EP3429721A1 - Sac filtrant d'aspirateur à poussière en matières plastiques recyclées - Google Patents

Sac filtrant d'aspirateur à poussière en matières plastiques recyclées

Info

Publication number
EP3429721A1
EP3429721A1 EP17709453.9A EP17709453A EP3429721A1 EP 3429721 A1 EP3429721 A1 EP 3429721A1 EP 17709453 A EP17709453 A EP 17709453A EP 3429721 A1 EP3429721 A1 EP 3429721A1
Authority
EP
European Patent Office
Prior art keywords
recycled
layers
layer
vacuum cleaner
filter bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17709453.9A
Other languages
German (de)
English (en)
Inventor
Ralf Sauer
Jan Schultink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eurofilters NV
Original Assignee
Eurofilters NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56404040&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3429721(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from EP16160921.9A external-priority patent/EP3219373B1/fr
Priority claimed from EP16160922.7A external-priority patent/EP3219374B1/fr
Application filed by Eurofilters NV filed Critical Eurofilters NV
Publication of EP3429721A1 publication Critical patent/EP3429721A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/14Bags or the like; Rigid filtering receptacles; Attachment of, or closures for, bags or receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1615Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of natural origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1638Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being particulate
    • B01D39/1646Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being particulate of natural origin, e.g. cork or peat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/18Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/0283Types of fibres, filaments or particles, self-supporting or supported materials comprising filter materials made from waste or recycled materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0618Non-woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/08Special characteristics of binders
    • B01D2239/086Binders between particles or fibres

Definitions

  • the present invention relates to a vacuum cleaner filter bag, which is formed primarily of plastic recyclates.
  • Filter bags made of nonwovens have virtually completely replaced paper filter bags in the last 10 years because of the significantly better performance properties. In particular, the separation efficiency, the clogging tendency and the mechanical strength were continuously improved.
  • the nonwovens used for this purpose are usually formed from thermoplastic materials, in particular polypropylene (PP) and / or polyester (PET).
  • Biodegradable filter bags as proposed in EP 2 301 404 and WO 201 1/047764 also do not seem to be a promising approach for improving the ecological properties, since filter bags are often disposed of via waste incineration and composting alone is the main reason non-biodegradable material is out of the question.
  • Nonwoven filter bags for vacuum cleaners today always consist of several layers (EP 1 198 280, EP 2 433 695, EP 1 254 693). Support layers are used to achieve the necessary mechanical strength, coarse filter layers which have a high storage capacity for dust, without the air resistance increases too much and fine filter layers for the filtration of particles ⁇ 1 ⁇ .
  • diffusers and partitions have also been used in filter bags for some years to optimize the flow conditions in the filter bag in order to increase service life.
  • meltblown microfiber nonwovens are used as a fine filter layer.
  • meltblown nonwovens are extrusion nonwovens, are usually made of polypropylene and have filament diameters in the range of less than 1 ⁇ up to a few ⁇ .
  • these materials are electrostatically charged (eg by corona discharge).
  • nanofibers produced in the electrospinning process to nonwoven carrier materials (DE 199 19 809).
  • Staple fiber nonwovens, extrusion nonwovens, but also nonwoven fabrics are used for the capacity situation.
  • the materials used for capacitance layers are usually polypropylene or polyester, but also fluff pulp (EP 0 960 645, EP 1 198 280).
  • recycled plastics eg, recycled polyethylene terephthalate (rPET)
  • rPET recycled polyethylene terephthalate
  • CN101747596 describes the use of recycled PET or recycled PBT (rPET / rPBT) as material for microfilaments.
  • Patent claim 14 also specifies the possibility of using recycled plastics for vacuum cleaner filter bags.
  • the invention thus relates to a vacuum cleaner filter bag comprising a wall enclosing an interior of an air-permeable material.
  • an inlet opening is introduced, via which, for example, a vacuum cleaner neck can be introduced into the vacuum cleaner filter bag.
  • the air-permeable material of the wall comprises at least one layer of a nonwoven fabric and / or a layer of a fibrous material. fleece, wherein the nonwoven fabric or the nonwoven fabric fibers comprise or consist of, which are formed from one or more recycled plastics recycled plastic.
  • the vacuum cleaner filter bag according to the present invention comprises a wall of an air-permeable material, which may be constructed, for example, multi-layered. At least one of these layers is a nonwoven fabric or a nonwoven fabric which comprises recycled plastics and is formed, in particular, from recycled plastics.
  • a nonwoven fabric or a nonwoven fabric which comprises recycled plastics and is formed, in particular, from recycled plastics.
  • Such filter bags are clearly advantageous in ecological terms, since they can be produced to a high degree raw material neutral.
  • These filter bags also offer economic advantages, since most recycled plastic materials can be obtained much cheaper than the corresponding raw materials that are not recycled (“virgin" plastics).
  • a nonwoven fabric designates a random knit which has undergone a solidification step, so that it has sufficient strength to be rolled up or unrolled into rolls, for example by machine (ie on an industrial scale).
  • the minimum web tension required for winding is 0.25 PLI or 0.044 N / mm.
  • the web tension should not be higher than 10% to 25% of the minimum maximum tensile strength (according to DIN EN 29073-3: 1992-08) of the material to be wound up. This results in a minimum maximum tensile force for a wound material of 8.8 N per 5 cm strip width.
  • a nonwoven fabric corresponds to a corrugated fabric which, however, has not undergone a solidification step, so that, in contrast to a nonwoven fabric, such a corrugated fabric does not have sufficient strength to be wound up or unwound by machine rolling, for example.
  • EP 1 795 427 A1 the disclosure content of which is incorporated in the subject matter of the present patent application.
  • the fibers of the nonwoven fabric or of the nonwoven fabric which are in the air-permeable material of the wall of the inventive Vacuum cleaner filter bag is formed from a single recycled plastic material.
  • the fibers of the nonwoven fabric or of the nonwoven fabric are formed from different materials, of which at least one represents a recycled plastic.
  • two embodiments are conceivable:
  • it can be a mixture of at least two types of fiber, for example fiber mixtures, which are formed from at least two different recycled plastics.
  • the nonwoven fabric includes or is formed from bicomponent fibers (BiKo fibers) consisting of a core and a sheath enveloping the core. Core and jacket are made of different materials.
  • Bicomponent fibers e.g side by side
  • the other common variants of bicomponent fibers eg side by side are also suitable.
  • the bicomponent fibers may be in the form of staple fibers or may be in the form of nonwoven extrusion nonwovens (for example of meltblown nonwoven fabric), so that the bicomponent fibers theoretically have an infinite length and represent so-called filaments.
  • nonwoven fabrics for the purposes of the present invention, it is possible that these are drained, wet laid, or extruded nonwoven fabrics. Consequently, the fibers of the nonwovens or nonwoven fabrics may have finite length (staple fibers), but also theoretically infinite length (filaments).
  • the air-permeable materials of the wall of the vacuum cleaner filter bag comprise at least one layer of a nonwoven fabric comprising dust and / or fibrous recycled material from the production of textiles, especially cotton textiles, and / or from the wool pile and / or seed fibers ,
  • the dust and / or fibrous recycled material may be especially cotton dust.
  • the seed fibers may be cotton linters or kapok fibers.
  • nonwoven fabric is bonded by means of binding fibers, for example "fusion fibers” or bicomponent fibers, so that the dust and / or fibrous recycled material or the seed fibers are bonded preferably comprise at least one recycled plastic.
  • binding fibers for example "fusion fibers” or bicomponent fibers
  • the dust and / or fibrous recycled material or the seed fibers are bonded preferably comprise at least one recycled plastic.
  • Corresponding nonwoven materials are known, for example, from WO 201 1/057641 A1.
  • the nonwoven material materials according to the invention can also be designed accordingly.
  • the air-permeable material may comprise at least one layer of a nonwoven fabric comprising dust and / or fibrous recycled material from the production of textiles, in particular cotton textiles, and / or from the wool pile and / or seed fibers.
  • the dust and / or fibrous recycled material from the production of textiles is particularly important in the processing of textile materials (in particular textile fibers and filaments, as well as linear, sheetlike and spatial textile structures produced therewith), such as, for example, production (including carding, spinning, Cutting and drying) or the recycling of textile materials.
  • textile materials in particular textile fibers and filaments, as well as linear, sheetlike and spatial textile structures produced therewith
  • production including carding, spinning, Cutting and drying
  • These dust and / or fibrous materials are waste materials that can settle on the machinery or filter materials used to process the textiles.
  • the dusts or fibers are normally disposed of and thermally recycled.
  • the dust and / or fibrous recycled material is, for example, production waste; This applies in particular to material obtained as a waste product during carding, spinning, cutting or drying of textile materials. This is also referred to as "pre-consumer waste”.
  • the dust and / or fibrous recycled material from the manufacture of textiles includes, in particular, fibers derived from waste materials from the textile and clothing industry, from post-consumer waste (textiles and the like) and from products that have been collected for recycling , were won.
  • Cotton linters are short cotton fibers that adhere to the cotton seed core after the long seed hair (cotton) has been removed from the core. Cotton linters are very different in fiber length (typically 1 to 6 mm) and in purity, not spinnable and usually constitute a non-recyclable residue in the textile industry and thus a waste product. One can differentiate between First Cut (FC Linters), Second Cut (SC Linters) and Mill Run. Linters can be cleaned and bleached to recover Cotton Linters Cellulose (CLC). Cotton linters can also be used for the nonwovens that can be used in air-permeable materials for the vacuum cleaner filter bags according to the invention. In particular, unpurified and unbleached FC and / or SC linters can be used.
  • the dust and / or fibrous recycled material may be further comminuted prior to use (e.g., by the known milling techniques (hammer mill, impact mill) or cutting process) to adjust the desired fiber length distribution.
  • the dust and / or fibrous recycled material or the seed fibers are bound.
  • the nonwoven material has thus undergone a bonding step.
  • the binding of the dust and / or fibrous recycled material and / or the seed fibers is preferably carried out over the fact that the nonwoven fabric layer binder fibers are added, which can be thermally activated, for example (thermofusion).
  • the production of a corresponding nonwoven fabric layer can thus take place in that, for example, the dust and / or fibrous recycled material and / or the seed fibers are deposited together with the binder fibers in an aerodynamic process and then a bond to the finished nonwoven fabric by thermal activation of the binder fibers.
  • aerodynamic methods dry processes as set forth and defined in Section 4.1.3 of the Handbook "Nonwovens” by H. Fuchs and W. Albrecht, Wiley-VCH, 2nd edition 2012. This section is hereby incorporated by reference
  • Deposition of the dust and / or fibrous recycled material and / or the seed fibers together with the binding fibers can be carried out in particular by means of the airlay or the airlaid process
  • the airlay fleece formation can take place for example by means of a Rando Webber.
  • the at least one dust and / or fibrous recycled material and / or seed fibers comprising layer of the nonwoven fabric up to 95 wt .-%, preferably 70 to 90 wt .-% of dust and / or fibrous recycled material and / or seed fibers and at least 5 wt .-%, preferably 10 to 50 wt .-% of binder fibers, in particular bicomponent fibers comprises or consists thereof.
  • the binder fibers may be, for example, so-called "fusing fibers", which are formed from thermoplastic, fusible materials which melt during the thermal activation and bind the dust and / or fibrous recycled material or the seed fibers.
  • the fusing fibers or bicomponent fibers, which are preferably used as binding fibers, may consist partially or completely of recycled plastics.
  • the binder fibers may be crimped or smooth (non-crimped)
  • the crimped binder fibers may be mechanically crimped or self-crimping (e.g., in the form of bicomponent fibers of eccentric cross-section).
  • bicomponent fibers whose core consists of recycled polyethylene terephthalate (rPET) or recycled polypropylene (rPP), the shell consists of polypropylene, which may be "virgin” or as well as a recycled material.
  • rPET recycled polyethylene terephthalate
  • rPP recycled polypropylene
  • the binding fibers are staple fibers, in particular with a length of 1 to 100 mm, preferably 2 to 40 mm.
  • the fiber length can be determined according to DIN 53808-1: 2003-01.
  • the recycled plastic is particularly preferably selected from the group consisting of recycled polyesters, in particular recycled polyethylene terephthalate (rPET), recycled polybutylene terephthalate (rPBT), recycled polylactic acid (rPLA), recycled polyglycolide and / or recycled polycaprolactone; recycled polyolefins, in particular recycled polypropylene (rPP), recycled polyethylene and / or recycled polystyrene (rPS); recycled polyvinyl chloride (rPVC), recycled polyamides, and mixtures and combinations thereof.
  • recycled polyesters in particular recycled polyethylene terephthalate (rPET), recycled polybutylene terephthalate (rPBT), recycled polylactic acid (rPLA), recycled polyglycolide and / or recycled polycaprolactone
  • recycled polyolefins in particular recycled polypropylene (rPP), recycled polyethylene and / or recycled polystyrene (rPS); recycled polyvinyl chloride (rPVC), recycled polyamides, and mixtures and
  • plastic recyclates there are relevant international standards.
  • DIN EN 15353: 2007 is relevant.
  • PS recyclates are described in more detail in DIN EN 15342: 2008.
  • PE recyclates are treated in DIN EN 15344: 2008.
  • PP recyclates are characterized in DIN EN 15345: 2008.
  • PVC recyclates are specified in DIN EN 15346: 2015.
  • the plastic recyclates can be unmetallised. An example of this is plastic flakes or chips recovered from PET beverage bottles.
  • the plastic recyclates can be metallized, for example, if the recyclates were obtained from metallic plastic films, in particular metallized PET films (MPET).
  • the recycled plastic is, in particular, recycled polyethylene terephthalate (rPET) which has been obtained, for example, from beverage bottles, in particular from so-called bottle flakes, ie pieces of ground beverage bottles.
  • the recycled plastics particularly the recycled PET, in both the metallized and unmetallized versions, can be spun into the corresponding fibers from which the corresponding staple or meltblown or spunbond nonwoven fabrics are made for the purposes of the present invention can be.
  • the air-permeable material is constructed in multiple layers, wherein at least one, several or all of the layers comprise or are formed from a nonwoven fabric and / or a nonwoven fabric, wherein the nonwoven fabric comprises or consists of fibers which consist of a recycled plastic or multiple recycled plastics are formed.
  • the structure of the wall of the filter bag according to the present invention may be configured as described in EP 1 795 247.
  • a wall thus comprises at least three layers, wherein at least two layers consist of at least one nonwoven layer and at least one nonwoven layer containing staple fibers and / or filaments.
  • the wall of the vacuum cleaner filter bag is therefore additionally characterized by a welded joint, in which all layers of the filter material are connected to one another by welded joints.
  • the pressing surface portion of the weld pattern is at most 5% of the surface area of the flow-through surface of the filter material or vacuum cleaner filter bag. Based on the total flow-through surface of the filter bag, there are on average a maximum of 19 welded joints per 10 cm 2 .
  • the air permeable material may be configured in a manner as described in the introductory part of the present patent application, e.g. as described in EP 1 198 280, EP 2 433 695, EP 1 254 693, DE 199 19 809, EP 1 795 247, WO 2013/106 392 or CN 101747596, as long as a plastic recyclate has been used for the production of these filter materials.
  • the present invention covers several particularly preferred possibilities of the multi-layered design of the air-permeable material, which are presented below.
  • the majority of these layers can be welded joints, in particular as described in EP 1 795 427 A1, be interconnected.
  • the layers can also be glued together or bonded as described in WO 01/003802.
  • the invention provides a vacuum cleaner filter bag having a wall of air-permeable material, the material comprising a capacity layer and a fine filter layer,
  • the capacity layer is a staple fiber nonwoven fabric produced by an aerodynamic process, the staple fibers being formed from one or more recycled plastics, and
  • the fine filter layer is a virgin PP meltblown nonwoven fabric which is in particular electrostatically charged, or a meltblown nonwoven fabric made from bicomponent fibers having an rPET or an rPP core and a virgin PP or virgin PMP shell or a backing layer made of recycled plastic fibers with a layer of nanofibers applied thereto.
  • the capacitance position can therefore correspond to the layer of nonwoven fabric or nonwoven fabric already described above.
  • the staple fibers of the capacitance layer may in particular comprise or consist of rPET or rPP.
  • nanofiber is used according to the terminology of DIN SPEC 1 121: 2010-02 (CEN ISO / TS 27687: 2009).
  • the fine filter layer can be arranged downstream of the capacitance position in the air flow direction (from the dirty air side to the clean air side).
  • the vacuum cleaner filter bag may have an (additional) reinforcing layer or support layer in the form of a dry laid nonwoven layer or in the form of an extrusion nonwoven layer.
  • the drained nonwoven fabric layer may comprise - as described above - dust and / or fibrous recycled material from the manufacture of textiles, in particular cotton textiles, and / or from woolen stock and / or seed fibers; alternatively, the drained nonwoven layer may comprise recycled fiber staple fibers, particularly rPET or rPP.
  • the extrusion nonwoven layer may comprise mono- or bicomponent filaments of recycled plastic, especially rPET or rPP.
  • the reinforcing layer can be arranged in the air flow direction behind the fine filter layer.
  • the air-permeable material comprises at least one support layer and at least one fine filter layer, wherein at least one or all of the support layers and / or at least one or all of the fine filter layers are nonwoven fabrics formed from one or more recycled plastics.
  • the air-permeable material comprises at least one support layer and at least one capacitance layer, wherein at least one or all of the support layers nonwovens and / or at least one or all of the capacity layers nonwovens or nonwoven fabrics, which are formed from one recycled plastic or more recycled plastics ,
  • a further embodiment provides that the air-permeable material at least one support layer, at least one fine filter layer and at least one capacitance layer at least one or all of the support layers and / or at least one or all of the fine filter layers nonwovens, which are formed from a recycled plastic or more recycled plastics and / or at least one or all of the capacity layers nonwovens or nonwovens, which are formed from one or more recycled plastics recycled plastic.
  • At least one, preferably all, of the capacity layers comprise or are formed from a nonwoven fabric comprising dust and / or fibrous recycled material and / or seed fibers. Due to the non-woven binding, the nonwoven fabric layer designed as a capacitance layer has such a high mechanical strength that it can also function as a support layer.
  • a support layer (sometimes also referred to as a "reinforcing layer") in the sense of the present invention is a layer which gives the necessary mechanical strength to the multilayer composite of the filter material, which is referred to as an open, porous nonwoven or a light weight basis Among other things, it serves to support other layers or layers and / or to protect them from abrasion.
  • the support layer can also filter the largest particles.
  • the support layer, as well as any other layer of the filter material may also be electrostatically charged, provided that the material has suitable dielectric properties.
  • a capacity layer provides high resistance to shock loading, filtering large particles of dirt, filtering a significant fraction of small dust particles, storing or retention of large quantities of particles, allowing the air to flow easily, thus resulting in a low pressure drop with high particle loading. This particularly affects the service life of a vacuum cleaner filter bag.
  • a fine filter layer serves to increase the filtration performance of the multilayer filter material by trapping particles which pass through, for example, the support layer and / or the capacity layer.
  • the fine filter layer may preferably be charged electrostatically (for example, by corona discharge or hydrocharging), in particular to increase the separation of fine dust particles.
  • the air-permeable material of the wall of the vacuum cleaner filter bag according to the invention may be constructed in terms of its construction, for example as in this patent document with the proviso that at least one of the layers of the multilayer filter material described there for the vacuum cleaner filter bag is formed from one or more recycled plastics.
  • the disclosure of WO 01/003802 is also included in the present application with regard to the structure of the air-permeable filter materials.
  • each support layer is a spunbond or scrim, preferably having a grammage of from 5 to 80 g / m 2 , more preferably from 10 to 50 g / m 2 , more preferably from 15 to 30 g / m 2 and / or preferably with a titer of the spunbond or the scrim forming fibers in the range of 0.5 dtex to 15 dtex.
  • the air-permeable material may preferably comprise one to three support layers.
  • the total grammage of the sum of all support layers is preferably 10 to 240 g / m 2 , more preferably 15 to 150 g / m 2 , more preferably 20 to 100 g / m 2 , even more preferably 30 to 90 g / m 2 , in particular 40 to 70 g / m 2 .
  • all supporting layers are formed from one recycled plastic or several recycled plastics, in particular from rPET or rPP.
  • each fine filter layer is an extrusion nonwoven, in particular a meltblown nonwoven, preferably with a grammage of 5 to 100 g / m 2 , more preferably 10 to 50 g / m 2 , in particular 10 to 30 g / m 2 .
  • the air-permeable material comprises 1 to 5 fine filter layers.
  • the total grammage of the sum of all fine filter layers is preferably 10 to 300 g / m 2 , more preferably 15 to 150 g / m 2 , in particular 20 to 50 g / m 2 .
  • the fine filter layers are formed from one recycled plastic or several recycled plastics, in particular from rPET.
  • each capacity layer comprises a staple fiber nonwoven fabric, a nonwoven fabric or a nonwoven fabric, the dust and / or fibrous recycled material from the production of textiles, in particular cotton textiles, and / or from the wool pile and / or seed fibers, wherein each Capacity position preferably has a grammage of 5 to 200 g / m 2 , more preferably from 10 to 150 g / m 2 , more preferably from 20 to 100 g / m 2 , in particular 30 to 50 g / m 2 .
  • the air-permeable material comprises 1 to 5 capacity layers.
  • the total grammage of the sum of all capacitance layers is preferably 10 to 300 g / m 2 , more preferably 15 to 200 g / m 2 , more preferably 20 to 100 g / m 2 , in particular 50 to 90 g / m 2 .
  • a particularly preferred embodiment of the construction of the air-permeable material for the vacuum cleaner filter bag according to the invention provides the multi-layer structure described below with a layer sequence extending from the interior of the vacuum cleaner filter bag (dirty air side) to the outside (clean air side):
  • a support layer at least one, preferably at least two fine filter layers and another support layer.
  • the support layer is constructed as a spunbond nonwoven fabric and the fine filter layer as a meltblown nonwoven fabric
  • this structure corresponds to the known from the prior art SMS or SMMS structure for air-permeable filter materials for vacuum cleaner filter bag.
  • the following structure is preferred: A support layer, at least one, preferably at least two capacitance layers, preferably a further support layer, at least one preferably at least two fine filter layers and a further support layer.
  • the capacitance has a high mechanical strength as described above, can also be dispensed with the innermost supporting position
  • One or two capacity layers one or two fine filter layers (meltblown layers), one backing layer (spunbonded web).
  • One or two capacity layers one or two fine filter layers (meltblown layers), one or two capacity layers.
  • At least one of the layers comprises at least one recycled plastic material, in particular rPET or rPP. Particularly preferably, at least all supporting layers are formed from recycled plastics.
  • Each of the abovementioned layers can also be formed from a nonwoven material comprising dust and / or fibrous recycled material from the production of textiles, in particular cotton textiles, and / or from wool lint and / or seed fibers ,
  • this nonwoven material forms the at least one capacity layer, while the other layers comprise no dust and / or fibrous recycled material from the production of textiles, in particular cotton textiles and / or seed fibers.
  • All the layers in the aforementioned embodiments can also be connected to one another by means of welded joints, in particular as described in EP 1 795 427 A1.
  • welded joints are not absolutely necessary.
  • the vacuum cleaner filter bag has a holding plate enclosing the inlet opening, which is formed from one or more recycled plastics or comprises one or more recycled plastics.
  • the holding plate is formed from rPET or rPP or comprises rPET or rPP to a very high proportion, for example to at least 90% by weight.
  • a further increase in the proportion of recycled plastics in the vacuum cleaner filter bag is thus possible.
  • at least one flow distributor and / or at least one diffuser to be arranged in the interior space, wherein the at least one flow distributor and / or the at least one diffuser is preferably formed from one recycled plastic or several recycled plastics.
  • Such flow distributors or diffusers are known, for example, in the patent applications EP 2 263 508, EP 2 442 703, DE 20 2006 020 047, DE 20 2008 003 248, DE 20 2008 005 050.
  • the vacuum cleaner filter bag according to the invention, including flow distributor can be designed accordingly.
  • Flow distributors and diffusers are also preferably made of nonwovens or laminates of nonwovens.
  • Flow distributors and diffusers are also preferably made of nonwovens or laminates of nonwovens.
  • Flow distributors and diffusers are also preferably the same materials in question, as for the capacitance and gain layers.
  • a further particularly preferred embodiment provides that the proportion by weight of all recycled materials, based on the total weight of the vacuum cleaner filter bag at least 25%, preferably at least 30%, more preferably at least 40%, more preferably at least 50%, more preferably at least 60%, more preferably at least 70%, more preferably at least 80%, more preferably at least 90%, in particular at least 95%.
  • GRS Global Recycled Standard
  • v3 August 2014
  • the vacuum cleaner filter bag according to the present invention may, for example, be in the form of a flat bag, gusseted bag, block bottom bag or 3D bag, such as a vacuum cleaner filter bag for an upright vacuum cleaner.
  • a flat bag has no side walls and is formed from two layers of material, wherein the two layers of material along their circumference directly connected to each other, for example, welded or glued.
  • Gusseted bags are a modified form of flat bag and include fixed or everted side gussets.
  • Block bottom bags comprise a so-called block or block bottom, which usually forms the narrow side of the vacuum cleaner filter bag; On this side, a holding plate is usually arranged.
  • the present invention relates to the use of recycled plastics, in particular the recycled plastics described above, for example in the form of nonwovens and / or nonwoven fabrics for vacuum cleaner filter bags.
  • recycled plastics in particular the recycled plastics described above, for example in the form of nonwovens and / or nonwoven fabrics for vacuum cleaner filter bags.
  • Filter bags are designed comprising one or more layers of rPET or rPP filaments or rPET or rPP staple fibers.
  • the filter bags according to the invention described below can comprise one or more layers of an aerodynamically formed nonwoven, for example an airlaid or an airlaid nonwoven fabric, which is formed from cotton dust, seed fibers or wool fibers from waste shearing and bicomponent fibers.
  • the different nonwovens are only suitable for certain material layers.
  • a holding plate which consists of rPET or rPP or at least has rPET or rPP.
  • Spunbonded nonwoven layers of rPET or rPP having a weight per unit area of 5 to 50 g / m 2 and a titre of 1 dtex to 15 dtex are particularly suitable support layers.
  • the raw material used is, for example, PET waste (eg stamped waste) and so-called bottle flakes, ie pieces of ground beverage bottles. In order to cover the different coloration of the waste, it is possible to color the recyclate.
  • the HELIX® Comerio Ercole
  • meltblown from rPET or rPP are used with a basis weight of 5 to 30 g / m 2 .
  • one or more meltblown nonwoven layers of virgin PP may be present. At least this layer (s) are electrostatically charged by a corona discharge.
  • the layers of rPET or rPP can also be electrostatically charged. It should only be noted that no metallized PET waste will be used for the production.
  • the meltblown filaments can also consist of bicomponent fibers in which the core of rPET or rPP and the shell of a plastic, which can be particularly well electrostatically recharge (eg virgin PP, PC, PET) is formed.
  • One or more capacity layers contain rPET or rPP staple fibers or rPET or rPP filaments or are made based on cotton dust (or seed fibers) and bicomponent fibers.
  • different methods are suitable. Commonly used are carding processes, airlay processes or airlaid processes, in which staple fibers are first laid down, which are then usually bonded in a nonwoven bonding step (eg by needling, hydroentanglement, ultrasound calendering, by thermal solidification in the flowthrough also by means of bicomponent fibers or binder fibers). or by chemical solidification, for example with latex, hotmelt, foam binder, ...) are solidified into a nonwoven fabric.
  • the HELIX® Comerio Ercole
  • a Rando-Webber system can be used.
  • rPET or rPP are also used as extrusion nonwovens or extrusion fiber webs.
  • the use of rPET or rPP can also be implemented without difficulty.
  • the filaments or staple fibers may also consist of bicomponent materials in which the core of rPET or rPP and the sheath of a plastic, which can be particularly well electrostatically charge (eg virgin PP, PC, PET) is formed.
  • one or more layers of an aerodynamically formed nonwoven fabric may be present, which is formed from bicomponent fibers and cotton dust or seed fibers.
  • the basis weight of the individual capacity layers is preferably between 10 and 100 g / m 2 .
  • the mounting plate can only consist of rPET or rPP.
  • a TPE seal can be injected or glued.
  • the vacuum cleaner filter bags shown below were designed using the specified materials, the exact composition and structure of which is shown in the following tables.
  • the vacuum cleaner filter bags thereby represent flat bags of rectangular geometry, which have a dimension of 300 mm x 280 mm. example 1
  • the air-permeable material of the vacuum cleaner filter bag according to Example 1 has a distribula- gigen structure, wherein the outermost layer (clean air side) has a support layer with a grammage of 25 g / m 2 .
  • the innermost layer is also a support layer with a grammage of 17 g / m 2 .
  • Between the two support layers two layers of a fine filter layer (meltblown made of virgin polypropylene, each electrostatically charged by corona discharge) with a respective grammage of 15 g / m 2 are arranged.
  • the support layers are each made of 100% recycled PET.
  • the third column indicates the absolute weight of the respective position in the vacuum cleaner filter bag.
  • the vacuum cleaner filter bag in this case has a holding plate that is 5.0 g heavy and is welded to the vacuum cleaner filter bag.
  • the vacuum cleaner filter bag according to Example 2 is identical, as the vacuum cleaner filter bag according to Example 1 with the difference that the holding plate is made of 100% recycled polyethylene terephthalate (rPET). By this measure, the proportion of recyclate in the entire vacuum cleaner filter bag can be increased to 70.5%.
  • rPET recycled polyethylene terephthalate
  • Filter bag total 17.1 85.3 The vacuum cleaner filter bag according to Example 3 is constructed identically, as Example 2. A fine filter layer (inner meltblown layer) is formed in contrast to the embodiment of Example 2 or Example 1 now also made of 100% recycled PET.
  • the rPET used can be metallized or unmetallised. In the event that unmetallized rPET is used, it is also possible to electrostatically charge this meltblown, for example by corona discharge.
  • the vacuum cleaner filter bag according to Example 4 is identically constructed, as the vacuum cleaner filter bag according to Example 2, except for the fact that the two fine filter layers (meltblown) are formed from BiKo filaments.
  • the core of these meltblown filaments consists of recycled PET, the shell of virgin polypropylene. The core makes up a weight share of 85%.
  • the wall material of the vacuum cleaner filter bag according to Example 5 has a 7-layer structure.
  • An outer support layer arranged on the clean air side is followed by two fine filter layers (in each case meltblown layers, as in Example 1).
  • a centrally located support layer separates these fine filter layers from two capacitance layers A and B, each representing a carded nonwoven fabric of bicomponent staple fibers.
  • These staple fibers are e.g. to 50% recycled polyethylene terephthalate (rPET), which forms the core of these fibers.
  • the core is surrounded by a shell of "vigin" PP, followed by a support layer arranged on the dirty air side.
  • the vacuum cleaner filter bag according to Example 6 is constructed identically, as Example 5.
  • the capacity layers A and B are now also 100% formed from a carded staple fiber nonwoven made of rPET staple fibers.
  • the holding plate is now also formed from 100% recycled PET.
  • the vacuum cleaner filter bag is the same structure as Example 6.
  • the vacuum cleaner filter bag according to Example 8 is constructed identically to that of Example 7, except for the fact that the two fine filter layers (meltblown layers) are formed to a high proportion of recycled PET.
  • the meltblown is made of a bicomponent meltblown with a core of rPET, covered with new polypropylene.
  • the proportion of rPET here is 80 wt .-%, based on the total mass of the meltblown, which forms the respective fine filter layer.
  • the vacuum cleaner filter bag according to Example 9 is also formed from a 7-ply air-permeable material.
  • the vacuum cleaner filter bag has a similar structure as the vacuum cleaner filter bag according to Example 5.
  • the support layers and the fine filter layers (meltblown layers) are identical to those formed in Example 5.
  • the capacitance C and D is formed from a nonwoven material which is formed to 80 wt .-% of cotton dust or seed fibers and 20% BiCo binder fiber. This nonwoven fabric material is described in detail in WO 201 1/057641 A1. The proportion of cotton dust or the seed fibers in the capacity layers is added to the total share of a recyclate.
  • a portion of recycled material i. H. the sum of recycled plastics, as well as cotton dust or seed fibers of 60.5 wt .-%, based on the total vacuum cleaner filter bag achieved.
  • the vacuum cleaner filter bag according to Example 10 is constructed in analogy to the vacuum cleaner filter bag according to Example 9.
  • the outer capacitance corresponds to a capacitance according to Examples 6 to 8, d. H. a carded staple fiber nonwoven made from 100% recycled PET fibers.
  • the recycled content of a finished vacuum cleaner filter bag corresponds to 64.3 wt .-%.
  • the vacuum cleaner filter bag according to Example 1 1 corresponds to a vacuum cleaner filter bag according to Example 9, with the difference that the holding plate is made of 100% rPET.
  • the total content of recycled materials in this vacuum cleaner filter bag is 76.4% by weight.
  • the vacuum cleaner filter bag according to Example 12 corresponds to the vacuum cleaner filter bag according to Example 1 1, with the difference that the two fine filter layers are configured according to the fine filter layers according to Example 8 and thus formed from a bicomponent meltblown with a core of rPET and a shell made of polypropylene.
  • the total recycled content of such a vacuum cleaner filter bag is 89.3% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Filters For Electric Vacuum Cleaners (AREA)
  • Filtering Materials (AREA)

Abstract

L'invention concerne un sac filtrant d'aspirateur à poussière comprenant une paroi entourant un espace intérieur constituée d'un matériau perméable à l'air, et une ouverture d'entrée ménagée dans ladite paroi. Ce sac est caractérisé en ce que le matériau perméable à l'air comporte au moins une couche de non-tissé et/ou une couche de voile de fibres qui comprend des fibres ou est constituée de fibres formées à partir d'une matière plastique recyclée ou de plusieurs matières plastiques recyclées.
EP17709453.9A 2016-03-17 2017-03-13 Sac filtrant d'aspirateur à poussière en matières plastiques recyclées Pending EP3429721A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP16160921.9A EP3219373B1 (fr) 2016-03-17 2016-03-17 Sac d'aspirateur en materiaux textiles recycles et/ou de linters de coton
EP16160922.7A EP3219374B1 (fr) 2016-03-17 2016-03-17 Sac d'aspirateur en materiaux synthetiques recycles
EP16178856.7A EP3219376B1 (fr) 2016-03-17 2016-07-11 Sac à poussière en matériaux synthétiques recyclés
PCT/EP2017/055781 WO2017157822A1 (fr) 2016-03-17 2017-03-13 Sac filtrant d'aspirateur à poussière en matières plastiques recyclées

Publications (1)

Publication Number Publication Date
EP3429721A1 true EP3429721A1 (fr) 2019-01-23

Family

ID=56404040

Family Applications (6)

Application Number Title Priority Date Filing Date
EP16178856.7A Active EP3219376B1 (fr) 2016-03-17 2016-07-11 Sac à poussière en matériaux synthétiques recyclés
EP16178839.3A Active EP3219375B1 (fr) 2016-03-17 2016-07-11 Sac filtrant d'aspirateur constitue d'un materiau recycle en forme de fibre et/ou de poussieres
EP16192651.4A Active EP3219377B1 (fr) 2016-03-17 2016-10-06 Sac filtrant d'aspirateur constitué d'un matériau recyclé en forme de fibre et/ou de poussières
EP17709453.9A Pending EP3429721A1 (fr) 2016-03-17 2017-03-13 Sac filtrant d'aspirateur à poussière en matières plastiques recyclées
EP17709993.4A Pending EP3429722A1 (fr) 2016-03-17 2017-03-13 Sac filtrant d'aspirateur à poussière comportant un matériau recyclé fibreux et/ou pulvérulent
EP17709452.1A Active EP3429720B1 (fr) 2016-03-17 2017-03-13 Sac d'aspirateur en materiaux textiles recycles et/ou de linters de coton et/ou de fibres de graines

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP16178856.7A Active EP3219376B1 (fr) 2016-03-17 2016-07-11 Sac à poussière en matériaux synthétiques recyclés
EP16178839.3A Active EP3219375B1 (fr) 2016-03-17 2016-07-11 Sac filtrant d'aspirateur constitue d'un materiau recycle en forme de fibre et/ou de poussieres
EP16192651.4A Active EP3219377B1 (fr) 2016-03-17 2016-10-06 Sac filtrant d'aspirateur constitué d'un matériau recyclé en forme de fibre et/ou de poussières

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP17709993.4A Pending EP3429722A1 (fr) 2016-03-17 2017-03-13 Sac filtrant d'aspirateur à poussière comportant un matériau recyclé fibreux et/ou pulvérulent
EP17709452.1A Active EP3429720B1 (fr) 2016-03-17 2017-03-13 Sac d'aspirateur en materiaux textiles recycles et/ou de linters de coton et/ou de fibres de graines

Country Status (10)

Country Link
US (4) US20190076766A1 (fr)
EP (6) EP3219376B1 (fr)
CN (3) CN109152968B (fr)
AU (3) AU2017233900B2 (fr)
DE (3) DE212017000082U1 (fr)
DK (4) DK3219376T3 (fr)
ES (4) ES2702923T3 (fr)
PL (4) PL3219376T3 (fr)
RU (3) RU2706307C1 (fr)
WO (3) WO2017157820A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3219237B1 (fr) 2016-03-17 2018-05-09 Eurofilters Holding N.V. Plaque de maintien dotee d'une fermeture amelioree
DK3219235T3 (da) 2016-03-17 2022-01-10 Eurofilters Holding Nv Indretning til en støvsugerfilterpose med en holdeindretning og en lukkeindretning
PL3219236T3 (pl) 2016-03-17 2022-01-31 Eurofilters Holding N.V. Płytka mocująca z ulepszonym zamknięciem
ES2702923T3 (es) 2016-03-17 2019-03-06 Eurofilters Nv Bolsa de filtro de aspiradora a partir de plásticos reciclados
WO2017158025A2 (fr) 2016-03-17 2017-09-21 Eurofilters N.V. Sac filtrant pour aspirateur comprenant des matériaux textiles recyclés et/ou des linters de coton
PL3357392T3 (pl) 2017-02-07 2022-01-31 Eurofilters Holding N.V. Płytka mocująca do worka filtrującego odkurzacza z urządzeniem zamykającym
PL3530171T3 (pl) 2018-02-23 2021-10-18 Eurofilters Holding N.V. Płytka mocująca z elementem uszczelniającym
PL3530170T3 (pl) 2018-02-23 2020-11-02 Eurofilters Holding N.V. Płytka mocująca z urządzeniem centrującym
PL3560402T3 (pl) 2018-04-27 2023-04-24 Eurofilters Holding N.V. Worek filtrujący do odkurzacza z folią w obszarze płyty mocującej
DE202018102370U1 (de) 2018-04-27 2018-05-04 Eurofilters Holding N.V. Staubsaugerfilterbeutel mit Folie im Bereich der Halteplatte
ES2857816T3 (es) * 2018-12-17 2021-09-29 Eurofilters Holding Nv Bolsa de filtro de aspiradora con resistencia de cordón de soldadura mejorada
DE102019131364A1 (de) * 2019-11-20 2021-05-20 Wolf Pvg Gmbh & Co. Kommanditgesellschaft Staubsaugerbeutel und Verfahren zur Herstellung eines Staubsaugerbeutels
CN110898531A (zh) * 2019-12-09 2020-03-24 安徽省利特环保技术有限公司 一种滤筒用高分子材料滤径控制方法
DE102020117293A1 (de) * 2020-07-01 2022-01-05 Wolf Pvg Gmbh & Co. Kommanditgesellschaft Staubsaugerbeutel und Verfahren zu dessen Herstellung
DE102020119583A1 (de) 2020-07-24 2022-01-27 Wolf Pvg Gmbh & Co. Kommanditgesellschaft Staubsaugerbeutel
DE102022004558A1 (de) 2022-12-06 2024-06-06 Innovatec Microfibre Technology Gmbh & Co.Kg Unterspannbahn mit zumindest einer Vliesschicht aus Bikomponentenfasern

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2251252A (en) 1940-09-11 1941-07-29 Beckwith Mfg Co Air filter material for vacuum cleaners and the like
US3533868A (en) 1967-02-15 1970-10-13 Cons Foods Corp Method of manufacturing end closures for a vacuum cleaner dust bag
US4154885A (en) * 1977-06-23 1979-05-15 Firma Carl Freudenberg Nonwoven fabric of good draping qualities and method of manufacturing same
US4547420A (en) 1983-10-11 1985-10-15 Minnesota Mining And Manufacturing Company Bicomponent fibers and webs made therefrom
JPH0796089B2 (ja) * 1989-07-28 1995-10-18 市川毛織株式会社 バグフィルター用▲ろ▼過布
DE9016939U1 (fr) 1990-12-17 1991-04-04 Wolfgang B. Schroeter Gmbh, 4973 Vlotho, De
DE69206620D1 (de) 1991-07-04 1996-01-18 Acm Azienda Cost Motori Antriebsvorrichtung für den zylinder einer strumpfstrickmaschine und rotor für einen bürstenlosen synchronmotor.
US5549957A (en) 1992-07-08 1996-08-27 Negola; Edward J. Bulked continuous filament carpet yarn
US6153059A (en) * 1992-10-09 2000-11-28 The University Of Tennessee Research Corporation Composite of pleated and nonwoven webs, method and apparatus for the electrostatic charging of same
JPH07251015A (ja) 1994-03-16 1995-10-03 Toyobo Co Ltd エレクトレットフィルターおよびその製造方法
DE4415350A1 (de) 1994-05-02 1995-11-16 Vorwerk Co Interholding Staubfilterbeutel für einen Staubsauger
FR2721188B1 (fr) 1994-06-21 1996-08-09 Delphy Dispositif de fermeture automatique d'un sac à poussière d'aspirateur par clapet.
US5591335A (en) * 1995-05-02 1997-01-07 Memtec America Corporation Filter cartridges having nonwoven melt blown filtration media with integral co-located support and filtration
JPH09220419A (ja) 1996-02-19 1997-08-26 Toyobo Co Ltd エアーフィルター用嵩高濾材および該濾材を用いたエアーフィルター
JPH09276637A (ja) 1996-04-16 1997-10-28 Toyobo Co Ltd 濾材交換型エアフィルター
DE29615163U1 (de) 1996-08-31 1996-11-21 Hafner Ingo Dipl Ing Vorrichtung zur Aufnahme von Staub, Schmutz u.dgl.
US6238466B1 (en) 1997-10-01 2001-05-29 3M Innovative Properties Company Electret articles and filters with increased oily mist resistance
US6183536B1 (en) * 1998-05-11 2001-02-06 Airflo Europe, N.V. Enhanced performance vacuum cleaner bag and method of operation
BR9910389A (pt) * 1998-05-11 2001-01-09 Airflo Europe Nv Saco para aspirador de pó e saco aperfeiçoado para aspirador de pó
DE29924466U1 (de) 1998-05-11 2003-05-28 Airflo Europe Nv Staubsaugerbeutel und verbesserter Staubsaugerbeutel
US6156086A (en) 1999-03-22 2000-12-05 3M Innovative Properties Company Dual media vacuum filter bag
DE19919809C2 (de) 1999-04-30 2003-02-06 Fibermark Gessner Gmbh & Co Staubfilterbeutel, enthaltend Nanofaservlies
JP2000328369A (ja) 1999-05-21 2000-11-28 Nippon Ester Co Ltd 再生ポリエステル含有ポリエステルマルチフィラメント
US6372004B1 (en) 1999-07-08 2002-04-16 Airflo Europe N.V. High efficiency depth filter and methods of forming the same
JP3356124B2 (ja) 1999-07-08 2002-12-09 コクヨ株式会社 展示ケース
DE19948909A1 (de) 1999-10-11 2001-04-12 Vorwerk Co Interholding Filterbeutel für einen Staubsauger
US20020042236A1 (en) * 2000-04-26 2002-04-11 Chisso Corporation Filter cartridge and process for producing the same
JP2001327814A (ja) 2000-05-24 2001-11-27 Toyobo Co Ltd 濾 材
DE20010049U1 (de) 2000-06-03 2000-09-14 Aichner Filter Gmbh Staubfilterbeutel, insbesondere für einen Staubsauger
US6409785B1 (en) * 2000-08-07 2002-06-25 Bha Technologies, Inc. Cleanable HEPA filter media
JP2002126422A (ja) * 2000-10-26 2002-05-08 Nitto Kogyo Co Ltd フィルタ用濾過材、フィルタ、その製造方法及び空気濾過器
DE20101466U1 (de) 2001-01-27 2001-04-19 Wolf Gmbh In einen Staubsauger einsetzbare Filtereinrichtung
DE10120223B4 (de) 2001-04-24 2005-08-25 Carl Freudenberg Kg Mehrlagiger Luftfilter und dessen Verwendung
GB0115360D0 (en) 2001-06-22 2001-08-15 Cachet Medical Ltd Biocomponent fibers and textiles made therefrom
DE10209718A1 (de) 2002-03-06 2003-09-25 Edison Fatehpour Federelement für eine Verschlussklappe einer Filtertüte
DE10221694B4 (de) 2002-05-16 2018-07-12 Branofilter Gmbh Mehrlagiger Filteraufbau, Verwendung eines solchen mehrlagigen Filteraufbaus, Staubfilterbeutel, Taschenfilterbeutel, plissierter Filter, flächiger Abluftfilter und Luftfilter für Kraftfahrzeuge
JP2003334412A (ja) 2002-05-20 2003-11-25 Toyobo Co Ltd 濾 材
JP2004131862A (ja) 2002-10-09 2004-04-30 Nippon Ester Co Ltd リサイクルポリエステル複合繊維
JP2005060886A (ja) 2003-08-12 2005-03-10 Nippon Ester Co Ltd 難燃性ポリエステル複合繊維
DE10359948A1 (de) 2003-12-19 2005-07-14 Eurofilters N.V. Staubsammelfilter und Verfahren zur Standzeitverlängerung von Staubsammelfiltern
US20060079145A1 (en) 2004-10-13 2006-04-13 Hollingsworth & Vose Company Filter media with charge stabilizing and enhancing additives
JP4658690B2 (ja) 2005-05-27 2011-03-23 日本エステル株式会社 再生ポリエステル複合繊維
US20100029161A1 (en) 2005-06-24 2010-02-04 North Carolina State University Microdenier fibers and fabrics incorporating elastomers or particulate additives
WO2007059939A1 (fr) 2005-11-22 2007-05-31 Eurofilters Holding N.V. Sac filtrant d'aspirateur et utilisation d'un sac filtrant d'aspirateur
EP1795427B2 (fr) 2005-12-12 2014-09-24 Inventus Engineering GmbH Elément absorbeur d'énergie
DE102005059214B4 (de) * 2005-12-12 2007-10-25 Eurofilters N.V. Filterbeutel für einen Staubsauger
US7938276B2 (en) 2006-02-01 2011-05-10 Mechanical Manufacturing Corporation Filtration architecture for optimized performance
JP2007254908A (ja) 2006-03-22 2007-10-04 Unitica Fibers Ltd 再生熱接着性繊維
DE102006017553B3 (de) 2006-04-13 2007-12-27 Eurofilters N.V. Filterbeutel für einen Staubsauger
ES2347091T3 (es) 2006-04-25 2010-10-25 Eurofilters Holding N.V. Placa de sujecion para una bolsa de filtro de un aspirador de polvo.
DE102006037456A1 (de) 2006-08-10 2008-02-14 Vorwerk & Co. Interholding Gmbh Filterbeutel für einen Staubsauger
DE502006009062D1 (de) 2006-11-03 2011-04-21 Eurofilters Holding Nv Antibakterieller Staubsaugerfilterbeutel
DE102006055890A1 (de) 2006-11-27 2008-05-29 Wolf Gmbh & Co. Kg Verschlussvorrichtung für Filterbeutel und Verfahren zum Herstellen eines Filterbeutels mit einer Verschlussvorrichtung
US20080315465A1 (en) 2007-03-05 2008-12-25 Alan Smithies Method of manufacturing composite filter media
DE502007006943D1 (de) 2007-07-06 2011-05-26 Eurofilters Holding Nv Staubsaugerfilterbeutel
EP2011555B2 (fr) * 2007-07-06 2017-09-20 Eurofilters Holding N.V. Sac d'aspirateur
DE102008046200B4 (de) 2007-09-28 2016-09-15 Vorwerk & Co. Interholding Gmbh Filterbeutel für einen Staubsauger
DE202007014164U1 (de) 2007-10-01 2007-12-13 Branofilter Gmbh Filterbeutel für Staubsauger
DE102007062028B4 (de) 2007-12-21 2009-09-03 Arwed Löseke Papierverarbeitung und Druckerei GmbH Verfahren zur Herstellung eines Staubfilterbeutels und Staubfilterbeutel
ES2440722T3 (es) 2008-03-07 2014-01-30 Eurofilters Holding N.V. Bolsa de filtro de aspiradora
DE202008003248U1 (de) 2008-03-07 2008-05-08 Eurofilters Holding N.V. Staubsaugerfilterbeutel
US7972458B2 (en) * 2008-03-10 2011-07-05 Uv Corporation Filter material and process for producing same
DE202008006904U1 (de) 2008-05-21 2009-10-15 Wolf Pvg Gmbh & Co. Kg Halteplatte für einen Staubsaugerbeutel
DE202008004733U1 (de) 2008-07-13 2008-10-02 Wulbrandt, Herbert Halteplatte für Staubsaugerbeutel mit automatischem Verschluss
DE102008041227A1 (de) 2008-08-13 2010-02-18 BSH Bosch und Siemens Hausgeräte GmbH Staubsaugerbeutel
DE202008018054U1 (de) 2008-08-29 2011-04-28 Vorwerk & Co. Interholding Gmbh Filterbeutel für einen Staubsauger
EP2161374B1 (fr) 2008-09-09 2013-01-02 Motech GmbH Technology & Systems Gazon artificiel
CN101747596A (zh) 2008-12-11 2010-06-23 王世和 回收聚酯切片微丝制备方法和用途
DE202008016836U1 (de) 2008-12-22 2009-02-26 Colbond B.V. Vlies-Teppichrücken
EP2263508B1 (fr) * 2009-06-19 2015-08-05 Eurofilters N.V. Sac plat pour aspirateur avec au moins deux diffuseurs
PL3443880T3 (pl) 2009-06-19 2021-12-06 Eurofilters N.V. Worek płaski do odkurzacza
DE102009035717A1 (de) 2009-07-31 2011-02-10 Miele & Cie. Kg Verfahren zur Anzeige eines Füllgrads eines Staubbeutels und Steuerungsvorrichtung zur Ausführung des Verfahrens
US8398752B2 (en) * 2009-08-04 2013-03-19 Jerry M. Brownstein High efficiency low pressure drop synthetic fiber based air filter made completely from post consumer waste materials
ES2451696T3 (es) * 2009-09-25 2014-03-28 Eurofilters Holding N.V. Placa de retención para una bolsa de filtro de aspiradora
ES2574157T3 (es) 2009-10-19 2016-06-15 Eurofilters Holding N.V. Bolsa de filtro de aspiradora
PL2311358T3 (pl) * 2009-10-19 2016-05-31 Eurofilters Holding Nv Płytka mocująca do worka filtrującego do odkurzacza
RU2012123466A (ru) 2009-11-13 2013-12-20 Формфибер Денмарк Апс Нетканый волокнистый продукт, содержащий волокна повторно используемого материала
US8797859B2 (en) 2009-11-13 2014-08-05 Telefonaktiebolaget L M Ericsson (Publ) Reset functions
JP5475541B2 (ja) 2010-05-07 2014-04-16 日本バイリーン株式会社 帯電フィルタ及びマスク
CA2809200C (fr) 2010-08-23 2019-09-17 Fiberweb Corovin Gmbh Bande de non-tisse et fibres presentant de proprietes d'electret, leurs procedes de fabrication et leur utilisation
DE102010060175A1 (de) 2010-09-06 2012-03-08 Vorwerk & Co. Interholding Gmbh Staubfilterbeutel
DE102010046567A1 (de) 2010-09-27 2012-03-29 Sandler Ag Mehrlagiger Filteraufbau
DE102011008117A1 (de) 2010-10-05 2012-04-05 Herbert Wulbrandt Verschluss einer Halteplatte für Staubsaugerbeutel und deren Fertigung
DE102010060353A1 (de) 2010-11-04 2012-05-10 Papierverarbeitung Görlitz GmbH Staubfilterbeutel für Staubsauger
KR20120070858A (ko) 2010-12-22 2012-07-02 웅진케미칼 주식회사 자외선 차단 및 난연 성능이 우수한 재생 폴리에스테르 섬유 및 이의 제조방법
US11180876B2 (en) 2011-03-18 2021-11-23 Donaldson Company, Inc. High temperature treated media
KR101303819B1 (ko) 2011-05-31 2013-09-04 웅진케미칼 주식회사 저융점 항균성 재생 폴리에스테르 필라멘트 및 그 제조방법
DE102011105384A1 (de) 2011-06-20 2012-12-20 Alexander Patzig Halteplatte für Staubsaugerbeutel
EP2726659B1 (fr) 2011-06-30 2020-11-11 3M Innovative Properties Company Bandes fibreuses d'électrets non tissées et leurs procédés de réalisation
DE202011052208U1 (de) 2011-12-06 2013-03-08 Wolf Pvg Gmbh & Co. Kg Haltevorrichtung für einen Staubsaugerbeutel
ES2534100T3 (es) * 2011-12-22 2015-04-17 Eurofilters N.V. Placa de sujeción
US20130177264A1 (en) 2012-01-10 2013-07-11 Fka Distributing Co., Llc Fabric And Method of Producing Same
DE102012012999B4 (de) 2012-01-24 2017-06-14 Elku Bauteile GmbH Halteplatte für Staubsaugerbeutel mit automatischem Verschluss mit einem elastischen Element
DE102012108390A1 (de) 2012-09-10 2014-03-13 Vorwerk & Co. Interholding Gmbh Staubfilterbeutel
US9211491B2 (en) 2012-11-06 2015-12-15 Lydall, Inc. Air filtration media and processes for manufacturing the same
DE202013001096U1 (de) 2013-02-05 2013-03-05 Branofilter Gmbh Staubfilterbeutel für Staubsauger
JP2014151293A (ja) * 2013-02-12 2014-08-25 Sintokogio Ltd 集塵機用濾布
DE202013100862U1 (de) 2013-02-28 2013-03-13 Wolf Pvg Gmbh & Co. Kg Halteplatte für einen Staubsaugerbeutel
ES2566904T3 (es) 2013-03-15 2016-04-18 Eurofilters Holding N.V. Bolsa de filtro de aspirador
MX2015013185A (es) 2013-03-15 2016-04-20 Buckeye Technologies Inc Material no tejido multicapa.
US9638683B2 (en) 2013-03-15 2017-05-02 Cal Poly Corporation Systems and methods for determining recycled thermoplastic content
CN103147163B (zh) 2013-03-21 2015-03-18 宁波大发化纤有限公司 一种皮芯型再生聚酯短纤维及其制备方法
DE102013014920A1 (de) 2013-07-15 2015-01-15 Ewald Dörken Ag Bikomponentenfaser zur Herstellung von Spinnvliesen
DE202013103508U1 (de) 2013-08-05 2013-08-22 Wolf Pvg Gmbh & Co. Kg Staubsaugerbeutel
DE202014100563U1 (de) 2014-02-10 2015-05-15 Wolf Pvg Gmbh & Co. Kg Staubsaugerbeutel
CN107750183A (zh) 2015-02-10 2018-03-02 Gp 纤维素股份有限公司 过滤介质及由其制成的过滤器
DE202015101218U1 (de) 2015-03-10 2015-04-01 Branofilter Gmbh Staubfilterbeutel zum Einsatz in einem Staubsauggerät
CN204973320U (zh) * 2015-07-22 2016-01-20 河南省安克林滤业有限公司 一种多层复合的空气过滤材料
CN105342526A (zh) 2015-10-15 2016-02-24 苏州市民康过滤器材有限公司 一种干湿两用尘袋
ES2668626T3 (es) 2016-03-17 2018-05-21 Eurofilters N.V. Bolsa de filtro de aspiradora con materiales textiles reciclados y/o línteres de algodón
WO2017158025A2 (fr) 2016-03-17 2017-09-21 Eurofilters N.V. Sac filtrant pour aspirateur comprenant des matériaux textiles recyclés et/ou des linters de coton
ES2702923T3 (es) 2016-03-17 2019-03-06 Eurofilters Nv Bolsa de filtro de aspiradora a partir de plásticos reciclados
ES2740995T3 (es) 2016-03-17 2020-02-07 Eurofilters Nv Bolsa filtrante para aspiradora de polvo, a base de materiales sintéticos reciclados
CN105999856B (zh) 2016-06-22 2018-01-19 东华大学 一种增能的聚丙烯/聚酯双组分纺粘滤料及其制备方法
ES2742406T3 (es) 2016-10-06 2020-02-14 Eurofilters Nv Bolsas filtro para aspiradora con materiales textiles reciclados y/o línters de algodón

Also Published As

Publication number Publication date
US20190076766A1 (en) 2019-03-14
RU2706309C1 (ru) 2019-11-15
CN109152968A (zh) 2019-01-04
EP3219377A1 (fr) 2017-09-20
US20230226474A1 (en) 2023-07-20
AU2017233893A1 (en) 2018-09-27
PL3219376T3 (pl) 2019-04-30
ES2706322T3 (es) 2019-03-28
EP3219377B1 (fr) 2018-12-12
EP3219375B1 (fr) 2018-09-26
AU2017233893C1 (en) 2020-04-02
EP3219375A1 (fr) 2017-09-20
EP3429720B1 (fr) 2019-12-11
DK3429720T3 (da) 2020-03-16
PL3219375T3 (pl) 2019-03-29
CN109195681A (zh) 2019-01-11
US11504662B2 (en) 2022-11-22
WO2017157820A1 (fr) 2017-09-21
EP3219376A1 (fr) 2017-09-20
ES2701678T3 (es) 2019-02-25
DK3219376T3 (en) 2019-01-14
DE212017000080U1 (de) 2018-10-26
US20190075988A1 (en) 2019-03-14
ES2702923T3 (es) 2019-03-06
DK3219375T3 (en) 2018-12-03
ES2770103T3 (es) 2020-06-30
EP3429722A1 (fr) 2019-01-23
PL3219377T3 (pl) 2019-05-31
RU2706308C1 (ru) 2019-11-15
US20190075987A1 (en) 2019-03-14
EP3219376B1 (fr) 2018-10-31
AU2017233893B2 (en) 2019-11-28
WO2017157827A1 (fr) 2017-09-21
CN108778457A (zh) 2018-11-09
DE212017000084U1 (de) 2018-10-26
EP3429720A1 (fr) 2019-01-23
AU2017233900B2 (en) 2019-11-21
PL3429720T3 (pl) 2020-06-01
WO2017157822A1 (fr) 2017-09-21
RU2706307C1 (ru) 2019-11-15
AU2017233895B2 (en) 2019-12-05
DE212017000082U1 (de) 2018-10-18
DK3219377T3 (en) 2019-03-18
AU2017233900A1 (en) 2018-09-27
US11896922B2 (en) 2024-02-13
CN109152968B (zh) 2022-01-18
AU2017233895A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
EP3429720B1 (fr) Sac d'aspirateur en materiaux textiles recycles et/ou de linters de coton et/ou de fibres de graines
EP3219373B1 (fr) Sac d'aspirateur en materiaux textiles recycles et/ou de linters de coton
EP3219374B1 (fr) Sac d'aspirateur en materiaux synthetiques recycles
EP3429451B1 (fr) Sac filtrant d'aspirateur à poussière en matières plastiques recyclées
EP3669735B1 (fr) Sac filtrant d'aspirateur à résistance de cordon de soudure améliorée
WO2022029071A1 (fr) Sac filtrant pour aspirateur fabriqués à partir de matières plastiques recyclées
EP3523007B1 (fr) Sac d'aspirateur en materiaux textiles recycles et/ou de linters de coton et utilisation
DE202016008752U1 (de) Staubsaugerfilterbeutel mit recycliertem Textilmaterialien und/oder Baumwolllinters

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190712

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS