EP3491245B1 - Compresseur - Google Patents

Compresseur Download PDF

Info

Publication number
EP3491245B1
EP3491245B1 EP16748088.8A EP16748088A EP3491245B1 EP 3491245 B1 EP3491245 B1 EP 3491245B1 EP 16748088 A EP16748088 A EP 16748088A EP 3491245 B1 EP3491245 B1 EP 3491245B1
Authority
EP
European Patent Office
Prior art keywords
pin
compressor
mass
drive shaft
eccentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16748088.8A
Other languages
German (de)
English (en)
Other versions
EP3491245A1 (fr
Inventor
Dimitri Gossen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bitzer Kuehlmaschinenbau GmbH and Co KG
Original Assignee
Bitzer Kuehlmaschinenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bitzer Kuehlmaschinenbau GmbH and Co KG filed Critical Bitzer Kuehlmaschinenbau GmbH and Co KG
Publication of EP3491245A1 publication Critical patent/EP3491245A1/fr
Application granted granted Critical
Publication of EP3491245B1 publication Critical patent/EP3491245B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/02Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C2/025Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents the moving and the stationary member having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/807Balance weight, counterweight

Definitions

  • the invention relates to a compressor, comprising a compressor housing, a spiral compressor unit arranged in the compressor housing with a first, stationary compressor body and a second compressor body movable relative to the stationary compressor body, the first and second spiral ribs of which are designed in the form of an involute and interlock to form compressor chambers when the second compressor body is moved relative to the first compressor body on an orbital path, an axial guide which supports the movable compressor body against movements in a direction parallel to a central axis of the stationary compressor body and guides movements in a direction transverse to the central axis, an eccentric drive for the Scroll compressor unit, which has a driver driven by a drive motor and a driver rotating on the orbital path around the central axis of a drive shaft, which in turn interacts with a driver receptacle of the second compressor body, an orbital path balancing mass that counteracts an imbalance caused by the compressor body moving on the orbital path, and a self-rotation of the second compressor body preventing clutch.
  • JPS59126096A discloses a scroll compressor according to the preamble of claim 1.
  • a drive motor for such a compressor can be operated at a variable speed, for example by means of a converter, or at a constant speed.
  • the invention is therefore based on the object of improving a compressor of the generic type in such a way that the long-term stability of the guidance of the driver in the driver receptacle can be guaranteed even at high speeds.
  • This object is achieved according to the invention in a compressor of the type described above in that the orbital track balancing mass is coupled to the eccentric drive in such a way that it moves in accordance with the movement of the driver on the orbital track, but is decoupled with regard to the transmission of tilting moments to the driver.
  • the solution according to the invention is therefore based on the knowledge unknown from the prior art that in the known solutions with a rigid connection between the driver and the orbital path compensation mass at high speeds, the orbital path compensation mass acts on the driver with high tilting moments and thus the storage of the driver in the driver receptacle , especially if this is done by a rolling element bearing, for example a cylindrical roller bearing, is exposed to high wear, since such bearings are exposed to increased wear when tilting moments occur.
  • a rolling element bearing for example a cylindrical roller bearing
  • the solution according to the invention now solves the problem that exists in the known solutions of the orbital path compensation mass acting on the driver with tilting moments by decoupling the driver from the orbital path compensation mass in such a way that it can no longer act on the driver with significant tilting moments.
  • a particularly simple and structurally favorable solution provides that the orbital track balancing mass is guided on the orbital track by an eccentric drive pin acting between the driver and the drive shaft.
  • This solution has the great advantage that the already existing eccentric drive pin, which is effective between the driver and the drive shaft, can be used to guide the orbital path balancing mass so that it follows the orbital path of the driver in order to achieve the required mass compensation due to the eccentricity of the Orbital path of the driver on the drive shaft without a transfer of tilting moments from the orbital path balancing mass to the driver.
  • the task mentioned at the outset is also achieved according to the invention in that the orbital orbit balancing mass engages the eccentric drive pin with a guide body, in particular is rotatably mounted on it.
  • the guide body is preferably firmly connected to the orbital orbit balancing mass.
  • eccentric drive pin passes through a pin receptacle of the guide body.
  • a structurally particularly favorable solution provides that the orbital orbit balancing mass is guided on the drive shaft by means of a guide body that interacts with the drive shaft.
  • the action of the eccentric drive pin on the guide body essentially serves to move the guide body with the orbital path compensation mass in such a way that the orbital path compensation mass follows the orbital path of the driver and produces the required mass compensation.
  • the orbital orbit balancing mass is guided by the guide body acting on the drive shaft on a path which runs in a path plane which runs parallel to an alignment plane which runs perpendicular to the central axis of the drive shaft.
  • the guidance of the guide body on the drive shaft can be implemented in a variety of ways.
  • the guide body is guided with a guide surface on an alignment surface of the drive shaft.
  • the alignment surface provided on the drive shaft it would be conceivable, for example, to arrange the alignment surface on a collar of the drive shaft.
  • a particularly simple solution that is also stable with regard to the guidance of the guide body provides that the alignment surface provided on the drive shaft is an end face of the drive shaft.
  • the guide body can be optimally supported on the alignment surface if the guide body is arranged across the alignment surface.
  • the guide body it is also advantageous for spatial reasons if the guide body is arranged between the alignment surface of the drive shaft and the driver.
  • the guide body is plate-shaped, that is to say it has the smallest possible extent in the direction of the central axes in relation to its extent transversely to the central axis.
  • the guide body is guided relative to the drive shaft by an axial guide.
  • the axial guide is designed in such a way that it holds the guide surface of the guide body in contact with the alignment surface of the drive shaft in order to ensure sufficiently precise guidance of the guide body and thus of the orbital orbit balancing mass relative to the drive shaft.
  • the axial guide can be designed in a wide variety of ways.
  • the axial guide is preferably designed in such a way that it comprises an element which acts on the guide body on a side opposite the guide surface.
  • Such an element can be designed in a wide variety of ways.
  • the element is a screw head of a screw engaging in the drive shaft.
  • Another solution provides that the element is a locking ring fixed relative to the drive shaft.
  • a further advantageous solution provides that the element is a projection arranged on the eccentric drive pin.
  • the axial guidance can be implemented by means of a screw engaging on the drive shaft and/or a collar on the eccentric drive pin and/or a pin with a locking ring formed onto the drive shaft.
  • the guide body and the orbital track balancing mass are able to align themselves relative to the eccentric drive pin according to the respective unbalance. It is preferably provided that the guide body can be rotated to a limited extent relative to the eccentric drive pin.
  • Such limited rotatability ensures, on the one hand, that the alignment of the guide body and thus the orbital orbital compensation mass relative to the eccentric drive pin remains within the limits of a permissible rotation, for example when the compressor is at a standstill, but on the other hand, the guide body with the orbital orbital compensation mass has the opportunity to move in accordance with the Movement of the driver on the orbital path to align the imbalance generated in order to counteract this as best as possible.
  • a first movement limiting unit is preferably effective between the drive shaft and the guide body, which allows a limited free rotation of the guide body about the eccentric pin axis.
  • the limited free rotation is in the range of 0.5° (angular degree) to 5°, preferably in the range of 1° to 3°.
  • the movement limitation unit can be implemented using independent elements.
  • a particularly favorable embodiment of the movement limiting unit provides that the first movement limiting unit is formed by a stop body held on the guide body or the drive shaft and a recess which receives the stop body and is arranged on the drive shaft or the guide body.
  • the movement limiting unit is implemented by the elements of the axial guide, so that the axial guide, on the one hand, causes the movement of the guide body in the axial direction, that is, in the direction of the central axes of either the drive shaft or the second movable compressor body, and on the other hand also serves as a movement limitation unit.
  • the orbital orbit balancing mass is arranged on a side opposite the eccentric drive pin of a geometric transverse plane that runs perpendicular to the mass balancing plane and through the central axis of the drive shaft.
  • a further solution to the problem mentioned at the outset provides that the eccentric drive pin is arranged in a fixed manner in the drive shaft and engages in a drive pin receptacle in the driver, so that the driver is positioned within the driver by the action of the eccentric drive pin on it Drive pin holder is driven.
  • the eccentric drive pin and the drive pin receptacle cooperate in a contact area which is penetrated by a central plane which is perpendicular to the central axis of the movable second compressor body and in the direction of the central axis of a pivot bearing acting between the second compressor body and the driver for the driver and that there is a gap between the eccentric drive pin and the drive pin receptacle on both sides of the contact area.
  • the position of the center plane can also be defined by the fact that it runs perpendicular to the eccentric pin axis and in the direction of the eccentric pin axis centrally through the pivot bearing for the driver.
  • eccentric drive pin and the drive pin receptacle cooperate in a central section of the drive pin receptacle, the central section in particular being defined in that it is penetrated by the central plane.
  • the drive pin receptacle in the middle section has a smaller diameter than in the end sections of the drive pin receptacle that lie on both sides of the middle section and each form a gap.
  • the middle section of the drive pin receptacle extends at most over half, even better at most over a third, of the extension of the drive pin receptacle in the direction of the eccentric pin axis.
  • the end sections arranged on both sides of the middle section differ by a maximum of a factor of 2 in terms of their extent in the direction of the eccentric pin axis.
  • a particularly favorable solution provides that the orbital orbit balancing mass is coupled to the driver by means of a coupling body for rotational driving by the driver during a rotational movement of the same around the eccentric drive pin.
  • the coupling body is preferably arranged in a fixed manner on one of the guide body and driver and engages in a recess in the other of the guide body and driver.
  • the coupling body is arranged in the recess with play.
  • both the guide body with the orbital path balancing mass and the driver are each arranged rotatably relative to the eccentric drive pin and thus the coupling body is to be arranged at a distance from the eccentric drive pin, so that there is no play between the coupling body and the recess Overdetermination of the connection between the position of the coupling body and the recess relative to the eccentric drive pin would result.
  • the intended play thus avoids overdetermination and also serves to facilitate lubrication.
  • the coupling body and the recess are arranged in such a way that during normal operation of the compressor the coupling body rests against a portion of a wall surface of the recess and consequently, even without an overdetermined positioning of the coupling body and recess, there is still a defined orientation of the orbital orbit mass relative to the driver.
  • the coupling body is designed as a coupling pin, with which the connection for rotational driving between the orbital orbit balancing mass and the driver can be easily implemented.
  • an advantageous development of the solution according to the invention provides that the coupling pin is arranged in a fixed manner on the guide body and engages in the recess in the driver.
  • the coupling pin and the recess interact in a contact area which is penetrated by a central plane which is perpendicular to the pin axis of the coupling pin and in the direction of the coupling pin in the middle of a between second compressor body and the driver effective rotary bearing for the driver, and that there is a gap between the coupling pin and the recess on both sides of the contact area.
  • the coupling pin and the recess cooperate in a central section of the recess.
  • the central section of the recess extends a maximum of half of the extent of the recess in the direction of the pin axis.
  • the end sections arranged on both sides of the middle section differ by a maximum of a factor of 2 in terms of their extent in the direction of the pin axis.
  • the eccentric drive has the eccentric drive pin driving the driver and a coupling body that couples the orbital track balancing mass to the driver.
  • the coupling body also represents a mass balancing body.
  • An advantageous solution provides that the eccentric drive pin and the coupling body are arranged on opposite sides of a mass compensation plane in order to easily compensate for the unbalance caused by the eccentric drive pin in addition to coupling the orbital track balancing mass with the driver and to improve smooth running.
  • mass balancing plane runs through the central axis of the drive shaft and the central axis of the orbiting compressor body and is precisely defined in its position and orientation by these two central axes.
  • the coupling body has a mass that deviates from the mass of the eccentric drive pin by a maximum of 20%, even better by a maximum of 10%, in order to achieve the greatest possible compensation for the unbalance caused by the eccentric drive pin .
  • the coupling body has essentially the same mass, in particular the same mass, as the eccentric drive pin.
  • the coupling body is designed as a mass balancing pin.
  • a pin axis of the mass balancing pin is arranged at the same distance from the mass balancing plane as an eccentric pin axis of the eccentric drive pin.
  • the pin axis of the mass balancing pin runs essentially parallel, preferably parallel, to the eccentric drive axis of the eccentric pin.
  • the pin axis of the mass balancing pin and the eccentric pin axis of the eccentric pin run parallel to the mass balancing plane.
  • the mass balancing pin on the drive shaft or on the driver.
  • a particularly favorable solution provides that the mass balancing pin is held on the guide body of the orbital orbit balancing mass and is therefore moved with it and aligned relative to the eccentric drive pin.
  • the mass balancing body is designed as a mass balancing pin, it is also preferably provided that the mass balancing pin engages in the recess provided in the driver.
  • the orbital orbit balancing mass described above is arranged symmetrically to the mass balancing plane and thus does not cause any asymmetrical imbalance to the mass balancing plane.
  • a particularly favorable solution further provides that the orbital orbit balancing mass is arranged on a side of a geometric transverse plane that runs perpendicular to the mass balancing plane and through the central axis of the drive shaft, which is opposite the eccentric drive pin and the mass balancing body.
  • the drive shaft has a section facing the compressor, which carries an imbalance compensation mass facing the compressor and the eccentric drive pin and in particular guides the mass compensation body and the orbital path compensation mass.
  • the unbalance compensation mass is preferably arranged between a rotor of the drive motor and a front bearing unit on the drive shaft.
  • a favorable solution provides that the drive shaft has a section facing away from the compressor, which carries an imbalance compensation mass facing away from the compressor.
  • This imbalance compensation mass is also preferably arranged between the rotor of the drive motor and a rear bearing unit of the drive shaft.
  • these imbalance compensation masses which are arranged on the drive shaft, are also designed and arranged symmetrically to the mass compensation plane.
  • FIG. 1 Illustrated first exemplary embodiment of a compressor according to the invention, designated as a whole by 10, for a gaseous medium, in particular a refrigerant, comprises a compressor housing, designated as a whole by 12, which has a first end housing section 14, a second end housing section 16 and one between the end housing sections 14 and 16 arranged intermediate section 18.
  • a scroll compressor unit designated as a whole by 22, is provided in the first housing section 14, which has a first compressor body 24 which is stationarily arranged in the compressor housing 12, in particular in the first housing section 14, and a second compressor body 26 which is movable relative to the stationary compressor body 24.
