n n ze i c h n et, dass
die metallische Schicht (11, 12) zumindest teilweise durch Aufspritzen, insbesondere thermisches Aufspritzen, und/oder Auflaminieren,
insbesondere thermisches Auflaminieren und/oder Auflaminieren per vorzugsweise leitfähigen Haftvermittler, und/oder Aufdampfen, insbesondere per PVD, und/oder galvanisch und/oder durch Ultraschallschweißen aufgebracht ist.
13. Verfahren zum Betreiben eines Fluidheizgerätes nach einem der Ansprüche 9 bis 12 oder hergestellt nach einem der Ansprüche 1 bis 8, wobei Fluid, insbesondere Luft, durch das Fluidheizgerät (13) strömt und dabei aufgeheizt wird.
14. Verwendung eines Fluidheizgerätes nach einem der Ansprüche 9 bis 12 oder hergestellt nach einem der Ansprüche 1 bis 8 zum Aufheizen eines Fluids, vorzugsweise von Luft, insbesondere in einem Kraftfahrzeug, vorzugsweise für einen Kraftfahrzeuginnenraum.
EP18728826.1A 2017-05-24 2018-05-24 Fluidheizgerät und verfahren zur herstellung eines solchen Withdrawn EP3631320A1 (de)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE102017111378 2017-05-24
DE102017111373 2017-05-24
DE102017115148 2017-07-06
DE102017121040.7A DE102017121040A1 (de) 2017-05-24 2017-09-12 Luftheizgerät für ein Fahrzeug
DE102017121041.5A DE102017121041A1 (de) 2017-05-24 2017-09-12 Heizgerät und Verfahren zur Herstellung desselben
DE102017121045.8A DE102017121045A1 (de) 2017-05-24 2017-09-12 Heizgerät sowie Verfahren zur Herstellung eines solchen
DE102017121060.1A DE102017121060A1 (de) 2017-05-24 2017-09-12 Elektrisches Heizgerät
PCT/EP2018/063726 WO2018215623A1 (de) 2017-05-24 2018-05-24 Fluidheizgerät und verfahren zur herstellung eines solchen

Publications (1)

Publication Number Publication Date
EP3631320A1 true EP3631320A1 (de) 2020-04-08

Family

ID=64109087

Family Applications (10)

Application Number Title Priority Date Filing Date
EP18727167.1A Withdrawn EP3631312A1 (de) 2017-05-24 2018-05-08 Luftheizgerät
EP18727168.9A Withdrawn EP3631313A1 (de) 2017-05-24 2018-05-08 Luftheizgerät für ein fahrzeug
EP18728818.8A Withdrawn EP3631319A1 (de) 2017-05-24 2018-05-23 Flüssigkeitsheizgerät, insbesondere wasserheizgerät
EP18728814.7A Withdrawn EP3631317A1 (de) 2017-05-24 2018-05-23 Elektrisches heizgerät, verfahren zur herstellung und zum betreiben sowie verwendung eines solchen heizgeräts
EP18728815.4A Withdrawn EP3631318A1 (de) 2017-05-24 2018-05-23 Heizgerät und verfahren zur herstellung desselben
EP18728811.3A Withdrawn EP3631314A1 (de) 2017-05-24 2018-05-23 Heizleiter sowie heizgerät
EP18728813.9A Withdrawn EP3631316A1 (de) 2017-05-24 2018-05-23 Elektrisches flüssigkeitsheizgerät und verwendung eines solchen sowie eines heizleiters
EP18728812.1A Withdrawn EP3631315A1 (de) 2017-05-24 2018-05-23 Heizgerät sowie verfahren zur herstellung, verfahren zum betreiben und verwendung eines solchen
EP18728816.2A Withdrawn EP3630513A1 (de) 2017-05-24 2018-05-23 Elektrisches heizgerät
EP18728826.1A Withdrawn EP3631320A1 (de) 2017-05-24 2018-05-24 Fluidheizgerät und verfahren zur herstellung eines solchen

Family Applications Before (9)

Application Number Title Priority Date Filing Date
EP18727167.1A Withdrawn EP3631312A1 (de) 2017-05-24 2018-05-08 Luftheizgerät
EP18727168.9A Withdrawn EP3631313A1 (de) 2017-05-24 2018-05-08 Luftheizgerät für ein fahrzeug
EP18728818.8A Withdrawn EP3631319A1 (de) 2017-05-24 2018-05-23 Flüssigkeitsheizgerät, insbesondere wasserheizgerät
EP18728814.7A Withdrawn EP3631317A1 (de) 2017-05-24 2018-05-23 Elektrisches heizgerät, verfahren zur herstellung und zum betreiben sowie verwendung eines solchen heizgeräts
EP18728815.4A Withdrawn EP3631318A1 (de) 2017-05-24 2018-05-23 Heizgerät und verfahren zur herstellung desselben
EP18728811.3A Withdrawn EP3631314A1 (de) 2017-05-24 2018-05-23 Heizleiter sowie heizgerät
EP18728813.9A Withdrawn EP3631316A1 (de) 2017-05-24 2018-05-23 Elektrisches flüssigkeitsheizgerät und verwendung eines solchen sowie eines heizleiters
EP18728812.1A Withdrawn EP3631315A1 (de) 2017-05-24 2018-05-23 Heizgerät sowie verfahren zur herstellung, verfahren zum betreiben und verwendung eines solchen
EP18728816.2A Withdrawn EP3630513A1 (de) 2017-05-24 2018-05-23 Elektrisches heizgerät

Country Status (7)

Country Link
US (9) US20200224926A1 (de)
EP (10) EP3631312A1 (de)
JP (4) JP2020521291A (de)
KR (3) KR20190139282A (de)
CN (9) CN110678705A (de)
DE (10) DE102017121038A1 (de)
WO (12) WO2018215198A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017121038A1 (de) * 2017-05-24 2018-11-29 Webasto SE Luftheizgerät
US10969141B2 (en) * 2018-03-13 2021-04-06 Ngb Innovations Llc Regulating temperature and reducing buildup in a water heating system
DE102019202543A1 (de) * 2019-02-26 2020-08-27 Eberspächer Catem Gmbh & Co. Kg PTC-Heizelement und elektrische Heizvorrichtung mit einem solchen PTC-Heizelement
DE102019113518A1 (de) * 2019-05-21 2020-11-26 Dbk David + Baader Gmbh Fluidheizer und Verfahren zu dessen Herstellung
CN110435385B (zh) * 2019-07-10 2024-05-10 芜湖汉特威电热科技有限公司 一种用于新能源汽车空调的混合式加热器暖风芯体
CN115380077B (zh) * 2020-01-14 2024-01-26 赢创特种化学(上海)有限公司 包含石墨烯的聚合物组合物
DE102020113124A1 (de) * 2020-05-14 2021-11-18 Eberspächer catem Hermsdorf GmbH & Co. KG PTC-Heizzelle und Verfahren zu deren Herstellung
DE102020123131A1 (de) 2020-09-04 2022-03-10 Dbk David + Baader Gmbh Fluidheizer
DE102021103480A1 (de) * 2021-02-15 2022-08-18 Tdk Electronics Ag PTC Heizelement, elektrische Heizvorrichtung und Verwendung eines PTC Heizelements
KR102412198B1 (ko) * 2021-03-23 2022-06-23 엘에스자기장보일러 주식회사 보일러용 발열장치

