EP3606709B1 - Schneidemaschine mit überblickskamera - Google Patents
Schneidemaschine mit überblickskamera Download PDFInfo
- Publication number
- EP3606709B1 EP3606709B1 EP17716189.0A EP17716189A EP3606709B1 EP 3606709 B1 EP3606709 B1 EP 3606709B1 EP 17716189 A EP17716189 A EP 17716189A EP 3606709 B1 EP3606709 B1 EP 3606709B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cutting
- cutting machine
- image
- camera
- features
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 claims description 4
- 238000004590 computer program Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 description 11
- 239000000123 paper Substances 0.000 description 4
- 239000011111 cardboard Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001454 recorded image Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D5/00—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
- B26D5/007—Control means comprising cameras, vision or image processing systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D5/00—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
- B26D5/005—Computer numerical control means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D5/00—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
- B26D5/20—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
- B26D5/30—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed having the cutting member controlled by scanning a record carrier
- B26D5/34—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed having the cutting member controlled by scanning a record carrier scanning being effected by a photosensitive device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26F—PERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
- B26F1/00—Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
- B26F1/38—Cutting-out; Stamping-out
- B26F1/3806—Cutting-out; Stamping-out wherein relative movements of tool head and work during cutting have a component tangential to the work surface
- B26F1/3813—Cutting-out; Stamping-out wherein relative movements of tool head and work during cutting have a component tangential to the work surface wherein the tool head is moved in a plane parallel to the work in a coordinate system fixed with respect to the work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D5/00—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
- B26D2005/002—Performing a pattern matching operation
Definitions
- the invention relates to a cutting machine with a camera, in particular a cutting machine that is designed to cut objects that have a surface with a graphic design and optical registration features.
- These objects can in particular represent printed sheets of paper, cardboard or similar materials, plastic films or cloths or similar.
- Such a cutting machine has a work surface that is designed to hold at least one object, a work group movably arranged above the work surface with a knife or another cutting device for cutting objects located on the work surface.
- a camera unit is arranged relative to the work surface, in particular above it, in such a way that its field of view covers the entire work surface (“overview camera”). Based on positions of the optical registration features in an image from the overview camera, a cutting path can then be defined depending on a selected cutting order.
- Cutting does not necessarily mean a complete severing, so that a “cutting job” can also include perforating or folding the object or a similar work step that can be carried out with a machine of the generic type.
- Another task is to provide a cutting machine by means of which cutting jobs can be carried out with less personnel required or with a higher degree of automation.
- Another task is to provide a cutting machine with an overview camera, by means of which cutting paths can be defined more quickly and/or more precisely. Another task is to provide such a cutting machine that produces less waste. At least one of these tasks is solved by implementing the features of the independent claims. Advantageous embodiments of the invention can be found in the respective dependent claims.
- the invention relates to a cutting machine that is designed to cut objects with a flat surface, the surface having a graphic design with optical registration features.
- the cutting machine according to the invention has a work surface which is designed to record at least one object, a first camera unit which is arranged relative to the work surface in such a way that its field of view covers the entire work surface, and a work group which is movably arranged above the work surface and at least has a cutting device for cutting the at least one object.
- a computing unit with a circuit and program code for controlling the cutting machine having a memory unit for storing orders for cutting specific objects.
- the computing unit has a circuit and program code for evaluating images from the first camera unit and is designed to recognize registration features of the at least one object in an image from the first camera unit. It is also designed to define a cutting path for the cutting device according to at least one stored order and based on positions of the registration features in the image.
- the registration features can in particular be in the form of registration marks that are specifically designed for use with the cutting machine in order to make it possible to detect a position and orientation of the object relative to the work surface.
- the computing unit is then designed to recognize the registration marks on the surface of the at least one object in an image of the first camera unit, and also to define the cutting path based on the positions of the registration marks.
- the computing unit is designed to select an order based on recognized registration features or their positions.
- One aspect characterizing the present invention relates to a cutting machine in which reference marks are provided on the work surface and in the field of view of the camera, with the help of which a more precise positioning of the objects is possible.
- reference features are additionally arranged in a known positioning and distribution relative to the work surface and in the field of view of the first camera, the computing unit being designed to recognize the reference features in the image of the first camera unit and the cutting path also based on relative positions of the registration features and to define the reference features in the image of the first camera unit.
- the relative positions of the reference features and the workgroup to one another are known.
- the computing unit is designed to check an alignment of the first camera unit relative to the work surface based on positions of a large number of reference features in the image of the first camera unit.
- the invention also relates to a computer program product with program code as defined in claim 7.
- Figure 1 shows a generic cutting machine 1.
- a flatbed cutting machine it has a table with a flat work surface 10, on which, for example, two objects 40, 40 'to be cut are placed.
- a work group 12 with a cutting tool 15, in particular a knife is arranged above the work surface 10.
- the work group 12 can be moved two-dimensionally in a motorized manner relative to the work surface 10 in order to be able to approach any point on the work surface 10.
- the work group 12 is mounted movably in the X direction on a beam 13, which in turn is mounted movably in the Y direction on the table.
- a camera unit (overview camera 20) is arranged above the work surface 10 so that images of the entire work surface 10 can be recorded.