  • the first compressor body 24 includes a compressor body base 32 over which a first spiral rib 34 rises and the second compressor body 26 also includes a compressor body base 36 over which a second spiral rib 38 rises.
  • the compressor bodies 24 and 26 are arranged relative to one another so that the spiral ribs 34, 38 mesh with one another, as shown in Fig. 3 shown to form at least one, preferably several, compressor chambers 42 between them, in which the gaseous medium, for example refrigerant, is compressed in that the second compressor body 26 moves with it its central axis 46 is moved forward about a central axis 44 of the first compressor body 24 on an orbital path 48 with a compressor orbital path radius, the volume of the compressor chambers 42 being reduced and ultimately compressed gaseous medium passing through a central outlet 52 ( Fig. 2 ) exits, while gaseous medium to be sucked in is sucked in through compressor chambers 42 that open on the circumference, radially on the outside with respect to the central axis 44.
  • the gaseous medium for example refrigerant
  • the sealing of the compressor chambers 42 relative to one another takes place in particular in that the spiral ribs 34, 38 are provided on the front side with axial sealing elements 54 and 58, which rest sealingly on the respective bottom surface 62, 64 of the other compressor body 26, 24, the bottom surfaces 62 , 64 are formed by the respective compressor body base 36 or 32 and each lie in a plane running perpendicular to the central axis 44.
  • the scroll compressor unit 22 is accommodated as a whole in a first housing body 72 of the compressor housing 12, which has a front cover section 74 and a cylindrical ring section 76 which is integrally formed on the front cover section 74 and which in turn engages with a ring shoulder in a sleeve body 82 of the housing body 72, which is attached to a central housing body 84 forming the intermediate section 18 is formed, the central housing body 84 being closed on a side opposite the first housing body 72 by a second housing body 86, which forms an inlet chamber 88 for the gaseous medium.
  • the sleeve body 82 encloses the scroll compressor unit 22, the first compressor body 24 of which is supported on a contact surface 94 in the housing body 72 with support fingers 92 molded onto the compressor body base 32.
  • the first compressor body 24 is immovably fixed in the housing body 72 against all movements parallel to the support surface 94.
  • the first compressor body 24 is thus stationarily fixed in a precisely defined position within the first housing body 72 and thus also within the compressor housing 12.
  • the spiral rib 38 supports and guides the underside 98 facing away from the spiral rib 38, specifically in the area of an axial support surface 102, so that the compressor body base 36 of the second compressor body 26 is supported relative to the first compressor body 24 positioned stationarily in the compressor housing 12 and in the direction parallel to the central axis 44 in such a way that the axial sealing elements 58 remain on the bottom surface 64 and do not lift off from it, while at the same time the compressor body base 36 with the axial support surface 102 can slide transversely to the central axis 44 relative to the axial guide 96 ( Fig. 2 and 4 ).
  • the axial guide 96 is formed by a carrier element 112, which is one of the axial support surfaces 102 ( Fig. 2 , 5 ) facing support surface 114, on which, however, the compressor body base 36 with the axial support surface 102 does not rest, but on which a sliding body 116, designated as a whole by 116 and in particular plate-shaped, rests with a sliding support surface 118, the sliding body 116 having a sliding support surface opposite the sliding support surface 118 122 ( Fig. 2 and 5 ) the axial support surface 102 ( Fig. 2 and 4 ) is supported against movements parallel to the central axis 44 but is supported in a sliding manner with respect to movements transverse to the central axis 44.
  • the axial guide 96 provides that when the second compressor body 26 moves on the orbital path 48 about the central axis 44 of the first compressor body 24, on the one hand, the second compressor body 26 with the compressor body base 36 and its axial support surface 102 moves relative to the sliding body 116 , on the other hand, the sliding body 116 in turn moves relative to the carrier element 118.
  • the sliding body 116 is through an in Fig. 5 and 6 shown and designated as a whole by 132 guided with play relative to the carrier element 112, the guide with play 132 comprising a guide recess 134 provided in the sliding body 116, which has a diameter DF, and a guide pin 136 anchored in the carrier element 112, the diameter of which DS is smaller than the diameter DF, so that half of the difference DF-DS defines a guiding orbital radius with which the sliding body 116 can carry out an orbiting movement relative to the carrier element 112.
  • the movements of the sliding body 116 result in the build-up of a sufficient lubricating film between the axial support surface 102 of the compressor body base 36 and the sliding support surface 122 of the sliding body 116 as well as the support surface 114 and the sliding support surface 118.
  • the guide orbital radius FOR is 0.01 times the compressor orbital radius or more, in particular 0.05 times the compressor orbital radius or more.
  • the carrier element 112 is made of an aluminum alloy at least in the area of the carrier surface 114, improved lubrication is additionally ensured by the fact that lubricant enters the pores of the carrier element 112 and thus via the surface structures of the carrier element 112 provided, for example Area of the carrier surface 114 is available for building up the lubricating film in the gap.
  • the sliding body 116 itself is designed as a plate-shaped, annular part made of spring steel and thus the sliding support surface 118 facing the carrier surface 114 represents a smooth spring steel surface, the formation of the lubricating film is additionally promoted.
  • the material pairing of the aluminum alloy, which is softer than spring steel in the area of the support surface 114, and the spring steel in the area of the sliding support surface 118 has advantageous long-term running properties due to its wear resistance.
  • the carrier element 112 is not only provided with the carrier surface 114 on which the sliding body 116 rests, but also with the support surfaces 94 on which the support fingers 92 of the first compressor body 24 are supported.
  • the carrier element 112 is also arranged firmly in the housing body 72 both axially in the direction of the central axis 44 and against rotational movements about the central axis 44.
  • the compressor body base 36 is in a radially inner edge region 152 and in a radially outer edge region 154 with an inclined relative to the axial support surface 102 and set back from the axial support surface 102
  • Edge surface 156 or 158 is provided, which together with the sliding support surface 122 leads to a wedge-shaped gap that opens radially outwards or radially inwards, which facilitates the access of lubricant.
  • the build-up of the lubricating film between the sliding support surface 122 and the axial support surface 102 is promoted by the fact that the sliding support surface 122 and the axial support surface 102, in the overlap area in which they interact, are contiguous, that is to say in the circumferential direction U the central axis and uninterrupted annular surfaces 124 and 126 in their entire radial extent are formed, in particular the annular surface 126 of the axial support surface 102 extending from an inner contour IK with a radius IR of the same to an outer contour AK, the radius IR less than is two-thirds of an outer radius AR.
  • annular surface 124 of the sliding support surface 122 is dimensioned such that the annular surface 126 of the axial support surface 102 always rests over its entire surface during all relative movements to the sliding support surface 122.
  • Each of these coupling element sets 162 includes, as shown in FIGS Fig. 2 , 6 and 7 shown, as the first coupling element 172 a pin body 174, which has a cylindrical lateral surface 176 and engages with this cylindrical lateral surface 176 in a second coupling element 182.
  • the second coupling element 182 is formed by an annular body 184 which has a cylindrical inner surface 186 and a cylindrical outer surface 188 which are arranged coaxially with one another.
  • This second coupling element 182 is guided in a third coupling element 192, which is designed as a receptacle 194 for the ring body 184 provided in the carrier element 112 and which has a cylindrical inner wall surface 196.
  • a diameter DI of the inner wall surface 196 is larger than a diameter DRA of the cylindrical outer surface 188 of the ring body 184 and a diameter DRI of the cylindrical inner surface 186 is inevitably smaller than the diameter DRA of the cylindrical outer surfaces 188 of the ring body 184, whereby the diameter DRI of the cylindrical Inner surface 186 is larger than a diameter DSK of the cylindrical lateral surface 176 of the pin body 174.
  • each set of coupling elements 162 in turn forms an orbital guide whose maximum orbital radius OR for the orbiting movement corresponds to DI/2-(DRA-DRI)/2-DSK/2.
