EP3540229A1 - Compresseur à spirales - Google Patents

Compresseur à spirales Download PDF

Info

Publication number
EP3540229A1
EP3540229A1 EP19171627.3A EP19171627A EP3540229A1 EP 3540229 A1 EP3540229 A1 EP 3540229A1 EP 19171627 A EP19171627 A EP 19171627A EP 3540229 A1 EP3540229 A1 EP 3540229A1
Authority
EP
European Patent Office
Prior art keywords
compressor
compressor body
central axis
relative
support surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19171627.3A
Other languages
German (de)
English (en)
Other versions
EP3540229B1 (fr
Inventor
Dimitri Gossen
Muzaffer Ceylan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bitzer Kuehlmaschinenbau GmbH and Co KG
Original Assignee
Bitzer Kuehlmaschinenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bitzer Kuehlmaschinenbau GmbH and Co KG filed Critical Bitzer Kuehlmaschinenbau GmbH and Co KG
Publication of EP3540229A1 publication Critical patent/EP3540229A1/fr
Application granted granted Critical
Publication of EP3540229B1 publication Critical patent/EP3540229B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/06Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements
    • F01C17/063Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements with only rolling movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/801Wear plates

Definitions

  • the invention relates to a compressor comprising a compressor housing, a compressor unit arranged in the scroll compressor unit with a first, stationary compressor body and a second, movable relative to the stationary compressor body movable compressor body, which formed in the form of a Kreisvolvente first and second spiral rib mesh to form compressor chambers, when the second compressor body is moved relative to the first compressor body on an orbital track, an axial guide supporting the movable compressor body against movements in the direction parallel to a center axis of the stationary compressor body and moving in the direction transverse to the central axis, a drive motor which has an eccentric drive for the scroll compressor unit, which has a driven by the drive motor and rotating on a path about a central axis of the drive shaft driver t, which cooperates with a cam receiver of the second compressor body, and a self-rotation of the second compressor body preventing coupling.
  • a compressor of the type described above in that the axial guide supports a compressor body base supporting the spiral rib of the second compressor body to an axial support surface, that the Axialstützamide transverse to the central axis slidably rests on a slider, which in turn is supported slidably transverse to the central axis on a carrier element arranged in the compressor housing.
  • the slider could be either one-dimensionally movable relative to the compressor body base or relative to the carrier member.
  • the sliding body is movable in two dimensions relative to the compressor body base and relative to the carrier element.
  • the mobility of the slider can be realized when the slider is guided by a two-dimensional guide with play relative to the compressor body base or relative to the carrier element.
  • the slider relative to the compressor base or relative to the carrier element can perform a limited Oslosorbital warmth.
  • the orbital movement is expediently defined by a predominantlysorbitalradius which is smaller than the compressor orbital radius of the movable compressor body.
  • the guide orbital radius for the slider is at values equal to 0.5 times the compressor orbital radius. It is better if the values of the guide orbital radius are 0.3 times the compressor orbital radius or less, more preferably 0.2 times the compressor orbital radius or less.
  • the guide orbital radius is 0.01 times the compressor orbital radius or more, more preferably 0.05 times the compressor orbital radius or more.
  • the guide has a first guide element which is arranged on the sliding body and has a second guide element which is connected either to the compressor body base or to the carrier element.
  • the guide with play as guide elements has a guide pin and a guide recess which cooperates with the guide pin and which are movable relative to one another two-dimensionally by engaging the guide recess in the guide recess Guide pin is movable within the guide recess due to its relative to the diameter of the guide recess of smaller diameter.
  • the axial support surface is designed as an annular surface running around the center axis of the movable compressor body.
  • annular surface allows a reliable, uniform and secure support of the second compressor body and at the same time a structure of a homogeneous lubricating film, which is very important for the guiding properties and the wear resistance.
  • the Axialstschreib construction could be supported on individual surface areas of the slider.
  • the annular surface of the slider is dimensioned so that it is larger than the annular surface of the Axialstschreibamide, so that the Axialstschreibamide is always supported in the orbiting movement of the second compressor body over its entire surface on the annular surface of the slider.
  • a peripheral surface adjoins the axial support surface radially outboard and / or radially inward, which recesses relative to a plane in which the axial support surface extends runs.
  • edge surface connects directly to the Axialstschreib materials, and thus extends to the plane in which extends the Axialstschreib construction, and then with increasing distance from the Axialstschreib structure in increasing distance from the plane in which the axial support surface extends.
  • the supply of lubricant to the Axialstschreib is favored from an outer side thereof ago.
