EP3408208B1 - Grue et procédé de commande de ladite grue - Google Patents

Grue et procédé de commande de ladite grue Download PDF

Info

Publication number
EP3408208B1
EP3408208B1 EP17721521.7A EP17721521A EP3408208B1 EP 3408208 B1 EP3408208 B1 EP 3408208B1 EP 17721521 A EP17721521 A EP 17721521A EP 3408208 B1 EP3408208 B1 EP 3408208B1
Authority
EP
European Patent Office
Prior art keywords
crane
tower
movements
deformations
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17721521.7A
Other languages
German (de)
English (en)
Other versions
EP3408208A1 (fr
Inventor
Michael PALBERG
Jürgen Resch
Oliver Fenker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Werk Biberach GmbH
Original Assignee
Liebherr Components Biberach GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Components Biberach GmbH filed Critical Liebherr Components Biberach GmbH
Publication of EP3408208A1 publication Critical patent/EP3408208A1/fr
Application granted granted Critical
Publication of EP3408208B1 publication Critical patent/EP3408208B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/16Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes with jibs supported by columns, e.g. towers having their lower end mounted for slewing movements

Definitions

  • the present invention relates to a crane in the form of a tower crane, with a load-handling device attached to a hoist rope, drive devices for moving several crane elements and methods of the load-handling device, a control device for controlling the drive devices in such a way that the load-handling device moves along a travel path, and a sway damping device for damping of pendulum movements of the load suspension device, said pendulum damping device having a control module for influencing the control of the drive devices as a function of pendulum-relevant criteria.
  • the invention also relates to a method for controlling a crane, in which the control of the drive devices is influenced by a sway damping device as a function of parameters relevant to swaying.
  • the mentioned drive devices are usually operated and controlled by the crane operator using appropriate operating elements such as joysticks, toggle switches, rotary knobs and sliders and the like, which experience has shown requires a lot of feeling and experience in order to approach the target points quickly and yet gently without major pendulum movements of the load hook .
  • the aim is to drive as quickly as possible between the target points in order to achieve a high level of work performance, the aim is to stop gently at the respective target point without the load hook swinging with the load attached to it.
  • Such sway damping devices for cranes are known in various designs, for example by controlling the slewing gear, luffing and trolley drives as a function of certain sensor signals, for example inclination and / or gyroscope signals.
  • certain sensor signals for example inclination and / or gyroscope signals.
  • the scriptures show DE 20 2008 018 260 U1 or DE 10 2009 032 270 A1 known load sway damping systems on cranes, the subject matter of which is expressly referred to in this respect, i.e. with regard to the fundamentals of the sway damping device.
  • the cable angle relative to the vertical and its change in the form of the cable angular speed is measured by means of a gyroscope unit in order to automatically intervene in the control when a limit value for the cable angular speed relative to the vertical is exceeded.
  • a load sway damping system for maritime cranes is known from the Liebherr company under the name "Cycoptronic", which calculates load movements and influences such as wind in advance and automatically initiates compensation movements on the basis of this pre-calculation in order to prevent the load from swinging.
  • the cable angle relative to the vertical and its changes are recorded by means of gyroscopes in order to intervene in the control as a function of the gyroscope signals.
  • the present invention is based on the object of creating an improved crane and an improved method for controlling it, avoiding the disadvantages of the prior art and further developing the latter in an advantageous manner.
  • improved sway damping is to be achieved in tower cranes, which takes better account of the various influences of the crane structure.
  • the pendulum-damping measures not only take into account the actual pendulum movement of the rope itself, but also the dynamics of the steel structure of the crane and its drive trains.
  • the crane is no longer assumed to be an immovable rigid body that converts drive movements of the drive devices directly and identically, ie 1: 1 into movements of the suspension point of the hoist rope.
  • the sway dampening device regards the crane as a soft structure with elasticity and flexibility in its steel components, such as the tower lattice, and in the drive trains shows and takes into account these dynamics of the structural parts of the crane in the sway-damping influence on the control of the drive devices.
  • the pendulum damping device comprises determining means for determining dynamic deformations and movements of structural components under dynamic loads, the control module of the pendulum damping device, which influences the control of the drive device in a sway-damping manner, is designed to influence the control of the drive devices, the determined dynamic deformations of at least the tower and other structural components of the crane to be taken into account.
  • the pendulum damping device does not consider the crane or machine structure as a rigid, so to speak infinitely stiff structure, but assumes an elastically deformable and / or flexible and / or relatively soft structure that - in addition to the adjusting axes of movement of the machine such as the boom luffing axis or the Tower axis of rotation - allows movements and / or changes in position due to deformation of the structural components.
  • the steel construction is also spared and less stressed. In particular, shock loads are reduced by the control behavior.
  • This method can also be used to define the influence of driving behavior.
  • the knowledge of the structural dynamics and the control method can, in particular, reduce and dampen the pitching oscillation. As a result, the load behaves more calmly and no longer fluctuates up and down later in the rest position.