- the cutting machine 1 can also have an oscillatingly driven cutting tool 15 and/or for Cutting multi-walled composite panels can be designed, for example in the EP 2 894 014 B1 described.
- the cutting machine 1 also has a computing unit 30. As shown here, this can be designed as an external computer that has a data connection with the machine 1, or it can be integrated into the machine 1 itself as an internal control unit.
- the overview camera 20 is designed to provide the computing unit 30 with data from recorded images for evaluation.
- the computing unit 30 includes a processor with computing capacity and algorithms for controlling the cutting machine 1 according to a provided cutting order.
- the computing unit 30 also has a data memory for storing the cutting orders and possibly other data.
- one or more objects 40, 40' to be cut are brought onto the work surface 10. It is either known exactly which order or orders the objects 40, 40' lying on the work surface 10 are assigned to, or it is at least known from which collection of orders this order or these orders come.
- an image of the entire work area is recorded and the position of the cutting contours is determined based on this image. This is done by detecting registration features in the graphically designed surface of the objects and their position.
- the registration features are stored as part of the order data in the respective order and can be present as general features of the graphic design, or else advantageous as registration marks specifically intended for registration. This is known from the prior art.
- the corresponding order can first be determined using these markings and their position. If there are multiple orders, all corresponding orders are determined. The position of the cutting contours on the work surface is then determined using the object positions and the relative position of the cutting contours in the order data. This is in the Figures 2a-c shown as an example.
- Figure 2a shows one from the overview camera 20 of the cutting machine 1 Figure 1 recorded image 50.
- the image area includes the entire working area of the cutting machine including the work surface 10, on which two objects 40, 40 'to be cut are located.
- the work group 12 which is preferably moved to the edge of the work area to take the image.
- the objects to be cut are sheets 40, 40' (e.g. made of paper, cardboard or plastic) and each have a graphic design 44, 44' with patterns and/or inscriptions on their side facing the camera.
- the example shown is, on the one hand, a pattern in the form of a crescent 41 and, on the other hand, a heart-shaped pattern 41'.
- a number of registration marks 42 are shown on the sheets 40, 40 '.
- the registration marks 42 can in particular be geometric figures, e.g. B. circular points of a certain diameter as shown here.
- Figure 2b shows the cutting contours 45, 45' of the sheets 40, 40' to be cut.
- the respective shape of the cutting contours 45, 45' and their relative position on the respective sheet 40, 40' is stored in orders. Together with the picture 50 out Figure 2a a position and position of the cutting contours 45, 45 'on the work surface can be determined.
- Figure 2c illustrates, by way of example, a movement path for the cutting tool of the machine generated by the control unit based on the determined positions of the cutting contours 45, 45 '.
- the work group is moved relative to the work surface in such a way that the cutting tool is initially moved from its original position 150 to a first cutting path (dashed line 151).
- the cutting tool is then brought into a cutting position, for example lowered, and cuts the object along the cutting path (solid line 152).
- Figure 3 shows an exemplary embodiment of a cutting machine 1, which, in accordance with the characteristic first aspect of the present invention, has a plurality of reference marks 25 which are fixedly arranged in the field of view of the overview camera 20 and relative to the work surface 10.
- the reference marks 25 can be identified in the images of the overview camera 20 and their positions in the image can be compared with their positions known to be defined relative to the work surface 10.
- the computing unit 30 (shown here integrated into the machine) is thereby able to determine positions of objects 40, 40' on the work surface 10 or
- Positions of referencing features on the objects 40, 40 'can each be determined with greater accuracy.
- Figure 4 shows a cutting machine 1, on the work surface 10 of which two objects 40, 40 'of different material thicknesses are placed.
- the first object 40 has a higher material thickness and consists e.g. B. from a multi-layer cardboard or a composite panel. Due to the position of the overview camera 20, distortions occur in images taken by it, which increase towards the edges of the image. However, if the material thickness is negligible (e.g. paper), as here with the second object 40 ', this does not pose a problem when recognizing objects 40, 40' or their position on the work surface 10 due to the flat surface of the work surface 10 represents.
- negligible e.g. paper
- FIG. 5 This shows the object features 44, 44' of the two objects recognized in the camera image Figure 4 . While the features 44 'of the thin paper object 40' are assumed to be in their correct position, the assumed positions of the features 44 of the thick object 40, which are located in a plane further away from the work surface 10 than the features due to the greater material thickness, differ 44' of the thin object 40', differs more from their actual positions as the distance to the camera position 21 increases. This is how the reference marks 42 appear in the camera image shown further away from the center of the image (dotted circles 49) than they actually are.
- the object 40 is recognized correctly, but because the positions of the reference features are incorrectly derived, an inaccurate or completely incorrect cutting path is calculated. In this case, the object 40 will also be cropped incorrectly.
- this problem is solved by providing information about the material thickness of the object 40 to be cut to the control unit 30.
- the material thickness can, for example, be determined in advance by a camera, queried by a user or even provided as part of the order.
- the overview camera 20 can be designed to be automatically height-adjustable and can be moved in the Z direction depending on the material thickness, whereby the distance to the object surface and thus the focus remain constant regardless of the respective material thickness.
- Figure 6 shows an image 50 of the work surface 10 taken by the overview camera 20.
- the work surface 10 is partially in the shadow 70. This can result, for example be direct sunlight, so that, as in this example, the work group 12 casts a shadow 70 on the work surface 10.
- the object 40 to be cut lies partly in the shadow 70 and partly in the brightly lit area of the work surface 10.
- HDR images For example, two images with different exposure times taken directly one after the other can be superimposed. Alternatively, only one image is recorded, with the overview camera being designed to select the exposure duration for each pixel or for specific pixel areas depending on the brightness of the respective imaging area.
- Pixels in the edge regions of the registration marks 42 can, for example, be assigned a brightness value averaged from values of the several images.
- the cutting machine 1 has a further camera 60 in addition to the overview camera 20.
- This second camera is also aligned with the work surface 10. It has a significantly smaller recording area 62 than the overview camera 20, but is arranged to be movable relative to the work surface 10, so that images of the entire work surface 10 can preferably be recorded.
- the second camera 60 is preferably movably mounted as a bar camera on the same bar 13 as the work group 12. In particular, it can be designed as part of this work group 12.
- the Figures 7 and 8 show an example of a corresponding embodiment of the cutting machine 1.
- FIG 7 An exemplary embodiment of the cutting machine 1 is shown, with a second camera unit 60 being provided in the work group 12, which is designed to record images in the direction of the work surface 10. Its image area 62 only covers a small part of the work surface 10 at each position.
- the overview camera 20 is also designed in this embodiment to record images of the entire work surface 10.
- Figure 8 the working group 12 with knife 15 and beam camera 60, which is movably attached to the beam 13, is shown from above.
- the position of the relatively higher overview camera 20 is also shown.
- the working group 12 is positioned here in such a way that two registration marks 42 of an object 40 to be cut are in the field of view 62 of the bar camera 60.
- a detailed image recorded by the bar camera 60 can now be compared with the one previously recorded by the overview camera 20 Overall picture can be compared. This allows the positions of the registration marks 42 to be verified or determined relative to the work surface 10.
- the positions determined with the overview camera 20 are compared with the positions determined with the bar camera 60.
- the positions of all registration marks 42 are determined with high accuracy by transforming the positions determined in the image of the overview camera 20 by the positions determined in the image of the bar camera 60.
- such an additional camera 60 can also be used to calibrate the overview camera 20.
- the cutting machine 1 has a calibration functionality controlled by the computing unit 30.
- 10 positions of a large number of grid points can be determined fully automatically with high precision using the bar camera 60 on the entire work surface.
- the work surface itself can be designed as a calibration work surface 18, that is, it itself has the corresponding grid points, or alternatively, as in Figure 9b shown, one is used for calibration Calibration sheet 48 is placed on the work surface 10, which has the grid points.
- the positions of the grid points determined by the bar camera 60 are saved as target positions. The same grid points are then recorded by the overview camera 20. With the help of the target positions and the comparison with the positions of the grid points in the image of the overview camera 20, the overview camera 20 and the bar camera 60 can be calibrated relative to one another. If the beam camera 60 is housed in the same work group 12 as the cutting tool 15, errors in the drive system of the work group 12 can also be advantageously compensated for.
- cutting orders are provided in which certain additional information is stored, which allows the work surface 10 to be limited to the ROI area.
- FIG 10a an image 50 of the entire work surface 10 is shown, as recorded by the overview camera (cf. Figure 2a ).
- the computing unit Based on information about the expected position of the objects 40, 40 'on the work surface 10, the computing unit defines areas 52, each of which includes an expected position of the relevant registration marks 42. Registration marks 42 are only searched for in these areas 52, so that only positions of registration marks 42 that are also in these areas 52 are determined. This not only advantageously saves computing capacity and time, but also prevents possible misinterpretations of features of the graphic design 41, 41' as registration features.
- FIG 10b image 50 of the overview camera Figure 10a has been limited to two ROI areas and therefore only includes area images 51 and 51 '.
- An object 40, 40' to be cut is at least partially depicted in each area image 51, 51', so that the registration marks 42 are visible, so that a cutting path can be generated in each case. Due to the smaller image area that has to be evaluated, the relative positions of the registration marks 42 can be recorded more quickly, thereby speeding up the process.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Mechanical Engineering (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Cutting Processes (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Numerical Control (AREA)
- Image Processing (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Machine Tool Sensing Apparatuses (AREA)
- Details Of Cutting Devices (AREA)
- Image Analysis (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23211403.3A EP4302948A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
EP23211413.2A EP4302949A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
EP23211411.6A EP4324609A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2017/058153 WO2018184677A1 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
Related Child Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23211413.2A Division EP4302949A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
EP23211413.2A Division-Into EP4302949A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
EP23211403.3A Division EP4302948A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
EP23211403.3A Division-Into EP4302948A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
EP23211411.6A Division EP4324609A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
EP23211411.6A Division-Into EP4324609A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3606709A1 EP3606709A1 (de) | 2020-02-12 |
EP3606709B1 true EP3606709B1 (de) | 2024-02-21 |
Family
ID=58503604
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23211413.2A Pending EP4302949A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
EP23211403.3A Pending EP4302948A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
EP17716189.0A Active EP3606709B1 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
EP23211411.6A Pending EP4324609A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23211413.2A Pending EP4302949A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
EP23211403.3A Pending EP4302948A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23211411.6A Pending EP4324609A3 (de) | 2017-04-05 | 2017-04-05 | Schneidemaschine mit überblickskamera |
Country Status (5)
Country | Link |
---|---|
US (3) | US11400614B2 (zh) |
EP (4) | EP4302949A3 (zh) |
CN (4) | CN110582385B (zh) |
ES (1) | ES2978185T3 (zh) |
WO (1) | WO2018184677A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3044575B1 (fr) * | 2015-12-08 | 2018-04-20 | Airbus Group Sas | Methode de controle de la fabrication de pieces en materiaux composites et dispositif pour sa mise en oeuvre |
US20190315011A1 (en) * | 2016-12-01 | 2019-10-17 | 3M Innovative Properties Company | Alignment of Film in a Conversion Station |
KR20220030270A (ko) * | 2019-07-03 | 2022-03-10 | 웨이모 엘엘씨 | 앵커 궤적들을 이용하는 에이전트 궤적 예측 |
US12036761B2 (en) * | 2019-10-30 | 2024-07-16 | Rota Laser Dies S.R.L. | System for monitoring cutting devices in a packaging production line |
EP4000814A1 (en) | 2020-11-20 | 2022-05-25 | Zünd Systemtechnik Ag | Improved steering of gripper head of a gripper of a digital cutting system |
IT202100007295A1 (it) * | 2021-03-25 | 2022-09-25 | Sbs S P A | Macchina da taglio per fogli e metodo associato |
US20220379513A1 (en) * | 2021-05-27 | 2022-12-01 | Wizard International, Inc. | Mat Clamping Systems And Methods For Mat Cutting Machine |
EP4140671A1 (de) | 2021-08-31 | 2023-03-01 | Zünd Systemtechnik Ag | Schneidemaschine mit einer temperaturkompensation |
CN115089385B (zh) * | 2022-06-30 | 2024-03-08 | 长沙海润生物技术有限公司 | 一种防错位规整纱布分切装置 |
CN115256508B (zh) * | 2022-07-07 | 2024-09-06 | 合肥聚智电气有限公司 | Iter稳态磁场测试平台电源机箱用开孔工艺 |
Family Cites Families (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3242573A (en) * | 1963-07-15 | 1966-03-29 | Glaverbel | Programming of cutting operations for sheet material |
US3803960A (en) * | 1972-12-11 | 1974-04-16 | Gerber Garment Technology Inc | System and method for cutting pattern pieces from sheet material |
US3805650A (en) * | 1973-03-26 | 1974-04-23 | Gerber Garment Technology Inc | Apparatus and method for cutting sheet material |
US3844461A (en) * | 1973-04-09 | 1974-10-29 | Gerber Scientific Instr Co | Precise indexing apparatus and method |
US4071899A (en) * | 1976-07-09 | 1978-01-31 | Hughes Aircraft Company | System and method for the measurement of repetitive patterns |
US4380944A (en) * | 1979-09-10 | 1983-04-26 | Gerber Garment Technology, Inc. | Method for cutting sheet material with variable gain closed loop |
US4581632A (en) * | 1983-05-27 | 1986-04-08 | Key Technology, Inc. | Optical inspection apparatus for moving articles |
FR2548077B1 (fr) * | 1983-06-30 | 1987-03-06 | Gerber Scient Inc | Appareil pour aider un operateur a resoudre les problemes poses par les defauts des etoffes |
JPS60184891A (ja) * | 1984-03-02 | 1985-09-20 | セイコーインスツルメンツ株式会社 | 自動製図機における用紙切断方式 |
FR2582317B1 (fr) * | 1985-05-22 | 1989-02-10 | Imbert G Ets | Procede de decoupe automatique d'une peau ou similaire a partir du placement interactif de gabarits sur ladite peau et dispositif pour sa mise en oeuvre |
DE3544251A1 (de) * | 1985-12-14 | 1987-06-19 | Duerkopp System Technik Gmbh | Verfahren und vorrichtung zum selbsttaetigen zuschneiden von teilen aus flaechigem naehgut nach mit unterschiedlichen konturen versehenen mustervorlagen auf einer koordinaten-schneidmaschine |
ES8801003A1 (es) * | 1986-04-02 | 1987-12-16 | Investronica Sa | Procedimiento de casado de piezas para corte automatico de tejidos con dibujo. |
DE3627110A1 (de) * | 1986-08-06 | 1988-02-18 | Duerkopp System Technik Gmbh | Verfahren und vorrichtung zur optimierung eines materialzuschnittes |
DE3637617A1 (de) * | 1986-11-05 | 1988-05-19 | Duerkopp System Technik Gmbh | Schneidportal einer hoechstdruck-fluidstrahlschneidanlage |
FR2615765B1 (fr) * | 1987-05-29 | 1992-09-04 | Usinor Aciers | Procede et dispositif de determination du sabre d'une tole |
US4953485A (en) * | 1989-04-10 | 1990-09-04 | Td Quilting Machinery | Automatic quilting machine for specialized quilting of patterns which can be created by utilizing computer graphics in conjunction with a reprogrammable computer |
DE4012462A1 (de) * | 1990-04-19 | 1991-10-24 | Duerkopp System Technik Gmbh | Verfahren zum nesten von naturleder |
DE4013836A1 (de) * | 1990-04-30 | 1991-10-31 | Krauss & Reichert Maschf | Verfahren zum ausschneiden eines zuschnitteils |
US5074178A (en) * | 1990-05-04 | 1991-12-24 | Cad Futures Corporation | Apparatus and method for cutting drawings from a web of sheet material |
DE4100534C1 (zh) * | 1991-01-10 | 1992-01-23 | Duerkopp Systemtechnik Gmbh, 4800 Bielefeld, De | |
US5333111A (en) * | 1991-05-02 | 1994-07-26 | Gerber Garment Technology, Inc. | Garment cutting system having computer assisted pattern alignment |
US5394183A (en) * | 1992-05-05 | 1995-02-28 | Milliken Research Corporation | Method and apparatus for entering coordinates into a computer |
US5324228A (en) * | 1992-07-27 | 1994-06-28 | Frigoscandia Food Processing Systems A.B. | Method and apparatus for detecting and trimming fat from meat products |
FR2719403B1 (fr) * | 1994-04-27 | 1996-07-19 | Lectra Systemes Sa | Procédé de numérisation et découpe de coupons ayant des formes non répétitives. |
JPH08230393A (ja) * | 1995-02-28 | 1996-09-10 | Ando Electric Co Ltd | Cad装置つきマーキング装置 |
US5717456A (en) * | 1995-03-06 | 1998-02-10 | Champion International Corporation | System for monitoring a continuous manufacturing process |
US6298275B1 (en) * | 1995-03-23 | 2001-10-02 | Gerber Garment Technology, Inc. | Non-intrusive part identification system for parts cut from a sheet material |
US5575099A (en) * | 1995-05-03 | 1996-11-19 | Gerber Scientific Products, Inc. | Method and apparatus for producing signs with prismatic letters and graphic images |
US5727433A (en) * | 1995-09-08 | 1998-03-17 | Gerber Garment Technology, Inc. | Method for cutting sheet material |
US6434444B2 (en) * | 1997-03-12 | 2002-08-13 | Gerber Technology, Inc. | Method and apparatus for transforming a part periphery to be cut from a patterned sheet material |
AT406464B (de) * | 1997-08-21 | 2000-05-25 | Gfm Holding Ag | Verfahren zum erstellen eines schnittnestes |
US6192777B1 (en) * | 1998-04-17 | 2001-02-27 | Gerber Garment Technology, Inc. | Method and apparatus for pattern matching with active visual feedback |
DE29813976U1 (de) * | 1998-08-05 | 1998-10-08 | MAN Roland Druckmaschinen AG, 63075 Offenbach | Einrichtung zur Zustandsanzeige einer Druckmaschine |
US6050168A (en) * | 1998-09-09 | 2000-04-18 | Gerber Technology, Inc. | Cutter table for performing work operations on one or more layers of sheet-type work material |
US6856843B1 (en) * | 1998-09-09 | 2005-02-15 | Gerber Technology, Inc. | Method and apparatus for displaying an image of a sheet material and cutting parts from the sheet material |
CA2251243C (en) * | 1998-10-21 | 2006-12-19 | Robert Dworkowski | Distance tracking control system for single pass topographical mapping |
US6112658A (en) * | 1999-02-25 | 2000-09-05 | George Schmitt & Company, Inc. | Integrated and computer controlled printing press, inspection rewinder and die cutter system |
US6112630A (en) * | 1999-04-23 | 2000-09-05 | Graphtec Technology, Inc. | Cutting plotter |
US6772661B1 (en) * | 1999-10-04 | 2004-08-10 | Mikkelsen Graphic Engineering | Method and apparatus for precision cutting and the like of graphics areas from sheets |
CH694160A5 (fr) * | 2000-05-11 | 2004-08-13 | Bobst Sa | Dispositif de gestion des défauts d'impression détectés au sein d'une machine d'impression. |
US6520080B1 (en) * | 2000-12-15 | 2003-02-18 | Roll Systems, Inc. | System and method for utilizing web from a roll having splices |
US6672187B2 (en) | 2001-04-05 | 2004-01-06 | Mikkelsen Graphic Engineering, Inc. | Method and apparatus for rapid precision cutting of graphics areas from sheets |
US6619167B2 (en) * | 2001-04-05 | 2003-09-16 | Steen Mikkelsen | Method and apparatus for precision cutting of graphics areas from sheets |
CN100437628C (zh) * | 2001-10-17 | 2008-11-26 | 恩尼格公司 | 服装纸样的自动数字化 |
US6944331B2 (en) * | 2001-10-26 | 2005-09-13 | National Instruments Corporation | Locating regions in a target image using color matching, luminance pattern matching and hue plane pattern matching |
FI20021138A0 (fi) * | 2002-06-12 | 2002-06-12 | Kvaerner Masa Yards Oy | Menetelmä ja järjestely kappaleen/kappaleiden työstämiseksi |
US7126082B2 (en) * | 2002-09-03 | 2006-10-24 | Xenetech, Inc. | Automated laser engraver |
JPWO2005005709A1 (ja) * | 2003-07-10 | 2007-09-20 | 有限会社ナムックス | 生地の裁断装置、裁断方法及び裁断積層方法 |
US7005606B2 (en) * | 2003-09-09 | 2006-02-28 | W.A. Whitney Co. | Laser machine tool with image sensor for registration of workhead guidance system |
AU2005200016B2 (en) * | 2004-01-09 | 2010-12-09 | John Bean Technologies Corporation | Method and system for portioning workpieces to user-scanned shape and other specifications |
US7617751B2 (en) * | 2004-03-23 | 2009-11-17 | L&P Property Management Company | Quilted fabric panel cutter |
US7623699B2 (en) * | 2004-04-19 | 2009-11-24 | 3M Innovative Properties Company | Apparatus and method for the automated marking of defects on webs of material |
DE102004020472B4 (de) * | 2004-04-26 | 2013-09-26 | Wolfgang Bruder | Vorrichtung und Verfahren zur Bearbeitung im wesentlicher flächiger Körper, wie Tierhäute oder Rapportstoffe oder dergleichen |
US7140283B2 (en) * | 2004-05-05 | 2006-11-28 | Mikkelsen Graphic Engineering | Automated method and apparatus for vision registration of graphics areas operating from the unprinted side |
JP4451739B2 (ja) * | 2004-07-30 | 2010-04-14 | 株式会社島精機製作所 | 吸引式載置台のシール装置 |
EP1724075A3 (en) * | 2004-10-08 | 2011-12-21 | José Luis Godoy Varo | Automatic system and procedure for handling and treatment of natural cork slabs |
ES2489542T3 (es) * | 2005-08-04 | 2014-09-02 | Par Systems, Inc. | Compensación para un aparato de chorro de fluido |
US9466229B2 (en) * | 2006-02-16 | 2016-10-11 | Iconex, Llc | Autorejecting spliced document product |
JP4993397B2 (ja) * | 2006-07-20 | 2012-08-08 | 株式会社 ベアック | カバーレイフィルムの穿孔方法 |
CA2688663A1 (fr) * | 2007-06-28 | 2008-12-31 | Grafitroniks | Procede pour decouper un support d'impression plan |
US8175739B2 (en) * | 2007-07-26 | 2012-05-08 | 3M Innovative Properties Company | Multi-unit process spatial synchronization |
US7693432B2 (en) * | 2007-07-27 | 2010-04-06 | Hewlett-Packard Development Company, L.P. | Device that enables blanket diagnostics and proof for web presses |
DE102007044804A1 (de) * | 2007-09-20 | 2009-04-09 | Robert Bosch Gmbh | Werkzeugmaschinensicherheitsvorrichtung |
US7859655B2 (en) * | 2007-09-28 | 2010-12-28 | The Boeing Company | Method involving a pointing instrument and a target object |
JP5448931B2 (ja) * | 2009-04-01 | 2014-03-19 | キヤノン株式会社 | 画像形成装置 |
IT1395814B1 (it) * | 2009-10-12 | 2012-10-26 | Gallucci | Apparato per il taglio e/o l'incisione di articoli comprendenti una superficie piana su cui sono riprodotti disegni e/o scritte e metodo per attuare l'apparato |
US8680429B2 (en) * | 2009-11-10 | 2014-03-25 | Instrument Associates LLC | Laser beam scribing system |
US9421692B2 (en) * | 2010-05-14 | 2016-08-23 | Automated Vision, Llc | Methods and computer program products for processing of coverings such as leather hides and fabrics for furniture and other products |
US8924002B2 (en) * | 2011-04-22 | 2014-12-30 | I-Cut, Inc. | Adaptive registration during precision graphics cutting from multiple sheets |
CN202106140U (zh) * | 2011-06-02 | 2012-01-11 | 广东大族粤铭激光科技股份有限公司 | 基于机器视觉的混合图形激光切割机 |
US8922641B2 (en) * | 2011-06-29 | 2014-12-30 | The Procter & Gamble Company | System and method for inspecting components of hygienic articles |
JP2013144342A (ja) * | 2012-01-16 | 2013-07-25 | Brother Industries Ltd | 切断装置 |
US9310482B2 (en) * | 2012-02-10 | 2016-04-12 | Ascent Ventures, Llc | Methods for locating and sensing the position, orientation, and contour of a work object in a robotic system |
EP3964902B1 (en) * | 2012-04-26 | 2024-01-03 | Shaper Tools, Inc. | Systems and methods for performing a task on a material, or locating the position of a device relative to the surface of the material |
FI126174B (en) * | 2012-12-04 | 2016-07-29 | Valmet Automation Oy | Tissue measurement |
JP2014124747A (ja) * | 2012-12-27 | 2014-07-07 | Brother Ind Ltd | 切断データ作成装置、切断装置、及び切断データ作成プログラム |
JP2014125711A (ja) * | 2012-12-27 | 2014-07-07 | Brother Ind Ltd | 切断データ作成装置、切断データ作成プログラム及び切断装置 |
JP2014124748A (ja) * | 2012-12-27 | 2014-07-07 | Brother Ind Ltd | 切断データ作成装置、切断データ作成プログラム及び切断装置 |
DE102013202425A1 (de) * | 2013-02-14 | 2014-08-14 | Krones Ag | Verfahren zum Ausrichten eines Etikettenstreifens |
JP2014178824A (ja) * | 2013-03-14 | 2014-09-25 | Brother Ind Ltd | 加工装置、加工装置のデータ処理プログラム及び保持部材 |
JP2014180714A (ja) * | 2013-03-19 | 2014-09-29 | Brother Ind Ltd | 加工装置、及びデータ処理プログラム |
JP2014231103A (ja) * | 2013-05-28 | 2014-12-11 | ブラザー工業株式会社 | 加工装置、及びデータ処理プログラム |
JP2015013719A (ja) * | 2013-07-04 | 2015-01-22 | 株式会社リコー | シート材厚み検出装置及びこれを用いた画像形成装置 |
US9635908B2 (en) * | 2013-10-21 | 2017-05-02 | Nike, Inc. | Automated trimming of pliable items |
US20160263763A1 (en) * | 2013-10-22 | 2016-09-15 | Mikkelsen Converting Technologies, Inc. | Vision system |
JP6247500B2 (ja) * | 2013-10-30 | 2017-12-13 | グラフテック株式会社 | 線分検出装置およびその制御プログラム |
JP5788469B2 (ja) * | 2013-11-29 | 2015-09-30 | ファナック株式会社 | アプローチ時間を短縮するレーザ加工装置の制御装置及び制御方法 |
ES2572081T3 (es) | 2014-01-10 | 2016-05-30 | Zünd Systemtechnik Ag | Cuchilla, en particular cuchilla oscilante, destinada al uso en un procedimiento de corte mecánico, para cortar placas sándwich |
AT515839B1 (de) * | 2014-05-19 | 2016-06-15 | Trotec Laser Gmbh | Verfahren und Einrichtung zum Bearbeiten von Werkstücken |
NZ729361A (en) * | 2014-07-31 | 2018-08-31 | Usnr Llc | Dynamically directed workpiece positioning system |
US9919443B2 (en) * | 2014-08-12 | 2018-03-20 | Bell And Howell, Llc | Systems, methods, and computer readable media for sheet registration in a tractorless sheet processing device using at least one existing sheet feature |
JP6168081B2 (ja) * | 2015-02-26 | 2017-07-26 | コニカミノルタ株式会社 | 画像形成システム、読取装置及び画像形成装置 |
EP3657279B1 (en) * | 2015-05-13 | 2023-03-29 | Shaper Tools, Inc. | Systems, methods and apparatus for guided tools |
JP2017030130A (ja) * | 2015-08-06 | 2017-02-09 | ブラザー工業株式会社 | 切断データ作成装置及び切断データ作成プログラム |
DE102016120131B4 (de) * | 2016-10-21 | 2020-08-06 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Absortierunterstützungsverfahren und Flachbettwerkzeugmaschine |
US11046548B2 (en) * | 2017-03-23 | 2021-06-29 | Namx Company Limited | Cutting apparatus |
US10161879B1 (en) * | 2017-07-28 | 2018-12-25 | Litesentry Corporation | Measurement of thickness, surface profile, and optical power of a transparent sheet |
US10961076B2 (en) * | 2017-11-22 | 2021-03-30 | Gerber Technology Llc | Method and apparatus for aligning sheet material |
JP2019177447A (ja) * | 2018-03-30 | 2019-10-17 | ブラザー工業株式会社 | 切断装置 |
US11480532B2 (en) * | 2018-06-07 | 2022-10-25 | LiteSentry LLC | Inspection, analysis, classification, and grading of transparent sheets using segmented datasets of photoelasticity measurements |
US11052677B2 (en) * | 2018-09-25 | 2021-07-06 | Electronics For Imaging, Inc. | Manufacturing garments and textiles with printed patterns thereon |
EP3756842B1 (de) * | 2019-06-24 | 2024-06-05 | Zünd Systemtechnik Ag | Kiss-cut-ziehmesser |
JP7310390B2 (ja) * | 2019-07-11 | 2023-07-19 | セイコーエプソン株式会社 | カッター装置及び印刷装置 |
US10624722B1 (en) * | 2019-08-14 | 2020-04-21 | SmileDirectClub LLC | Systems and methods for laser trimming dental aligners |
-
2017
- 2017-04-05 EP EP23211413.2A patent/EP4302949A3/de active Pending
- 2017-04-05 CN CN201780090415.4A patent/CN110582385B/zh active Active
- 2017-04-05 EP EP23211403.3A patent/EP4302948A3/de active Pending
- 2017-04-05 CN CN202111581525.5A patent/CN114260968B/zh active Active
- 2017-04-05 ES ES17716189T patent/ES2978185T3/es active Active
- 2017-04-05 US US16/603,185 patent/US11400614B2/en active Active
- 2017-04-05 EP EP17716189.0A patent/EP3606709B1/de active Active
- 2017-04-05 EP EP23211411.6A patent/EP4324609A3/de active Pending
- 2017-04-05 WO PCT/EP2017/058153 patent/WO2018184677A1/de unknown
- 2017-04-05 CN CN202111581521.7A patent/CN114274260A/zh active Pending
- 2017-04-05 CN CN202111580506.0A patent/CN114227791B/zh active Active
-
2022
- 2022-03-22 US US17/700,924 patent/US11712815B2/en active Active
-
2023
- 2023-03-13 US US18/183,150 patent/US20230219248A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP4302948A2 (de) | 2024-01-10 |
CN110582385A (zh) | 2019-12-17 |
CN114227791A (zh) | 2022-03-25 |
US11400614B2 (en) | 2022-08-02 |
EP4324609A3 (de) | 2024-05-22 |
US11712815B2 (en) | 2023-08-01 |
CN114260968A (zh) | 2022-04-01 |
WO2018184677A1 (de) | 2018-10-11 |
CN114227791B (zh) | 2024-05-07 |
EP4324609A2 (de) | 2024-02-21 |
EP4302949A3 (de) | 2024-04-10 |
CN114274260A (zh) | 2022-04-05 |
CN114260968B (zh) | 2024-10-25 |
US20200031009A1 (en) | 2020-01-30 |
US20220219347A1 (en) | 2022-07-14 |
EP3606709A1 (de) | 2020-02-12 |
CN110582385B (zh) | 2022-01-11 |
US20230219248A1 (en) | 2023-07-13 |
ES2978185T3 (es) | 2024-09-06 |
EP4302949A2 (de) | 2024-01-10 |
EP4302948A3 (de) | 2024-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3606709B1 (de) | Schneidemaschine mit überblickskamera | |
EP3898060B1 (de) | Verfahren und laserflachbettmaschine zum ausschneiden von werkstücken | |
EP1916046B1 (de) | Verfahren und Vorrichtung zum maschinellen Schneiden eines plattenförmigen Werkstücks | |
AT515839B1 (de) | Verfahren und Einrichtung zum Bearbeiten von Werkstücken | |
DE69422885T2 (de) | Vorrichtung zur Segmentierung von Fingerabdruckbildern für Zehnfingerkarten | |
DE102018211922A1 (de) | Automatisierte Bildsensorkalibrierung | |
DE102016203392B3 (de) | Bildinspektionsverfahren mit mehreren Kameras | |
DE102011121086A1 (de) | System und Verfahren zur optischen Vermessung von Gliedmaßen | |
EP2960058B1 (de) | Verfahren und vorrichtung zur markenlosen steuerung und regelung eines digitalen druckprozesses | |
EP1570927A1 (de) | Blechaufnahmesystem für eine Blechbiegemaschine mit einer Durchlichteinheit | |
EP1022541A2 (de) | Verfahren und Vorrichtung zur Bestimmung der Geometrie von blattförmigem Gut oder Stapeln davon | |
DE10205562C1 (de) | Verfahren und Vorrichtung zum Anzeigen eines Abbildes eines Flachmaterials und zum Ausschneiden von Teilen aus dem Flachmaterial | |
DE102004058655B4 (de) | Verfahren und Anordnung zum Messen von Geometrien eines Objektes mittels eines Koordinatenmessgerätes | |
EP0388697A2 (de) | Verfahren und Vorrichtung zur Festlegung eines Messortes für die Feuchtmittel-Schichtdickenbestimmung einer Offset-Druckplatte | |
WO2021013725A1 (de) | Fertigungssystem und verfahren zum einrichten einer werkzeugmaschine | |
EP2679339B1 (de) | Vorrichtung zur Abbildung und Überprüfung eines Fräsprofils sowie Verfahren zum Bestimmen von Korrekturwerten für Werkzeugpositionen bei einem Fräsvorgang | |
DE102004020472B4 (de) | Vorrichtung und Verfahren zur Bearbeitung im wesentlicher flächiger Körper, wie Tierhäute oder Rapportstoffe oder dergleichen | |
DE102019211758A1 (de) | Passer-Registermessung mit kreisförmigen Messmarken | |
DE10049752A1 (de) | Verfahren zur Erkennung der Lagegenauigkeit von Register und Falz-oder Schneidkanten an flachen Exemplaren | |
EP3488983B1 (de) | Schneidemaschine | |
EP1353493A1 (de) | Verfahren und Vorrichtung zur Erfassung von Abtastpositionen in Druckbildern | |
WO2019072727A1 (de) | Verfahren und belichtungseinrichtung zur belichtung von zumindest einer gespeicherten darstellung auf einem lichtempfindlichen aufzeichnungsträger | |
EP3798570B1 (de) | Verfahren zur kalibrierung eines optischen messsystems, optisches messsystem und kalibrierobjekt für ein optisches messsystem | |
AT523360B1 (de) | Biegemaschine und Kontrolleinrichtung | |
DE102012211734A1 (de) | Verfahren und Vorrichtung zum Erfassen der Lage eines Objekts in einer Werkzeugmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191007 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20220518 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230919 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017015845 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20240226 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240304 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 8 Effective date: 20240228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240314 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240521 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240506 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240521 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240521 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240621 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2978185 Country of ref document: ES Kind code of ref document: T3 Effective date: 20240906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240221 |