  • the lubricant supply between the Axialstschreib design and the slider can also be further favored by the fact that the Axialstschreib construction and / or the Axialstschreib construction bearing Gleitstschreib products with microwells, for example, material-related and / or incorporated and / or embossed well structures are provided which receive lubricant available hold and distribute.
  • an advantageous solution provides that the sliding body is supported with a sliding bearing surface on the support element.
  • the Gleitauflage configuration could also be formed from partial surfaces.
  • the sliding support surface is designed as an annular surface extending around the central axis of the stationary compressor body.
  • the carrier element has a carrier surface on which the sliding body is supported by the sliding support surface.
  • This support surface could also be formed from individual partial surfaces.
  • the carrier surface is designed as a circumferential around the central axis of the stationary compressor body ring surface.
  • the supply of lubricant between the carrier element and the sliding body can also be further facilitated by the fact that the sliding support surface and / or a support surface carrying the sliding support surface are provided with microwells, for example material-conditioned and / or machined and / or embossed depression structures, which receive lubricant hold and distribute.
  • the slider could have any shape.
  • the sliding body is plate-shaped, in particular as an annular disc is formed.
  • the first stationary compressor body is made of cast steel.
  • Such a first compressor body made of cast steel has optimum stability and fatigue strength.
  • the second compressor body is made of an aluminum alloy, in particular of aluminum alloy casting.
  • the production of the second compressor body made of an aluminum alloy has the advantage that this second compressor body has a low mass, which brings particular advantages when the second compressor body to move at high speed on the orbital path around the central axis of the first compressor body around.
  • a material combination of aluminum alloy cast steel between the first and the second compressor body has the advantage of good running properties with a high fatigue strength and longevity.
  • the slider could be made of any material, which, however, should result in an optimal material pairing to the second compressor body and the support element.
  • the slider is formed of spring steel.
  • the design of the slider made of spring steel on the one hand has the advantage that a favorable material pairing is given to the second compressor body made of aluminum, and on the other hand the advantage that thereby also an optimal material pairing can be produced to the support element.
  • the design of the second sliding body made of spring steel has great advantages for cost reasons, since spring steel is a cost-effective material from which the shape suitable for the slider can be produced in a simple manner by cutting or punching.
  • the support element could be made in the simplest case of steel or from the material of the compressor housing.
  • the carrier element is made of sintered material, for example sintered metal.
  • the carrier element has a carrier surface, formed by an open-pored sintered material, on which the sliding body is supported with its sliding support surface.
  • Such an open-pored sintered material for forming the support surface has the great advantage that it can advantageously absorb lubricant and then also deliver it to the lubrication between the support surface and the sliding support surface.
  • the lubricant can be held in particular in the open pores of the sintered material, so that in a simple manner, a lubricating film between the support surface and the Gleitauflage configuration can be maintained permanently.
  • Such a solution is particularly advantageous in terms of manufacture, since no separate part for the formation of the support surface is required, but the support surface itself can be formed by the compressor body base.
  • driver receptacle is integrated in the compressor body base, so that no further part is required for this purpose.
  • the cam receiver is arranged in the direction parallel to the central axis of the movable compressor body without supernatant to the support surface on the compressor body base, so that the force acting on the Mit Talentage forces when driving the second compressor body in the direction parallel to the central axis seen between the support surface and the spiral ribs on the second compressor body act and thus the forces acting on the second compressor body during operation of the scroll compressor unit tilting moments are kept small.
  • the self-rotation preventing coupling at least two coupling element sets, comprising at least two coupling elements comprises.
  • Such a coupling can be realized in various ways.
  • one of the coupling elements is held on the compressor body base.
  • one of the coupling elements is held on the carrier unit.
  • the coupling element sets are arranged and formed so as to be effective directly between the support unit and the compressor body base of the second compressor body, so that a compact structure can be realized.
  • the self-rotation preventing clutch has more than two coupling element sets.
  • the coupling element sets are arranged around the central axis of the orbital path around at equal angular intervals.
  • one of the coupling elements is formed by a pin body.
  • one of the coupling elements is designed as a cylindrical receptacle.
  • a further advantageous solution provides that one of the coupling elements is designed as arranged in the cylindrical receptacle annular body.
  • the annular body loose, that is with game, sitting in the cylindrical receptacle and thus can move relative to the cylindrical receptacle.
  • Such a design of the coupling element sets has the great advantage that on the one hand ensure optimum lubrication and on the other hand allow a low-noise movement of the second compressor body relative to the first compressor body, since in each of the coupling element sets two damping lubricant films are present, namely on the one hand, a lubricant film between the pen body and the annular body and on the other hand, a lubricant film between the annular body and the cylindrical receptacle, in which the annular body is arranged.
  • the slider and the coupling element sets could be arranged separately.
  • the slider could extend outside the coupling element sets, or vice versa.
  • the coupling element sets pass through the sliding body, so that thereby lubricant can be transported between the sliding body and the coupling element sets, in particular if the coupling element sets pass through openings in the sliding body.
  • the compressor body base of the second compressor body is provided with pockets which have the cylindrical receptacles of the coupling element sets facing openings.
  • Such pockets with the cylindrical receptacles facing openings have the advantage that it is entrained by these lubricants in the orbiting movement of the second compressor body base and thus lubricant can always be transported to the cylindrical receptacles.
  • the effect of the pockets is particularly favorable if the openings of the pockets are each overlappingly positionable with two cylindrical receptacles arranged successively in the direction of rotation, that is to say that in this case the openings of the pockets have an angular extent such that they are in the orbiting movement of the pockets Compressor body base in each rotational position in each case two pockets can connect to each other and thus can advantageously transport lubricant from a cylindrical receptacle to the other cylindrical receptacle.
  • a lying course of the central axis of the stationary compressor body means that the central axis runs during operation of the compressor according to the invention approximately parallel to a horizontal, wherein Under the term “approximately parallel” is to be understood that the angle between the central axis and the horizontal when using the compressor according to the invention in the normal operating state is a maximum of 30 °, more preferably a maximum of 20 °.
  • the drive shaft of the drive motor is substantially horizontal, with the same conditions apply to the angle between the central axis of the drive shaft and a horizontal as for the alignment of the central axis of the stationary compressor body relative to the horizontal.
  • the compressor housing is made of an aluminum alloy in order to build the compressor of the invention as possible to save weight.
  • the compressor also has a better resistance to external weather conditions.
  • FIG. 1 illustrated embodiment of a designated as a whole with 10 inventive compressor for a gaseous medium, in particular a refrigerant comprises a designated as a whole with 12 compressor housing, which has a first end housing portion 14, a second end housing portion 16 and a disposed between the end housing portions 14 and 16 Intermediate section 18 has.
  • a scroll compressor unit 22 designated as a whole which has a first compressor housing 24, in particular in the first housing section 14, and a second compressor housing 26 which is movable relative to the stationary compressor body 24.
  • the first compressor body 24 includes a compressor body base 32 over which a first spiral rib 34 rises and the second compressor body 26 also includes a compressor body base 36 above which a second spiral rib 38 rises.
  • the compressor bodies 24 and 26 are arranged relative to each other so that the spiral ribs 34, 38 mesh with each other as in FIG Fig. 3 illustrated, between at least one, preferably a plurality of compression chambers 42 to form, in which a compression of the gaseous medium, for example, refrigerant, characterized in that the second compressor body 26 with its central axis 46 about a central axis 44 of the first compressor body 24 on an orbital path 48 with a compressor orbital trajectory radius VOR, wherein the volume of the compression chambers 42 is reduced and finally compressed gaseous medium exits through a central outlet 52, while aspirated gaseous medium by circumferentially opening compressor chambers radially outwardly relative to the central axis 44 is sucked.
  • a compression of the gaseous medium for example, refrigerant
  • the sealing of the compression chambers 42 relative to each other also takes place, in particular, in that the spiral ribs 34, 38 are provided at the end with axial sealing elements 54 and 58 which abut sealingly against the respective bottom surface 62, 64 of the respective other compressor body 26, 24, the bottom surfaces 62 , 64 are formed by the respective compressor body base 36 and 32 and lie in a direction perpendicular to the central axis 46 extending plane.
  • the spiral compressor unit 22 is accommodated as a whole in a first housing body 72 of the compressor housing 12, which has a front-side cover portion 74 and an integrally formed on the front-side cover portion 74 cylindrical annular portion 76, which in turn with a ring projection 78 in an end sleeve 82 of the intermediate portion 18 forming central housing body 84 engages, wherein the central housing body 84 is closed on a side opposite the first housing body 72 side by a second housing body 86 which forms an inlet chamber 88 for the gaseous medium.
  • the first housing body 72 encloses with the cylindrical ring portion 76 a receptacle 92 for the scroll compressor unit 22, which has a bearing surface 94 for the compressor body base 32 of the first compressor body 24.
  • the first compressor body 24 is fixed immovably in the receptacle 92 against all movements parallel to the support surface 94.
  • the first compressor body 24 is fixed within the first housing body 72 and thus also within the compressor housing 12 in a precisely defined position stationary.
  • the axial guide 96 formed by a support member 112 which is in particular made of an open-pore sintered material and having a the axial support surface 102 facing support surface 114, on which but not the compressor body base 36 rests with the AxialstNeill requirements 102, but on which as a whole with 116 denoted in particular plate-shaped slider 116 rests with a Gleitauflage composition 118, wherein the sliding body 116 with a Gleitauflagefiguration 118 opposite Gleitstütz phenomenon 122 supports the Axialstütz Structure 102 against movements parallel to the central axis 44 but slidably supported with respect to movements transverse to the central axis 44.
  • the axial guide 96 provides that upon movement of the second compressor body 26 on the orbital path 48 about the central axis 44 of the first compressor body 24 on the one hand, the second compressor body 26 with the compressor body base 36 and the Axialstützamide 102 moves relative to the slider 116 On the other hand, on the other hand, the sliding body 116 in turn moves relative to the support member 118.
  • the Gleitstütz configuration 122 and the Gleitauflage composition 118 of the slider 116 are provided with recesses 123, in particular micro-recesses, which form receptacles for a lubricant and contribute to the distribution of the lubricant, as exemplified in Fig. 6 shown in connection with the sliding support surface 122.
  • the slider 116 is guided by a designated as a whole with 132 guide with play relative to the support member 112, the guide with game 132 a in the slider 116 provided guide recess 134 which has a diameter DF, and comprises a anchored in the support member 112 guide pin 136 whose diameter DS is smaller than the diameter DF, so that half of the difference DF-DS defines a predominantlysorbitalradius FOR, with in which the sliding body 116 can perform an orbiting movement relative to the carrier element 112.
  • the clearance 146 is filled with a lubricating film 147 similar to the operation of a hydrodynamic bearing.
  • the guide orbital radius FOR it is sufficient for the guide orbital radius FOR to be 0.01 times the compressor orbital radius VOR or more, in particular 0.05 times the compressor orbital radius VOR or more.
  • the guide orbital radius FOR is 0.3 times the compressor orbital radius, VOR or less, more preferably 0.2 times the compressor orbital radius VOR or less.
  • the carrier element 112 is made of an open-pore sintered material at least in the area of the carrier surface 114, improved lubrication is additionally ensured by the fact that lubricant enters the pores of the carrier element 112 and thus over the pores of the carrier element 112 in the region of Carrier surface 114 is available for the construction of the lubricating film 147 in the intermediate space 146.
  • the sliding body 116 itself is formed as a plate-shaped, annular part made of spring steel and thus the support surface 114 facing Gleitauflage Structure 118 is a smooth Federstahlober Chemistry, the formation of the lubricant film 147 in the intermediate space 146 is additionally promoted.
  • the material combination of open-pore sintered material which is softer in the region of the carrier surface 114 than spring steel, and the spring steel in the region of the sliding support surface 118 due to the wear resistance advantageous endurance properties.
  • the compressor body base 36 is disposed in a radially outboard and a radially inward edge region 152 having a relative to the axial support surface 102 inclined and opposite axial support surface 102, recessed extending edge surface 154 which, together with the sliding support surface 122 leads to a wedge-shaped radially outwardly or radially inwardly opening gap 158, which facilitates the access of lubricant to the intermediate space 148.
  • axial support surface 102 and cooperating sliding support surface 122 and support surface 114 and cooperating sliding surface 118 are all disposed radially outwardly of a plurality of coupling element sets 162 which are equally spaced radially from center axis 44 and at equal angular intervals about the central axis 44 and together form a coupling 164 which prevents self-rotation of the second movable compressor body 26.
  • Each of these coupling element sets 162 comprises, as in FIGS Fig. 4 . 6 to 8 illustrated, as a first coupling element 172 a pin body 174 which has a cylindrical surface 176 and engages with this cylindrical surface 176 in a second coupling element 182.
  • the second coupling element 182 is formed by an annular body 184 having a cylindrical inner surface 186 and a cylindrical outer surface 188 which are coaxial with each other.
  • This second coupling element 182 is guided in a third coupling element 192, which is designed as a receptacle 194 provided in the carrier element 112 for the annular body 184 and which has a cylindrical inner wall surface 196.
  • a diameter DI of the inner wall surface 196 is greater than a diameter DRA of the cylindrical outer surface 188 of the annular body 184 and a diameter DRI of the cylindrical inner surface 186 inevitably smaller than the diameter DRA of the cylindrical outer surfaces 188 of the annular body 184, wherein also the diameter DRI of the cylindrical Inner surface 186 is larger than a diameter DSK of the cylindrical lateral surface 176 of the pin body 174th
  • each coupling element set 162 in turn forms an orbital guide whose maximum orbital radius OR for the orbital motion corresponds to DI / 2 (DRA-DRI) DSK / 2.
  • the movable compressor body 26 is guided relative to the stationary compressor body 24 by the coupling 164, that, like in the Fig. 9 to 14 in each case one of the coupling element sets 162 is effective to prevent the self-rotation of the second movable compressor body 26, wherein, for example, in six coupling element sets 162 after passing through an angular range of 60 °, the effectiveness of each coupling element set 162 of a coupling element set 162 to the coupling element set next 162 in the direction of rotation replaced.
  • each coupling element set 162 has three coupling elements 172, 182 and 192 and in particular a ring body 184 between the respective pin body 174 and the respective receptacle 194 is effective, on the one hand the wear resistance of the coupling element sets 162 is improved, on the other hand, the lubrication improved in the same area and in addition also reduces the noise generated by the coupling element sets 162, which results from the change of effectiveness of one coupling element set 162 to the other coupling element set 162.
  • the coupling element sets 162 undergo adequate lubrication, in particular lubrication between the cylindrical surface 176 of the pin body 174 and the cylindrical inner surface 186 of the ring body 184 and lubrication between the cylindrical outer surface 188 of the ring body 184 and the cylindrical inner wall surface 196 of Recording 194.
  • the coupling element sets 162 pass through the sliding body 116, in particular the pin bodies 174 openings 198 (FIG. Fig. 7 ) of the slider 116, whereby lubricant from the lubricating films 147 and 149 the coupling element sets 162 can be supplied.
  • pockets 204 are provided, which in the compressor body base 36 bounding flat side 98 have an opening 206 having such an angular extent with respect to the center axis 46 of the compressor body base 36 that these, as in Fig. 15 shown, in individual rotational positions with two successive recordings 194 of the coupling element sets 162 in the direction of rotation may overlap, so that the pockets 204 are capable of causing a lubricant exchange between successive coupling element sets 162 and thus allow a uniform supply of lubricant all coupling element sets 162.
  • the pockets 204 are arranged to extend around either side of a geometric arc 208 about the central axis 46, which intersects the holes 202 in the center to always achieve optimum overlap with the receptacles 194.
  • the inventive concept of the lubrication of the axial guide 96 and the coupling element sets 162 is particularly advantageous if the center axes 44 and 46 of the compressor body 24 and 26 lying normally, that is a maximum of an angle of 30 ° to a horizontal run, in the compressor housing 12, in particular in the region of the first housing body 72 at a lowermost position in the gravitational direction forms a lubricant bath 210 from which swirled lubricant in operation while being received and distributed in the manner described.
  • the drive of the movable compressor body 24 is effected by a drive motor designated as a whole by 212, which in particular has a stator 214 held in the central housing body 84 and a rotor 216 arranged inside the stator 214, which is arranged on a drive shaft 218 which is coaxial with the central axis 44 of the stationary compressor body 24 extends.
  • the drive shaft 218 is mounted on the one hand in a bearing unit 222 arranged between the drive motor 212 and the spiral compressor unit 22 and in the central housing body 84 and on the other hand in a bearing unit 224 which is arranged on a side of the drive motor 212 opposite the bearing unit 222.
  • the bearing unit 224 is mounted, for example, in the second housing body 86, which closes the central housing body 84 on a side opposite the first housing body 72 side.
  • aspirated medium in particular the refrigerant
  • the drive shaft 218 drives the movable compressor body 26 via an eccentric drive designated as a whole by 232, which moves in an orbiting manner around the central axis 44 of the stationary compressor body 24.
  • the eccentric drive 232 in particular comprises an eccentric pin 234 held in the drive shaft 218, which moves a driver 236 on an orbital path about the central axis 44, which is rotatably mounted on the eccentric pin 234 and in turn is rotatably mounted in a rotary bearing 238, wherein the pivot bearing 238 a Turning the driver 236 relative to the movable compressor body 26 allowed.
  • the follower 236 is limitedly rotatable relative to the eccentric pin 234 and relative to the cam receiver 242 and allows for adjustment of the radius of orbital movement of the movable compressor body 26 to hold the spiral ribs 34 and 38 in abutment with each other.
  • the second compressor body 26 is provided with a driver receptacle 242 which receives the pivot bearing 238.
  • the cam receiver 242 is set back relative to the flat side 98 of the compressor body base 36 and thus integrated in the compressor body base 36, so that the forces acting on the movable compressor body 26 driving forces on one of the spiral rib 38 side facing the Flat side 98 of the compressor body base 36 are effective and thus drive with low tilting moment the movable compressor body 26, as viewed axially through the axial guide 96 in the direction of the central axis 44 between the driver receptacle 242 and the electric motor 212 on the Axialstütz construction 102 and guided transversely to the central axis 44 movable is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
EP19171627.3A 2014-09-17 2015-09-09 Compresseur à spirales Active EP3540229B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014113435.4A DE102014113435A1 (de) 2014-09-17 2014-09-17 Kompressor
PCT/EP2015/070568 WO2016041824A2 (fr) 2014-09-17 2015-09-09 Compresseur
EP15760194.9A EP3194782B1 (fr) 2014-09-17 2015-09-09 Compresseur à spirales

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP15760194.9A Division EP3194782B1 (fr) 2014-09-17 2015-09-09 Compresseur à spirales

Publications (2)

Publication Number Publication Date
EP3540229A1 true EP3540229A1 (fr) 2019-09-18
EP3540229B1 EP3540229B1 (fr) 2021-11-03

Family

ID=54065372

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15760194.9A Active EP3194782B1 (fr) 2014-09-17 2015-09-09 Compresseur à spirales
EP19171627.3A Active EP3540229B1 (fr) 2014-09-17 2015-09-09 Compresseur à spirales

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15760194.9A Active EP3194782B1 (fr) 2014-09-17 2015-09-09 Compresseur à spirales

Country Status (5)

Country Link
US (2) US10634141B2 (fr)
EP (2) EP3194782B1 (fr)
CN (2) CN110925196A (fr)
DE (1) DE102014113435A1 (fr)
WO (1) WO2016041824A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020133438A1 (de) 2020-12-14 2022-06-15 Bitzer Kühlmaschinenbau Gmbh Scrollmaschine, insbesondere Scrollkompressor oder -expander und Kälteanlage

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113435A1 (de) 2014-09-17 2016-03-17 Bitzer Kühlmaschinenbau Gmbh Kompressor
KR102080622B1 (ko) 2015-03-06 2020-02-25 한온시스템 주식회사 스크롤 압축기
CN108779675B (zh) * 2016-02-25 2021-05-11 比泽尔制冷设备有限公司 压缩机
DE102017111778B4 (de) 2017-05-30 2019-09-19 Hanon Systems Vorrichtung zum Verdichten eines gasförmigen Fluids
JP6711331B2 (ja) 2017-08-11 2020-06-17 株式会社Soken スクロール圧縮機
KR102630534B1 (ko) * 2022-01-14 2024-01-29 엘지전자 주식회사 스크롤 압축기

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159780A (ja) * 1986-01-06 1987-07-15 Mitsubishi Electric Corp スクロ−ル圧縮機
DE3737422A1 (de) * 1986-11-05 1988-05-19 Mitsubishi Electric Corp Spiralverdichter
US20020150485A1 (en) * 2001-04-17 2002-10-17 Kabushiki Kaisha Toyota Jidoshokki Scroll compressors
EP2012015A1 (fr) * 2006-04-21 2009-01-07 Sanden Corporation Machine à fluide de type à vis d'extraction
EP2012016A1 (fr) * 2006-04-21 2009-01-07 Sanden Corporation Machine à fluide de type à vis d'extraction
US20100172781A1 (en) * 2007-12-27 2010-07-08 Mitsubishi Heavy Industries, Ltd. Scroll compressor
US20110200475A1 (en) * 2009-04-27 2011-08-18 Mitsubishi Heavy Industries, Ltd. Scroll compressor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830402A (ja) * 1981-08-14 1983-02-22 Hitachi Ltd スクロ−ル流体機械
JP2983325B2 (ja) * 1991-04-26 1999-11-29 株式会社日本自動車部品総合研究所 スクロール型圧縮機
JP2592344Y2 (ja) * 1993-04-13 1999-03-17 株式会社豊田自動織機製作所 スクロール型圧縮機
JPH07109983A (ja) * 1993-10-13 1995-04-25 Nippondenso Co Ltd スクロール型圧縮機
JPH08151983A (ja) * 1994-11-30 1996-06-11 Matsushita Electric Ind Co Ltd スクロール圧縮機
JPH1130187A (ja) * 1997-07-10 1999-02-02 Mitsubishi Heavy Ind Ltd スクロール型流体機械
US6158989A (en) * 1997-12-15 2000-12-12 Scroll Technologies Scroll compressor with integral outer housing and fixed scroll member
JP4013730B2 (ja) * 2002-10-25 2007-11-28 株式会社豊田自動織機 スクロールコンプレッサ
JP5039327B2 (ja) * 2006-06-14 2012-10-03 三菱重工業株式会社 スクロール圧縮機
US7878777B2 (en) * 2006-08-25 2011-02-01 Denso Corporation Scroll compressor having grooved thrust bearing
JP4884904B2 (ja) * 2006-09-26 2012-02-29 三菱重工業株式会社 流体機械
JP2008180094A (ja) * 2007-01-23 2008-08-07 Sanden Corp スクロール型流体機械
JP2008303819A (ja) * 2007-06-08 2008-12-18 Sanden Corp スクロール圧縮機
US8453707B2 (en) * 2007-07-16 2013-06-04 Mckeon Rolling Steel Door Co., Ltd. Two-motor drive arrangement for a roller curtain
WO2009154151A1 (fr) * 2008-06-16 2009-12-23 三菱電機株式会社 Compresseur à spirale
US20110020047A1 (en) * 2009-07-27 2011-01-27 Tae Jin Kim Single package for multi-applicator with single or multi-chambers
JP2012017656A (ja) * 2010-07-06 2012-01-26 Sanden Corp スクロール型圧縮機
JP2012241530A (ja) * 2011-05-16 2012-12-10 Mitsubishi Electric Corp スクロール圧縮機
JP5787744B2 (ja) * 2011-12-22 2015-09-30 三菱電機株式会社 摺動機構およびロータリ圧縮機およびスクロール圧縮機
JP2014101835A (ja) * 2012-11-21 2014-06-05 Mitsubishi Electric Corp スクロール圧縮機
DE102014113435A1 (de) 2014-09-17 2016-03-17 Bitzer Kühlmaschinenbau Gmbh Kompressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159780A (ja) * 1986-01-06 1987-07-15 Mitsubishi Electric Corp スクロ−ル圧縮機
DE3737422A1 (de) * 1986-11-05 1988-05-19 Mitsubishi Electric Corp Spiralverdichter
US20020150485A1 (en) * 2001-04-17 2002-10-17 Kabushiki Kaisha Toyota Jidoshokki Scroll compressors
EP2012015A1 (fr) * 2006-04-21 2009-01-07 Sanden Corporation Machine à fluide de type à vis d'extraction
EP2012016A1 (fr) * 2006-04-21 2009-01-07 Sanden Corporation Machine à fluide de type à vis d'extraction
US20100172781A1 (en) * 2007-12-27 2010-07-08 Mitsubishi Heavy Industries, Ltd. Scroll compressor
US20110200475A1 (en) * 2009-04-27 2011-08-18 Mitsubishi Heavy Industries, Ltd. Scroll compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020133438A1 (de) 2020-12-14 2022-06-15 Bitzer Kühlmaschinenbau Gmbh Scrollmaschine, insbesondere Scrollkompressor oder -expander und Kälteanlage
WO2022128288A2 (fr) 2020-12-14 2022-06-23 Bitzer Kühlmaschinenbau Gmbh Machine à spirales, en particulier compresseur ou expanseur à spirales, et installation de réfrigération

Also Published As

Publication number Publication date
DE102014113435A1 (de) 2016-03-17
WO2016041824A2 (fr) 2016-03-24
EP3194782B1 (fr) 2019-05-01
US11396877B2 (en) 2022-07-26
CN106795768A (zh) 2017-05-31
US10634141B2 (en) 2020-04-28
CN106795768B (zh) 2019-11-26
EP3540229B1 (fr) 2021-11-03
WO2016041824A3 (fr) 2016-06-02
US20170184107A1 (en) 2017-06-29
EP3194782A2 (fr) 2017-07-26
CN110925196A (zh) 2020-03-27
US20200217319A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
EP3194782B1 (fr) Compresseur à spirales
EP3491245B1 (fr) Compresseur
EP1078165B1 (fr) Ensemble compresseur en spirale
EP1886035B1 (fr) Palier pivotant a disques obliques
EP0949419B1 (fr) Pompe à engrenages internes
DE19947462C1 (de) Sintergleitlager für Motoren und Getriebe
EP2345498B1 (fr) Scie manuelle dotée d'une lame de scie annulaire
DE2710734A1 (de) Verdichter mit exzentrisch gefuehrten, frei beweglichen kolben
EP0337950A2 (fr) Moteur à piston rotatif à axe interne
EP3420193B1 (fr) Compresseur
EP2249039A2 (fr) Pompe à engranage externe dotée d'une lubrification de palier améliorée
DE102016103315A1 (de) Kompressor
DE60110314T2 (de) Axialkolbenpumpe
DE3744637A1 (de) Drehkolbenverdichter
DE10028336C1 (de) Axialkolbenmaschine
DE10041318A1 (de) Hydraulische Radialkolbenmaschine
DE19824069A1 (de) Getriebe
EP3810935B1 (fr) Compresseur à spirale muni d'un contrepoids de trajectoire orbitale découplable
DE19620477A1 (de) Spiralverdichter
DD148806A1 (de) Mittelachsige umlaufkolben-brennkraftmaschine
DE102010063532A1 (de) Pumpe, Verdichter oder Motor mit kleinem Durchmesser-Längenverhältnis
DE1223988B (de) Drehkolbenmaschine
DE102015119864B3 (de) Schwungradlagerung für eine Umformmaschine
DE612699C (de) Lager mit Lagergehaeuse
EP0878626A1 (fr) Compresseur à spirales

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3194782

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BITZER KUEHLMASCHINENBAU GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200312

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 23/00 20060101AFI20210329BHEP

Ipc: F04C 29/00 20060101ALI20210329BHEP

Ipc: F04C 29/02 20060101ALI20210329BHEP

Ipc: F04C 18/02 20060101ALI20210329BHEP

Ipc: F01C 17/06 20060101ALI20210329BHEP

INTG Intention to grant announced

Effective date: 20210414

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3194782

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1444183

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015015373

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220303

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220303

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220203

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220204

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015015373

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220909

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230920

Year of fee payment: 9

Ref country code: GB

Payment date: 20230926

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1444183

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230926

Year of fee payment: 9

Ref country code: DE

Payment date: 20230928

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211103