EP3566779B1 - Atomiseur et procédé de fonctionnement correspondant - Google Patents

Atomiseur et procédé de fonctionnement correspondant Download PDF

Info

Publication number
EP3566779B1
EP3566779B1 EP19178996.5A EP19178996A EP3566779B1 EP 3566779 B1 EP3566779 B1 EP 3566779B1 EP 19178996 A EP19178996 A EP 19178996A EP 3566779 B1 EP3566779 B1 EP 3566779B1
Authority
EP
European Patent Office
Prior art keywords
stream
shrouding
nozzles
atomiser
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19178996.5A
Other languages
German (de)
English (en)
Other versions
EP3566779A1 (fr
Inventor
Hans-Jürgen Nolte
Frank Herre
Andreas Fischer
Peter Marquardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Systems AG
Original Assignee
Duerr Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duerr Systems AG filed Critical Duerr Systems AG
Publication of EP3566779A1 publication Critical patent/EP3566779A1/fr
Application granted granted Critical
Publication of EP3566779B1 publication Critical patent/EP3566779B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0426Means for supplying shaping gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/16Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area
    • B05B12/18Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area using fluids, e.g. gas streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/001Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means incorporating means for heating or cooling, e.g. the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0403Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces characterised by the rotating member
    • B05B5/0407Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces characterised by the rotating member with a spraying edge, e.g. like a cup or a bell