  • the said determination means can include an estimation device that determines the deformations and movements of the machine structure under dynamic loads that occur as a function of control commands entered at the control station and / or as a function of certain control actions of the drive devices and / or as a function of certain speed and / or result in acceleration profiles of the drive devices, taking into account the circumstances characterizing the crane structure.
  • Such an estimation device can, for example, access a data model in which structural parameters of the crane such as tower height, boom length, stiffness, area moments of inertia and the like are stored and / or linked to one another in order to then use a specific load situation, i.e. weight of the load picked up on the load hook and the current radius to estimate the dynamic effects, i.e. deformations in the steel construction and in the drive trains result for a specific actuation of a drive device.
  • the pendulum damping device can then intervene in the control of the drive devices and influence the manipulated variables of the drive controllers of the drive devices in order to avoid or reduce pendulum movements of the load hook and the hoist rope.
  • the determination device for determining such structural deformations can have a calculation unit which calculates these structural deformations and the resulting structural part movements on the basis of a stored calculation model as a function of the control commands entered at the control station.
  • a model can be constructed similarly to a finite element model or a finite element model, but advantageously a model that is significantly simplified compared to a finite element model is used which, for example, empirically by detecting structural deformations under certain control commands and / or load conditions on the real crane or the real machine can be determined.
  • Such a calculation model can work, for example, with tables in which certain control commands are assigned certain deformations, with intermediate values of the control commands being able to be converted into corresponding deformations by means of an interpolation device.
  • the pendulum damping device can also comprise a suitable sensor system, by means of which such elastic deformations and movements of structural components are detected under dynamic loads.
  • a sensor system can include, for example, deformation sensors such as strain gauges on the steel structure of the crane, for example the lattice framework of the tower and / or the boom.
  • acceleration and / or speed sensors can be provided in order to detect certain movements of structural components such as, for example, pitching movements of the boom tip and / or rotational dynamic effects to be recorded on the boom.
  • inclination sensors or gyroscopes can also be provided, for example on the tower, in particular on its upper section on which the boom is mounted, in order to detect the dynamics of the tower.
  • jerky lifting movements lead to pitching movements of the boom, which are accompanied by bending movements of the tower, with post-swinging of the tower in turn leading to pitching vibrations of the boom, which is associated with corresponding load hook movements.
  • motion and / or acceleration sensors can also be assigned to the drive trains in order to be able to detect the dynamics of the drive trains.
  • rotary encoders can be assigned to the pulleys of the trolley for the hoist rope and / or pulleys for a guy rope of a luffing jib in order to be able to detect the actual rope speed at the relevant point.
  • suitable movement and / or speed and / or acceleration sensors are also assigned to the drive devices themselves in order to be able to detect the drive movements of the drive devices accordingly and to be able to relate them to the estimated and / or recorded deformations of the structural components such as the steel structure and in the drive trains .
  • the pendulum damping device in a further development of the invention can comprise a filter device or an observer who observes the crane reactions that occur with certain manipulated variables of the drive controller and taking into account predetermined regularities of a dynamic model of the crane, which can be fundamentally different, and through analysis and simulation of the steel construction can be obtained, influences the manipulated variables of the controller based on the observed crane reactions.
  • Such a filter or observer device can in particular be designed in the form of a so-called Kalman filter, to which the manipulated variables of the drive controller of the crane and the crane movements, in particular the Load hook movement, in particular its pendulum movement, is supplied and which, from these input variables, uses Kalman equations that model the dynamic system of the crane structure, in particular its steel components and drive trains, to influence the control variables of the drive controller accordingly in order to achieve the desired sway dampening effect.
  • Kalman filter to which the manipulated variables of the drive controller of the crane and the crane movements, in particular the Load hook movement, in particular its pendulum movement, is supplied and which, from these input variables, uses Kalman equations that model the dynamic system of the crane structure, in particular its steel components and drive trains, to influence the control variables of the drive controller accordingly in order to achieve the desired sway dampening effect.
  • the position of the load hook in particular also its oblique pull relative to the vertical, that is, the deflection of the hoist rope relative to the vertical, is detected by means of a suitable sensor system and fed to the aforementioned Kalman filter.
  • the detection device for detecting the position of the load hook can advantageously comprise an imaging sensor system, for example a camera, which looks essentially vertically downward from the suspension point of the hoist rope, for example the trolley.
  • An image evaluation device can identify the crane hook in the image provided by the imaging sensor system and determine its eccentricity or its displacement from the image center, which is a measure of the deflection of the crane hook relative to the vertical and thus characterizes the swaying of the load.
  • the position sensor system can advantageously be designed to detect the load relative to a fixed world coordinate system and / or the displacement control device can be designed to position the load relative to a fixed world coordinate system.
  • an inclined tension control By detecting the load position, an inclined tension control can be implemented which eliminates or at least reduces static deformation caused by the attached load.
  • the pendulum damping device can be designed to correct the slewing gear and the trolley so that the rope is always perpendicular to the load as far as possible, even if the crane moves as a result of the increasing Load torque tends more and more forward.
  • the crane's pitching motion as a result of its deformation under the load can be taken into account and the trolley under consideration the detected load position can be followed or positioned with predictive estimation of the pitching deformation so that the hoist rope is perpendicular to the load when the crane deformation occurs.
  • the slewing gear can be followed up and / or positioned with anticipatory estimation of a transverse deformation, taking into account the detected load position, so that the hoist rope is perpendicular to the load in the event of the resulting crane deformation.
  • Such a diagonal tension control can be reactivated at a later point in time by the operator, who can then use the crane as a manipulator. This means that the operator can only reposition the load by pushing and / or pulling. The diagonal tension control tries to follow the deflection caused by the operator. This enables manipulator control to be implemented.
  • the mentioned pendulum damping device can monitor the input commands of the crane operator when the crane is operated manually by operating appropriate control elements such as joysticks and the like and override them if necessary, in particular in the sense that accelerations that are too strong, for example, are reduced by the crane operator or counter movements are automatically initiated if a crane movement specified by the crane operator has or would lead to a swinging of the load hook.
  • the sway damping device can also be used for automated actuation of the crane, in which the control device of the crane automatically moves the crane's load suspension device between at least two target points along a travel path in the sense of an autopilot.
  • the control device of the crane automatically moves the crane's load suspension device between at least two target points along a travel path in the sense of an autopilot.
  • a travel path determination module of the control device determines a desired travel path, for example in the sense of a path control
  • an automatic travel control module the control device controls the drive controller or drive devices in such a way that the load hook is moved along the specific travel path
  • the sway damping device can intervene in the activation of the drive controller by the mentioned movement control module in order to move the crane hook without swaying or to dampen swaying movements.
  • the crane can be designed as a tower crane.
  • the in Fig. 1 The tower crane shown can, for example, in a manner known per se, have a tower 201 which carries a boom 202 which is supported by a counter-jib 203 is balanced, on which a counterweight 204 is provided.
  • Said boom 202 can be rotated together with the counter-boom 203 about an upright axis of rotation 205, which can be coaxial to the tower axis, by a rotating mechanism.
  • a trolley 206 can be moved on the boom 202 by a trolley drive, with a hoisting rope 207 running from the trolley 206 to which a load hook 208 is attached.
  • the crane 2 can have an electronic control device 3, which can include, for example, a control computer arranged on the crane itself.
  • the named control device 3 can control various actuators, hydraulic circuits, electric motors, drive devices and other working units on the respective construction machine. In the case of the crane shown, this can be, for example, its hoisting gear, its slewing gear, its trolley drive, its -ggf. existing - boom luffing drive or the like.
  • Said electronic control device 3 can communicate with a terminal 4, which can be arranged at the control station or in the driver's cab and can, for example, have the form of a tablet with a touchscreen and / or joysticks, rotary knobs, slide switches and similar control elements, so that on the one hand different Information from the control computer 3 is displayed on the terminal 4 and, conversely, control commands can be entered into the control device 3 via the terminal 4.
  • a terminal 4 can be arranged at the control station or in the driver's cab and can, for example, have the form of a tablet with a touchscreen and / or joysticks, rotary knobs, slide switches and similar control elements, so that on the one hand different Information from the control computer 3 is displayed on the terminal 4 and, conversely, control commands can be entered into the control device 3 via the terminal 4.
  • Said control device 3 of crane 1 can in particular be designed to control said drive devices of the hoist, trolley and slewing gear even when a pendulum damping device 340 detects pendulum-relevant movement parameters.
  • the crane 1 can have a detection device 60, which detects an oblique pull of the hoist rope 207 and / or deflections of the load hook 208 with respect to a vertical 61, which is caused by the suspension point of the load hook 208, ie, the trolley 206 is walking, detected.
  • the cable pull angle ⁇ can be detected against the line of action of gravity, ie the vertical 62, cf. Fig. 1 .
  • the determination means 62 of the detection device 60 can work optically, for example, in order to determine the said deflection.
  • a camera 63 or another imaging sensor system can be attached to the trolley 206, which looks vertically downward from the trolley 206 so that when the load hook 208 is undeflected, its image reproduction is in the center of the image provided by the camera 63. If, however, the load hook 208 is deflected relative to the vertical 61, for example by jerking the trolley 206 or suddenly braking the slewing gear, the image reproduction of the load hook 208 moves out of the center of the camera image, which can be determined by an image evaluation device 64.
  • control device 3 can control the slewing gear drive and the trolley drive with the aid of the pendulum damping device 340 in order to bring the trolley 206 more or less precisely over the load hook 208 again and to compensate for pendulum movements, or to reduce them or not to allow them to occur in the first place.
  • the sway damping device 430 comprises determination means 342 for determining dynamic deformations of structural components, the control module 341 of the sway damping device 340, which influences the control of the drive device in a sway-damping manner, is designed to apply the determined dynamic deformations of the structural components of the crane when influencing the control of the drive devices consider.
  • the determination means 342 can include an estimation device 343 that determines the deformations and movements of the machine structure under dynamic loads that are dependent on control commands entered at the control station and / or dependent on certain control actions of the drive devices and / or are estimated as a function of certain speed and / or acceleration profiles of the drive devices, taking into account conditions characterizing the crane structure.
  • a calculation unit 348 can calculate the structural deformations and the resulting structural part movements on the basis of a stored calculation model as a function of the control commands entered at the control station.
  • the sway damping device 340 can also include a suitable sensor system 344, by means of which such elastic deformations and movements of structural components are detected under dynamic loads.
  • a sensor system 344 can include, for example, deformation sensors such as strain gauges on the steel structure of the crane, for example the lattice frameworks of the tower 201 or of the boom 202.
  • acceleration and / or speed sensors can be provided in order to detect certain movements of structural components such as, for example, pitching movements of the boom tip or rotational dynamic effects on boom 202.
  • inclination sensors or gyroscopes can also be provided, for example, on the tower 201, in particular on its upper section on which the boom is mounted, in order to detect the dynamics of the tower 201.
  • motion and / or acceleration sensors can also be assigned to the drive trains in order to be able to detect the dynamics of the drive trains.
  • rotary encoders can be assigned to the pulleys of the trolley 206 for the hoist rope and / or pulleys for a guy rope of a luffing jib in order to be able to detect the actual rope speed at the relevant point.
  • pendulum damping device 340 has a filter device or an observer 345, which observes the crane reactions that occur with certain manipulated variables of the drive controller 347 and taking into account predetermined regularities of a dynamic model of the crane, which can be fundamentally different and through analysis and simulation of the Steel construction can be obtained, influences the manipulated variables of the controller on the basis of the observed crane reactions.
  • Such a filter or observer device 345b can be designed in particular in the form of a so-called Kalman filter 346, to which the manipulated variables of the drive controller 347 of the crane and the crane movements, in particular the cable angle ⁇ relative to the vertical 62 and / or its change over time or the Angular velocity of the mentioned diagonal pull, and which from these input variables using Kaiman equations, which model the dynamic system of the crane structure, in particular its steel components and drive trains, influences the manipulated variables of the drive controller 347 accordingly in order to achieve the desired sway-damping effect.
  • a so-called Kalman filter 346 to which the manipulated variables of the drive controller 347 of the crane and the crane movements, in particular the cable angle ⁇ relative to the vertical 62 and / or its change over time or the Angular velocity of the mentioned diagonal pull, and which from these input variables using Kaiman equations, which model the dynamic system of the crane structure, in particular its steel components and drive trains, influences the manipulated variables of the drive controller 347 accordingly in order to achieve the
  • Fig. 3 are shown by way of example, the partial view a.) initially showing schematically a pitching deformation of the tower extension crane under load as a result of bending of the tower 201 with the associated lowering of the boom 202 and an associated diagonal pull of the hoist rope.
  • the partial views show b.) And c.) Of Fig. 3 for example, in a schematic manner, a transverse deformation of the tower crane in a perspective illustration and in a plan view from above with the deformations of the tower 201 and the boom 202 occurring in the process.
  • the sway damping device 430 can include a diagonal tension control.
  • the position of the load hook 208, in particular also its oblique pull relative to the vertical, that is to say the deflection is determined by means of the determination means 62 of the hoist rope 207 detected relative to the vertical and fed to the aforementioned Kalman filter 346.
  • the position sensor system can advantageously be designed to detect the load or the load hook 208 relative to a fixed world coordinate system and / or the sway damping device 430 can be designed to position the load relative to a fixed world coordinate system.
  • an inclined tension control By detecting the load position, an inclined tension control can be implemented which eliminates or at least reduces static deformation caused by the attached load.
  • the pendulum damping device 430 can be designed to correct the slewing gear and the trolley so that the rope is always perpendicular to the load, even if the crane moves through the increasing load torque tends more and more forward.
  • the crane's pitching motion as a result of its deformation under the load can be taken into account and the trolley, taking into account the detected load position, can be tracked or positioned with a predictive estimation of the pitching deformation so that the hoist rope is vertical when the crane is deformed Perpendicular to the load. The greatest static deformation occurs at the point where the load leaves the ground. Then diagonal tension control is no longer necessary.
  • the slewing gear can be followed up and / or positioned with anticipatory assessment of a transverse deformation, taking into account the detected load position, so that the hoist rope is perpendicular above the load in the event of the resulting crane deformation.
  • Such a diagonal tension control can be reactivated at a later point in time by the operator, who can then use the crane as a manipulator. This means that the operator can only reposition the load by pushing and / or pulling. The diagonal tension control tries to follow the deflection caused by the operator. A manipulator control can thereby be implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)

Claims (15)

  1. Grue pivotante sur pylône avec une tour (201), qui supporte une flèche (202), sur laquelle un treuil roulant peut être déplacé, duquel se déroule un câble de levage (207), un moyen d'absorption de charges (208) installé sur le câble de levage (207), des systèmes d'entraînement pour déplacer plusieurs éléments de grue et pour déplacer le moyen d'absorption de charges (208), un dispositif de commande (3) pour commander les systèmes d'entraînement de telle manière que le moyen d'absorption de charges (208) se déplace le long d'un trajet de déplacement, ainsi qu'un système d'amortissement d'oscillations pendulaires (340) pour amortir des mouvements pendulaires du moyen d'absorption de charges (208) et/ou du câble de levage (207), dans lequel le système d'amortissement d'oscillations pendulaires (340) présente un module de commande (341) pour influencer le pilotage des systèmes d'entraînement en fonction de paramètres importants en termes d'oscillations pendulaires, caractérisée en ce que le système d'amortissement d'oscillations pendulaires (340) présente des moyens de définition (342) pour définir des déformations de la tour (201) et d'autres composants structurels de la grue suite à des contraintes dynamiques, dans lequel le module de commande (341) du système d'amortissement d'oscillations pendulaires (340) est réalisé pour tenir compte, lorsque le pilotage des systèmes d'entraînement est influencé, des déformations définies de la tour et d'autres composants structurels suite à des contraintes dynamiques.
  2. Grue pivotante sur pylône selon la revendication précédente, dans laquelle les composants structurels comprennent une flèche (202) et les moyens de définition (342) sont réalisés pour définir des déformations et/ou des contraintes de la tour (201) et de la flèche (202) suite à des contraintes dynamiques.
  3. Grue pivotante sur pylône selon l'une quelconque des deux revendications précédentes, dans laquelle les composants structurels comprennent des parties de chaîne cinématique, telles que des parties de mécanismes de rotation, des parties d'entraînement de treuil roulant et similaires, et les moyens de définition (342) sont réalisés pour définir des déformations et/ou des déplacements des parties de chaîne cinématique suite à des contraintes dynamiques.
  4. Grue pivotante sur pylône selon l'une quelconque des revendications précédentes, dans laquelle les moyens de définition (342) présentent un système d'évaluation (343) pour évaluer les déformations et/ou déplacements des composants structurels suite à des charges dynamiques sur la base de données numériques d'un modèle de données décrivant la structure de grue.
  5. Grue pivotante sur pylône selon l'une quelconque des revendications précédentes, dans laquelle les moyens de définition (342) présentent une unité de calcul (348), qui calcule des déformations de structure et des déplacements de partie structurelle en résultant à l'aide d'un modèle de calcul mémorisé en fonction d'instructions de commande saisies sur le poste de commande.
  6. Grue pivotante sur pylône selon l'une quelconque des revendications précédentes, dans laquelle les moyens de définition (342) présentent un système capteur (344) pour détecter les déformations et/ou paramètres de dynamique des composants structurels.
  7. Grue pivotante sur pylône selon la revendication précédente, dans laquelle le système capteur (344) présente un capteur d'inclinaison et/ou d'accélération pour détecter des inclinaisons et/ou des vitesses de tour, un capteur de vitesse de rotation et/ou d'accélération en rotation pour détecter la vitesse de rotation et/ou l'accélération en rotation d'une flèche et/ou un capteur de tangage pour détecter des tangages et/ou des accélérations de tangage de la flèche, et/ou un capteur de vitesse de câble et/ou d'accélération de câble pour détecter des vitesses et/ou des accélérations de câble du câble de levage (207).
  8. Grue pivotante sur pylône selon l'une quelconque des revendications précédentes, dans laquelle un système de détection (60) est prévu pour détecter une déviation (ϕ) du câble de levage (207) et/ou du moyen d'absorption de charges (208) par rapport à une verticale (61), dans lequel le module de commande (341) du système d'amortissement d'oscillations pendulaires (340) est réalisé pour influencer le pilotage des systèmes d'entraînement en fonction de la déviation déterminée du câble de levage (207) et/ou du moyen d'absorption de charges (208) par rapport à la verticale (61).
  9. Grue pivotante sur pylône selon la revendication précédente, dans laquelle le système de détection (60) présente un système capteur d'imagerie, en particulier une caméra (62), qui regarde sensiblement de manière perpendiculaire vers le bas dans la zone d'un point de suspension du câble de levage (207), en particulier d'un treuil roulant (206), dans laquelle un système d'évaluation d'images (64) est prévu pour évaluer une image fournie par le système capteur d'imagerie concernant la position du moyen d'absorption de charges (208) sur l'image fournie et pour définir la déviation (ϕ) du moyen d'absorption de charges (208) et/ou du câble de levage (207) et/ou la vitesse de déviation par rapport à la verticale (61).
  10. Grue pivotante sur pylône selon l'une quelconque des revendications précédentes, dans laquelle le système d'amortissement d'oscillations pendulaires (340) présente un système filtrant et/ou d'observation (345) pour influencer les grandeurs de réglage de régulateurs d'entraînement (347) pour piloter les systèmes d'entraînement, dans laquelle ledit système filtrant et/ou d'observation (345) est réalisé pour recevoir en tant que grandeurs d'entrée les grandeurs de réglage des régulateurs d'entraînement (347) et les déplacements détectés et/ou évalués d'éléments de grue et/ou des déformations et/ou déplacements de composants structurels, qui surviennent suite à des contraintes dynamiques et pour influencer les grandeurs de réglage de régulateur en fonction des déplacements, induits par dynamique obtenus pour les grandeurs de réglage de régulateur définies, d'éléments de grue et/ou de déformations de composants structurels.
  11. Grue pivotante sur pylône selon la revendication précédente, dans laquelle le système filtrant et/ou d'observation (345) est réalisé en tant que filtre de Kalman (346), dans laquelle des fonctions détectées et/ou évaluées et/ou calculées et/ou simulées dans le filtre de Kalman (346), qui caractérisent la dynamique des composants structurels de la grue, sont implémentées.
  12. Grue pivotante sur pylône selon l'une quelconque des revendications précédentes, dans laquelle le système d'amortissement d'oscillations pendulaires (340) comprend un système capteur de position, qui est réalisé pour détecter le moyen d'absorption de charges (208) par rapport à un système de coordonnées mondial fixe, et/ou qui est réalisé pour positionner le moyen d'absorption de charges (208) par rapport à un système de coordonnées mondial fixe.
  13. Grue pivotante sur pylône selon l'une quelconque des revendications précédentes, dans laquelle le système d'amortissement d'oscillations pendulaires (340) comprend un régulateur oblique et est réalisé pour actionner les systèmes d'entraînement pour déplacer les éléments de grue et déplacer le moyen d'absorption de charges (208) de telle sorte que le câble de levage (207) se situe toujours dans la mesure du possible de manière verticale par rapport à la charge même quand la grue se déforme de manière croissante du fait du couple de charge croissant et/ou du fait de forces transversales croissantes et/ou de couple de torsion transversale croissants.
  14. Procédé pour commander une grue pivotante sur pylône, dont le moyen d'absorption de charges (208) installé sur un câble de levage (207) est déplacé par des systèmes d'entraînement, lesquels systèmes d'entraînement sont pilotés par un dispositif de commande (3) de la grue, dans lequel le pilotage des systèmes d'entraînement est influencé par un système d'amortissement d'oscillations pendulaires (340) en fonction de paramètres importants en termes d'oscillations pendulaires, caractérisé en ce que le système d'amortissement d'oscillations pendulaires (340) définit des déformations de la tour (201) et d'autres composants structurels de la tour, qui surviennent suite à des contraintes dynamiques et en tient compte lorsque le pilotage des systèmes d'entraînement est influencé.
  15. Procédé selon la revendication précédente, dans lequel le système d'amortissement d'oscillations pendulaires (340) présente un filtre de Kalman (346), auquel sont amenées en tant que grandeurs d'entrée les grandeurs de réglage de régulateurs d'entraînement (347) pour piloter les systèmes d'entraînement ainsi que des mouvements de grue et/ou des déformations et/ou des mouvements induits par la dynamique des parties structurelles se réglant dans le cas desdites grandeurs de réglage, dans lequel le filtre de Kalman (346) réalise, en fonction desdites grandeurs d'entrée, une influence des grandeurs de réglage des régulateurs d'entraînement (347).
EP17721521.7A 2016-04-11 2017-04-07 Grue et procédé de commande de ladite grue Active EP3408208B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016004350.4A DE102016004350A1 (de) 2016-04-11 2016-04-11 Kran und Verfahren zum Steuern eines solchen Krans
PCT/EP2017/000450 WO2017178106A1 (fr) 2016-04-11 2017-04-07 Grue et procédé de commande de ladite grue

Publications (2)

Publication Number Publication Date
EP3408208A1 EP3408208A1 (fr) 2018-12-05
EP3408208B1 true EP3408208B1 (fr) 2021-09-29

Family

ID=58671561

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17721521.7A Active EP3408208B1 (fr) 2016-04-11 2017-04-07 Grue et procédé de commande de ladite grue

Country Status (8)

Country Link
US (1) US11919749B2 (fr)
EP (1) EP3408208B1 (fr)
CN (1) CN108883913B (fr)
BR (1) BR112018068971A2 (fr)
DE (1) DE102016004350A1 (fr)
ES (1) ES2901160T3 (fr)
RU (1) RU2728315C2 (fr)
WO (1) WO2017178106A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017114789A1 (de) * 2017-07-03 2019-01-03 Liebherr-Components Biberach Gmbh Kran und Verfahren zum Steuern eines solchen Krans
DE102018105139A1 (de) * 2018-03-06 2019-09-12 Konecranes Global Corporation Verfahren zur Steuerung und insbesondere Überwachung eines Aktors, insbesondere einer Winde, eines Hebezeugs oder eines Krans und System zur Durchführung eines solchen Verfahrens
DE102018005068A1 (de) * 2018-06-26 2020-01-02 Liebherr-Components Biberach Gmbh Kran und Verfahren zum Steuern eines solchen Krans
JP7151223B2 (ja) * 2018-07-09 2022-10-12 株式会社タダノ クレーンおよびクレーンの制御方法
JP7172256B2 (ja) * 2018-07-31 2022-11-16 株式会社タダノ クレーン
DE102018221436A1 (de) * 2018-12-11 2020-06-18 Robert Bosch Gmbh Verfahren zur Bestimmung des Einflusses von Wind auf einen Kran
DE202019102393U1 (de) * 2019-03-08 2020-06-09 Liebherr-Werk Biberach Gmbh Kran sowie Vorrichtung zu dessen Steuerung
DE102019109448B4 (de) * 2019-04-10 2022-09-08 Josef Morosin Anordnung mit einem Kran
CN111597623A (zh) * 2020-05-26 2020-08-28 中建安装集团有限公司 一种石化装置模块化设计方法
DE102020126504A1 (de) 2020-10-09 2022-04-14 Liebherr-Werk Biberach Gmbh Hebezeug wie Kran sowie Verfahren und Vorrichtung zum Steuern eines solchen Hebezeugs
CN113387284A (zh) * 2021-06-23 2021-09-14 湖南三一塔式起重机械有限公司 一种塔机回转速度的控制方法、系统及塔式起重机

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3153486A (en) * 1961-06-13 1964-10-20 Link Belt Co Tower crane
DE4315005A1 (de) * 1993-05-06 1994-11-10 Deutsche Aerospace Vorrichtung zur meßtechnischen Erfassung von Winkellagen eines bewegten Gegenstandes gegenüber seiner Ausgangsstellung
ATE322454T1 (de) * 2000-10-19 2006-04-15 Liebherr Werk Nenzing Kran oder bagger zum umschlagen von einer an einem lastseil hängenden last mit lastpendelungsdämpfung
DE10064182A1 (de) * 2000-10-19 2002-05-08 Liebherr Werk Nenzing Kran oder Bagger zum Umschlagen von einer an einem Lastseil hängenden Last mit Lastpendelungsdämpfung
US6826452B1 (en) * 2002-03-29 2004-11-30 The Penn State Research Foundation Cable array robot for material handling
DE102006033277A1 (de) * 2006-07-18 2008-02-07 Liebherr-Werk Nenzing Gmbh, Nenzing Verfahren zum Steuern der Orientierung einer Kranlast
DE102007039408A1 (de) * 2007-05-16 2008-11-20 Liebherr-Werk Nenzing Gmbh Kransteuerung, Kran und Verfahren
DE102007043750A1 (de) 2007-09-13 2009-03-19 Rheinkalk Gmbh Fahrzeug zum Einbringen alkalischer Stoffe in Gewässer
DE102008024513B4 (de) * 2008-05-21 2017-08-24 Liebherr-Werk Nenzing Gmbh Kransteuerung mit aktiver Seegangsfolge
US8195368B1 (en) * 2008-11-07 2012-06-05 The United States Of America As Represented By The Secretary Of The Navy Coordinated control of two shipboard cranes for cargo transfer with ship motion compensation
DE102009032270A1 (de) 2009-07-08 2011-01-13 Liebherr-Werk Nenzing Gmbh Verfahren zur Ansteuerung eines Antriebs eines Kranes
DE102009032269A1 (de) * 2009-07-08 2011-01-13 Liebherr-Werk Nenzing Gmbh Kransteuerung zur Ansteuerung eines Hubwerkes eines Kranes
CN201553560U (zh) * 2009-09-07 2010-08-18 上海海得控制系统股份有限公司 龙门吊防倾倒控制系统
NO337712B1 (no) * 2010-03-24 2016-06-06 Nat Oilwell Varco Norway As Anordning og fremgangsmåte for å redusere dynamiske laster i kraner
DE102011001112A1 (de) * 2011-03-04 2012-09-06 Schneider Electric Automation Gmbh Verfahren und Steuerungseinrichtung zur schwingungsarmen Bewegung eines bewegbaren Kranelementes eines Kransystems
CN103298728B (zh) * 2011-07-05 2015-04-08 天宝导航有限公司 起重机操纵辅助
EP2562125B1 (fr) * 2011-08-26 2014-01-22 Liebherr-Werk Nenzing GmbH Appareil de commande de grue
US9041595B2 (en) * 2011-12-19 2015-05-26 Trimble Navigation Limited Determining the location of a load for a tower crane
DE102012004739A1 (de) * 2012-03-08 2013-09-12 Liebherr-Werk Nenzing Gmbh Kran und Verfahren zur Kransteuerung
DE202012012116U1 (de) * 2012-12-17 2014-03-19 Liebherr-Components Biberach Gmbh Turmdrehkran
CN203295057U (zh) * 2013-04-28 2013-11-20 郑州铁路装备制造有限公司 一种新型集装箱吊具减摇装置
DE102013012019B4 (de) * 2013-07-19 2019-10-24 Tadano Faun Gmbh Kran, insbesondere Mobilkran
DE102015202734A1 (de) * 2015-02-16 2016-08-18 Terex Cranes Germany Gmbh Kran und Verfahren zum Beeinflussen einer Verformung eines Auslegersystems eines derartigen Krans
DE102016001684A1 (de) * 2016-02-12 2017-08-17 Liebherr-Werk Biberach Gmbh Verfahren zur Überwachung wenigstens eines Krans
US11084691B2 (en) * 2016-04-08 2021-08-10 Liebherr-Components Biberach Gmbh Crane
JP6766608B2 (ja) * 2016-11-14 2020-10-14 コベルコ建機株式会社 建設機械のバックストップ装置
DE102017114789A1 (de) * 2017-07-03 2019-01-03 Liebherr-Components Biberach Gmbh Kran und Verfahren zum Steuern eines solchen Krans

Also Published As

Publication number Publication date
US20190119078A1 (en) 2019-04-25
DE102016004350A1 (de) 2017-10-12
CN108883913A (zh) 2018-11-23
EP3408208A1 (fr) 2018-12-05
RU2728315C2 (ru) 2020-07-29
US11919749B2 (en) 2024-03-05
CN108883913B (zh) 2021-02-19
BR112018068971A2 (pt) 2019-01-22
RU2018139354A (ru) 2020-05-12
ES2901160T3 (es) 2022-03-21
WO2017178106A1 (fr) 2017-10-19
RU2018139354A3 (fr) 2020-05-19

Similar Documents

Publication Publication Date Title
EP3408208B1 (fr) Grue et procédé de commande de ladite grue
EP3649072B1 (fr) Grue et procédé de commande d'une telle grue
EP3408211B1 (fr) Grue
EP3784616A1 (fr) Grue et procédé pour commander une grue de ce type
EP2502871B1 (fr) Commande de grue, grue et procédé
EP2298687B1 (fr) Système de détection de la masse de charge d'une charge suspendue à une corde de levage de grue
EP2272784B1 (fr) Grue pour envelopper une charge suspendue à un câble porteur
EP2524892B1 (fr) Commande de grue
EP4013713B1 (fr) Grue et procédé de commande d'une telle grue
AT520008B1 (de) Verfahren zum Dämpfen von Drehschwingungen eines Lastaufnahmeelements einer Hebeeinrichtung
DE102005042721A1 (de) Gelenkleiter oder Hubbühne mit Bahnsteuerung und aktiver Schwingungsdämpfung
WO2009030586A1 (fr) Dispositif de régulation destiné à atténuer les mouvements pendulaires d'une charge suspendue à un câble
DE112013005508T5 (de) Vorrichtung zum langsamen Anhalten der Arbeitsmaschine
EP1834920A1 (fr) Procédé pour la manipulation automatique d'une charge de grue avec amortissement d'oscillations pendulaires et commande de parcours
DE102005002192B4 (de) Verfahren zum Betrieb einer Krananlage, insbesondere eines Containerkrans, sowie Krananlage, insbesondere Containerkran
DE102006052956B4 (de) Verfahren und Vorrichtung zum Bewegen einer freischwingenden Last von einem Start- zu einem Zielpunkt
DE102017124278A1 (de) System zum Bedienen eines Lasthandling-Krans sowie Lasthandling-Kran und Verfahren zu dessen Bedienung
DE102021121818A1 (de) Turmdrehkran, Verfahren und Steuerungseinheit zum Betreiben eines Turmdrehkrans, Laufkatze und Katzfahrwerk
EP3326957A1 (fr) Procédé de fonctionnement d'une grue

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180830

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200903

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210429

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017011601

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1434043

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211230

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2901160

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220131

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017011601

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LIEBHERR-WERK BIBERACH GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017011601

Country of ref document: DE

Owner name: LIEBHERR-WERK BIBERACH GMBH, DE

Free format text: FORMER OWNER: LIEBHERR-COMPONENTS BIBERACH GMBH, 88400 BIBERACH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1434043

Country of ref document: AT

Kind code of ref document: T

Owner name: LIEBHERR-WERK BIBERACH GMBH, DE

Effective date: 20221018

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220407

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220407

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230428

Year of fee payment: 7

Ref country code: FR

Payment date: 20230425

Year of fee payment: 7

Ref country code: ES

Payment date: 20230503

Year of fee payment: 7

Ref country code: DE

Payment date: 20230426

Year of fee payment: 7

Ref country code: CH

Payment date: 20230502

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230426

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929