EP3470900A1 - Câble à fibre optique - Google Patents

Câble à fibre optique Download PDF

Info

Publication number
EP3470900A1
EP3470900A1 EP17813452.4A EP17813452A EP3470900A1 EP 3470900 A1 EP3470900 A1 EP 3470900A1 EP 17813452 A EP17813452 A EP 17813452A EP 3470900 A1 EP3470900 A1 EP 3470900A1
Authority
EP
European Patent Office
Prior art keywords
optical fiber
optical fibers
fiber cable
optical
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17813452.4A
Other languages
German (de)
English (en)
Other versions
EP3470900A4 (fr
EP3470900B1 (fr
Inventor
Fumiaki Sato
Taro Fujita
Nayu YANAGAWA
Yoshiaki Nagao
Nobuyuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of EP3470900A1 publication Critical patent/EP3470900A1/fr
Publication of EP3470900A4 publication Critical patent/EP3470900A4/fr
Application granted granted Critical
Publication of EP3470900B1 publication Critical patent/EP3470900B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4407Optical cables with internal fluted support member
    • G02B6/4409Optical cables with internal fluted support member for ribbons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4405Optical cables with longitudinally spaced waveguide clamping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4482Code or colour marking

Definitions

  • the present invention relates to an optical fiber cable.
  • slot type optical fiber cable including a slot rod having a plurality of slot grooves, in which optical fiber ribbons are housed in the slot grooves.
  • Patent Document 1 describes a slot type optical fiber cable in which optical fiber ribbons are housed in slot grooves, the optical fiber ribbons respectively having connecting portions provided intermittently in a ribbon longitudinal direction and a ribbon width direction.
  • optical fiber cable according to an aspect of the present disclosure is an optical fiber cable comprising:
  • the present disclosure aims to provide an optical fiber cable in which optical fibers can be mounted densely in a slot type multi-core optical fiber cable.
  • optical fibers can be mounted densely in a slot type multi-core optical fiber cable.
  • An optical fiber cable includes:
  • the optical fiber ribbon is an intermittent connection type in which a plurality of optical fibers having an outer dimension of 0.22 mm or less are arranged in parallel, and connecting portions and non-connecting portions are intermittently provided between the optical fibers. Therefore, by housing such intermittent connection type optical fiber ribbons in the slot grooves, the density of core number of the optical fibers included in the optical fiber cable can be 4.8 cores / mm 2 or more. Therefore, in the slot type multi-core optical fiber cable, the optical fibers can be mounted densely.
  • the Young's modulus at room temperature of the primary resin of the optical fiber exceeds 1.5 MPa, the transmission loss of the optical fiber tends to deteriorate.
  • the Young's modulus is excessively low, and when a stress is applied to the optical fibers, there is a concern that internal resin is broken and voids and the like are likely to occur, and thus the lower limit is preferably 0.5 MPa or more. Therefore, the Young's modulus is preferably 0.5 MPa or more and 1.5 MPa or less.
  • Fig 1 is a cross-sectional view showing a configuration of an optical fiber cable 1A according to a first embodiment.
  • the optical fiber cable 1A includes an optical unit 2 which is an assembly of optical fiber ribbons 20, a slot rod 3 housing the optical unit 2, and a cable jacket 4 covering the outside of the slot rod 3.
  • a plurality of (for example, seven) tension members 31 are embedded in a center portion, and a plurality of (for example, six) slot grooves 32 housing the optical unit 2 are formed on an outer peripheral surface.
  • the tension members 31 are formed of a wire material having a proof stress against tension and compression, such as a steel wire or a fiber-reinforced plastic wire.
  • the tension members 31 are embedded along a longitudinal direction of the optical fiber cable 1A.
  • Each slot groove 32 is partitioned by slot ribs 33 extending radially from the periphery of the tension members 31.
  • the slot grooves 32 are formed so as to have, for example, a substantially U-shaped cross section.
  • the slot grooves 32 may be formed, for example, in an SZ shape.
  • the surface roughness Ra of the slot grooves 32 is 5 ⁇ m or less. The surface roughness Ra can be adjusted by appropriately changing manufacturing conditions such as extrusion molding linear speed and production temperature of the slot.
  • the surface portion of the slot rod 3 is formed of a resin having a Young's modulus at normal temperature of 1500 MPa or more, for example, engineering plastic.
  • the surface portion of the slot rod 3 may be formed of a material obtained by alloying a high Young's modulus material to a polyethylene of an existing material (for example, polyethylene and silicone, polyethylene and nylon, or the like) in order to secure a certain degree of flexibility.
  • the optical unit 2 is formed of a plurality of (for example, twelve) optical fiber ribbons 20.
  • Each optical fiber ribbon 20 of the optical unit 2 is, for example, an assembly obtained by being twisted in a spiral shape in one direction.