  • the movable compressor body 26 is guided relative to the stationary compressor body 24 by the coupling 164 in such a way that that, in each case one of the coupling element sets 162 is effective to prevent the self-rotation of the second movable compressor body 26, for example with six coupling element sets 162 after passing through an angular range of 60 °, the effectiveness of each coupling element set 162 from one coupling element set 162 to the next coupling element set 162 in the direction of rotation changes.
  • each coupling element set 162 has three coupling elements 172, 182 and 192 and in particular an annular body 184 is effective between the respective pin body 174 and the respective receptacle 194, on the one hand the wear resistance of the coupling element sets 162 is improved, and on the other hand the lubrication in the area thereof is improved and also reduces the noise generated by the coupling element sets 162, which arises from the change in effectiveness from one coupling element set 162 to the other coupling element set 162.
  • the coupling element sets 162 experience sufficient lubrication, in particular lubrication between the cylindrical lateral surface 176 of the pin body 174 and the cylindrical inner surface 186 of the ring body 184 and lubrication between the cylindrical outer surface 188 of the ring body 184 and the cylindrical inner wall surface 196 of recording 194.
  • the receptacles 194 in the carrier element 112 are open on both sides in the axial direction, the ring bodies 184 being held on their sides facing away from the second compressor body 26 by a stop element 198 which projects radially inwards.
  • openings 202, 204 are provided in the carrier element 112, which allow the passage of lubricant and sucked-in refrigerant.
  • the compressor body base 36 is provided with star-shaped extensions 212 which extend radially outwards and which engage in spaces 214 between support fingers 92 which follow one another in a direction of rotation U around the central axis 44, so that the coupling elements 172 also engage in these Intermediate spaces 214 lie and are therefore arranged within the housing body 72 at the largest possible radial distance from the central axis 44 ( Fig. 7 ).
  • This positioning of the coupling element sets 162, which is predetermined by the largest possible radial distance between the coupling elements 172, at the largest possible radial distance from the central axis 44, has the advantage that the forces acting on the coupling element sets 162 can be kept as small as possible due to the large lever arm , which has an advantageous effect on component dimensioning.
  • the inventive concept of lubrication of the axial guide 96 and the coupling element sets 162 is particularly advantageous when the central axes 44 and 46 of the compressor bodies 24 and 26 are normally horizontal, that is to say at a maximum angle of 30 ° to a horizontal, whereby in The compressor housing 12, in particular in the area of the first housing body 72, forms a lubricant bath 210 at a point lowest in the direction of gravity, from which lubricant is whirled up during operation and is thereby absorbed and distributed in the manner described.
  • the movable compressor body 24 is driven (as in Fig. 2 shown) by a drive motor designated as a whole by 222, for example an electric motor, which in particular has a stator 224 held in the central housing body 84 and a rotor 226 arranged within the stator 224, which is arranged on a drive shaft 228 which is coaxial with the central axis 44 the stationary compressor body 24 runs.
  • a drive motor designated as a whole by 222, for example an electric motor, which in particular has a stator 224 held in the central housing body 84 and a rotor 226 arranged within the stator 224, which is arranged on a drive shaft 228 which is coaxial with the central axis 44 the stationary compressor body 24 runs.
  • the drive shaft 228 is mounted, on the one hand, in a bearing unit 232 facing the compressor, which is arranged between the drive motor 222 and the scroll compressor unit 22 and in the central housing body 84, and, on the other hand, in a bearing unit 234 facing away from the compressor, which is arranged on a side of the drive motor 222 opposite the bearing unit 232.
  • the bearing unit 234 facing away from the compressor is mounted, for example, in the second housing body 86, which closes the central housing body 84 on a side opposite the first housing body 72.
  • Medium in particular the refrigerant, flows from the inlet chamber 88 formed by the second housing body 86 through the drive motor 222 in the direction of the bearing unit 232 facing the compressor, flows around it and then flows in the direction of the scroll compressor unit 22.
  • the drive shaft 228 drives the movable compressor body 26 via an eccentric drive designated as a whole by 242, which moves in an orbiting manner around the central axis 44 of the stationary compressor body 24.
  • the eccentric drive 242 in particular includes an eccentric drive pin 244 held in the drive shaft 228, which moves a driver 246 on the orbital path 48 about the central axis 44, which in turn can be rotated about an eccentric pin axis 245 by a rotatable receptacle of the eccentric drive pin 244 in a drive pin receptacle 247 in the driver 246 the eccentric drive pin 244 is mounted and is also rotatably mounted about the central axis 46 of the orbitally movable compressor body 26 in a pivot bearing 248, in particular a rolling element bearing designed as a fixed bearing, the pivot bearing 248 allowing the driver 246 to rotate relative to the orbitally movable compressor body 26 about Center axis 46 allowed, as in Fig. 7 and 8th shown.
  • the second compressor body 26 is provided with an integrated driver receptacle 249, which accommodates the pivot bearing 248.
  • the driver receptacle 249 is set back relative to the flat side 98 of the compressor body base 36 and is thus arranged integrated in the compressor body base 36, so that the driving forces acting on the movable compressor body 26 are on a side facing the spiral rib 38 Flat side 98 of the compressor body base 36 are effective and thus drive the movable compressor body 26 with a low tilting moment, which is axially supported by the axial guide 96 in the direction of the central axis 44 between the driver receptacle 249 and the drive motor 222 on the axial support surface 102 and guided movably transversely to the central axis 44 is.
  • the driver receptacle is 249, as in the Fig. 2 and 11 shown surrounded by the axial support surface 102, which is external in the radial direction to the central axis 46, and the axial support surface 102 is in turn surrounded by the coupling element sets 162, which are external in the radial direction to the central axis 44, of the coupling 164, which prevents the self-rotation of the second compressor body 26.
  • VOR compressor orbital radius
  • the distance of the eccentric pin axis 245 from the central axis 44 of the stationary compressor body 24 is chosen to be larger than the intended compressor orbital radius VOR, that is, the distance of the central axes 44 and 46 from one another, and so large that the eccentric pin axis 245 is outside one through the two central axes 44 and 46 running through the central axis plane ME and opposite to a direction of rotation D of the drive shaft 228 at a distance from this ( Fig. 9 ).
  • the resulting eccentric action of the eccentric drive pin 244 on the driver 246 causes a force FA which, based on the central axis 46 of the driver 246, acts on the central axis 46 and the driver 246 together with the movable compressor body 26, which leads to a force FC that moves radially outwards to the central axis 44, which acts in the central axis plane ME running through the central axis 44 and the central axis 46, and to which a force FO acts tangentially to the orbital path 48, which leads to the driver 246 together the movable compressor body 26 moves on the orbital path 48 about the central axis 44 ( Fig. 9 ).
  • the central axis plane ME defined by the central axes 44 and 46 represents a plane of symmetry to a system, formed from the mass of the drive shaft 228 and the mass of the movable compressor body 26 together with the mass of the driver 246, and is also referred to as a mass compensation plane ME.
  • an orbital path balancing mass 252 is additionally provided, which counteracts the unbalance caused by the compressor body 26 moving on the orbital path 48 and compensates for this as far as possible, the orbital path balancing mass 252 also being designed and arranged symmetrically to the mass compensation plane ME, as in Fig. 10 shown.
  • the orbital orbit balancing mass 252 lies in particular on a side facing away from the eccentric drive pin 244 of a transverse plane QE which runs perpendicular to the mass balancing plane ME and through the central axis 44.
  • the orbital orbit balancing mass 252 is not held on the driver 246, but is mounted with a guide body 254 on the drive shaft 228, in particular on the eccentric drive pin 244.
  • the guide body 254 includes a pin receptacle 256 through which the eccentric drive pin 244 passes in order to accommodate the bearing body 254 so that it can rotate about the eccentric pin axis 245.