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3163841A (en) * 1962-01-02 1964-12-29 Corning Glass Works Electric resistance heater
US3501619A (en) * 1965-07-15 1970-03-17 Texas Instruments Inc Self-regulating thermal apparatus
US3459924A (en) * 1968-09-25 1969-08-05 Dow Chemical Co Electrical open cell heating element
US3666924A (en) * 1970-11-16 1972-05-30 Westinghouse Electric Corp Electric resistance convection heater
US3965047A (en) * 1971-07-20 1976-06-22 Ernest K. Cleland Electrical resistant fluid-permeable heat generating member and method of producing the same
DE2305105B2 (de) * 1973-02-02 1978-05-03 Sigri Elektrographit Gmbh, 8901 Meitingen Poröses Heizelement
JPS5221630Y2 (de) * 1973-04-18 1977-05-18
DE2519623A1 (de) * 1975-05-02 1976-11-11 Peter Christian Dipl Kalischer Elektrischer durchlauferhitzer
JPS5553100Y2 (de) * 1975-11-07 1980-12-09
CA1100561A (en) * 1975-12-08 1981-05-05 Stephen H. Diaz Apertured deformable laminar heating elements
JPS60145594U (ja) * 1984-03-02 1985-09-27 東京コスモス電機株式会社 面状発熱体用抵抗体
US4882466A (en) * 1988-05-03 1989-11-21 Raychem Corporation Electrical devices comprising conductive polymers
US5057673A (en) * 1988-05-19 1991-10-15 Fluorocarbon Company Self-current-limiting devices and method of making same
CN2036340U (zh) * 1988-06-25 1989-04-19 辽宁省日用电器研究所 正温度系数热敏电阻发热体换热器
US5093036A (en) * 1988-09-20 1992-03-03 Raychem Corporation Conductive polymer composition
CN2067056U (zh) * 1990-03-31 1990-12-05 中国科学院上海硅酸盐所 正温度系数热敏陶瓷(ptc)热风机加热器
US5245161A (en) * 1990-08-31 1993-09-14 Tokyo Kogyo Boyeki Shokai, Ltd. Electric heater
US5344591A (en) * 1990-11-08 1994-09-06 Smuckler Jack H Self-regulating laminar heating device and method of forming same
DE4213510C1 (en) * 1992-04-24 1993-08-19 Audi Ag, 8070 Ingolstadt, De Electric heating arrangement in vehicle heating and ventilation system - is formed by grill located in air outlet and moulded in conductive polymer
CN2230894Y (zh) * 1995-06-08 1996-07-10 尹继新 流动液体电加热器
JPH09184771A (ja) * 1995-12-28 1997-07-15 Mikuni Corp 給湯器の過熱検知用センサ
JPH09213455A (ja) * 1996-02-05 1997-08-15 Kyocera Corp ウエハ保持装置の給電構造
US6236302B1 (en) * 1998-03-05 2001-05-22 Bourns, Inc. Multilayer conductive polymer device and method of manufacturing same
US6194692B1 (en) * 1998-10-02 2001-02-27 Engelhard Corporation Electric heating sheet and method of making the same
US6299801B1 (en) * 1998-11-02 2001-10-09 Tdk Corporation Organic positive temperature coefficient thermistor
CN2362037Y (zh) * 1998-12-09 2000-02-02 杨广斌 液体管道加热器
JP2000252044A (ja) * 1999-03-02 2000-09-14 Hitachi Cable Ltd 面状発熱体及びその製造方法
TW487742B (en) * 1999-05-10 2002-05-21 Matsushita Electric Ind Co Ltd Electrode for PTC thermistor, manufacture thereof, and PTC thermistor
JP2001035640A (ja) * 1999-07-16 2001-02-09 Tokin Corp Ptc素子及びその製造方法
US6288372B1 (en) * 1999-11-03 2001-09-11 Tyco Electronics Corporation Electric cable having braidless polymeric ground plane providing fault detection
US6773634B2 (en) * 2000-02-01 2004-08-10 Ube Industries, Ltd. Conductive polymer composition and PTC element
IT249474Y1 (it) * 2000-02-17 2003-05-19 Eltek Spa Radiatore elettrico.
KR100352892B1 (ko) * 2000-05-22 2002-09-16 주식회사 팍스텍 박막 발열체의 제조방법 및 이것을 이용한 발열장치
CN100409373C (zh) * 2001-04-06 2008-08-06 宝电通科技股份有限公司 用于正温度系数热敏电阻元件的复合结构材料及其制法
US6957013B2 (en) * 2001-06-08 2005-10-18 Algas-Sdi International Llc Fluid heater
DE10201262B4 (de) * 2002-01-15 2006-09-07 Webasto Ag Widerstandsheizelement
JP2003317906A (ja) * 2002-04-24 2003-11-07 Sumitomo Electric Ind Ltd セラミックスヒータ
DE50209595D1 (de) * 2002-10-07 2007-04-12 Behr Gmbh & Co Kg Vorrichtung zum Austausch von Wärme
ITPN20020086A1 (it) * 2002-11-07 2004-05-08 Irca Spa Condotto con resistenza elettrica perfezionata e
DE50207329D1 (de) * 2002-12-19 2006-08-03 Catem Gmbh & Co Kg Elektrische Heizvorrichtung mit Gehäuse
JP2004273227A (ja) * 2003-03-07 2004-09-30 Kawaguchi Gosei Kk 面状発熱体
EP1457367B1 (de) * 2003-03-13 2008-02-06 Behr GmbH & Co. KG Elektrische Heizeinrichtung, insbesondere für ein Kraftfahrzeug
JP2005001447A (ja) * 2003-06-10 2005-01-06 Denso Corp 電気ヒータ、暖房用熱交換器および車両用空調装置
US20070007274A1 (en) * 2003-09-11 2007-01-11 Christophe Aloup Heating resistive element and heating assembly comprising same
EP1528837B1 (de) * 2003-10-31 2007-12-12 Behr GmbH & Co. KG Elektrisch beheizbare Kunststoffmatrix
DE102004020821A1 (de) * 2004-04-28 2005-11-24 BSH Bosch und Siemens Hausgeräte GmbH Elektrisches Heizelement für Warmwasserbereiter
KR20060018174A (ko) * 2004-08-23 2006-02-28 한라공조주식회사 보조히터
CN2861852Y (zh) * 2005-09-24 2007-01-24 朱祥 石油加热器
KR100749886B1 (ko) * 2006-02-03 2007-08-21 (주) 나노텍 탄소나노튜브를 이용한 발열체
EP1839920B1 (de) * 2006-03-31 2013-02-13 Behr GmbH & Co. KG Elektrischer Heizer für eine Heizungs- oder Klimaanlage eines Kraftfahrzeugs
EP1912028B1 (de) * 2006-10-11 2016-03-30 Mahle Behr France Rouffach S.A.S Elektrische Heizungsanordnung, insbesondere für ein Kraftfahrzeug
EP1933597B1 (de) * 2006-12-11 2014-02-26 Behr GmbH & Co. KG Elektrischer Heizer oder Zuheizer, insbesondere für eine Heizungs- oder Klimaanlage eines Kraftfahrzeugs
EP1933598B1 (de) * 2006-12-11 2013-11-13 Behr GmbH & Co. KG Elektrischer Heizer oder Zuheizer, insbesondere für einer Heizungs- oder Klimaanlage eines Kraftfahrzeugs
EP2017546B1 (de) * 2007-07-18 2016-04-13 Eberspächer catem GmbH & Co. KG Verfahren zum Herstellen einer elektrischen Heizvorrichtung sowie elektrischer Heizvorrichtungen
KR100880773B1 (ko) * 2008-01-23 2009-02-02 (주) 씨엠테크 유체 가열장치
EP2109347B1 (de) * 2008-04-11 2015-03-11 Behr GmbH & Co. KG Elektrische Vorrichtung zum Heizen insbesondere eines Kraftfahrzeuges
EP2131117B1 (de) * 2008-06-04 2016-02-10 Mahle Behr France Rouffach S.A.S Kraftfahrzeugklimaanlage mit PTC-Heizeinrichtung
CN201230379Y (zh) * 2008-07-16 2009-04-29 苏伟锋 Ptc发热元件
US8716633B2 (en) 2009-10-13 2014-05-06 Uniplatek Co., Ltd. Method for manufacturing PTC device and system for preventing overheating of planar heaters using the same
US20110110652A1 (en) * 2009-11-09 2011-05-12 Technical Analysis & Services International, Inc. (TASI) Active air heater
DE102009057749A1 (de) * 2009-12-10 2011-06-16 Dbk David + Baader Gmbh Radiatorelement, Zuheizer und Verfahren zum Herstellen eines Radiatorelementes
CN201639793U (zh) * 2010-03-30 2010-11-17 东莞宏威数码机械有限公司 平板层叠式加热装置
DE102010033092A1 (de) * 2010-08-02 2012-02-02 Osram Opto Semiconductors Gmbh Optoelektronisches Leuchtmodul und Kfz-Scheinwerfer
DE102010033309A1 (de) * 2010-08-04 2012-02-09 Ingo Schehr Wärmetauscher-Lamellenmodul, Wärmetauscher und elektrisches Heizmodul
DE102010037132A1 (de) * 2010-08-24 2012-03-01 Webasto Ag Elektrische Fahrzeug-Heizvorrichtung
EP2428747B1 (de) * 2010-09-13 2015-04-08 MAHLE Behr GmbH & Co. KG Wärmeübertrager
DE102011075383A1 (de) * 2011-05-06 2012-11-08 Evonik Degussa Gmbh Temperierbare Rohrleitung für Offshoreanwendungen
CN102833896A (zh) * 2011-06-15 2012-12-19 上海华族实业有限公司 基于物联网通信的采用压接固定的电加热器
DE102011077922A1 (de) * 2011-06-21 2012-12-27 Behr Gmbh & Co. Kg Wärmeübertrager
FR2981437B1 (fr) * 2011-10-14 2018-04-27 Valeo Systemes Thermiques Module de chauffe isole pour dispositif de chauffage additionnel
DE102011054752B4 (de) * 2011-10-24 2014-09-04 Stego-Holding Gmbh Kühl- und Haltekörper für Heizelemente, Heizgerät und Verfahren zur Herstellung eines Kühl- und Haltekörpers
CN202475806U (zh) * 2011-11-09 2012-10-03 芜湖华族实业有限公司 散热片卡接式陶瓷ptc电加热器
DE102011121451B4 (de) * 2011-12-16 2023-02-02 Audi Ag Heizvorrichtung für ein Kraftfahrzeug und ein Kraftfahrzeug mit einer solchen Heizvorrichtung sowie ein Verfahren zum Herstellen einer solchen Heizvorrichtung
DE102011057108A1 (de) * 2011-12-28 2013-07-04 Webasto Ag Elektrische Fahrzeugheizvorrichtung mit Wärmeabschirmung
CN104203612B (zh) * 2012-02-28 2016-08-24 汉拿伟世通空调有限公司 车辆用加热器
CN202551366U (zh) * 2012-03-28 2012-11-21 熊欣 一种ptc汽车液体加热器
DE102012207301A1 (de) * 2012-05-02 2013-11-07 Webasto Ag Heizvorrichtung für ein Fahrzeug und Verfahren zum Kühlen einer elektronischen Steuereinrichtung der Heizvorrichtung
JP2015520067A (ja) * 2012-05-14 2015-07-16 ベーア−ヘラー サーモコントロール ゲーエムベーハー ハイブリッド駆動又は電気駆動の車両用の車両用電気ヒータ
CN202648155U (zh) * 2012-05-25 2013-01-02 比亚迪股份有限公司 一种电加热装置的壳体、电加热装置以及电动车
DE102012211173A1 (de) * 2012-06-28 2014-01-16 BSH Bosch und Siemens Hausgeräte GmbH Haushaltsgerät
CN202764656U (zh) * 2012-09-11 2013-03-06 钡泰电子陶瓷股份有限公司 车辆室内用的加热器
EP2951039B1 (de) * 2013-01-29 2020-08-19 Hanon Systems Heizvorrichtung für ein motorfahrzeug
US20160113065A1 (en) 2013-05-21 2016-04-21 Heat Trace Limited Electrical heater
LU92270B1 (en) * 2013-08-22 2015-02-23 Iee Sarl Foil heater eg for a heating panel
DE102013021079B4 (de) * 2013-12-18 2016-03-03 Lisa Dräxlmaier GmbH Heizvorrichtung für ein Fahrzeug
JP2016002998A (ja) * 2014-06-19 2016-01-12 現代自動車株式会社Hyundaimotor Company 車両用ハイブリッドヒーター
GB201413136D0 (en) * 2014-07-24 2014-09-10 Lmk Thermosafe Ltd Conductive polymer composite
CN204119542U (zh) * 2014-09-24 2015-01-21 上海荣威塑胶工业有限公司 一种ptc加热器
CN204329292U (zh) * 2014-12-10 2015-05-13 王锦玲 一种厚膜加热装置
KR101664372B1 (ko) * 2015-01-08 2016-10-10 전병민 방수 및 방습 기능이 구비된 면상발열체
FR3032084B1 (fr) * 2015-01-28 2017-02-10 Commissariat Energie Atomique Dispositif chauffant, en particulier semi-transparent
CN105313639B (zh) * 2015-07-16 2018-04-24 浙江吉利控股集团有限公司 一种电动汽车空调硅胶加热膜加热器
CN105025596B (zh) * 2015-08-03 2022-05-24 镇江东方山源电热有限公司 一种散热基体及密封型ptc热敏电阻加热器
CN205208945U (zh) * 2015-11-06 2016-05-04 武汉商学院 螺旋ptc流体加热器
CN105509305B (zh) * 2015-12-28 2018-02-27 安徽农业大学 一种汽车空调加热用的ptc水加热器
CN106247611A (zh) * 2016-08-11 2016-12-21 安徽中科自动化股份有限公司 一种热水器
US20180124871A1 (en) * 2016-10-31 2018-05-03 Gentherm Gmbh Carbon veil heater and method of making
CN106595023A (zh) * 2016-12-16 2017-04-26 宁波勃兰特泵业科技有限公司 一种节能环保型加热器
US20180267296A1 (en) * 2017-03-20 2018-09-20 Delphi Technologies, Inc. Electrically conductive polymer film
DE102017121038A1 (de) * 2017-05-24 2018-11-29 Webasto SE Luftheizgerät
DE102019118092A1 (de) * 2019-07-04 2021-01-07 Carl Freudenberg Kg Verfahren zur Herstellung eines gegenüber elektromagnetischer Strahlung abgeschirmten Bauteils

Also Published As

Publication number Publication date
US20200094655A1 (en) 2020-03-26
CN110678705A (zh) 2020-01-10
DE102017121062A1 (de) 2018-11-29
WO2018215623A1 (de) 2018-11-29
WO2018215546A1 (de) 2018-11-29
JP2020521272A (ja) 2020-07-16
US20200094654A1 (en) 2020-03-26
US20200200435A1 (en) 2020-06-25
JP2020520846A (ja) 2020-07-16
US20200173688A1 (en) 2020-06-04
US20200113019A1 (en) 2020-04-09
US20200196395A1 (en) 2020-06-18
EP3631312A1 (de) 2020-04-08
DE102017121042A1 (de) 2018-11-29
JP2020521291A (ja) 2020-07-16
WO2018215533A1 (de) 2018-11-29
KR20190139282A (ko) 2019-12-17
WO2018215197A1 (de) 2018-11-29
DE102017121045A1 (de) 2018-11-29
EP3631318A1 (de) 2020-04-08
DE102017121063A1 (de) 2018-11-29
CN110662928A (zh) 2020-01-07
EP3631316A1 (de) 2020-04-08
WO2018215541A1 (de) 2018-11-29
JP2022023890A (ja) 2022-02-08
WO2018215196A1 (de) 2018-11-29
US20200224926A1 (en) 2020-07-16
EP3631317A1 (de) 2020-04-08
CN110678343A (zh) 2020-01-10
DE102017121038A1 (de) 2018-11-29
DE102017121040A1 (de) 2018-11-29
DE102017121039A1 (de) 2018-11-29
WO2018215545A1 (de) 2018-11-29
WO2018215536A1 (de) 2018-11-29
DE102017121064A1 (de) 2018-11-29
KR20190139983A (ko) 2019-12-18
DE102017121060A1 (de) 2018-11-29
KR20190131117A (ko) 2019-11-25
EP3631313A1 (de) 2020-04-08
WO2018215198A1 (de) 2018-11-29
CN110678702A (zh) 2020-01-10
WO2018215537A1 (de) 2018-11-29
WO2018215534A1 (de) 2018-11-29
CN110678703A (zh) 2020-01-10
EP3631319A1 (de) 2020-04-08
CN110678704A (zh) 2020-01-10
CN110662927A (zh) 2020-01-07
CN110691949A (zh) 2020-01-14
WO2018215551A1 (de) 2018-11-29
US20200166242A1 (en) 2020-05-28
CN110662926A (zh) 2020-01-07
US20210168910A1 (en) 2021-06-03
DE102017121041A1 (de) 2018-11-29
EP3630513A1 (de) 2020-04-08
CN110691949B (zh) 2022-04-08
EP3631315A1 (de) 2020-04-08
EP3631314A1 (de) 2020-04-08

Similar Documents

Publication Publication Date Title
EP3631320A1 (de) Fluidheizgerät und verfahren zur herstellung eines solchen
DE2543314C2 (de) Selbstregelnde elektrische Vorrichtung
DE112004001443B4 (de) Verfahren zum Erhöhen einer Klebverbindungsbeständigkeit eines elektrisch leitenden Elements in einer Brennstoffzelle, elektrisch leitendes Element sowie Brennstoffzellenstapel
EP1053658A1 (de) Flächiges heizelement und anwendungen von flächigen heizelementen
DE102019127803A1 (de) Heizbare Batterie
DE102016117916B4 (de) Heizeinrichtung, Rotorblatt mit solch einer Heizeinrichtung und Windenergieanlage mit solch einem Rotorblatt sowie Verfahren zur Herstellung solch einer Heizeinrichtung
DE3911750C2 (de) Charge-Transfer-Bilder erzeugende Kassette
DE102019211823A1 (de) Brennstoffzellenstapel und Verfahren zur Herstellung sowie Verwendung eines Brennstoffzellenstapels
DE102018112500A1 (de) Heizelement und Verfahren zur Herstellung desselben
DE102014226806B3 (de) Verfahren zur Herstellung elektrisch leitender Verbindungen, von mindestens zwei stoffschlüssig miteinander verbundenen Fügepartnern
DE102018100742A1 (de) Heizeinrichtung mit einer Mehrzahl von elektrischen Flächenheizelementen
DE102011083469A1 (de) Batteriemodul umfassend eine Mehrzahl von Batteriezellen und Kraftfahrzeug
EP2157641A2 (de) Verfahren zur Herstellung einer Bipolarplatte und Bipolarplatte für eine bipolare Batterie
WO2017167653A1 (de) Beheizbares flächenelement und verfahren zum herstellen desselben
DE102009037144A1 (de) Kontaktelement zum elektrischen Kontaktieren einer stromerzeugenden elektrochemischen Zelle sowie Herstellungsverfahren für selbiges
WO2019052763A1 (de) Heizgerät und verfahren zur herstellung desselben
DE102020120472A1 (de) Verfahren zur Herstellung eines PTC-Heizelements und PTC-Heizelement
WO2022263128A1 (de) Kontaktvorrichtung, verfahren zur herstellung einer kontaktvorrichtung, elektrochemische zelle sowie elektrochemischer zellenstapel
DE102018206639A1 (de) Heizeinrichtung für eine energiespeicherzelle, energiespeicher mit heizeinrichtung und herstellungsverfahren
WO2019129363A1 (de) Heizeinrichtung, rotorblatt mit solch einer heizeinrichtung und windenergieanlage mit solch einem rotorblatt sowie verfahren zur herstellung solch einer heizeinrichtung
DE202018006417U1 (de) Sensoreinheit zur Erfassung zumindest einer Temperatur an zumindest einer galvanischen Zelle
WO2019234119A1 (de) Sensoreinheit zur erfassung zumindest einer temperatur an zumindest einer galvanischen zelle und verfahren zur herstellung einer sensoreinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20191021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20200717