  • the twisted twelve optical fiber ribbons 20 may be, for example, bundled by a bundling member 5 for identification which is formed of a resin tape such as polyester.
  • Each of the optical fiber ribbons 20 may be twisted in an SZ shape such as a spiral shape that is periodically inverted, or may be housed in a stacked state.
  • the optical unit 2 is housed in the slot grooves 32 along the longitudinal direction of the optical fiber cable 1A. For example, three optical units 2 are housed in each slot groove 32.
  • the optical fiber ribbon 20 includes a plurality of (for example, twelve) optical fibers 21A to 21L arranged in parallel (hereinafter collectively referred to as optical fibers 21).
  • a tape coating 24 formed of an ultraviolet curable resin or the like is provided around the parallel optical fibers 21, and the twelve optical fibers 21 are integrated by the tape coating 24.
  • the optical fiber ribbon 20 is formed so as to have, for example, a thickness B of 0.23 mm or less, a distance P between centers of adjacent ones of the optical fibers 21 of 0.20 ⁇ 0.03 mm, and, as for the case of twelve cores, a width W of 2.5 mm or less.
  • the optical fiber ribbon 20 is an intermittent connection type optical fiber ribbon, and has connecting portions 22 at which adjacent ones of the optical fibers 21 are connected to one another and non-connecting portions 23 at which adjacent ones of the optical fibers 21 are not connected to one another, which are provided intermittently in the longitudinal direction. Locations at which the connecting portions 22 and the non-connecting portions 23 are provided may be either between all of the optical fibers or between some of the optical fibers.
  • the optical fiber ribbon 20 shown in Fig 3 is an optical fiber ribbon of a two-core intermittent type in which the connecting portions 22 and the non-connecting portions 23 are intermittently provided with two optical fibers 21 as a unit. That is, in the twelve optical fibers 21A to 21L, the optical fiber ribbon 20 does not have the non-connecting portions 23 provided between the optical fibers 21A and 21B, 21C and 21D, 21E and 21F, 21G and 21H, 211 and 21J, and 21K and 21L.
  • the optical fiber 21 includes an optical fiber 210 at a central portion thereof.
  • the optical fiber 210 is constituted by, for example, silica glass or plastic, and is formed so as to have an outer diameter of, for example, 0.125 mm.
  • the optical fiber 210 includes a core and a cladding.
  • the core is disposed at a radial center.
  • the cladding covers the periphery of the core.
  • the optical fiber 21 includes a primary coating 211 (an example of the primary resin) covering the optical fiber 210, a secondary coating 212 covering the primary coating 211, and a colored layer 213 covering the periphery of the secondary coating 212.
  • the optical fiber 21 has an outer diameter of 0.22 mm or less.
  • the primary coating 211 is formed of, for example, an ultraviolet curable resin having a Young's modulus of 0.5 MPa or more and 1.5 MPa or less at room temperature.
  • the secondary coating 212 is formed of an ultraviolet curable resin harder than the primary coating 211, and is formed so as to have an outer diameter of, for example, 0.2 mm.
  • the colored layer 213 is formed so as to have a predetermined color in order to identify the plurality of optical fibers 21.
  • the colored layer 213 is formed of an ultraviolet curable resin and is formed so as to have an outer diameter of, for example, 0.205 mm or less, which is less than 0.22 mm.
  • the optical fiber cable constituted by such elements has an outer diameter of 35 mm or less, and is formed such that the number of the optical fibers 21 housed in one slot groove 32 is 100 or more.
  • the density of core number of the optical fibers 21 included in the optical fiber cable is 4.8 cores / mm 2 or more in the cross section of the optical fiber cable.
  • the optical fiber cable 1A shown in Fig 1 has an outer diameter of 26 mm, and a core number of optical fibers 21 is 144 in one optical unit 2 housed in one slot groove 32. Since three optical units 2 are respectively housed in each of the six slot grooves 32, the core number of all of the optical fibers is 2592, and the density of core number of the optical fibers 21 included in the optical fiber cable 1A is 4.9 cores / mm 2 .
  • the optical fiber cable 1A is manufactured as follows.
  • An optical fiber ribbon having a thickness B of 0.23 mm or less and a width W of 2.5 mm or less is manufactured by arranging twelve optical fibers 21 having an outer diameter of 0.205 mm in parallel and covering the outer periphery thereof with a tape coating 24.
  • An intermittent connection type optical fiber ribbon 20 is manufactured by inserting a notch between predetermined fibers in the optical fiber ribbon.
  • a connecting resin such as an ultraviolet curable resin may be intermittently applied between the optical fibers arranged in parallel so as to form the connecting portions 22 and the non-connecting portions 23.
  • An optical unit 2 is prepared by twisting twelve optical fiber ribbons 20, and three optical units 2 are respectively housed in each slot groove 32 of a slot rod 3.
  • the outer side of the slot rod 3 housing the optical unit 2 is covered with the cable jacket 4 so as to complete manufacture of the optical fiber cable 1A.
  • the optical fiber ribbons 20 are intermittent connection type optical fiber ribbons in which the connecting portions 22 and the non-connecting portions 23 are intermittently provided in the longitudinal direction between adjacent optical fibers 21.
  • An outer dimension of the plurality of optical fibers 21 constituting the optical fiber ribbons 20 is 0.22 mm or less. Therefore, by combining a plurality of such intermittent connection type optical fiber ribbons 20 into the optical unit 2, the optical unit 2 can be combined without any gap, and the cross-sectional area of the optical unit 2 can be reduced. Therefore, by housing the optical unit 2 in the slot grooves 32, the density of core number of the optical fibers 21 included in the optical fiber cable 1A can be set to 4.8 cores / mm 2 or more. Therefore, the optical fibers 21 can be mounted densely in a slot type multi-core optical fiber cable with excellent identification of the optical fiber ribbons 20.
  • the core number of the optical fibers 21 housed in one slot groove 32 can be set to 100 or more. Accordingly, the optical fibers 21 can be mounted densely in the slot type multi-core optical fiber cable.
  • the slot ribs 33 partitioning the slot grooves 32 can be thinned. Therefore, the cross-sectional area of the slot grooves 32 in the optical fiber cable 1A can be increased, and the optical fibers 21 can be mounted densely.
  • the optical fibers 21 can be mounted densely while suppressing deterioration of the transmission loss of the optical fiber 21.
  • the optical fibers 21 can be mounted more densely.
  • the Young's modulus of the primary coating 211 in the optical fibers 21 by setting the Young's modulus of the primary coating 211 in the optical fibers 21 at room temperature to 0.5 MPa or more, it is possible to suppress breakage of the internal resin due to stress application, and to suppress occurrence of voids and the like. Further, by setting the Young's modulus of the primary coating 211 in the optical fiber 21 at room temperature to 1.5 MPa or less, it is possible to suppress micro-bending loss and to suppress deterioration of the transmission loss.
  • Fig 5 is a cross-sectional view showing a configuration of an optical fiber cable 1B according to a second embodiment.
  • FIG. 5 eight slot grooves 32 are formed in the slot rod 13 in an optical fiber cable 1B.
  • the optical unit 12 housed in the slot grooves 32 is formed of a plurality of (for example, 16) optical fiber ribbons 20.
  • the portions denoted by the same reference numerals as those of the optical fiber cable 1A of the first embodiment (see Fig 1 ) are portions having the same function, and thus descriptions thereof are omitted.
  • the optical fiber cable 1B has an outer diameter of 35 mm, and the number of the optical fibers 21 in one optical unit 12 housed in one slot groove 32 is 192. Since three optical units 12 are respectively housed in each of the eight slot grooves 32, the core number of all of the optical fibers is 4608, and the density of core number of the optical fibers 21 included in the optical fiber cable 1B is 4.8 cores / mm 2 .
  • optical fiber cable 1B of the second embodiment having such configuration has the same advantages as the optical fiber cable 1A of the first embodiment.
  • optical fiber cable 1A A specific example of the optical fiber cable 1A according to the first embodiment will be described below.
  • the optical fiber cable When the optical fiber cable is manufactured, and when a material having a high Young's modulus is used as the material of the slot rod, although it is possible to thin the slot ribs and to increase the cross-sectional area of the slot grooves, there is a concern that the surface of the slot grooves becomes rough and the transmission loss of the optical fibers deteriorates. Further, in general, when the coating diameter of the optical fiber is reduced, there is a concern that influence of micro-bending loss increases and the transmission loss of the optical fiber deteriorate.
  • the surface roughness Ra of the slot grooves 32 and the Young's modulus of the primary coating 211 are optimized.
  • the condition of the surface roughness Ra of the slot grooves 32 was changed to 0.05 ⁇ m to 10.00 ⁇ m, and the condition of the Young's modulus of the primary coating 211 in the optical fibers 21 was changed to 0.5 MPa to 2.5 MPa.
  • a plurality of types of optical fiber cables were produced under combinations of the conditions, the transmission loss was measured, and the results are shown in Table 1. In judgment of the transmission loss, ones accepted (transmission loss ⁇ 0.25 dB / km) are indicated by "A” and ones rejected (transmission loss > 0.25 dB / km) are indicated by "R".
  • the lower limit of the Young's modulus of the primary coating 211 is preferably 0.5 MPa or more.
  • the surface roughness Ra of the slot grooves 32 is preferably 5 ⁇ m or less, and the Young's modulus of the primary coating 211 is preferably 0.5 MPa or more and 1.5 MPa or less.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Communication Cables (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
EP17813452.4A 2016-06-13 2017-08-08 Câble à fibre optique Active EP3470900B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016117101A JP6586925B2 (ja) 2016-06-13 2016-06-13 光ファイバケーブル
PCT/JP2017/028684 WO2017217559A1 (fr) 2016-06-13 2017-08-08 Câble à fibre optique

Publications (3)

Publication Number Publication Date
EP3470900A1 true EP3470900A1 (fr) 2019-04-17
EP3470900A4 EP3470900A4 (fr) 2020-01-15
EP3470900B1 EP3470900B1 (fr) 2021-10-20

Family

ID=60664201

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17813452.4A Active EP3470900B1 (fr) 2016-06-13 2017-08-08 Câble à fibre optique

Country Status (5)

Country Link
US (1) US10845556B2 (fr)
EP (1) EP3470900B1 (fr)
JP (1) JP6586925B2 (fr)
CN (1) CN109642999B (fr)
WO (1) WO2017217559A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3767357A1 (fr) * 2019-07-16 2021-01-20 Sterlite Technologies Limited Ruban à fibre optique collé par intermittence
US10914906B2 (en) 2018-01-18 2021-02-09 Sumitomo Electric Industries, Ltd. Optical fiber cable
US10989864B2 (en) 2018-01-11 2021-04-27 Sumitomo Electric Industries, Ltd. Optical fiber, coated optical fiber, and optical transmission system
EP3943992A4 (fr) * 2019-03-20 2022-05-04 Sumitomo Electric Industries, Ltd. Noyau de bande de fibre optique de type à connexion intermittente, câble à fibre optique et cordon de fibre optique équipé d'un connecteur
EP4030211A4 (fr) * 2019-09-11 2022-10-26 Sumitomo Electric Industries, Ltd. Unité de fibre optique et câble à fibres optiques
EP4020044A4 (fr) * 2019-08-21 2023-07-26 Fujikura Ltd. Ruban de fibres optiques de type à liaisons intermittentes

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6255120B1 (ja) * 2017-02-20 2017-12-27 株式会社フジクラ 光ファイバケーブル
EP3640694A4 (fr) * 2017-06-14 2021-03-03 Sumitomo Electric Industries, Ltd. Câble optique de type à fente
JP6996395B2 (ja) * 2018-04-03 2022-01-17 住友電気工業株式会社 光ファイバケーブル
JP7025099B2 (ja) * 2018-07-03 2022-02-24 日本電信電話株式会社 光ファイバケーブルならびに光ファイバケーブルの製造装置および製造方法
US11886026B2 (en) 2019-09-05 2024-01-30 Sumitomo Electric Industries, Ltd. Optical fiber ribbon, optical fiber cable, and connector-equipped optical fiber cord
JP7084449B2 (ja) * 2020-07-10 2022-06-14 古河電気工業株式会社 光ファイバテープ心線、光ファイバケーブル
EP4246195A4 (fr) 2020-11-11 2024-04-24 Sumitomo Electric Industries, Ltd. Câble à fibres optiques
JPWO2023027117A1 (fr) 2021-08-25 2023-03-02
CN114675386B (zh) * 2022-04-01 2023-09-12 杭州富通通信技术股份有限公司 一种光缆

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189832A (ja) * 1996-01-09 1997-07-22 Furukawa Electric Co Ltd:The 光ファイバケーブル用中心抗張力体とそれを用いた光ファイバケーブル
JP3715021B2 (ja) * 1996-04-09 2005-11-09 Jsr株式会社 液状硬化性樹脂組成物
JPH1068852A (ja) * 1996-08-28 1998-03-10 Sumitomo Electric Ind Ltd 光ケーブルおよび光ケーブル用スロットコア
US6052502A (en) * 1997-09-22 2000-04-18 Siecor Corporation Ribbon optical cable having improved strength
GB2343014A (en) * 1998-10-23 2000-04-26 Bowthorpe Plc Optic fibre cable
JP2000155243A (ja) * 1998-11-19 2000-06-06 Sumitomo Electric Ind Ltd 光ファイバ単心線およびその製造方法
JP2004184917A (ja) * 2002-12-06 2004-07-02 Sumitomo Electric Ind Ltd 光ファイバ用スペーサの製造方法および光ファイバ用スペーサ
JP3912531B2 (ja) * 2003-02-20 2007-05-09 住友電気工業株式会社 被覆光ファイバ心線
JP2008224744A (ja) * 2007-03-08 2008-09-25 Furukawa Electric Co Ltd:The 光ファイバ心線
JP5507369B2 (ja) * 2010-07-16 2014-05-28 宇部エクシモ株式会社 光ファイバケーブル用スペーサの押出成形用ダイス、及び光ファイバケーブル用スペーサの製造方法
JP2013080113A (ja) * 2011-10-04 2013-05-02 Sumitomo Electric Ind Ltd 光ファイバ
JP5564026B2 (ja) * 2011-10-18 2014-07-30 株式会社フジクラ 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP5910044B2 (ja) * 2011-12-05 2016-04-27 住友電気工業株式会社 光ファイバおよび光ファイバの製造方法
JP2014164014A (ja) * 2013-02-22 2014-09-08 Sumitomo Electric Ind Ltd 光ファイバ、及び、該光ファイバを含むハーネス
JP2015007714A (ja) * 2013-06-25 2015-01-15 住友電気工業株式会社 光ファイバテープ心線、光ケーブル、製造装置、及び製造方法
JP2015099315A (ja) * 2013-11-20 2015-05-28 株式会社フジクラ スロット型光ファイバケーブル
JP2016020990A (ja) * 2014-07-15 2016-02-04 住友電気工業株式会社 光ケーブル用のスロットロッド及び光ケーブル
EP3037189B1 (fr) 2014-12-23 2018-11-07 Ellwood National Investment Corp. Forgeage de précision pour blocs d'extrémités fluidiques

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10989864B2 (en) 2018-01-11 2021-04-27 Sumitomo Electric Industries, Ltd. Optical fiber, coated optical fiber, and optical transmission system
US10914906B2 (en) 2018-01-18 2021-02-09 Sumitomo Electric Industries, Ltd. Optical fiber cable
EP3742212A4 (fr) * 2018-01-18 2021-09-15 Sumitomo Electric Industries, Ltd. Câble à fibre optique
EP3943992A4 (fr) * 2019-03-20 2022-05-04 Sumitomo Electric Industries, Ltd. Noyau de bande de fibre optique de type à connexion intermittente, câble à fibre optique et cordon de fibre optique équipé d'un connecteur
EP3767357A1 (fr) * 2019-07-16 2021-01-20 Sterlite Technologies Limited Ruban à fibre optique collé par intermittence
EP4020044A4 (fr) * 2019-08-21 2023-07-26 Fujikura Ltd. Ruban de fibres optiques de type à liaisons intermittentes
US11899266B2 (en) 2019-08-21 2024-02-13 Fujikura Ltd. Intermittently connected optical fiber ribbon
EP4030211A4 (fr) * 2019-09-11 2022-10-26 Sumitomo Electric Industries, Ltd. Unité de fibre optique et câble à fibres optiques
US11892700B2 (en) 2019-09-11 2024-02-06 Sumitomo Electric Industries, Ltd. Optical fiber unit and optical fiber cable

Also Published As

Publication number Publication date
US20200183111A1 (en) 2020-06-11
CN109642999B (zh) 2020-07-28
US10845556B2 (en) 2020-11-24
WO2017217559A8 (fr) 2018-02-08
EP3470900A4 (fr) 2020-01-15
EP3470900B1 (fr) 2021-10-20
CN109642999A (zh) 2019-04-16
WO2017217559A1 (fr) 2017-12-21
JP2017223730A (ja) 2017-12-21
JP6586925B2 (ja) 2019-10-09

Similar Documents

Publication Publication Date Title
EP3470900B1 (fr) Câble à fibre optique
CN104317023A (zh) 光纤缆线
EP2402807B1 (fr) Procédés et assemblages de branchement de câbles à fibres optiques
US6269210B1 (en) Optical fiber
KR102422348B1 (ko) 테이프 심선 및 광 케이블
EP3025174B1 (fr) Ruban de fibre optique
KR20160092667A (ko) 리본 튜브형 광케이블
KR20130106818A (ko) 플라스틱 광파이버 유닛 및 그것을 사용한 플라스틱 광파이버 케이블
US11009668B2 (en) Optical fiber ribbon and optical fiber cable
KR20110012705A (ko) 센터럴 루즈튜브 이중피복 광섬유 케이블
US7397990B2 (en) Signal transmitting cable
JP4134758B2 (ja) メタル光複合ケーブル
JP2008281823A (ja) テープスロット型ケーブル
JP2005321645A (ja) テープ型光ファイバ心線
TW201910836A (zh) 光纖纜線
WO2023106398A1 (fr) Câble à fibres optiques et procédé de fabrication d'un câble à fibres optiques
EP4394470A1 (fr) Câble à fibres optiques
JP2993916B2 (ja) 光ファイバユニット
AU2023204313A1 (en) High fiber density cable with flexible optical fiber ribbons
JP2004053712A (ja) 平形光ファイバケーブルおよびその製造方法
JP2006337412A (ja) 光ファイバケーブル
JP2003187650A (ja) 光ファイバ複合架空地線
US20100166379A1 (en) Fiber guide for fiber optic cables
JP2005077703A (ja) 光ドロップケーブル
JP2004012832A (ja) 光ファイバケーブル

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20191216

RIC1 Information provided on ipc code assigned before grant

Ipc: G02B 6/44 20060101AFI20191210BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SUZUKI, NOBUYUKI

Inventor name: NAGAO, YOSHIAKI

Inventor name: YANAGAWA, NAYU

Inventor name: FUJITA, TARO

Inventor name: SATO, FUMIAKI

INTG Intention to grant announced

Effective date: 20210608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017047985

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1440408

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211020

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1440408

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220121

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017047985

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017047985

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220808

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220808

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230629

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230630

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020