Definitions

  • the invention relates to a rotary atomizer and a corresponding painting device.
  • the respective coating agent e.g. filler, basecoat, clearcoat
  • atomizers e.g. high-speed air or ultrasonic atomizers
  • the wet paint mainly loses volatile components during atomization and application, such as solvents in solvent-based paints or water in water-based paints, which evaporate into the ambient air.
  • the percentage of solids in the applied wet paint changes compared to the percentage of solids in the wet paint before atomization.
  • this increase in the proportion of solids during application is determined by the application parameters, such as the rotational speed of the rotary atomizer, the outflow quantity, the amount of guiding air and the painting distance.
  • the increase in the proportion of solids during application is influenced by the ambient conditions, such as air humidity, air rate of descent and air temperature in the painting booth, since these ambient conditions affect the evaporation of the solvent content or the water content.
  • the most frequently used variant for air conditioning the painting booths is heated and humidified by means of heating registers and washers.
  • the dependence on the weather situation is disadvantageous, due to weather conditions that cannot be corrected (e.g. summer with humid air). If the ambient conditions are unsuitable, painting errors can occur, such as Runner and strongly fluctuating painting results.
  • this variant of air conditioning requires a large amount of energy.
  • the additional adapter disrupts the otherwise smooth outer contour of the rotary atomizer, which increases the tendency towards soiling and makes cleaning the rotary atomizer more difficult.
  • the air-conditioned air must be supplied to the adapter via additional hoses, which are stressed by material fatigue when the painting robot moves frequently and quickly and can eventually tear off.
  • the additional adapter hinders the handling of the rotary atomizer, since the external dimensions and the inertia of the rotary atomizer increase due to the additional adapter. For example, because of the larger external dimensions, the rotary atomizer with the additional adapter can no longer be inserted into small openings in order to coat surfaces located there.
  • Another disadvantage of the additional adapter is the relatively large axial distance between the sheath flow nozzles in the adapter and the bell cup atomizing edge, so that the energy and quantity of the sheath flow are usually not sufficient to achieve really defined evaporation conditions.
  • WO 2005/110618 A1 discloses a rotary atomizer with a bell cup and directing air nozzles to emit a directing air flow that directs particles applied by the bell cup to the object to be painted.
  • JP 58092475 A discloses a rotary atomizer with a nozzle from which swirled atomizing air is directed onto the sprayed coating agent jet.
  • EP 1 362 640 A1 also discloses a rotary atomizer with guide air nozzles, which additionally has a ring of air bores or an annular nozzle-like air gap in an electrode ring placed on the outer housing of the atomizer, from which the air is guided like a shell over the surface of the outer housing.
  • the invention is therefore based on the object of improving the known painting systems.
  • the sheath flow is not emitted by a separate adapter, but rather by sheath flow nozzles that are structurally integrated into the atomizer.
  • This structural integration of the sheath flow nozzles in the atomizer offers the advantage that the smooth outer contour of the atomizer housing is not disturbed by the sheath flow technology, so that the nebulizer's tendency to soiling and the ease of cleaning are not impaired.
  • the structural integration of the sheath flow nozzles in the atomizer enables the conditioned air for the sheath flow to be supplied via the normal connection flange of the atomizer.
  • the separate hoses provided in the prior art for supplying the conditioned air can be dispensed with, which eliminates the problem of hose tears.
  • the invention advantageously enables a reduction in the axial distance between the enveloping flow nozzles and the bell cup spray edge, so that the energy and quantity of the enveloping flow are sufficient to produce really defined evaporation conditions.
  • Another advantage of the inventive integration of the sheath flow nozzles in the atomizer is better handling, since the external dimensions and inertia of the atomizer according to the invention are hardly or not at all increased compared to a conventional atomizer without sheath flow technology.
  • sheath flow nozzles in the atomizer can be achieved within the scope of the invention, for example, in that the sheath flow nozzles are arranged in the atomizer housing. As an alternative, however, there is also the possibility that the sheath flow nozzles are arranged in a guiding air ring or some other integral component of the atomizer.
  • the invention encompasses the general technical teaching of influencing the evaporation conditions and thus the change in the solid content during application by creating a defined microclimate in the vicinity of the coating agent jet, so that complex air conditioning of the entire paint booth is less important or can even be omitted .
  • the invention is not limited to those painting systems in which conventional air conditioning of the painting booth is dispensed with, but also includes painting systems in which, in addition to creating a defined microclimate in the vicinity of the coating agent jet, the entire painting booth is air-conditioned.
  • the invention provides a rotary atomizer which, in addition to a bell plate for applying a coating agent jet to a component to be coated, has at least one enveloping stream nozzle via which an air-conditioned enveloping stream is emitted which at least partially surrounds the coating agent jet and thereby enters the vicinity of the coating agent jet creates a defined microclimate, which ensures specified evaporation conditions.
  • the air-conditioned enveloping stream preferably surrounds the coating agent jet in the form of a jacket over its entire circumference and / or over its entire length between the application element and the component to be coated.
  • the envelope flow is heated, cooled, dried or humidified in relation to the ambient air.
  • the envelope flow is heated, cooled, dried or humidified in relation to the ambient air.
  • the envelope flow is heated, cooled, dried or humidified in relation to the ambient air.
  • the envelope flow is heated, cooled, dried or humidified in relation to the ambient air.
  • the envelope flow is heated, cooled, dried or humidified in relation to the ambient air.
  • the envelope flow is heated, cooled, dried or humidified in relation to the ambient air.
  • drying or moistening of the sheath flow on the other hand.
  • the envelope flow is preferably heated by an air heater, which is preferably structurally separated from the atomizer.
  • an air heater which is preferably structurally separated from the atomizer.
  • the heating elements also being able to be arranged close to the outlet in the region of the sheath flow nozzle, which leads to low thermal losses.
  • the enveloping flow is preferably not heated by electrical heating elements in the atomizer, but rather by the separate air heater mentioned above.
  • the sheath flow preferably has an outlet temperature of more than + 40 ° C. and / or less than + 100 ° C. directly at the sheath flow nozzle, any intermediate values within this value range being possible.
  • the exit temperature of the sheath flow can be varied depending on the coating agent used. For example, water evaporates less as a solvent as an organic solvent, so that the outlet temperature of the sheath flow can be increased when applying water-based varnish compared to the application of solvent-based varnish.
  • the envelope flow preferably has a volume flow of more than 500 l / min and / or less than 2500 l / min, any intermediate values being possible within this interval.
  • the sheath flow preferably consists of air, which is available in the form of compressed air in painting systems anyway.
  • gases are particularly suitable that have a greater heat capacity, greater electrical insulation capacity and / or a higher moisture saturation limit than air.
  • the greater heat capacity has the advantage that the sheath flow loses only slightly in temperature after exiting the sheath flow nozzle, which ensures defined evaporation conditions.
  • a greater electrical insulation capacity is advantageous in the case of an electrostatic atomizer, since the insulation capacity of the sheath current prevents the electrostatically charged coating agent particles from discharging and thus ensures a high level of application efficiency.
  • a high moisture saturation limit of the gas used for the sheath stream is advantageous if the sheath stream is to take up a large amount of solvent from the coating agent jet.
  • the sheath flow can therefore also consist, for example, of sulfur hexafluoride (SF 6 ) or inert gases (for example carbon dioxide (CO 2 ) and nitrogen).
  • the atomizer according to the invention has an inner housing and an outer housing, with between the inner housing and the outer housing a sheath flow line for passing the air-conditioned sheath flow to the sheath flow nozzle.
  • the atomizer according to the invention is therefore preferably designed in such a way that the sheath flow within the atomizer in the sheath flow feed line up to the sheath flow nozzle by less than 140 ° C, 120 ° C, 100 ° C, 90 ° C, 80 ° C, 70 ° C, 60 ° C, 50 ° C, 40 ° C, 30 ° C, 20 °, 10 ° C or less than 5 ° C.
  • the rotary atomizer according to the invention has guiding air nozzles for emitting a guiding air jet, the guiding air jet shaping the coating agent jet.
  • an inner directing air jet and an outer directing air jet are provided, which offers greater flexibility when shaping the coating agent jet.
  • the enveloping flow nozzles are provided in addition to the directing air nozzles and are separated from them.
  • the directing air nozzles are attached on the inside, while the enveloping flow nozzles are attached on the outside.
  • the enveloping flow not only envelops or envelops the coating agent jet, but also the directing air flow, so that the directing air flow between the Sheath flow and the coating agent jet runs.
  • This arrangement is advantageous because the jacket-shaped enveloping of the coating agent jet by the enveloping stream is facilitated or made possible by the fact that the directing air jet forms the coating agent jet.
  • the number of sheath flow nozzles is preferably greater than 20 and / or less than 60, any intermediate values being possible within this interval.
  • the sheath flow nozzles preferably each have nozzle openings with a width or with a diameter of more than 1 mm and / or less than 8 mm.
  • the sheath flow nozzles therefore preferably have larger nozzle openings than the directing air nozzles.
  • the sheath flow nozzle is designed as a ring-shaped circumferential slit nozzle.
  • the slot nozzle preferably has a slot width in the range of 0.1-1 mm, while the slot diameter is preferably in the range of 50-100 mm.
  • Slit nozzles of this type are made, for example, as steering air nozzles EP 0 092 043 A2 known. The content of this publication should therefore be included in the present description with regard to the structural design of the slotted nozzle.
  • the rotatable bell cup has a predetermined bell cup edge.
  • a coating agent for example wet paint or powder paint
  • a component to be coated for example a motor vehicle body part
  • the enveloping flow nozzles can be angled in the circumferential direction of the bell cup and thus have a predetermined swirl angle, wherein the enveloping flow nozzles can be angled either in the direction of rotation of the bell cup or against the direction of rotation of the bell cup.
  • the swirl angle of the sheath flow nozzles can be in the range of 0-45 °, with any intermediate values being possible.
  • the atomizer according to the invention can optionally be a powder atomizer or a wet paint atomizer.
  • the invention not only comprises the rotary atomizer according to the invention described above as a single component, but also a painting device (e.g. a painting robot or a painting plant) with such an atomizer.
  • a painting device e.g. a painting robot or a painting plant
  • the painting device preferably has an air-conditioning device for air-conditioning the sheath flow, the air-conditioning device being connected downstream with the sheath flow nozzle (s).
  • the air conditioning device can have a conventional air heater in order to heat the air flow.
  • the air-conditioning device can have a cooling device that cools the sheath flow.
  • the air-conditioning device has a dehumidifying device which dehumidifies the envelope flow.
  • the air conditioning device can therefore be constructed like a conventional air conditioning system.
  • an air-conditioned enveloping stream is released which at least partially surrounds the coating agent jet.
  • the spatial position of the component surface to be coated is preferably determined and the envelope current is influenced as a function of the determined spatial position.
  • the spatial location of the The component surface to be coated can also be used to determine the spatial position of the rotary atomizer, since the rotary atomizer is generally guided according to the spatial position of the component surface to be coated.
  • the spatial position of the rotary atomizer can in turn be determined from the position control signals of the robot controller.
  • the temperature, the moisture content and / or the volume flow of the envelope flow can then be influenced.
  • a sheath flow with a lower moisture content, a higher temperature and / or a greater volume flow is preferably emitted than when an essentially horizontal component surface is coated.
  • the enveloping flow can be adjusted so that the solids content of the coating agent jet increases by more than 5%, 10%, 25% or even 50% between the release on the application element and the impact on the component surface to be coated.
  • Figure 1 shows, in simplified form, a rotary atomizer 1 which is largely of conventional construction and can be used, for example, for painting motor vehicle body parts.
  • the rotary atomizer 1 has a conventional bell cup 2 which is rotatably mounted about a bell cup axis 3 and is driven by a turbine 4. At the edge of the bell cup, the bell cup 2 emits a coating agent jet 5, the coating agent jet 5 being shown here only schematically.
  • the rotary atomizer 1 has numerous inner directing air nozzles 6 which are arranged concentrically around the bell cup axis 3 and emit an inner directing air jet 7 onto the outer surface of the bell cup 2, the inner directing air jet 7 forming the coating agent jet 5.
  • the rotary atomizer 1 has a plurality of external directing air nozzles 8, via which an external directing air jet 9 is emitted, which additionally shapes the coating agent jet 5.
  • the rotary atomizer 1 has numerous enveloping flow nozzles 10, which are also arranged concentrically around the bell disk axis 3 and emit an air-conditioned enveloping flow 11, which surrounds the coating agent jet 5 in a jacket-like manner and thus ensures defined evaporation conditions.
  • the emerging sheath flow 11 When exiting the sheath flow nozzles 10, the emerging sheath flow 11 entrains a secondary flow 12 of ambient air, the entrained secondary flow 12 making up 0-50% of the sheath flow 11 emerging from the sheath flow nozzles 10.
  • the enveloping stream 11, the coating agent and the guiding air are supplied through a connection flange 13 to which two separate guiding air lines 14, 15 can be connected.
  • enveloping flow lines 16, 17, 18 and an optional enveloping flow line 19 can be connected to the connecting flange 13 in order to feed the air-conditioned enveloping flow 11 to the rotary atomizer 1.
  • the sheath flow lines 16-19 are connected to an air heater 20 and an air volume regulator 21, so that the volume flow and the temperature of the sheath flow 11 can be varied.
  • the enveloping flow 11 is fed from the connection flange 13 to the enveloping flow nozzles 10 through a enveloping flow duct between an inner housing 22 and an outer housing 23 of the rotary atomizer 1.
  • the number of sheath flow nozzles 10 can be in the range from 20 to 60, the individual sheath flow nozzles 10 each having nozzle openings with a width of 1-8 mm.
  • the axial distance between the sheath flow nozzles 10 and the bell cup edge of the bell cup 2 can be between 5 and 100 mm.
  • Figure 2a shows schematically the painting of a vertical component surface 24 by the rotary atomizer 1. Due to the vertical orientation of the component surface 24, there is a risk of runs due to the force of gravity g acting on the applied paint particles. In order to avoid such runners, the solids content of the coating agent jet 5 impinging on the vertical component surface 24 is increased in a targeted manner by the temperature T1 of the envelope flow 11 from the air heater 20 (cf. Fig. 1 ) is specifically increased. As a result, the coating agent jet 5 impinging on the vertical component surface 24 contains fewer liquid solvent components and is therefore less prone to running. The greater evaporation of the solvent fractions from the coating agent jet 5 into the surrounding enveloping stream 11 is shown here by block arrows.
  • Figure 3 shows, in a greatly simplified form, a block diagram of a painting device according to the invention with a robot controller 26 which controls a multi-axis painting robot 27 with position control data, the painting robot 27 guiding the rotary atomizer 1.
  • the position control data are also passed on from the robot controller 26 to a computing unit 28, which uses it to determine the inclination ⁇ of the component surface to be coated.
  • the inclination ⁇ of the component surface is then passed on to an envelope flow control 29, which influences the envelope flow 11 as a function of the inclination ⁇ of the component surface.
  • the sheath flow controller 29 controls a sheath flow dryer 30, a sheath flow heater 31 and a sheath flow valve 32.
  • the enveloping flow 11 is influenced here as a function of the inclination ⁇ of the component surface to be coated in such a way that the coating agent is prevented from running on the component surface.
  • the enveloping flow is heated and dried more intensely when coating vertically aligned component surfaces than when coating horizontally aligned component surfaces.
  • the robot controller 26, the computing unit 28 and the sheath flow controller 29 can be integrated into a common electronic control unit 33. There is also the possibility here that the robot controller 26, the computing unit 28 and / or the envelope flow controller 29 are implemented as software modules.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Nozzles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Claims (13)

  1. Atomiseur à rotation, avec
    a) un plateau à cloche (2) rotatif doté d'une arête de plateau à cloche prédéfinie pour l'application d'un jet de moyen de revêtement (5) sur un composant (24, 25) à revêtir,
    b) un boîtier d'atomiseur qui comporte un boîtier intérieur (22) et un boîtier extérieur (23),
    c) au moins une buse de flux d'enveloppe (10) disposée dans le boîtier et destinée à la délivrance d'un flux d'enveloppe (11) climatisé qui entoure au moins partiellement le jet de moyen de revêtement (5), un passage de flux d'enveloppe s'étendant entre le boîtier intérieur (22) et le boîtier extérieur (23) étant prévu pour le transit du flux d'enveloppe (11) climatisé vers la buse de flux d'enveloppe (10),
    d) des buses d'air de guidage (6) intérieures destinées à la délivrance d'un jet d'air de guidage (7) intérieur pour la formation du jet de moyen de revêtement (5), et avec des buses d'air de guidage (8) extérieures destinées à la délivrance d'un jet d'air de guidage (9) extérieur pour la formation du jet de moyen de revêtement (5), les buses de flux d'enveloppe (10) étant prévues en plus des buses d'air de guidage (6) intérieures et des buses d'air de guidage (8) extérieures, et les buses d'air de guidage étant mises en place à l'intérieur tandis que les buses de flux d'enveloppe sont mises en place à l'extérieur de telle sorte que le flux d'enveloppe enveloppe le jet de moyen de revêtement (5) et le flux d'air de guidage, et le flux d'air de guidage s'étend entre le flux d'enveloppe et le jet de moyen de revêtement (5),
    e) et avec une bride de raccordement (13) prévue pour le montage de l'atomiseur (1) sur un robot, la bride de raccordement comportant plusieurs raccords par le biais desquels le flux d'enveloppe entre autres peut être acheminé à l'atomiseur (1).
  2. Atomiseur à rotation (1) selon la revendication 1, caractérisé en ce que, entre la buse de flux d'enveloppe (10) et l'arête de plateau à cloche, il y a un espace axial de plus de 2, 5, 10, 15 mm et/ou de
    moins de 150, 100, 75 ou 50 mm.
  3. Atomiseur à rotation (1) selon la revendication 1 ou 2, caractérisé en ce que les buses de flux d'enveloppe (10) sont coudées dans la direction circonférentielle du plateau à cloche (2) et présentent un angle d'hélice prédéfini.
  4. Atomiseur à rotation (1) selon la revendication 3, caractérisé en ce que les buses de flux d'enveloppe (10) sont coudées soit
    a) dans le sens de rotation du plateau à cloche (2), soit
    b) à l'inverse du sens de rotation du plateau à cloche (2).
  5. Atomiseur à rotation (1) selon la revendication 3 ou 4, caractérisé en ce que l'angle d'hélice des buses de flux d'enveloppe (10) se situe dans la plage de 0-45°.
  6. Atomiseur à rotation (1) selon l'une des revendications précédentes, caractérisé en ce que les buses de flux d'enveloppe (10) comportent respectivement une ouverture de buse ayant une largeur de
    plus de 1, 2 ou 5 mm et/ou de
    moins de 15, 10, 8 ou 6 mm.
  7. Atomiseur à rotation (1) selon l'une des revendications précédentes, caractérisé en ce que le nombre de buses de flux d'enveloppe (10) est
    supérieur à 5, 10, 20, 30 et/ou
    inférieur à 100, 60, 50, ou 40.
  8. Atomiseur à rotation (1) selon l'une des revendications précédentes, caractérisé en ce que la buse de flux d'enveloppe est une buse à fente périphérique de forme annulaire.
  9. Atomiseur à rotation (1) selon l'une des revendications précédentes, caractérisé en ce que le flux d'enveloppe (11) présente, directement sur la buse de flux d'enveloppe (10), une température de sortie de
    plus de + 30 °C, + 40 °C ou + 60 °C et/ou de
    moins de + 200 °C, + 150 °C, + 100 °C ou + 75 °C.
  10. Atomiseur à rotation (1) selon l'une des revendications précédentes, caractérisé en ce que le flux d'enveloppe (11) présente un flux volumique de
    plus de 250 l/min, 500 l/min, 750 l/min et/ou de
    moins de 2 500 l/min, 2 000 l/min, 1 500 l/min ou 1 000 l/min.
  11. Atomiseur à rotation (1) selon l'une des revendications précédentes, caractérisé en ce que le boîtier d'atomiseur (23) présente un contour extérieur lisse.
  12. Système de peinture avec un atomiseur à rotation selon l'une des revendications précédentes et avec un système de climatisation (20, 21, 30-32) destiné à la climatisation du flux d'enveloppe (11), l'équipement de climatisation (20, 21, 30-32) étant raccordé en aval à la buse de flux d'enveloppe (10).
  13. Système de peinture selon la revendication 12, caractérisé en ce que l'équipement de climatisation (20, 21, 30-32) comporte un réchauffeur d'air (20).
EP19178996.5A 2006-04-28 2007-04-05 Atomiseur et procédé de fonctionnement correspondant Active EP3566779B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006019890A DE102006019890B4 (de) 2006-04-28 2006-04-28 Zerstäuber und zugehöriges Betriebsverfahren
EP07007204.6A EP1849527B1 (fr) 2006-04-28 2007-04-05 Atomiseur et procédé de fonctionnement correspondant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP07007204.6A Division EP1849527B1 (fr) 2006-04-28 2007-04-05 Atomiseur et procédé de fonctionnement correspondant

Publications (2)

Publication Number Publication Date
EP3566779A1 EP3566779A1 (fr) 2019-11-13
EP3566779B1 true EP3566779B1 (fr) 2020-12-02

Family

ID=38283495

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19178996.5A Active EP3566779B1 (fr) 2006-04-28 2007-04-05 Atomiseur et procédé de fonctionnement correspondant
EP07007204.6A Active EP1849527B1 (fr) 2006-04-28 2007-04-05 Atomiseur et procédé de fonctionnement correspondant

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07007204.6A Active EP1849527B1 (fr) 2006-04-28 2007-04-05 Atomiseur et procédé de fonctionnement correspondant

Country Status (5)

Country Link
US (1) US7971805B2 (fr)
EP (2) EP3566779B1 (fr)
JP (1) JP5548330B2 (fr)
DE (1) DE102006019890B4 (fr)
ES (2) ES2857835T3 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006019890B4 (de) * 2006-04-28 2008-10-16 Dürr Systems GmbH Zerstäuber und zugehöriges Betriebsverfahren
DE102007006547B4 (de) 2007-02-09 2016-09-29 Dürr Systems GmbH Lenkluftring und entsprechendes Beschichtungsverfahren
FR2917309B1 (fr) * 2007-06-13 2013-10-25 Sames Technologies Projecteur rotatif de produit de revetement et installation comprenant un tel projecteur.
DE102007030724A1 (de) * 2007-07-02 2009-01-08 Dürr Systems GmbH Beschichtungseinrichtung und Beschichtungsverfahren mit konstanter Lenklufttemperatur
DE102007062132A1 (de) * 2007-12-21 2009-07-02 Dürr Systems GmbH Testverfahren und Testgerät zur Funktionsprüfung einer Lackiereinrichtung
JP5490369B2 (ja) * 2008-03-12 2014-05-14 ランズバーグ・インダストリー株式会社 回転式静電塗装装置及び塗装パターン制御方法
GB2469539B (en) * 2009-09-21 2011-03-09 Dau Binh Chiu Rotary device and method for transmitting material
DE102012001896A1 (de) * 2012-02-01 2013-08-01 Eisenmann Ag Rotationszerstäuber
JP5681779B1 (ja) * 2013-11-08 2015-03-11 ランズバーグ・インダストリー株式会社 静電塗装機
ITFI20130286A1 (it) * 2013-11-25 2015-05-26 Eurosider Sas Di Milli Ottavio & C Apparato automatico di verniciatura pneumatica.
US10076712B2 (en) 2014-09-11 2018-09-18 Mediamation, Inc. Systems and methods for fluid delivery in seat systems
US9307841B2 (en) 2014-09-11 2016-04-12 Mediamation, Inc. Systems and methods for fluid delivery in seat systems
JP6181094B2 (ja) 2015-02-16 2017-08-16 トヨタ自動車株式会社 回転霧化型静電塗装機及びそのシェーピングエアリング
KR101692347B1 (ko) * 2015-04-17 2017-01-03 주식회사 에스엠뿌레 분무기 및 분무조절장치
JP6669537B2 (ja) * 2015-04-17 2020-03-18 トヨタ車体株式会社 塗装装置及び塗装方法
EP3702053A4 (fr) 2017-10-24 2020-12-09 NSK Ltd. Structure de buse, dispositif de soufflage et procédé de production de composants, de paliers, de dispositifs à action directe, de dispositifs de direction et de véhicules
EP4094842A1 (fr) * 2021-05-28 2022-11-30 Graco Minnesota Inc. Configuration d'air de mise en forme d'atomiseur à cloche rotative, appareil de capuchon d'air et méthode correspondante

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857511A (en) * 1973-07-31 1974-12-31 Du Pont Process for the spray application of aqueous paints by utilizing an air shroud
DE3001209C2 (de) * 1980-01-15 1985-07-25 Behr, Hans, 7000 Stuttgart Vorrichtung zum Vernebeln flüssiger Farbe, insbesondere Lackzerstäuber
JPS5892475A (ja) * 1981-11-27 1983-06-01 Asahi Okuma Ind Co Ltd 静電塗装機
DE3214314A1 (de) 1982-04-19 1983-10-20 J. Wagner AG, 9450 Altstätten Elektrostatische spruehvorrichtung
JPS59166859U (ja) * 1983-04-20 1984-11-08 松下電器産業株式会社 噴霧装置
US4936510A (en) * 1986-06-26 1990-06-26 The Devilbiss Company Rotary automizer with air cap and retainer
US4798341A (en) * 1987-09-28 1989-01-17 The Devilbiss Company Spray gun for robot mounting
JPH02277567A (ja) * 1989-04-20 1990-11-14 Nissan Motor Co Ltd 回転霧化式塗装装置
JP2510296B2 (ja) * 1989-09-29 1996-06-26 トリニティ工業株式会社 回転霧化式静電塗装機
JPH0631236A (ja) * 1992-07-13 1994-02-08 Toyota Motor Corp メタリック塗料の静電塗装方法
JPH06134353A (ja) * 1992-10-23 1994-05-17 Ransburg Automot Kk 静電塗装装置
JP3473718B2 (ja) * 1994-07-22 2003-12-08 日産自動車株式会社 回転霧化静電塗装方法および装置
JPH0899052A (ja) * 1994-09-29 1996-04-16 Abb Ransburg Kk 回転霧化頭型塗装装置
JPH08108103A (ja) * 1994-10-13 1996-04-30 Abb Ransburg Kk 回転霧化頭型塗装装置
JPH0938528A (ja) * 1995-08-01 1997-02-10 Abb Ind Kk 静電塗装方法およびその静電塗装装置
JPH09225350A (ja) * 1996-02-28 1997-09-02 Mazda Motor Corp 回転霧化塗装方法およびその装置
JP3365203B2 (ja) * 1996-04-17 2003-01-08 トヨタ自動車株式会社 回転霧化塗装装置
EP0878238B1 (fr) * 1996-12-03 2009-03-11 Abb K.K. Unite d'application a tete de pulverisation rotative
DE19749072C1 (de) * 1997-11-06 1999-06-10 Herbert Huettlin Mehrstoffzerstäuberdüse
JP2000325860A (ja) * 1999-05-18 2000-11-28 Kansai Paint Co Ltd 塗装方法
FR2797789B1 (fr) * 1999-08-30 2001-11-23 Sames Sa Procede et dispositif de montage d'un sous-ensemble comprenant au moins un projecteur de produit de revetement sur une partie mobile d'un robot
JP4589513B2 (ja) * 2000-10-05 2010-12-01 関西ペイント株式会社 塗膜形成方法
JP2002355582A (ja) * 2001-05-31 2002-12-10 Nissan Motor Co Ltd 静電塗装装置
DE10202711A1 (de) * 2002-01-24 2003-07-31 Duerr Systems Gmbh Zerstäuber für die elektrostatische Serienbeschichtung von Werkstücken
JP2003236416A (ja) * 2002-02-20 2003-08-26 Abb Kk 回転霧化頭型塗装装置
DE10232863A1 (de) * 2002-07-16 2004-02-05 Hüttlin, Herbert, Dr.h.c. Zerstäubungsdüse mit rotativem Ringspalt
DE10233198A1 (de) * 2002-07-22 2004-02-05 Dürr Systems GmbH Rotationszerstäuber
DE10239517A1 (de) 2002-08-28 2004-03-11 Dürr Systems GmbH Beschichtungseinrichtung mit einem Rotationszerstäuber und Verfahren zum Steuern ihres Betriebes
US6889921B2 (en) * 2002-09-30 2005-05-10 Illinois Tool Works Inc. Bell cup skirt
US6929696B2 (en) * 2003-02-26 2005-08-16 Dubois Equipment Company, Inc. Apparatus and system for spray coating an article
DE10332863A1 (de) * 2003-07-18 2004-02-26 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
JP4409910B2 (ja) * 2003-10-31 2010-02-03 日本ペイント株式会社 スプレー塗装装置および塗装方法
JP2005278742A (ja) * 2004-03-29 2005-10-13 A & D Co Ltd 霧放出器
SE528093C2 (sv) 2004-05-18 2006-09-05 Lind Finance & Dev Ab Elanslutningar till målningsspindel
JP4568631B2 (ja) * 2005-03-30 2010-10-27 日産自動車株式会社 静電塗装機
DE102006019890B4 (de) * 2006-04-28 2008-10-16 Dürr Systems GmbH Zerstäuber und zugehöriges Betriebsverfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20070262170A1 (en) 2007-11-15
JP5548330B2 (ja) 2014-07-16
DE102006019890A1 (de) 2007-11-15
ES2744815T3 (es) 2020-02-26
DE102006019890B4 (de) 2008-10-16
EP1849527B1 (fr) 2019-06-12
ES2857835T3 (es) 2021-09-29
EP1849527A3 (fr) 2010-05-05
JP2007296520A (ja) 2007-11-15
US7971805B2 (en) 2011-07-05
EP1849527A2 (fr) 2007-10-31
EP3566779A1 (fr) 2019-11-13

Similar Documents

Publication Publication Date Title
EP3566779B1 (fr) Atomiseur et procédé de fonctionnement correspondant
EP2122427B1 (fr) Méthode d'exploitation pour un pulvérisateur et dispositif de revêtement correspondant
DE69306975T2 (de) Farbspritzvorrichtung mit rotierendem zerstäubungselement und werkzeug zum montieren und demontieren dieses elements
EP2285495B1 (fr) Pulvérisateur universel
EP2099570B1 (fr) Anneau pour guider l'air comprenant une cavité annulaire et cloche correspondante
EP2671647B1 (fr) Dispositif de séparation de brouillard de peinture
DE102012010610A1 (de) Verfahren zum Betreiben eines Rotationszerstäubers, Düsenkopf und Rotationszerstäuber mit einem solchen
WO2005042170A1 (fr) Dispositif et procede de revetement par pulverisation
EP2162227B1 (fr) Dispositif de revêtement et procédé de revêtement à température constante de l'air de guidage
EP2460591B1 (fr) Tête de buse et pulvérisateur rotatif doté de celle-ci
CH641062A5 (de) Zerstaeuberkopf an einer farbspritzpistole.
EP1384514B1 (fr) Pulvérisateur rotatif et palier pour ce pulvérisateur
DE3716776A1 (de) Nicht-leitender rotierender zerstaeuber
DE4335507A1 (de) Pulversprühorgan
DE744685C (de) Verfahren und Vorrichtung zur Zerstaeubungstrocknung
EP3256791B1 (fr) Bus à grande portée
EP0192028B1 (fr) Procédé pour appliquer des matériaux pulvérisables par un atomiseur et atomiseur à cet effet
DD266513A5 (de) Elektrostatische farbspritzpistole
EP1222966B1 (fr) Procédé et appareil pour pulvériser un liquide de revêtement
DE69833252T2 (de) Rotierende vorrichtung zur abgabe von teilchenförmigem material
DE102021203315A1 (de) Kühlanordnung für ein Brennstoffzellensystem
DE516833C (de) Verfahren und Vorrichtung zum Spritzen
EP4377016A1 (fr) Coupelle en cloche, pulvérisateur centrifuge comportant la coupelle en cloche, installation de peinture et procédé de peinture correspondant
DE102017116715A1 (de) Düsenkopf für einen Rotationszerstäuber zum Aufbringen eines Beschichtungsmaterials auf einen Gegenstand
DE202004007726U1 (de) Sprühvorrichtung zum Versprühen eines fließfähigen, flüssigen oder pastösen Sprühmittels, wie beispielsweise Fette, Öle, Farben u.dgl.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 1849527

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200228

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR TR

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 5/04 20060101AFI20200610BHEP

Ipc: B05B 12/18 20180101ALI20200610BHEP

Ipc: B05B 5/00 20060101ALI20200610BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200731

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 1849527

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016936

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016936

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2857835

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210903

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 17

Ref country code: ES

Payment date: 20230627

Year of fee payment: 17

Ref country code: DE

Payment date: 20230420

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240329

Year of fee payment: 18