  • the guide body 254 is slidably guided on an alignment surface 262 of the drive shaft 228 facing it, for example on the front side of the drive shaft 228, with a guide surface 264 of the guide body 254 facing the alignment surface 262, parallel to an alignment plane 266 running perpendicular to the central axis 44 of the drive shaft 228, so that During all rotational movements about the eccentric pin axis 245, the parallel alignment of the guide body 245 to the alignment plane 266 is maintained and the orbital orbit balancing mass 252 thus moves on a path 268 around the drive shaft 228, which runs in a path plane 269 parallel to the alignment plane 266.
  • an axial guide 272 is provided for the guide body 254 relative to the drive shaft 228, which in a first exemplary embodiment is designed as a screw 274 which has a recess or a breakthrough 276 in the guide body 254 with a Shaft section 278 interspersed with a Threaded section 282 engages in line with the central axis 44 coaxial threaded hole 284 in the drive shaft 228 and engages with a screw head 286 the opening 276 on a side 287 of the guide body 254 facing the driver 246 in order to bring the guide body 254 into contact with the alignment surface 262 by means of the guide surface 264 to keep.
  • the opening 276 is dimensioned so large that a limited relative movement of the guide body 254 to the screw 274 and thus also a limited relative rotation of the unit consisting of orbital orbit balancing mass 252 and guide body 254 about the eccentric pin axis 244 is possible, as in Fig. 13 shown.
  • the recess or opening 276 and the shaft section 278 of the screw 274 thus form a first movement limiting unit 288 for the relative movement of the guide body 254 to the drive shaft 228.
  • the movement limiting unit 288 preferably allows a relative rotation of the guide body 254 relative to the eccentric drive pin axis 245 in the range of at least ⁇ 1 ° (angular degree) to a maximum of ⁇ 3 ° (angular degree), even better a maximum of ⁇ 2 ° (angular degree) in order to enable tolerance compensation if the
  • the aim is to adjust the orbital orbit balancing mass 252 in such a way that the orbital mass balancing is as optimal as possible.
  • a coupling pin 292 is provided as a coupling body, which is arranged in a fixed manner on the guide body 254.
  • the driver 246 is provided with a recess 296, which accommodates the coupling pin 292 with play, so that a rotational movement of the driver 246 about the eccentric pin axis 245 to avoid a tolerance-sensitive and possibly also overdetermined connection of the driver 246 rotatable by the precise mounting of the driver 246 relative to the eccentric drive pin 244 and the additional connection of the driver 246 with the coupling pin 292, which in turn is also rotatably mounted around the eccentric drive pin 244.
  • the coupling pin 292 and the recess 296 are arranged so that the coupling pin 292 rests in normal operation on a portion of an inner wall surface 298 of the recess 296 that is located at the front in the direction of rotation.
  • the mass not taken into account in the mass balancing described above is the mass of the eccentric drive pin 244, which is arranged asymmetrically to the mass balancing plane ME and leads to vibrations, particularly at high speeds of the drive shaft 228.
  • the coupling pin 292 which is firmly arranged on the guide body 254, is also used as a mass balancing body ( Fig. 8 ), which is arranged on the guide body 254 on a side of the mass compensation plane ME opposite the eccentric drive pin 244 ( Fig. 10 ) and thus together with the eccentric drive pin 244 in turn leads to a mass distribution that is at least approximately symmetrical to the mass compensation plane ME.
  • a pin axis 294 of the coupling pin 292 and the eccentric pin axis 245 are arranged mirror-symmetrically to the mass compensation plane ME and, moreover, the eccentric drive pin 244 and the coupling pin 292 preferably have approximately the same mass ( Fig. 10 ).
  • the coupling pin 292 is fixed to the guide body 254 in that the coupling pin 292 passes through a receiving hole 312 in the guide body 254 and is fixed in it by a press fit.
  • the coupling pin 292 is also provided with a head 314, which rests on a side of the guide body 254 facing away from the driver 246 ( Fig. 16 ).
  • the drive shaft 228 is also provided with an unbalance compensation mass 322 facing the compressor and an unbalance compensation mass 324 facing away from the compressor ( Fig. 2 and 17 ).
  • the unbalance compensation mass 322 facing the compressor is preferably arranged between the drive motor 222 and the bearing unit 232 facing the compressor on a section 326 of the drive shaft 228 facing the compressor and radially within winding heads 332 of a stator winding, which lies on the same side of the transverse plane QE as the orbital path compensation lug 252 and is symmetrical to the mass compensation plane ME arranged.
  • the imbalance compensation mass 324 facing away from the compressor is preferably located on a section 328 of the drive shaft 228 facing away from the compressor and between the drive motor 222 and the bearing unit 234 facing away from the compressor, as well as radially within winding heads 334 of the stator winding.
  • the axial guide 272 'for the guide body 254 is formed by a pin 342 formed on the drive shaft 228', which passes through the opening 276 of the guide body 254 with a shaft section 344 and carries a locking ring 346 which radially overlaps the opening 276 on the driver 246 facing side 287 is arranged and thus the guide body 254 is positioned in the same way as the screw head 286 so that the guide surface 264 is held in contact with the alignment surface 262.
  • the shaft section 344 therefore also interacts with the opening 276 and forms the first movement limiting unit 288'.
  • the axial guide 272" for the guide body 254 is formed by a projection 352, in particular a collar, which is formed on the eccentric drive pin 244" and, as in Fig. 19 shown, secures the guide body 254 against movement in the direction of the central axis 44 away from the alignment surface 262 and for this purpose, for example, engages in a recess 354 which extends into the guide body 254 from a side 287 facing the driver 246 ( Fig. 19 ).
  • the first movement limiting unit 288" is further formed by the head 314 of the mass balancing pin 292, which engages with play in an end-side recess or recess 362 in the drive shaft 228.
  • the relative dimension of the head 314 and the recess 362 thus determines the limited rotatability of the guide body 254 relative to the drive shaft 228.
  • the eccentric drive pin 244 interacts with the drive pin receptacle 247′′′ only in a central section 372 of the same, which is arranged in the direction of the eccentric pin axis 245 in the drive pin receptacle 247′′′ in such a way that it is perpendicular to a central axis 46 of the movable second compressor body 26 or vertically the central plane 374 of the pivot bearing 248, which runs to the eccentric pin axis 245 and lies centrally between its end face 376 and 378, is cut.
  • the middle section 372 has an extension in the direction of the eccentric pin axis 245 which corresponds to a maximum of half, even better a maximum of a third, of the extension of the drive pin receptacle 247"' in this direction.
  • End sections 382 and 384 of the drive pin receptacle 247' are arranged on both sides of the middle section 372, the diameter of which is larger than that of the middle section 372 and which extend in the direction of the eccentric pin axis 245 with approximately the same extent, which means that the end sections 382, 384 in particular differ in their extent by less than a factor of 2, so that in the area thereof a gap 386, 388 remains between the end sections 382 and 384 and the eccentric drive pin 244.
  • the eccentric drive pin 244 acts on the driver 246 only in the middle section 372 and thus only in the area of the central plane 374, so that the pivot bearing 248 also does not experience any tilting moments on the driver 246 due to the action of the eccentric drive pin 244.
  • the recess 296′′′ for receiving the coupling pin 292 is designed so that the coupling pin 292 acts on the extension 296′′′ in a middle section 392, the middle section 392 having a similar or comparable extension in the direction of the pin axis 294 as the middle section 372 of the drive pin holder 247′′′.
  • end sections 394 and 396 of the recess 296' are also provided on both sides of the middle section 392, the diameter of which is larger than that of the middle section 392, so that gaps 402 and 404 are also formed between the end sections 394 and 396.
  • the end sections 394 and 396 extend in the direction of the pin axis 294 with approximately the same extent as the end sections 382 and 384, so that the same relationships exist relative to the middle section 392 as between the middle section 372 and the end sections 382 and 384.
  • the coupling pin 292 also acts on the driver 246 only in the middle section 392 and thus only in the area of the central plane 374, so that no tilting moment acts on the driver 246 through the coupling pin 292.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (16)

  1. Compresseur comprenant un carter de compresseur (12), une unité compresseur à spirales (22) disposée dans le carter de compresseur (12) avec un premier corps de compresseur (24) disposé de manière fixe et un deuxième corps de compresseur (26) mobile par rapport au corps de compresseur (24) disposé de manière fixe, dont les première et deuxième nervures spiralées (34, 38) réalisées sous forme d'une développante de cercle s'insèrent l'une dans l'autre avec formation de chambres de compresseur (42), lorsque le deuxième corps de compresseur (26) est déplacé par rapport au premier corps de compresseur (24) sur une trajectoire orbitale (48), un guidage axial (96), lequel soutient le corps de compresseur (26) mobile par rapport à des mouvements dans une direction parallèle à un axe médian (44) du corps de compresseur (24) disposé de manière fixe et le guide lors de mouvements dans une direction transversale par rapport à l'axe médian (44), un entraînement excentrique (242) pour l'unité compresseur à spirales (22), qui présente un entraîneur (246) entraîné par un moteur d'entraînement (222) et un tournant sur la trajectoire orbitale (48) autour de l'axe médian (44) d'un arbre d'entraînement (228), qui coopère de son côté avec un logement d'entraîneur (249) du deuxième corps de compresseur (26), un contrepoids de trajectoire orbitale (252) agissant à l'encontre d'un balourd dû au corps de compresseur (26) se déplaçant sur la trajectoire orbitale (48) et un accouplement (164) empêchant une auto-rotation du deuxième corps de compresseur (26),
    caractérisé en ce que le contrepoids de trajectoire orbitale (252) est accouplé à l'entraînement excentrique (242) de sorte qu'il se déplace en fonction du mouvement de l'entraîneur (246) sur la trajectoire orbitale (48), mais est désaccouplé en ce qui concerne la transmission de couples de basculement à l'entraîneur (246), que le contrepoids de trajectoire orbitale (252) est guidé au moyen d'un corps de guidage (254) coopérant avec l'arbre d'entraînement (228) sur l'arbre d'entraînement (228), que le contrepoids de trajectoire orbitale (252) est guidé par le corps de guidage (254) venant en contact sur l'arbre d'entraînement (228) sur une voie (268) qui s'étend dans un plan de voie (269), lequel s'étend parallèlement à un plan d'orientation (266) s'étendant perpendiculairement à l'axe médian (44) de l'arbre d'entraînement (228), que le corps de guidage (254) est guidé avec une surface de guidage (264) sur une surface d'orientation (262) de l'arbre d'entraînement (228), que le corps de guidage (254) est guidé par rapport à l'arbre d'entraînement (228) par un guidage axial (272), que le guidage axial (272) maintient la surface de guidage (264) du corps de guidage (254) en appui sur la surface d'orientation (262) de l'arbre d'entraînement (228).
  2. Compresseur selon la revendication 1, caractérisé en ce que le contrepoids de trajectoire orbitale (252) est guidé sur la trajectoire orbitale (48) par un tourillon d'entraînement excentrique (244) agissant entre l'entraîneur (246) et l'arbre d'entraînement (228).
  3. Compresseur selon l'une quelconque des revendications précédentes, caractérisé en ce que le contrepoids de trajectoire orbitale (252) vient en contact avec un corps de guidage (254) sur le tourillon d'entraînement excentrique (244), en particulier est monté en rotation sur celui-ci, qu'en particulier le corps de guidage (254) est relié fixement au contrepoids de trajectoire orbitale, et/ou qu'en particulier le tourillon d'entraînement excentrique (244) traverse un logement de tourillon (256) du corps de guidage (254).
  4. Compresseur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'en particulier la surface d'orientation (262) prévue sur l'arbre d'entraînement (228) est une surface frontale de l'arbre d'entraînement (228), et/ou qu'en particulier le corps de guidage (254) est disposé de manière à venir se plaquer au-dessus de la surface d'orientation (262), et/ou qu'en particulier le corps de guidage (254) est disposé entre la surface d'orientation (262) de l'arbre d'entraînement (228) et l'entraîneur (246), et qu'en particulier le corps de guidage (254) est réalisé en forme de plaque.
  5. Compresseur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'en particulier le guidage axial (272) comprend un élément (286, 346, 352) sollicitant le corps de guidage (254) sur une face opposée à la surface de guidage (264), qu'en particulier l'élément est une tête de vis (286) d'une vis (274) s'insérant dans l'arbre d'entraînement (228) ou qu'en particulier l'élément est un anneau de blocage (346) fixé par rapport à l'arbre d'entraînement (228) ou qu'en particulier l'élément est une partie saillante (352) disposée sur le tourillon d'entraînement excentrique (244).
  6. Compresseur selon l'une quelconque des revendications précédentes, caractérisé en ce que le corps de guidage (254) peut tourner de manière limitée par rapport au tourillon d'entraînement excentrique (244), qu'en particulier une première unité de limitation de mouvement (288) est active entre l'arbre d'entraînement (228) et le corps de guidage (254), qu'en particulier la première unité de limitation de mouvement (288) permet une possibilité de rotation libre du corps de guidage (254) par rapport à l'arbre d'entraînement dans la plage de 0,5° (degré d'angle) à 5° (degré d'angle), et/ou qu'en particulier la première unité de limitation de mouvement (288) est formée par un corps de butée (314, 278, 342) maintenu sur le corps de guidage (254) ou l'arbre d'entraînement (228) et un évidement (362, 276) recevant le corps de butée (314, 278, 342) et disposé sur l'arbre d'entraînement (228) ou le corps de guidage (254).
  7. Compresseur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une première unité de limitation de mouvement (288) est active entre l'arbre d'entraînement (228) et le corps de guidage (254), laquelle permet une possibilité de rotation libre limitée du corps de guidage (254) autour d'un axe de tourillon d'excentrique (245).
  8. Compresseur selon l'une quelconque des revendications précédentes, caractérisé en ce que le contrepoids de trajectoire orbitale (252) est disposé de manière symétrique par rapport à un plan d'équilibrage des masses (ME), qui s'étend à travers l'axe médian (44) de l'arbre d'entraînement (228) et l'axe médian (46) du deuxième corps de compresseur (26) mobile, qu'en particulier le contrepoids de trajectoire orbitale (252) est disposé sur une face opposée au tourillon d'entraînement excentrique (244) d'un plan transversal géométrique (QE) s'étendant perpendiculairement au plan d'équilibrage des masses (ME) et à travers l'axe médian (44) de l'arbre d'entraînement (228).
  9. Compresseur selon l'une quelconque des revendications précédentes, caractérisé en ce que le tourillon d'entraînement excentrique (244) est disposé de manière bloquée dans l'arbre d'entraînement (228) et s'insère dans un logement de tourillon d'entraînement (247) dans l'entraîneur (246).
  10. Compresseur selon la revendication 9, caractérisé en ce que le tourillon d'entraînement excentrique (244) et le logement de tourillon d'entraînement (247) coopèrent dans une zone de contact (372), qui est traversée par un plan médian (374) s'étendant perpendiculairement à l'axe médian (46) du deuxième corps de compresseur (26) mobile et en direction de l'axe médian (46) au centre d'un palier rotatif (248) pour l'entraîneur (246) actif entre le deuxième corps de compresseur (26) et l'entraîneur (246) et qu'une fente (386, 388) est présente entre le tourillon d'entraînement excentrique (244) et le logement de tourillon d'entraînement (247) des deux côtés de la zone de contact (372).
  11. Compresseur selon la revendication 9 ou 10, caractérisé en ce que le tourillon d'entraînement excentrique (244) et le logement de tourillon d'entraînement (247) coopèrent dans une partie centrale (372) du logement de tourillon d'entraînement (247), et/ou qu'en particulier le logement de tourillon d'entraînement (247) présente dans la partie centrale (372) un diamètre plus petit que dans les parties d'extrémité (382, 384) du logement de tourillon d'entraînement (247) situées des deux côtés de la partie centrale (372) et formant respectivement une fente (386, 388), et/ou qu'en particulier la partie centrale (372) du logement de tourillon d'entraînement (247) s'étend au maximum sur la moitié de l'étendue du logement de tourillon d'entraînement (247) en direction de l'axe de tourillon d'excentrique (245), qu'en particulier les parties d'extrémité (382, 384) disposées des deux côtés de la partie centrale (372) se différencient en ce qui concerne leur étendue en direction de l'axe de tourillon d'excentrique (245) au maximum d'un facteur 2.
  12. Compresseur selon l'une quelconque des revendications précédentes, caractérisé en ce que le contrepoids de trajectoire orbitale (252) est accouplé à l'entraîneur (246) au moyen d'un corps d'accouplement (292) pour l'entraînement en rotation par l'entraîneur (246) lors d'un mouvement rotatif de l'entraîneur (246) autour du tourillon d'entraînement excentrique (244), qu'en particulier le corps d'accouplement (292) est actif entre le corps de guidage (254) et l'entraîneur (246), et/ou qu'en particulier le corps d'accouplement (292) est disposé de manière bloquée sur un du corps de guidage (254) et de l'entraîneur (246) et s'insère dans un évidement (296) dans l'autre du corps de guidage (254) et de l'entraîneur (246), et/ou qu'en particulier le corps d'accouplement (292) est disposé avec jeu dans l'évidement (296) et/ou qu'en particulier le corps d'accouplement (292) est réalisé en tant que tourillon d'accouplement, qu'en particulier le tourillon d'accouplement (292) est disposé de manière bloquée sur le corps de guidage et s'insère dans l'évidement (296) dans l'entraîneur (246), qu'en particulier le tourillon d'accouplement (292) et l'évidement (296) coopèrent dans une zone de contact (392), qui est traversée par un plan médian (374) s'étendant perpendiculairement à l'axe de tourillon (294) du tourillon d'accouplement (292) et en direction de l'axe de tourillon (294) au centre d'un palier rotatif (248) pour l'entraîneur (246) actif entre le deuxième corps de compresseur (26) et l'entraîneur (246) et qu'une fente (402, 404) est présente entre le tourillon d'accouplement (292) et l'évidement (296) des deux côtés de la zone de contact (392), et/ou qu'en particulier le tourillon d'accouplement (292) et l'évidement (296) coopèrent dans une partie centrale (392) de l'évidement (296), et/ou qu'en particulier l'évidement (296) présente dans la partie centrale (392) un diamètre plus petit que dans les parties d'extrémité (394, 396) de l'évidement (296) situées des deux côtés de la partie centrale (392) et formant respectivement une fente (402, 404), et/ou qu'en particulier la partie centrale (392) de l'évidement (296) s'étend au maximum sur la moitié de l'étendue de l'évidement (296) en direction de l'axe de tourillon (294), qu'en particulier les parties d'extrémité (394, 396) disposées des deux côtés de la partie centrale (392) se différencient en ce qui concerne leur étendue en direction de l'axe de tourillon (294) au maximum d'un facteur 2.
  13. Compresseur selon l'une quelconque des revendications précédentes, caractérisé en ce que l'entraînement excentrique (242) présente le tourillon d'entraînement excentrique (244) entraînant l'entraîneur (246) et un corps d'accouplement (292) accouplant le contrepoids de trajectoire orbitale (252) à l'entraîneur (246), qu'en particulier le corps d'accouplement (292) représente également un corps d'équilibrage des masses, qu'en particulier le tourillon d'entraînement excentrique (244) et le corps d'accouplement (292) sont disposés sur les faces opposées l'une à l'autre d'un plan d'équilibrage des masses (ME), qu'en particulier le plan d'équilibrage des masses (ME) s'étend à travers l'axe médian (44) de l'arbre d'entraînement (228) et l'axe médian (44) du corps de compresseur mobile en orbite, et/ou qu'en particulier le corps d'accouplement (292) présente une masse qui diffère de maximum 20 % de la masse du tourillon d'entraînement excentrique (244), qu'en particulier le corps d'accouplement (292) présente sensiblement la même masse que le tourillon d'entraînement excentrique (244), et/ou qu'en particulier le corps d'accouplement est réalisé en tant que tourillon d'équilibrage des masses (292), qu'en particulier un axe de tourillon (294) du tourillon d'équilibrage des masses (292) est disposé à la même distance du plan d'équilibrage des masses (ME) qu'un axe de tourillon d'excentrique (245) du tourillon d'entraînement excentrique, qu'en particulier l'axe de tourillon (294) du tourillon d'équilibrage des masses (292) s'étend sensiblement parallèlement à l'axe de tourillon d'excentrique (245) du tourillon d'entraînement excentrique (244), et/ou qu'en particulier un axe de tourillon (294) du tourillon d'équilibrage des masses (292) ainsi que l'axe de tourillon d'excentrique (245) du tourillon d'entraînement excentrique (244) s'étendent parallèlement au plan d'équilibrage des masses (ME).
  14. Compresseur selon la revendication 13, caractérisé en ce que le contrepoids de trajectoire orbitale (252) est disposé sur une face opposée au tourillon d'entraînement excentrique (244) et au corps d'équilibrage des masses (254) d'un plan transversal géométrique (QE) s'étendant perpendiculairement au plan d'équilibrage des masses (ME) et à travers l'axe médian (44) de l'arbre d'entraînement (228).
  15. Compresseur selon l'une quelconque des revendications précédentes, caractérisé en ce que l'arbre d'entraînement (228) présente une partie (326) tournée vers le compresseur, laquelle porte une masse d'équilibrage de balourd (322) tournée vers le compresseur et le tourillon d'entraînement excentrique (244) ainsi qu'en particulier le corps d'équilibrage des masses (292), et guide le contrepoids de trajectoire orbitale (252), qu'en particulier la masse d'équilibrage de balourd (322) tournée vers le compresseur est disposée sur l'arbre d'entraînement (228) entre un rotor (226) du moteur d'entraînement (222) et une unité de palier avant (232) .
  16. Compresseur selon l'une quelconque des revendications précédentes, caractérisé en ce que l'arbre d'entraînement (228) présente une partie opposée au compresseur (328), qui porte une masse d'équilibrage de balourd (324) opposée au compresseur, qu'en particulier la masse d'équilibrage de balourd (324) opposée au compresseur est disposée entre le rotor (226) du moteur d'entraînement (222) et une unité palier arrière (234) de l'arbre d'entraînement (228).
EP16748088.8A 2016-07-27 2016-07-27 Compresseur Active EP3491245B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/067943 WO2018019372A1 (fr) 2016-07-27 2016-07-27 Compresseur

Publications (2)

Publication Number Publication Date
EP3491245A1 EP3491245A1 (fr) 2019-06-05
EP3491245B1 true EP3491245B1 (fr) 2024-03-27

Family

ID=56611238

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16748088.8A Active EP3491245B1 (fr) 2016-07-27 2016-07-27 Compresseur

Country Status (4)

Country Link
US (1) US11326593B2 (fr)
EP (1) EP3491245B1 (fr)
CN (1) CN109312745B (fr)
WO (1) WO2018019372A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112119218B (zh) 2018-06-22 2023-01-06 比泽尔制冷设备有限公司 具有可解耦的轨道平衡块的螺旋式压气机
JP2020165394A (ja) * 2019-03-29 2020-10-08 株式会社豊田自動織機 スクロール型電動圧縮機
DE102020133438A1 (de) 2020-12-14 2022-06-15 Bitzer Kühlmaschinenbau Gmbh Scrollmaschine, insbesondere Scrollkompressor oder -expander und Kälteanlage
EP4083374A3 (fr) * 2021-04-28 2022-11-16 Dabir Surfaces, Inc. Pompe é spirales avec coupleur moteur flottant
DE102022120678A1 (de) 2022-08-16 2024-02-22 Bitzer Kühlmaschinenbau Gmbh Scrollmaschine mit Einspritzung sowie Kälteanlageollmaschine mit Einspritzung sowie Kälteanlage
DE102022120681A1 (de) 2022-08-16 2024-02-22 Bitzer Kühlmaschinenbau Gmbh Scrollmaschine und Kälteanlage
DE102022120679A1 (de) 2022-08-16 2024-02-22 Bitzer Kühlmaschinenbau Gmbh Scrollmaschine und Kälteanlage

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819875B2 (ja) * 1980-03-18 1983-04-20 サンデン株式会社 スクロ−ル型圧縮機
JPH063192B2 (ja) * 1982-12-08 1994-01-12 三菱電機株式会社 スクロ−ル圧縮機
JPS59126096A (ja) * 1982-12-29 1984-07-20 Toyoda Autom Loom Works Ltd スクロ−ル型圧縮機における回転スクロ−ル部材の駆動機構
AU587222B2 (en) * 1985-01-28 1989-08-10 Sanden Corporation Drive system for the orbiting scroll of a scroll type fluid compressor
JPS61250393A (ja) * 1985-04-26 1986-11-07 Shin Meiwa Ind Co Ltd スクロール形オイルフリー式真空ポンプ
US5104302A (en) * 1991-02-04 1992-04-14 Tecumseh Products Company Scroll compressor including drive pin and roller assembly having sliding wedge member
US5366357A (en) * 1992-02-28 1994-11-22 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Scroll type compressor having a counterweight mounted with a clearance on a driveshaft
US5366360A (en) * 1993-11-12 1994-11-22 General Motors Corporation Axial positioning limit pin for scroll compressor
JP3781460B2 (ja) * 1995-03-17 2006-05-31 株式会社デンソー スクロール型圧縮機
JPH11182461A (ja) * 1997-12-15 1999-07-06 Sanden Corp スクロール型圧縮機
JP2014214702A (ja) * 2013-04-26 2014-11-17 三菱電機株式会社 スクロール圧縮機

Also Published As

Publication number Publication date
EP3491245A1 (fr) 2019-06-05
US11326593B2 (en) 2022-05-10
CN109312745A (zh) 2019-02-05
US20190170139A1 (en) 2019-06-06
WO2018019372A1 (fr) 2018-02-01
CN109312745B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
EP3491245B1 (fr) Compresseur
EP3194782B1 (fr) Compresseur à spirales
EP1886035B1 (fr) Palier pivotant a disques obliques
DE2639174A1 (de) Fluidverdraenger-vorrichtung
WO2000053934A1 (fr) Ensemble compresseur en spirale
DE10248926A1 (de) Kompressor
DE102017115754A1 (de) Werkzeug mit Hin- und Herbewegung
DE3519244A1 (de) Hydraulische maschine der spiralart
DE112017004733B4 (de) Gleichlaufender Spiralverdichter mit versetzten Lagern
EP3433502B1 (fr) Dispositif médical
EP3488971A1 (fr) Dispositif de pivotement électrique
DE102016103315A1 (de) Kompressor
EP3810935B1 (fr) Compresseur à spirale muni d'un contrepoids de trajectoire orbitale découplable
EP3420193B1 (fr) Compresseur
DE60110314T2 (de) Axialkolbenpumpe
DE3922436C2 (fr)
EP1988311B1 (fr) Palier et actionneur linéaire équipé d'un tel palier
CH683862A5 (de) Drehdurchführung mit Wegeventil.
DE3744637A1 (de) Drehkolbenverdichter
DE10028336C1 (de) Axialkolbenmaschine
DE4401688C2 (de) Rotorpumpe
CH493758A (de) Drehzahlveränderndes Getriebe zur Gewährleistung eines gewünschten festen Drehzahlverhältnisses zwischen zwei koaxialen Wellen
WO2023161035A1 (fr) Mécanisme de compensation pour une machine de déplacement
DE4421506C1 (de) Innen- und außenbeaufschlagbare Radialkolbenmaschine
DE202004015628U1 (de) Getriebeanordnung für eine Spieldose

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BITZER KUEHLMASCHINENBAU GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210421

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230509

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20231031

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016016440

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN