DE102017114789A1 - Kran und Verfahren zum Steuern eines solchen Krans - Google Patents

Kran und Verfahren zum Steuern eines solchen Krans Download PDF

Info

Publication number
DE102017114789A1
DE102017114789A1 DE102017114789.6A DE102017114789A DE102017114789A1 DE 102017114789 A1 DE102017114789 A1 DE 102017114789A1 DE 102017114789 A DE102017114789 A DE 102017114789A DE 102017114789 A1 DE102017114789 A1 DE 102017114789A1
Authority
DE
Germany
Prior art keywords
crane
pendulum
control
sensor
dynamics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102017114789.6A
Other languages
English (en)
Inventor
Florentin Rauscher
Oliver Sawodny
Michael PALBERG
Patrick Schlott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Werk Biberach De GmbH
Original Assignee
Liebherr Components Biberach GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Components Biberach GmbH filed Critical Liebherr Components Biberach GmbH
Priority to DE102017114789.6A priority Critical patent/DE102017114789A1/de
Priority to CN201880044958.7A priority patent/CN111295354B/zh
Priority to JP2020500045A priority patent/JP7224330B2/ja
Priority to EP18740502.2A priority patent/EP3649072B1/de
Priority to AU2018296142A priority patent/AU2018296142B2/en
Priority to ES18740502T priority patent/ES2924332T3/es
Priority to PCT/EP2018/000320 priority patent/WO2019007541A1/de
Priority to BR112019027928-8A priority patent/BR112019027928A2/pt
Publication of DE102017114789A1 publication Critical patent/DE102017114789A1/de
Priority to US16/733,619 priority patent/US11447372B2/en
Priority to AU2024201066A priority patent/AU2024201066A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/066Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads for minimising vibration of a boom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/16Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes with jibs supported by columns, e.g. towers having their lower end mounted for slewing movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C2700/00Cranes
    • B66C2700/03Cranes with arms or jibs; Multiple cranes
    • B66C2700/0385Cranes with trolleys movable along adjustable or slewable arms

Abstract

Die vorliegende Erfindung betrifft einen Kran, insbesondere einen Turmdrehkran, mit einem Hubseil, das von einem Ausleger abläuft und ein Lastaufnahmemittel trägt, Antriebseinrichtungen zum Bewegen mehrerer Kranelemente und Verfahren des Lastaufnahmemittels, einer Steuervorrichtung zum Steuern der Antriebseinrichtungen derart, dass das Lastaufnahmemittel entlang eines Verfahrwegs verfährt, sowie einer Pendeldämpfungseinrichtung zum Dämpfen von Pendelbewegungen des Lastaufnahmemittels, wobei die genannte Pendeldämpfungseinrichtung eine Pendelsensorik zum Erfassen von Pendelbewegungen des Hubseils und/oder des Lastaufnahmemittels sowie einen Reglerbaustein mit einem geschlossenen Regelkreis zum Beeinflussen der Ansteuerung der Antriebseinrichtungen in Abhängigkeit von Pendelsignalen, die von der Pendelsensorik erfaßte Pendelbewegungen angeben und dem Regelkreis rückgeführt werden, aufweist. Die Erfindung betrifft ferner auch ein Verfahren zum Steuern eines Krans, bei dem die Ansteuerung der Antriebseinrichtungen von einer Pendeldämpfungseinrichtung in Abhängigkeit von pendelrelevanten Parametern beeinflusst wird. Es wird vorgeschlagen, bei den pendeldämpfenden Maßnahmen nicht nur die eigentliche Pendelbewegung des Seils an sich zu berücksichtigen, sondern auch die Dynamik der Kranstruktur bzw. des Stahlbaus des Krans.

Description

  • Die vorliegende Erfindung betrifft einen Kran, insbesondere einen Turmdrehkran, mit einem Hubseil, das von einem Ausleger abläuft und ein Lastaufnahmemittel trägt, Antriebseinrichtungen zum Bewegen mehrerer Kranelemente und Verfahren des Lastaufnahmemittels, einer Steuervorrichtung zum Steuern der Antriebseinrichtungen derart, dass das Lastaufnahmemittel entlang eines Verfahrwegs verfährt, sowie einer Pendeldämpfungseinrichtung zum Dämpfen von Pendelbewegungen des Lastaufnahmemittels, wobei die genannte Pendeldämpfungseinrichtung eine Pendelsensorik zum Erfassen von Pendelbewegungen des Hubseils und/oder des Lastaufnahmemittels sowie einen Reglerbaustein mit einem geschlossenen Regelkreis zum Beeinflussen der Ansteuerung der Antriebseinrichtungen in Abhängigkeit von Pendelsignalen, die von der Pendelsensorik erfaßte Pendelbewegungen angeben und dem Regelkreis rückgeführt werden, aufweist. Die Erfindung betrifft ferner auch ein Verfahren zum Steuern eines Krans, bei dem die Ansteuerung der Antriebseinrichtungen von einer Pendeldämpfungseinrichtung in Abhängigkeit von pendelrelevanten Parametern beeinflusst wird.
  • Um den Lasthaken eines Krans entlang eines Verfahrwegs bzw. zwischen zwei Zielpunkten verfahren zu können, müssen üblicherweise diverse Antriebseinrichtungen betätigt und gesteuert werden. Beispielsweise bei einem Turmdrehkran, bei dem das Hubseil von einer Laufkatze abläuft, die am Ausleger des Krans verfahrbar ist, muss üblicherweise das Drehwerk, mittels dessen der Turm mit dem darauf vorgesehenen Ausleger bzw. der Ausleger relativ zum Turm um eine aufrechte Drehachse verdreht werden, sowie der Katzantrieb, mittels dessen die Laufkatze entlang des Auslegers verfahren werden kann, und das Hubwerk, mittels dessen das Hubseil verstellt und damit der Lasthaken angehoben und abgesenkt werden kann, jeweils betätigt und gesteuert werden. Bei Kranen mit einem wippbaren Teleskopausleger werden zusätzlich zum Drehwerk, der den Ausleger bzw. den den Ausleger tragenden Oberwagen um eine aufrechte Achse verdreht, und zum Hubwerk zum Verstellen des Hubseils, auch der Wippantrieb zum Auf- und Niederwippen des Auslegers sowie der Teleskopierantrieb zum Ein- und Ausfahren der Teleskopschüsse betätigt, ggf. auch ein Wippspitzenantrieb bei Vorhandensein einer Wippspitze am Teleskopausleger. Bei Mischformen solcher Krane und ähnlichen Krantypen, beispielsweise Turmkranen mit wippbarem Ausleger oder Derrick-Kranen mit wippbarem Gegenausleger können jeweils auch weitere Antriebseinrichtungen anzusteuern sein.
  • Die genannten Antriebseinrichtungen werden hierbei üblicherweise vom Kranführer über entsprechende Bedienelemente beispielsweise in Form von Joysticks, Kippschaltern, Drehknöpfen und Schiebern und dergleichen betätigt und gesteuert, was erfahrungsgemäß viel Gefühl und Erfahrung benötigt, um die Zielpunkte rasch und dennoch sanft ohne größere Pendelbewegungen des Lasthakens anzufahren. Während zwischen den Zielpunkten möglichst rasch gefahren werden soll, um eine hohe Arbeitsleistung zu erzielen, soll am jeweiligen Zielpunkt sanft angehalten werden, ohne dass der Lasthaken mit der daran angeschlagenen Last nachpendelt.
  • Ein solches Steuern der Antriebseinrichtungen eines Krans ist angesichts der erforderlichen Konzentration für den Kranführer ermüdend, zumal oft immer wiederkehrende Verfahrwege und monotone Aufgaben zu erledigen sind. Zudem kommt es bei nachlassender Konzentration oder auch bei einer nicht ausreichenden Erfahrung mit dem jeweiligen Krantyp zu größeren Pendelbewegungen der aufgenommenen Last und damit zu einem entsprechenden Gefährdungspotenzial, wenn der Kranführer die Bedienhebel bzw. -elemente des Krans nicht feinfühlig genug bedient. In der Praxis entstehen durch das Ansteuern des Krans auch bei erfahrenen Kranführern bisweilen immer wieder schnell große Pendelschwingungen der Last, die nur sehr langsam abklingen.
  • Um der Problematik unerwünschter Pendelbewegungen zu begegnen, wurde bereits vorgeschlagen, die Steuervorrichtung des Krans mit Pendeldämpfeinrichtungen zu versehen, die mittels Steuerungsbausteinen in die Steuerung eingreifen und das Ansteuern der Antriebseinrichtungen beeinflussen, beispielsweise zu große Beschleunigungen einer Antriebseinrichtung durch zu schnelles oder zu starkes Betätigen des Bedienhebels verhindern oder abschwächen oder bestimmte Verfahrgeschwindigkeiten bei größeren Lasten beschränken oder in ähnlicher Weise in die Verfahrbewegungen auch aktiv eingreifen, um ein zu starkes Pendeln des Lasthakens zu verhindern.
  • Solche Pendeldämpfungseinrichtungen für Krane sind in verschiedenen Ausführungen bekannt, beispielsweise durch Ansteuerung der Drehwerk-, Wipp- und Laufkatzenantriebe in Abhängigkeit von bestimmten Sensorsignalen, beispielsweise Neigungs- und/oder Gyroskopsignalen. Beispielsweise zeigen die Schriften DE 20 2008 018 260 U1 oder DE 10 2009 032 270 A1 bekannte Lastpendeldämpfungen an Kranen, auf deren Gegenstand insoweit, das heißt hinsichtlich der Grundlagen der Pendeldämpfungseinrichtung, ausdrücklich Bezug genommen wird. Bei der DE 20 2008 018 206 U1 wird beispielsweise mittels einer Gyroskopeinheit der Seilwinkel relativ zur Vertikalen und dessen Änderung in Form der Seilwinkelgeschwindigkeit gemessen, um bei Überschreiten eines Grenzwerts für die Seilwinkelgeschwindigkeit gegenüber der Vertikalen automatisch in die Steuerung einzugreifen.
  • Weiterhin zeigen die Schriften EP16 28 902 B1 , DE 103 24 692 A1 , EP25 62 125 B1 , US 2013 01 61 279 A , DE100 64 182 A1 , oder US 55 26 946 B jeweils Konzepte zur Closed-Loop-Regelung von Kranen, die die Pendeldynamik oder auch die Pendel- und Antriebsdynamik berücksichtigen. Allerdings führt die Anwendung dieser bekannten Konzepte an „weichen“, nachgiebigen Kranen mit länglichen, ausgereizten Strukturen wie beispielsweise an einem Turmdrehkran mit Strukturdynamik in der Regel recht schnell zu einem gefährlichen, instabilen Aufschwingen der anregbaren Strukturdynamik.
  • Solche Close-Loop-Regelungen an Kranen mit Berücksichtigung der Pendeldynamik sind auch bereits Gegenstand diverser wissenschaftlicher Publikationen, vgl. bspw. E. Arnold, O. Sawodny, J. Neupert and K. Schneider, „Anti-sway system for boom cranes based on a model predictive control approach", IEEE International Conference Mechatronics and Automation, 2005, Niagara Falls, Ont., Canada, 2005, pp. 1533-1538 Vol. 3., sowie Arnold, E., Neupert, J., Sawodny, O., „Modellprädiktive Trajektoriengenerierung für flachheitsbasierte Folgeregelungen am Beispiel eines Hafenmobilkrans", at - Automatisierungstechnik, 56(8/2008), oder J. Neupert, E. Arnold, K. Schneider & O. Sawodny, „Tracking and anti-sway control for boom cranes", Control Engineering Practice, 18, pp. 31-44, 2010, doi:10.1016/j.conengprac.2009.08.003.
  • Ferner ist von der Firma Liebherr unter dem Namen „Cycoptronic“ ein Lastpendeldämpfungssystem für maritime Krane bekannt, welches Lastbewegungen und Einflüsse wie Wind im Voraus berechnet und auf Basis dieser Vorausberechnung automatisch Kompensationsbewegungen einleitet, um ein Schwingen der Last zu vermeiden. Konkret werden auch bei diesem System mittels Gyroskopen der Seilwinkel gegenüber der Vertikalen und dessen Änderungen erfasst, um in Abhängigkeit der Gyroskopsignale in die Steuerung einzugreifen.
  • Bei langen, schlanken Kranstrukturen mit ambitionierter Traglastauslegung, wie dies inbesondere bei Turmdrehkranen der Fall ist, aber auch bei anderen Kranen mit um eine aufrechte Achse verdrehbaren Auslegern wie bspw. wippbaren Telekopausleger-Kranen relevant werden kann, ist es mit herkömmlichen Pendeldämpfungseinrichtungen jedoch bisweilen schwierig, in der richtigen Art und Weise in die Ansteuerung der Antriebe einzugreifen, um die gewünschte, pendeldämpfende Wirkung zu erzielen. Hierbei kommt es im Bereich der Strukturteile, insbesondere des Turms und Auslegers, zu dynamischen Effekten und elastischem Verformen der Strukturteile, wenn ein Antrieb beschleunigt oder abgebremst wird, sodass sich Eingriffe in die Antriebseinrichtungen - beispielsweise Abbremsen oder Beschleunigen des Katzantriebs oder des Drehwerks - nicht direkt in der gewünschten Weise auf die Pendelbewegung des Lasthakens auswirken.
  • Zum einen kann es durch dynamische Wirkungen in den Strukturteilen zu Zeitverzögerungen bei der Übertragung auf das Hubseil und den Lasthaken kommen, wenn Antriebe pendeldämpfend betätigt werden. Zum anderen können die genannten dynamischen Effekte auch übermäßige oder sogar kontraproduktive Auswirkungen auf ein Lastpendel haben. Wenn beispielsweise eine Last durch zunächst zu schnelles Betätigen des Laufkatzantriebs nach hinten zum Turm hin pendelt und die Pendeldämpfungseinrichtung gegensteuert, indem der Katzantrieb verzögert wird, kann es zu einer Nickbewegungen des Auslegers kommen, da sich der Turm entsprechend verformt, wodurch die gewünschte pendeldämpfende Wirkung beeinträchtigt werden kann.
  • Insbesondere bei Turmdrehkranen tritt dabei aufgrund der Leichtbauweise auch das Problem auf, dass im Gegensatz zu bestimmten anderen Krantypen die Schwingungen der Stahlstruktur nicht vernachlässigbar sind, sondern bei einer Regelung (closed loop) aus Sicherheitsgründen behandelt werden sollten, da es andernfalls in der Regel zu einem gefährlichen instabilen Aufschwingen der Stahlstruktur kommen kann.
  • Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, einen verbesserten Kran sowie ein verbessertes Verfahren zu dessen Steuerung zu schaffen, die Nachteile des Standes der Technik vermeiden und letzteren in vorteilhafter Weise weiterbilden. Vorzugsweise soll erreicht werden, die Nutzlast entsprechend der Sollwerte des Kranführers zu bewegen und dabei unerwünschte Pendelbewegungen über eine Regelung aktiv zu dämpfen, während gleichzeitig unerwünschte Bewegungen der Strukturdynamik nicht angeregt, sondern ebenfalls durch die Regelung gedämpft werden, um eine Erhöhung der Sicherheit, der erleichterten Bedienbarkeit sowie der Automatisierbarkeit zu erreichen. Insbesondere soll eine verbesserte Pendeldämpfung bei Turmdrehkranen erzielt werden, die die mannigfachen Einflüsse der Kranstruktur besser berücksichtigt.
  • Erfindungsgemäß wird die genannte Aufgabe durch einen Kran gemäß Anspruch 1 sowie ein Verfahren gemäß Anspruch 22 gelöst. Bevorzugte Ausgestaltungen der Erfindungen sind Gegenstand der abhängigen Ansprüche.
  • Es wird also vorgeschlagen, bei den pendeldämpfenden Maßnahmen nicht nur die eigentliche Pendelbewegung des Seils an sich zu berücksichtigen, sondern auch die Dynamik der Kranstruktur bzw. des Stahlbaus des Krans und dessen Antriebsstränge. Der Kran wird nicht mehr als unbeweglicher Starrkörper angenommen, der Antriebsbewegungen der Antriebseinrichtungen unmittelbar und identisch, d.h. 1:1 in Bewegungen des Aufhängungspunktes des Hubseils umsetzt. Stattdessen betrachtet die Pendeldämpfungseinrichtung den Kran als weiche Struktur, die in ihren Stahlbau- bzw. Strukturteilen wie beispielsweise dem Turmgitter und dem Ausleger, und in ihren Antriebssträngen Elastizitäten und Nachgiebigkeiten bei Beschleunigungen zeigt, und berücksichtigt diese Dynamik der Strukturteile des Krans bei der pendeldämpfenden Beeinflussung der Ansteuerung der Antriebseinrichtungen.
  • Dabei wird mittels eines geschlossenen Regelkreises sowohl die Pendeldynamik als auch die Strukturdynamik aktiv gedämpft. Insbesondere wird die gesamte Systemdynamik als Verkopplung der Pendel-, Antriebs- und Strukturdynamik des Turmdrehkrans aktiv geregelt, um die Nutzlast entsprechend der Sollvorgaben zu bewegen. Dabei werden Sensoren einerseits zur Messung von Systemgrößen der Pendeldynamik sowie andererseits zur Messung von Systemgrößen der Strukturdynamik eingesetzt, wobei nicht messbare Systemgrößen in einem modellbasierten Beobachter als Systemzustände geschätzt werden können. Die Stellsignale für die Antriebe werden durch eine modellbasierte Regelung als Zustandsrückführung der Systemzustände berechnet, wodurch ein Regelkreis geschlossen wird und sich eine veränderte Systemdynamik ergibt. Die Regelung ist derart ausgebildet, dass die Systemdynamik des geschlossenen Regelkreises stabil ist und Regelfehler schnell ausgeglichen werden.
  • Erfindungsgemäß ist ein geschlossener Regelkreis an dem Kran, insbesondere Turmdrehkran, mit Strukturdynamik durch die Rückführung von Messungen nicht nur der Pendeldynamik, sondern ebenfalls der Strukturdynamik vorgesehen. Die Pendeldämpfungseinrichtung umfasst neben der Pendelsensorik zum Erfassen von Hubseil- und/oder Lastaufnahmemittel-Bewegungen auch eine Strukturdynamik-Sensorik zum Erfassen von dynamischen Verformungen und Bewegungen der Kranstruktur bzw. zumindest Strukturbauteilen hiervon, wobei der Reglerbaustein der Pendeldämpfungseinrichtung, der das Ansteuern der Antriebseinrichtung pendeldämpfend beeinflusst, dazu ausgebildet ist, beim Beeinflussen der Ansteuerung der Antriebseinrichtungen sowohl die von der Pendelsensorik erfaßten Pendelbewegungen als auch die von der Strukturdynamik-Sensorik erfassten dynamischen Verformungen der Strukturbauteile des Krans zu berücksichtigen. Dem geschlossenen Regelkreis werden sowohl die Pendelsensorsignale als auch die Strukturdynamik-Sensorsignale rückgeführt.
  • Die Pendeldämpfungseinrichtung betrachtet also die Kran- bzw. Maschinenstruktur nicht als starre, sozusagen unendlich steife Struktur, sondern geht von einer elastisch verformbaren und/oder nachgiebigen und/oder relativ weichen Struktur aus, die - zusätzlich zu den Stellbewegungsachsen der Maschine wie beispielsweise der Auslegerwippachse oder der Turmdrehachse - Bewegungen und/oder Positionsänderungen durch Verformungen der Strukturbauteile zulässt.
  • Die Berücksichtigung der In-Sich-Beweglichkeit der Maschinenstruktur infolge von Strukturverformungen unter Last oder dynamischen Belastungen ist gerade bei langgestreckten, schlanken und von den statischen und dynamischen Randbedingungen her bewusst - unter Berücksichtigung der notwendigen Sicherheiten - ausgereizten Strukturen wie bei Turmdrehkranen oder Teleskopkranen von Bedeutung, da hier spürbare Bewegungsanteile beispielsweise für den Ausleger und damit die Lasthakenposition durch die Verformungen der Strukturbauteile hinzukommen. Um die Pendelursachen besser bekämpfen zu können, berücksichtigt die Pendeldämpfung solche Verformungen und Bewegungen der Maschinenstruktur unter dynamischen Belastungen.
  • Hierdurch können beträchtliche Vorteile erreicht werden:
  • Zunächst wird die Schwingungsdynamik der Strukturbauteile durch das Regelverhalten der Steuereinrichtung reduziert. Dabei wird durch das Fahrverhalten die Schwingung aktiv gedämpft bzw. durch das Regelverhalten erst gar nicht angeregt.
  • Ebenso wird der Stahlbau geschont und weniger beansprucht. Insbesondere Stoßbelastungen werden durch das Regelverhalten reduziert.
  • Ferner kann durch dieses Verfahren der Einfluss des Fahrverhaltens definiert werden.
  • Durch die Kenntnisse der Strukturdynamik und das Reglerverfahren kann insbesondere die Nickschwingung reduziert und gedämpft werden. Dadurch verhält sich die Last ruhiger und schwankt später in Ruhelage nicht mehr auf und ab. Auch Querpendelbewegungen in Umfangsrichtung um die aufrechte Auslegerdrehachse können durch Berücksichtigung von Turmtorsion und Ausleger-Schwenkbiegeverformungen besser kontrolliert werden.
  • Die vorgenannten elastischen Verformungen und Bewegungen der Strukturbauteile und Antriebsstränge und die sich hierdurch einstellenden Eigenbewegungen können grundsätzlich in verschiedener Art und Weise bestimmt werden.
  • Insbesondere kann die hierzu vorgesehene Strukturdynamik-Sensorik dazu ausgerbildet sein, elastische Verformungen und Bewegungen von Strukturbauteilen unter dynamischen Belastungen zu erfassen.
  • Eine solche Strukturdynamik-Sensorik kann beispielsweise Verformungssensoren wie Dehnungsmessstreifen am Stahlbau des Krans, beispielsweise den Gitterfachwerken des Turms und/oder des Auslegers umfassen.
  • Alternativ oder zusätzlich können Drehratensensoren, insbesondere in Form von Gyroskopen, Gyrosensoren und/oder Gyrometern, und/oder Beschleunigungs- und/oder Geschwindigkeitssensoren vorgesehen sein, um bestimmte Bewegungen von Strukturbauteilen wie beispielsweise Nickbewegungen der Auslegerspitze und/oder rotatorische Dynamikeffekte am Ausleger und/oder Torsions- und/oder Biegebewegungen des Turms zu erfassen.
  • Weiterhin können Neigungssensoren vorgesehen sein, um Neigungen des Auslegers und/oder Neigungen des Turms, insbesondere Auslenkungen des Auslegers aus der Horizontalen und/oder Auslenkungen des Turms aus der Vertikalen zu erfassen.
  • Grundsätzlich kann die Strukturdynamik-Sensorik dabei mit verschiedenen Sensortypen arbeiten, insbesodere auch verschieden Sensortypen miteinander kombinieren. Vorteilhafterweise können Dehnungsmesstreifen und/oder Beschleinigungssensoren und/oder Drehratensensoren, insbesondere in Form von Gyroskopen, Gyrosensoren und/oder Gyrometern, zum Erfassen der Verformungen und/oder dynamischen Insich-Bewegungen von Strukturbauteilen des Krans verwendet werden, wobei die Beschleunigungssensoren und/oder Drehratensensoren vorzugsweise dreiachsig erfassend ausgebildet sind.
  • Solche Strukturdynamiksensoren können am Ausleger können und/oder am Turm, insbesondere an dessen oberen Abschnitt, an dem der Ausleger gelagert ist, vorgesehen sein, um die Dynamik des Turms zu erfassen. Beispielsweise führen ruckartige Hubbewegungen zu Nickbewegungen des Auslegers, die mit Biegebewegungen des Turm einhergehen, wobei eine Nachschwingen des Turm wiederum zu Nickschwingungen des Auslegers führt, was mit entsprechenden Lasthakenbewegungen einhergeht.
  • Insbesondere kann eine Winkelsensorik zur Bestimmung des Differenzdrehwinkels zwischen einem oberen Turmendabschnitt und dem Ausleger vorgesehen sein, wobei bspw. am oberen Turmendabschnitt und am Ausleger jeweils ein Winkelsensor angebracht sein kann, deren Signale bei einer Differenzbetrachtung den genannten Differenzdrehwinkel angeben können. Ferner kann vorteilhafterweise auch ein Drehratensensor zur Bestimmung der Drehgeschwindigkeit des Auslegers und/oder des oberen Turmendabschnitts vorgesehen sein, um in Verbindung mit dem vorgenannten Differenzdrehwinkel den Einfluss der Turmtorsionsbewegung bestimmen zu können. Hieraus kann einerseits eine genauere Lastpositionsschätzung, andererseits aber auch eine aktive Dämpfung der Turmtorsion im laufenden Betrieb erreicht werden.
  • In vorteilhafter Weiterbildung der Erfindung können zwei- oder dreiachsige Drehratensensoren und/oder Beschleunigungssensoren an der Auslegerspitze und/oder an dem Ausleger im Bereich der aufrechten Krandrehachse angebracht werden, um strukturdynamische Bewegungen des Auslegers bestimmen zu können.
  • Alternativ oder zusätzlich können auch den Antriebssträngen Bewegungs- und/oder Beschleunigungssensoren zugeordnet sein, um die Dynamik der Antriebsstränge erfassen zu können. Beispielsweise können den Umlenkrollen der Laufkatze für das Hubseil und/oder Umlenkrollen für ein Abspannseil eines Wippauslegers Drehgeber zugeordnet sein, um die tatsächliche Seilgeschwindigkeit am relevanten Punkt erfassen zu können.
  • Vorteilhafterweise sind auch den Antriebseinrichtungen selbst geeignete Bewegungs- und/oder Geschwindigkeits- und/oder Beschleunigungssensoren zugeordnet, um die Antriebsbewegungen der Antriebseinrichtungen entsprechend erfassen und in Zusammenhang mit den abgeschätzten und/oder erfassten Verformungen der Strukturbauteile bzw. des Stahlbaus und Nachgiebigkeiten in den Antriebssträngen setzen zu können.
  • Insbesondere kann durch einen Abgleich der Signale der den Antriebseinrichtungen direkt zugeordneten Bewegungs- und/oder Beschleunigunssensoren mit den Signalen der Strukturdynamik-Sensoren in Kenntnis der Strukturgeometrie der Bewegungs-und/oder Beschleunigungsanteil an einem Strukturteil bestimmt werden, der auf eine dynamische Verformung bzw. Verwindung der Kranstruktur zurückgeht und zusätzlich zur eigentlichen Kranbewegung, wie sie von der Antriebsbewegung induziert ist und auch bei einem vollständig steifen, starren Kran aufträte. Wird beispielsweise das Drehwerk eines Turmdrehkrans um 10° verstellt, an der Auslegerspitze aber nur eine Verdrehung um 9° erfaßt, kann auf eine Torsion des Turms und/oder eine Biegeverformung des Auslegers rückgeschlossen werden, was gleichzeitig wiederum mit bspw. dem Verdrehsignal eines an der Turmspitze angebrachten Drehratensensors abgeglichen werden kann, um zwischen Turmtorsion und Auslegerbiegung differenzieren zu können. Wird der Lasthaken vom Hubwerk um einen Meter angehoben, am Ausleger im aber gleichzeitig eine Nickbewegung nach unten um bspw. 1° festgestellt, kann unter Berücksichtigung der Ausladung der Laufkatze auf die tatsächliche Lasthakenbewegung geschlossen werden.
  • Vorteilhafterweise kann die Strukturdynamik-Sensorik verschiedene Bewegungsrichtungen der Strukturverformungen erfassen. Insbesondere kann die Strukturdynamik-Sensorik zumindest einen Radialdynamik-Sensor zum Erfassen von dynamischen Bewegungen der Kranstruktur in einer aufrechten Ebene parallel zum Kranausleger, und zumindest einen Schwenkdynamiksensor zum Erfassen von dynamischen Bewegungen der Kranstruktur um eine aufrechte Krandrehachse, insbesondere Turmachse aufweisen. Der Reglerbaustein der Pendeldämpfungseinrichtung kann dabei dazu ausgebildet sein, die Ansteuerung der Antriebseinrichtungen, insbesondere eines Katzantriebs und Drehwerkantriebs, in Abhängigkeit der erfassten dynamischen Bewegungen der Kranstruktur in der aufrechten, auslegerparallelen Ebene, insbesondere parallel zur Auslegerlängsrichtung, und der erfassten dynamischen Bewegungen der Kranstruktur um die aufrechte Krandrehachse zu beeinflussen.
  • Ferner kann die Strukturdynamik-Sensorik zumindest einen Hubdynamik-Sensor zum Erfassen von vertikalen dynamischen Verformungen des Kranauslegers aufweisen und der Reglerbaustein der Pendeldämpfungseinrichtung dazu ausgebildet sein, die Ansteuerung der Antriebseinrichtungen, insbesondere eines Hubwerkantriebs, in Abhängigkeit der erfassten vertikalen dynamischen Verformungen des Kranauslegers zu beeinflussen.
  • Vorteilhafterweise ist die Strukturdynamik-Sensorik dazu ausgebildet, alle Eigenmoden der dynamischen Verwindungen des Kranauslegers und/oder des Kranturms, deren Eigenfrequenzen in einem vorbestimmten Frequenzbereich liegen, zu erfassen. Hierzu kann die Strukturdynamik-Sensorik zumindest einen, vorzugsweise mehrere Turmsensor(en), der/die beabstandet von einem Knotenpunkt einer Turmeigenschwingung angeordnet ist, zum Erfassen von Turmverwindungen sowie zumindest einen, vorzugsweise mehrere Auslegersensor(en), der/die beabstandet von einem Knotenpunkt einer Auslegereigenschwingung angeordnet ist, zum Erfassen von Auslegerverwindungen aufweisen.
  • Insbesondere können mehrere Sensoren zur Erfassung einer Strukturbewegung so platziert sein, dass eine Beobachtbarkeit aller Eigenmoden gewährleistet ist, deren Eigenfrequenzen im relevanten Frequenzbereich liegen. Hierzu kann grundsätzlich ein Sensor pro Pendel-Bewegungs-Richtung genügen, in der Praxis empfiehlt sich aber der Einsatz mehrerer Sensoren. Beispielsweise führt die Platzierung eines einzelnen Sensors in einem Knotenpunkt der Messgröße einer Struktur-Eigenmode (z.B. Position der Laufkatze an einem Drehungs-Knotenpunkt der ersten Ausleger-Eigenmode) führt zum Verlust der Beobachtbarkeit, was sich durch Hinzunahme eines Sensors an einer anderen Position vermeiden lässt. Insbesondere ist die Verwendung von dreiachsigen Drehratensensoren oder Beschleunigungssensoren an der Auslegerspitze sowie auf dem Ausleger nahe des Drehwerks empfehlenswert.
  • Die Strukturdynamik-Sensorik kann zum Erfassen der Eigenmoden grundsätzlich mit verschiedenen Sensortypen arbeiten, insbesodere auch verschieden Sensortypen miteinander kombinieren. Vorteilhafterweise können gie zuvor genannten Dehnungsmesstreifen und/oder Beschleinigungssensoren und/oder Drehratensensoren, insbesondere in Form von Gyroskopen, Gyrosensoren und/oder Gyrometern, zum Erfassen der Verformungen und/oder dynamischen Insich-Bewegungen von Strukturbauteilen des Krans verwendet werden, wobei die Beschleunigungssensoren und/oder Drehratensensoren vorzugsweise dreiachsig erfassend ausgebildet sind.
  • Insbesondere kann die Strukturdynamik-Sensorik zumindest einen Drehraten- und/oder Beschleunigungssensor und/oder Dehnungsmessstreifen zum Erfassen von dynamischen Turmverformungen und zumindest einen Drehraten- und/oder Beschleunigungssensor und/oder Dehnungsmessstreifen zum Erfassen von dynamischen Auslegerverformungen aufweisen. Vorteilhafterweise können Drehraten- und/oder Beschleunigungssensoren an verschiedenen Turmabschnitten, insbesondere zumindest an der Turmspitze und am Anlenkpunkt des Auslegers und ggf. in einem Turmmittelabschnitt unterhalb des Auslegers vorgesehen sein. Alternativ oder zusätzlich können Drehraten- und/oder Beschleunigungssensoren an verschiedenen Abschnitten des Auslegers, insbesondere zumindest an der Auslegerspitze und/oder der Laufkatze und/oder dem Auslegerfuß, an dem der Ausleger angelenkt ist, und/oder an einem Auslegerabschnitt beim Hubwerk vorgesehen sein. Vorteilhafterweise sind die genannten Sensoren derart am jeweiligen Strukturbauteil angeorndet, dass sie die Eigenmoden von dessen elastischen Verwindungen erfassen können.
  • In Weiterbildung der Erfindung kann die Pendeldämpfungseinrichtung auch eine Schätzeinrichtung umfassen, die Verformungen und Bewegungen der Maschinenstruktur unter dynamischen Belastungen, die sich in Abhängigkeit von am Steuerstand eingegegebenen Steuerbefehlen und/oder in Abhängigkeit von bestimmten Ansteueraktionen der Antriebseinrichtungen und/oder in Abhängigkeit bestimmter Geschwindigkeits- und/oder Beschleunigungsprofile der Antriebseinrichtungen ergeben, unter Berücksichtigung von die Kranstruktur charakterisierenden Gegebenheiten abschätzt. Insbesondere können mittels einer solchen Schätzeinrichtung Systemgrößen der Strukturdynamik, ggf. auch der Pendeldynamik geschätzt werden, die nicht oder nur schwer sensorisch erfasst werden können.
  • Eine solche Schätzeinrichtung kann beispielsweise auf ein Datenmodell zugreifen, in dem Strukturgrößen des Krans wie Turmhöhe, Auslegerlänge, Steifigkeiten, Flächenträgheitsmomente und ähnliches abgelegt und/oder miteinander verknüpft sind, um dann anhand einer konkreten Lastsituation, also Gewicht der am Lasthaken aufgenommenen Last und momentane Ausladung, abzuschätzen, welche dynamischen Effekte, das heißt Verformungen im Stahlbau und in den Antriebssträngen für eine bestimmte Betätigung einer Antriebseinrichtung ergeben. In Abhängigkeit einer solchermaßen geschätzten dynamischen Wirkung kann die Pendeldämpfungseinrichtung dann in die Ansteuerung der Antriebseinrichtungen eingreifen und die Stellgrößen der Antriebsregler der Antriebseinrichtungen beeinflussen, um Pendelbewegungen des Lasthakens und des Hubseils zu vermeiden bzw. zu reduzieren.
  • Insbesondere kann die Bestimmungseinrichtung zur Bestimmung solcher Strukturverformungen eine Berechnungseinheit aufweisen, die diese Strukturverformungen und sich daraus ergebende Strukturteilbewegungen anhand eines gespeicherten Berechnungsmodells in Abhängigkeit der am Steuerstand eingegebenen Steuerbefehle berechnet. Ein solches Modell kann ähnlich einem Finite-Elemente-Modell aufgebaut sein oder ein Finite-Elemente-Modell sein, wobei vorteilhafterweise jedoch ein gegenüber einem Finite-Elemente-Modell deutlich vereinfachtes Modell verwendet wird, das beispielsweise empirisch durch Erfassung von Strukturverformungen unter bestimmten Steuerbefehlen und/oder Belastungszuständen am echten Kran bzw. der echten Maschine bestimmt werden kann. Ein solches Berechnungsmodell kann beispielsweise mit Tabellen arbeiten, in denen bestimmten Steuerbefehlen bestimmte Verformungen zugeordnet sind, wobei Zwischenwerte der Steuerbefehle mittels einer Interpolationsvorrichtung in entsprechende Verformungen umgerechnet werden können.
  • Gemäß einem weiteren vorteilhaften Aspekt der Erfindung kann der Reglerbaustein im geschlossenen Regelkreis eine Filtereinrichtung bzw. einen Beobachter umfassen, der einerseits die strukturdynamischen Kranreaktionen und die Hubseil- bzw. Lasthakenpendelbewegungen beobachtet, wie sie von der Strukturdynamik-Sensorik und der Pendelsensorik erfaßt werden und sich bei bestimmten Stellgrößen der Antriebsregler einstellen, so dass die Beobachter- bzw. Filtereinrichtung unter Berücksichtigung vorbestimmter Gesetzmäßigkeiten eines Dynamikmodells des Krans, das grundsätzlich verschieden beschaffen sein kann und durch Analyse und Simulation des Stahlbaus gewonnen werden kann, anhand der beobachteten Kranstruktur- und Pendelreaktionen die Stellgrößen des Reglers beeinflussen kann.
  • Eine solche Filter- bzw. Beobachtereinrichtung kann insbesondere in Form eines sogenannten Kalmanfilters ausgebildet sein, dem als Eingangsgröße einerseits die Stellgrößen der Antriebsregler des Krans und andererseits sowohl die Pendelsignale der Pendelsensorik als auch die dem Regelkreis rückgeführten Strukturdynamiksignale, die Verformungen und/oder dynamische Insich-Bewegungen der Strukturbauteile angeben, zugeführt werden und der aus diesen Eingangsgrößen anhand von Kaiman-Gleichungen, die das Dynamiksystem der Kranstruktur, insbesondere dessen Stahlbauteile und Antriebsstränge, modellieren, die Stellgrößen der Antriebsregler entsprechend beeinflusst, um die gewünschte pendeldämpfende Wirkung zu erzielen.
  • In dem Kalman-Filter sind vorteilhafterweise erfasste und/oder geschätzte und/oder berechnete und/oder simulierte Funktionen, die die Dynamik der Strukturbauteile des Krans charakterisieren, implementiert.
  • Insbesondere werden mittels der Strukturdynamik-Sensorik erfaßte dynamische Auslegerverformungen und Turmverformungen sowie die mittels der PendelSensorik erfaßte Position des Lasthakens, insbesondere auch dessen Schrägzug gegenüber der Vertikalen, das heißt die Auslenkung des Hubseils gegenüber der Vertikalen, dem genannten Kalmanfilter zugeführt. Die Erfassungseinrichtung für die Positionserfassung des Lasthakens kann vorteilhafterweise eine bildgebende Sensorik, beispielsweise eine Kamera umfassen, die vom Aufhängungspunkt des Hubseils, beispielsweise der Laufkatze, im Wesentlichen senkrecht nach unten blickt. Eine Bildauswerteeinrichtung kann in dem von der bildgebenden Sensorik bereitgestellten Bild den Kranhaken identifizieren und dessen Exzentrizität bzw. dessen Verschiebung aus dem Bildzentrum heraus bestimmen, welche ein Maß für die Auslenkung des Kranhakens gegenüber der Vertikalen ist und damit das Lastpendeln charakterisiert. Alternativ oder zusätzlich kann ein gyroskopischer Sensor den Hubseil-Abzugwinkel vom Ausleger und/oder gegenüber der Vertikalen erfassen und dem Kalman-Filter zuführen.
  • Nach einem weiteren vorteilhaften Aspekt der Erfindung kommt bei der Pendeldämpfung eine Zwei-Freiheitsgrade-Regelungsstruktur zum Einsatz, durch welche die oben beschriebene Zustandsrückführung (feedback) um eine Vorsteuerung (feedforward) ergänzt wird. Dabei dient die Zustandsrückführung zur Sicherstellung der Stabilität und zum schnellen Ausgleich von Regelfehlern, die Vorsteuerung dagegen einem guten Führungsverhalten durch das im Idealfall gar keine Regelfehler auftreten.
  • Die Vorsteuerung kann dabei vorteilhafterweise über die per se bekannte Methode der differentiellen Flachheit bestimmt werden. Bezüglich der genannten Methode der differentiellen Flachheit wird auf die Dissertation „Anwendung der flachheitsbasierten Analyse und Regelung nichtlinearer Mehrgrößensysteme“, von Ralf Rothfuß, VDI-Verlag, 1997, verwiesen, die insoweit, d.h. bezüglich der genannten Methode der differentiellen Flachheit, zum Gegenstand der vorliegenden Offenbarung gemacht wird.
  • Da die Auslenkungen der Strukturbewegungen im Gegensatz zu den angetriebenen Kranbewegungen sowie den Pendelbewegungen nur klein sind, kann zur Bestimmung der Vorsteuerung die Strukturdynamik vernachlässigt werden, wodurch der Kran, insbesondere Turmdrehkran als flaches System mit den Lastkoordinaten als flache Ausgänge dargestellt werden kann.
  • Vorteilhafterweise wird also die Vorsteuerung sowie die Berechnung der Referenz-Zustände der Zwei-Freiheitsgrade-Struktur im Gegensatz zur feed back Regelung des geschlossenen Regelkreises unter Vernachlässigung der Strukturdynamik berechnet, d.h. der Kran wird für die Zwecke der Vorsteuerung als starre bzw. sozusagen unendlich steife Struktur angenommen. Aufgrund der kleinen Auslenkungen der elastischen Struktur, die im Vergleich zu den von den Antrieben auszuführenden Kranbewegungen sehr klein sind, führt dies nur zu sehr kleinen und daher vernachlässigbaren Abweichungen der Vorsteuerung. Dafür wird jedoch die Beschreibung des - für die Zwecke der Vorsteuerung als starr angenommenen Turmdrehkrans, insbesondere Turmdrehkrans als ein flaches System ermöglicht, welches leicht invertierbar ist. Die Koordinaten der Lastposition sind flache Ausgänge des Systems. Aus den flachen Ausgängen und ihren zeitlichen Ableitungen kann der notwendige Sollverlauf der Stellgrößen sowie der Systemzustände exakt algebraisch berechnet werden (inverses System) - ohne Simulation oder Optimierung. Damit kann die Last ohne Überschwingen an eine Zielposition gebracht werden.
  • Die für die flachheitsbasierte Vorsteuerung benötigte Lastposition und deren Ableitungen können vorteilhafterweise von einem Trajektorienplanungs-Modul und/oder durch eine Sollwert-Filterung berechnet werden. Wird nun über eine Trajektorienplanung oder eine Sollwertfilterung ein Sollverlauf für die Lastposition und deren erste vier Zeitableitungen bestimmt, so können daraus in der Vorsteuerung über algebraische Gleichungen der exakte Verlauf der notwendigen Stellsignale zur Ansteuerung der Antriebe, sowie der exakte Verlauf der entsprechenden Systemzustände berechnet werden.
  • Um durch die Vorsteuerung keine Strukturbewegungen anzuregen, können vorteilhafterweise Kerbfilter zwischen Trajektorienplanung und Vorsteuerung geschaltet werden, um aus dem geplanten Trajektoriensignal die anregbaren Eigenfrequenzen der Strukturdynamik zu eliminieren.
  • Das der Regelung zugrundeliegende Modell kann grundsätzlich verschieden beschaffen sein. Vorteilhafterweise wird eine kompakte Darstellung der gesamten Systemdynamik als verkoppelte Pendel-, Antriebs- und Strukturdynamik verwendet, die sich als Grundlage für den Beobachter und die Regelung eignet. In vorteilhafter Weiterbildung der Erfindung wird das Kranregelungsmodel durch ein Modellierungs-Verfahren bestimmt, bei dem die gesamte Krandynamik in weitgehend unabhängige Teile aufgetrennt wird, und zwar vorteilhafterweise für einen Turmdrehkran in einen Teil aller Bewegungen, die im Wesentlichen durch einen Drehwerk-Antrieb angeregt werden (Schwenkdynamik), einen Teil aller Bewegungen, die im Wesentlichen durch einen Katzwerk-Antrieb angeregt werden (Radialdynamik) und die Dynamik in Richtung des Hubseils, welche durch einen Windwerk-Antrieb angeregt wird.
  • Die unabhängige Betrachtung dieser Teile unter Vernachlässigung der Verkopplungen erlaubt eine Berechnung der Systemdynamik in Echtzeit und vereinfacht insbesondere die kompakte Darstellung der Schwenkdynamik als ein verteiltparametrisches System (beschrieben durch eine lineare partielle Differentialgleichung), das die Strukturdynamik des Auslegers exakt beschreibt und über bekannte Methoden leicht auf die benötigte Anzahl an Eigenmoden reduziert werden kann.
  • Die Antriebsdynamik wird dabei vorteilhafterweise als Verzögerungsglied 1. Ordnung oder als statischer Verstärkungsfaktor modelliert, wobei den Antrieben als Stellgröße ein Drehmoment, eine Drehgeschwindigkeit, eine Kraft oder eine Geschwindigkeit vorgegeben werden kann. Durch die unterlagerte Regelung im Frequenzumrichter des jeweiligen Antriebs wird diese Stellgröße eingeregelt.
  • Die Pendeldynamik kann als idealisiertes einfaches / doppeltes Fadenpendel modelliert mit ein / zwei punktförmigen Lastmassen und einem / zwei einfachen Seilen, die entweder als masselos angenommen werden, oder als massebehaftet mit modaler Ordnungsreduktion auf die wichtigsten Seil-Eigenmoden.
  • Die Strukturdynamik kann durch Approximation der Stahlstruktur in Form kontinuierlicher Balken als verteiltparametrisches Modell hergeleitet werden, das durch bekannte Methoden diskretisiert und in der Systemordnung reduziert werden kann, wodurch es eine kompakte Form annimmt, schnell berechnet werden kann und den Beobachter- und Regelungsentwurf vereinfacht.
  • Die genannte Pendeldämpfeinrichtung kann bei manueller Betätigung des Krans durch Betätigung entsprechender Bedienelemente wie Joysticks und dergleichen die Eingabebefehle des Kranführers überwachen und bei Bedarf übersteuern, insbesondere in dem Sinne, dass vom Kranführer beispielsweise zu stark vorgegebene Beschleunigungen reduziert werden oder auch Gegenbewegungen automatisch eingeleitet werden, wenn eine vom Kranführer vorgegebene Kranbewegung zu einem Pendeln des Lasthakens geführt hat oder führen würde. Der Reglerbaustein versucht dabei vorteilhafterweise, so nahe wie möglich an den vom Kranführer gewünschten Bewegungen und Bewegungsprofilen zu bleiben, um dem Kranführer ein Gefühl der Kontrolle zu geben, und übersteuert die Manuell eingegebenen Stellsignale nur soweit es nötig ist, um die gewünschte Kranbewegung möglichst pendel- und schwingungsfrei auszuführen.
  • Alternativ oder zusätzlich kann die Pendeldämpfungseinrichtung auch bei einer automatisierten Betätigung des Krans eingesetzt werden, bei der die Steuervorrichtung des Krans im Sinne eines Autopiloten das Lastaufnahmemittel des Krans automatisch zwischen zumindest zwei Zielpunkten entlang eines Verfahrwegs verfährt. Bei einem solchen Automatikbetrieb, bei dem ein Verfahrweg-Bestimmungsmodul der Steuervorrichtung einen gewünschten Verfahrweg beispielsweise im Sinne einer Bahnsteuerung bestimmt und ein automatisches Verfahrsteuermodul der Steuervorrichtung die Antriebsregler bzw. Antriebseinrichtungen so ansteuert, dass der Lasthaken entlang des bestimmten Verfahrwegs verfahren wird, kann die Pendeldämpfungseinrichtung in die Ansteuerung der Antriebsregler durch das genannte Verfahrsteuermodul eingreifen, um den Kranhaken pendelfrei zu verfahren bzw. Pendelbewegungen zu dämpfen.
  • Die Erfindung wird nachfolgend anhand eines bevorzugten Ausführungsbeispiels und zugehöriger Zeichnungen näher erläutert. In den Zeichnungen zeigen:
    • 1: eine schematische Darstellung eines Turmdrehkrans, bei dem die Lasthakenposition und ein Seilwinkel gegenüber der Vertikalen durch eine bildgebende Sensorik erfasst wird, und bei dem eine Pendeldämpfungseinrichtung die Ansteuerung der Antriebseinrichtungen beeinflusst, um Pendelbewegungen des Lasthakens und dessen Hubseils zu verhindern,
    • 2: eine schematische Darstellung einer Zwei-Freiheitsgrade-Regelstruktur der Pendeldämpfungseinrichtung und die von dieser vorgenommene Beeinflussung der Stellgrößen der Antriebsregler,
    • 3: eine schematische Darstellung von Verformungen und Schwingungsformen eines Turmdrehkrans unter Last und deren Dämpfung bzw. Vermeidung durch eine Schrägzugregelung, wobei die Teilansicht a.) eine Nickverformung des Turmdehkrans unter Last und einen damit verknüpften Schrägzug des Hubseils zeigt, die Teilansichten b.) und c.) eine Querverformung des Turmdrehkrans in perspektivischer Darstellung sowie in Draufsicht von oben zeigen, und die Teilansichten d.) und e.) einen mit solchen Querverformungen verknüpften Schrägzug des Hubseils zeigen,
    • 4: eine schematische Darstellung eines elastischen Auslegers in einem mit der Drehrate rotierenden Referenzsystem,
    • 5: eine schematische Darstellung eines Auslegers als kontinuierlicher Balken mit Einspannung in den Turm unter Berücksichtigung von Turmbiegung und Turmtorsion,
    • 6: eine schematische Darstellung eines elastischen Turms und eines Feder-Masse-Ersatzmodells der Turmbiegung quer zum Ausleger,
    • 7: eine schematische Darstellung der Pendeldynamik in Schwenkrichtung des Krans mit konzentrierter Lastmasse und masselosem Seil,
    • 8: eine schematische Darstellung der drei wichtigsten Eigenmoden eines Turmdrehkrans, und
    • 9: eine schematische Darstellung der Pendeldynamik in Radialrichtung des Krans und dessen Modellierung mittels mehrerer verkoppelter Starrkörper.
  • Wie 1 zeigt, kann der Kran als Turmdrehkran ausgebildet sein. Der in 1 gezeigte Turmdrehkran kann beispielsweise in an sich bekannter Weise einen Turm 201 aufweisen, der einen Ausleger 202 trägt, der von einem Gegenausleger 203 ausbalanciert wird, an dem ein Gegengewicht 204 vorgesehen ist. Der genannte Ausleger 202 kann zusammen mit dem Gegenausleger 203 um eine aufrechte Drehachse 205, die koaxial zur Turmachse sein kann, durch ein Drehwerk verdreht werden. An dem Ausleger 202 kann eine Laufkatze 206 durch einen Katzantrieb verfahren werden, wobei von der Laufkatze 206 ein Hubseil 207 abläuft, an dem ein Lasthaken 208 befestigt ist.
  • Wie 1 ebenfalls zeigt, kann der Kran 2 dabei eine elektronische Steuervorrichtung 3 aufweisen, die beispielsweise einen am Kran selbst angeordneten Steuerungsrechner umfassen kann. Die genannte Steuervorrichtung 3 kann hierbei verschiedene Stellglieder, Hydraulikkreise, Elektromotoren, Antriebsvorrichtungen und andere Arbeitsaggregate an der jeweiligen Baumaschine ansteuern. Dies können beispielsweise bei dem gezeigten Kran dessen Hubwerk, dessen Drehwerk, dessen Katzantrieb, dessen -ggf. vorhandener - Ausleger-Wippantrieb oder dergleichen sein.
  • Die genannte elektronische Steuervorrichtung 3 kann hierbei mit einem Endgerät 4 kommunizieren, das am Steuerstand bzw. in der Führerkabine angeordnet sein kann und beispielsweise die Form eines Tablets mit Touchscreen und/oder Joysticks, Drehknöpfe, Schiebeschalter und ähnliche Bedienelemente aufweisen kann, so dass einerseits verschiedene Informationen vom Steuerungsrechner 3 an dem Endgerät 4 angezeigt und umgekehrt Steuerbefehle über das Endgerät 4 in die Steuervorrichtung 3 eingegeben werden können.
  • Die genannte Steuervorrichtung 3 des Krans 1 kann insbesondere dazu ausgebildet sein, die genannten Antriebsvorrichtungen des Hubwerks, der Laufkatze und des Drehwerks auch dann anzusteuern, wenn eine Pendeldämpfungseinrichtung 340 pendelrelevante Bewegungsparameter erfaßt.
  • Hierzu kann der Kran 1 eine Pendelsensorik bzw. Erfassungseinrichtung 60 aufweisen, die einen Schrägzug des Hubseils 207 und/oder Auslenkungen des Lasthakens 208 gegenüber einer Vertikalen 61, die durch den Aufhängungspunkt des Lasthakens 208, d.h. die Laufkatze 206 geht, erfasst. Insbesondere kann der Seilzugwinkel φ gegen die Schwerkraftwirklinie, d.h. die Vertikale 62 erfaßt werden, vgl. 1.
  • Die hierzu vorgesehenen Bestimmungsmittel 62 der Pendelsensorik 60 können beispielsweise optisch arbeiten, um die genannte Auslenkung zu bestimmen. Insbesondere kann an der Laufkatze 206 eine Kamera 63 oder eine andere bildgebende Sensorik angebracht sein, die von der Laufkatze 206 senkrecht nach unten blickt, so dass bei unausgelenktem Lasthaken 208 dessen Bildwiedergabe im Zentrum des von der Kamera 63 bereitgestellten Bilds liegt. Wird indes der Lasthaken 208 gegenüber der Vertikalen 61 ausgelenkt, beispielsweise durch ruckhaftes Anfahren der Laufkatze 206 oder abruptes Bremsen des Drehwerks, wandert die Bildwiedergabe des Lasthakens 208 aus dem Zentrum des Kamerabilds heraus, was durch eine Bildauswerteeinrichtung 64 bestimmt werden kann.
  • In Abhängigkeit der erfassten Auslenkung gegenüber der Vertikalen 61, insbesondere unter Berücksichtigung der Richtung und Größe der Auslenkung, kann die Steuervorrichtung 3 mithilfe der Pendeldämpfungseinrichtung 340 den Drehwerksantrieb und den Laufkatzenantrieb ansteuern, um die Laufkatze 206 wieder mehr oder minder exakt über den Lasthaken 208 zu bringen und Pendelbewegungen zu kompensieren, bzw. zu reduzieren oder gar nicht erst eintreten zu lassen.
  • Hierzu umfasst die Pendeldämpfungseinrichtung 340 eine Strukturdynamik-Sensorik 344 zum Bestimmen von dynamischen Verformungen von Strukturbauteilen, wobei der Reglerbaustein 341 der Pendeldämpfungseinrichtung 340, der das Ansteuern der Antriebseinrichtung pendeldämpfend beeinflusst, dazu ausgebildet ist, beim Beeinflussen der Ansteuerung der Antriebseinrichtungen die bestimmten dynamischen Verformungen der Strukturbauteile des Krans zu berücksichtigen.
  • Dabei kann auch eine Schätzeinrichtung 343 vorgesehen sein, die die Verformungen und Bewegungen der Maschinenstruktur unter dynamischen Belastungen, die sich in Abhängigkeit von am Steuerstand eingegegebenen Steuerbefehlen und/oder in Abhängigkeit von bestimmten Ansteueraktionen der Antriebseinrichtungen und/oder in Abhängigkeit bestimmter Geschwindigkeits- und/oder Beschleunigungsprofile der Antriebseinrichtungen ergeben, unter Berücksichtigung von die Kranstruktur charakterisierenden Gegebenheiten abschätzt. Insbesondere kann eine Berechnungseinheit 348 die Strukturverformungen und sich daraus ergebende Strukturteilbewegungen anhand eines gespeicherten Berechnungsmodells in Abhängigkeit der am Steuerstand eingegebenen Steuerbefehle berechnen.
  • Vorteilhafterweise erfasst die Pendeldämpfungseinrichtung 340 mittels der Strukturdynamik-Sensorik 344 solche elastischen Verformungen und Bewegungen von Strukturbauteilen unter dynamischen Belastungen. Eine solche Sensorik 344 kann beispielsweise Verformungssensoren wie Dehnungsmessstreifen am Stahlbau des Krans, beispielsweise den Gitterfachwerken des Turms 201 oder des Auslegers 202 umfassen. Alternativ oder zusätzlich können Beschleunigungs- und/oder Geschwindigkeitssensoren und/oder Drehratensensoren vorgesehen sein, um bestimmte Bewegungen von Strukturbauteilen wie beispielsweise Nickbewegungen der Auslegerspitze oder rotatorische Dynamikeffekte am Ausleger 202 zu erfassen. Alternativ oder zusätzlich können solche Strukturdynamik-Sensoren auch am Turm 201, insbesondere an dessen oberen Abschnitt, an dem der Ausleger gelagert ist, vorgesehen sein, um die Dynamik des Turms 201 zu erfassen. Alternativ oder zusätzlich können auch den Antriebssträngen Bewegungs- und/oder Beschleunigungssensoren zugeordnet sein, um die Dynamik der Antriebsstränge erfassen zu können. Beispielsweise können den Umlenkrollen der Laufkatze 206 für das Hubseil und/oder Umlenkrollen für ein Abspannseil eines Wippauslegers Drehgeber zugeordnet sein, um die tatsächliche Seilgeschwindigkeit am relevanten Punkt erfassen zu können.
  • Wie 2 verdeutlicht, werden die Signale y (t) der Strukturdynamik-Sensoren 344 und der Pendelsensorik 60 an den Reglerbaustein 341 zurückgeführt, sodass ein geschlossener Regelkreis realisiert wird. Der besagte Reglerbaustein 341 beeinflusst die Ansteuersignale u (t) zum Ansteuern der Kranantriebe, insbesondere des Drehwerks, des Hubwerks und des Laufkatzantriebs in Abhängigkeit der rückgespeisten Strukturdynamik- und Pendelsensoriksignale.
  • Wie 2 zeigt, besitzt die Reglerstruktur ferner eine Filtereinrichtung bzw. einen Beobachter 345, der die rückgeführten Sensorsignale bzw. die Kranreaktionen beobachtet, die sich bei bestimmten Stellgrößen der Antriebsregler einstellen und unter Berücksichtigung vorbestimmter Gesetzmäßigkeiten eines Dynamikmodells des Krans, das grundsätzlich verschieden beschaffen sein kann und durch Analyse und Simulation des Stahlbaus gewonnen werden kann, anhand der beobachteten Kranreaktionen die Stellgrößen des Reglers beeinflusst.
  • Eine solche Filter- bzw. Beobachtereinrichtung 345b kann insbesondere in Form eines sogenannten Kalmanfilters 346 ausgebildet sein, dem als Eingangsgröße die Stellgrößen u (t) der Antriebsregler 347 des Krans und die rückgeführten Sensorsignale y (t), d.h. die erfassten Kranbewegungen, insbesondere der Seilzugwinkel φ gegenüber der Vertikalen 62 und/oder dessen zeitliche Änderung bzw. die Winkelgeschwindigkeit des genannten Schrägzugs, sowie die strukturdynamischen Verwindungen des Auslegers 202 und des Turms 201 zugeführt werden und der aus diesen Eingangsgrößen anhand von Kalman-Gleichungen, die das Dynamiksystem der Kranstruktur, insbesondere dessen Stahlbauteile und Antriebsstränge, modellieren, die Stellgrößen der Antriebsregler 347 entsprechend beeinflusst, um die gewünschte pendeldämpfende Wirkung zu erzielen.
  • Mithilfe einer solchen closed-loop-Regelung können insbesondere Verformungen und Schwingungsformen des Turmdrehkrans unter Last gedämpft bzw. von Anfang an vermieden werden, wie sie in 3 beispielhaft gezeigt sind, wobei dort die Teilansicht a.) zunächst schematisch eine Nickverformung des Turmdehkrans unter Last infolge eines Durchbiegens des Turms 201 mit dem damit einhergenden Absenken des Auslegers 202 und einen damit verknüpften Schrägzug des Hubseils zeigt.
  • Ferner zeigen die Teilansichten b.) und c.) der 3 beispielhaft in schematischer Weise eine Querverformung des Turmdrehkrans in perspektivischer Darstellung sowie in Draufsicht von oben mit den dabei auftretenden Verformungen des Turms 201 und des Auslegers 202.
  • Schließlich zeigt die 3 in ihren Teilansichten d.) und e.) einen mit solchen Querverformungen verknüpften Schrägzug des Hubseils.
  • Wie 2 ferner zeigt, ist die Reglerstruktur in Form einer Zwei-Freiheitsgrade-Regelung ausgebildet und umfasst neben der genannten „closed-loop“-Regelung mit Rückführung der Pendelsensorik- und Strukturdynamik-Sensorsignale eine Vorsteuerung bzw. feed-forward-Steuerstufe 350, die durch ein möglichst gutes Führungsverhalten versucht, im Idealfalls gar keine Regelfehler auftreten zu lassen.
  • Die genannte Vorsteuerung 350 ist vorteilhafterweise flachheitsbasiert ausgebildet und nach der sogenannte differentiellen Flachheitsmethode bestimmt, wie eingangs schon erwähnt.
  • Da die Auslenkungen der Strukturbewegungen und auch der Pendelbewegungen im Vergleich zu den angetriebenen Kranbewegungen, die den Soll-Verfahrweg darstellen, sehr klein sind, werden für die Bestimmung der Vorsteuerungssignale ud (t) und xd (t) die Strukturdynamiksignale und Pendelbewegungssignale vernachlässigt, das heißt die Signale y (t) der Pendel- und Strukturdynamiksensoriken 60 bzw. 344 werden dem Vorsteuermodul 350 nicht rückgeführt.
  • Wie 2 zeigt, werden dem Vorsteuermodul 350 Sollwerte für das Lastaufnahmemittel 208 zugeführt, wobei diese Sollwerte Positionsangaben und/oder Geschwindigkeitsangaben und/oder Bahnparameter für die genannten Lastaufnahmemittel 208 sein können und die gewünschte Verfahrbewegung definieren.
  • Insbesondere können die Sollwerte für die gewünschte Lastposition und deren zeitliche Ableitungen vorteilhafterweise einem Trajektorien-Planungsmodul 351 und/oder einem Sollwertfilter 352 zugeführt werden, mittels derer bzw. mittels dessen ein Sollverlauf für die Lastposition und deren erste vier Zeitableitungen bestimmt werden kann, woraus in dem Vorsteuermodul 350 über algebraische Gleichungen der exakte Verlauf der notwendigen Stellsignale ud (t) zum Ansteuern der Antriebe sowie der exakte Verlauf ud (t) der entsprechenden Systemzustände berechnet werden können.
  • Um durch die Vorsteuerung keine Strukturbewegungen anzuregen, kann vorteilhafterweise eine Kerbfiltereinrichtung 353 dem Vorsteuermodul 350 vorgeschaltet sein, um die dem Vorsteuermodul 350 zugeführten Eingangsgrößen entsprechend zu filtern, wobei eine solche Kerbfiltereinrichtung 353 insbesondere zwischen dem genannten Trajektorien-Planungsmodul 351 bzw. dem Sollwertfiltermodul 352 einerseits und dem Vorsteuermodul 350 andererseits vorgesehen sein kann. Die genannte Kerbilftereinrichtung 353 kann insbesondere dazu ausgebildet sein, aus den der Vorsteuerung zugeführten Sollwertsignale die angeregten Eigenfrequenzen der Strukturdynamik zu eliminieren.
  • Um eine Schwingungsdynamik zu reduzieren bzw. gar nicht erst entstehen zu lassen, kann die Pendeldämpfungseinrichtung 340 dazu ausgebildet sein, das Drehwerk und das Katzfahrwerk und ggf. auch das Hubwerk so zu korrigieren, dass das Seil möglichst immer im senkrechten Lot zur Last steht, auch wenn sich der Kran durch das zunehmende Lastmoment immer mehr nach vorne neigt.
  • Beispielsweise kann beim Anheben einer Last vom Boden die Nickbewegung des Krans infolge seiner Verformung unter der Last berücksichtigt und das Katzfahrwerk unter Berücksichtigung der erfassten Lastposition so nachgefahren bzw. unter vorausschauender Abschätzung der Nickverformung so positioniert werden, dass das Hubseil bei der sich ergebenden Kranverformung im senkrechten Lot über der Last steht. Die größte statische Verformung tritt dabei an dem Punkt auf, an dem die Last den Boden verlässt. In entsprechender Weise kann alternativ oder zusätzlich auch das Drehwerk unter Berücksichtigung der erfassten Lastposition so nachgefahren und/oder unter vorausschauender Abschätzung einer Querverformung so positioniert werden, dass das Hubseil bei der sich ergebenden Kranverformung im senkrechten Lot über der Last steht.
  • Das der pendeldämpfenden Regelung zugrundeliegende Modell kann grundsätzlich verschieden beschaffen sein.
  • Für die regelungsorientierte mechanische Modellierung von elastischen Drehkranen ist dabei die entkoppelte Betrachtung der Dynamik in Schwenkrichtung sowie innerhalb der Turm-Ausleger Ebene nützlich. Die Schwenkdynamik wird durch den Drehwerksantrieb angeregt und geregelt, während die Dynamik in der Turm-Ausleger-Ebene durch den Katzwerks- und den Hubwerks-Antrieb angeregt und geregelt wird. Die Last pendelt in zwei Richtungen - einerseits quer zum Ausleger (Schwenkrichtung), andererseits in Ausleger-Längsrichtung (radial). Die vertikale Last-Bewegung entspricht aufgrund der geringen Hubseil-Elastizität weitgehend der vertikalen Auslegerbewegung, die bei Turmdrehkranen klein im Vergleich zu den Last-Auslenkungen aufgrund der Pendelbewegung ist.
  • Für eine Stabilisierung der Lastpendelbewegung müssen inbesondere die Anteile der Systemdynamik berücksichtigt werden, die durch das Drehwerk und durch das Katzwerk angeregt werden. Diese werden als Schwenk- bzw. Radialdynamik bezeichnet. Solange die Pendelwinkel nicht null sind, können sowohl Schwenk- als auch Radialdynamik zusätzlich durch das Hubwerk beeinflusst werden. Für einen Regelungsentwurf ist dies jedoch vernachlässigbar, insbesondere für die Schwenkdynamik.
  • Die Schwenkdynamik umfasst insbesondere Stahlstruktur-Bewegungen wie Turmtorsion, Auslegerquerbiegung um die vertikale Achse und die Turmbiegung quer zur Auslegerlängsrichtung, sowie die Pendeldynamik quer zum Ausleger und die Drehwerk-Antriebsdynamik. Die Radialdynamik umfasst die Turmbiegung in Auslegerrichtung, die Pendeldynamik in Auslegerrichtung und je nach Betrachtungsweise auch die Auslegerbiegung in vertikaler Richtung. Zudem wird der Radialdynamik auch die Antriebsdynamik des Katzwerks sowie ggfs. des Hubwerks zugerechnet.
  • Für die Regelung wird vorteilhafterweise ein lineares Entwurfsverfahren angestrebt, das auf der Linearisierung der nichtlinearen mechanischen Modellgleichungen um eine Ruhelage basiert. Durch eine solche Linearisierung fallen alle Kopplungen zwischen Schwenk- und Radialdynamik weg. Das bedeutet auch, dass für den Entwurf einer linearen Regelung auch dann keine Verkopplungen berücksichtigt werden, wenn das Modell zunächst gekoppelt hergeleitet wurde. Beide Richtungen von können vornherein als entkoppelt betrachtet werden, da dies die mechanische Modellbildung deutlich vereinfacht. Zudem wird so für die Schwenkdynamik ein übersichtliches Modell in kompakter Form erzielt, das sich schnell auswerten lässt, wodurch einerseits Rechenleistung eingespart und andererseits der Entwicklungsprozess des Regelungsentwurfes beschleunigt wird.
  • Um die Schwenkdynamik als ein kompaktes, übersichtliches und genaues dynamisches Systemmodell herzuleiten, kann der Ausleger als ein Euler-Bernoulli Balken und damit zunächst als ein System mit verteilter Masse (verteiltparametrisches System) betrachtet werden. Ferner kann zudem die Rückwirkung der Hubdynamik auf die Schwenkdynamik vernachlässigt werden, was für kleine Pendelwinkel aufgrund des verschwindenden horizontalen Kraftanteils eine gerechtfertigte Annahme ist. Wenn große Pendelwinkel auftreten, kann die Wirkung des Windwerks auf die Schwenkdynamik als Störgröße mit berücksichtigt werden.
  • Der Ausleger wird als Balken in einem bewegten Referenzsystem modelliert, das durch den Drehwerksantrieb mit der Drehrate γ̇ rotiert, wie in 4 gezeigt.
  • Damit wirken drei Scheinbeschleunigungen innerhalb des Referenzsystems, die als Coriolis, Zentrifugal- und Euler-Beschleunigung bekannt sind. Da das Referenzsystem um einen festen Punkt rotiert, ergibt sich für jeden Punkt r ' = r x ' r y ' r z '
    Figure DE102017114789A1_0001
    innerhalb des Referenzsystems die Scheinbeschleunigung a' zu a ' = 2 ω × v ' Coriolis ω ˙ × r ' Euler ω × ( ω × r ' ) Zentrifugal ,
    Figure DE102017114789A1_0002
    wobei x das Kreuzprodukt darstellt, ω = [ 0 0 γ ˙ ] T
    Figure DE102017114789A1_0003
    den Rotationsvektor und v' den Geschwindigkeitsvektor des Punktes relativ zum rotierenden Referenzsystem.
  • Von den drei Scheinbeschleunigungen stellt nur die Coriolisbeschleunigung eine bidirektionale Verkopplung zwischen Schwenk- und Radialdynamik dar. Diese ist proportional zur Drehgeschwindigkeit des Referenzsystems sowie zur relativen Geschwindigkeit. Typische maximale Drehraten eines Turmdrehkrans liegen im Bereich von ca. γ M A X 0.1 r a d s ,
    Figure DE102017114789A1_0004
    weshalb die Coriolisbeschleunigung typischerweise kleine Werte annimmt im Vergleich zu den angetriebenen Beschleunigungen des Turmdrehkrans. Während der Stabilisierung der Lastpendelbewegung an einer festen Position ist die Drehrate sehr klein, während großer Führungsbewegungen kann die Coriolisbeschleunigung durch eine Vorsteuerung vorgeplant und explizit berücksichtigt werden. In beiden Fällen führt daher die Vernachlässigung der Coriolisbeschleunigung nur zu geringen Approximationsfehlern, weshalb sie im Folgenden vernachlässigt wird.
  • Die Zentrifugalbeschleunigung wirkt in Abhängigkeit der Drehrate nur auf die Radialdynamik und kann für diese als Störgröße berücksichtigt werden. Auf die Schwenkdynamik wirkt sie sich aufgrund der langsamen Drehraten kaum aus und kann daher vernachlässigt werden. Wichtig ist allerdings die lineare Euler Beschleunigung, die in tangentialer Richtung wirkt und daher bei der Betrachtung der Schwenkdynamik eine zentrale Rolle spielt.
  • Aufgrund der kleinen Querschnittsfläche des Auslegers und kleinen Schubverformungen kann der Ausleger als Euler-Bernoulli Balken betrachtet werden. Damit wird die rotatorische kinetische Energie der Balkendrehung um die vertikale Achse vernachlässigt. Es wird angenommen, dass die mechanischen Parameter wie Massebeläge und Flächenträgheitsmomente der Euler-Bernoulli Näherung der Ausleger-Elemente bekannt sind und zur Berechnung verwendet werden können.
  • Abspannungen zwischen dem A-Bock und dem Ausleger wirken sich kaum auf die Schwenkdynamik aus und werden daher nicht mit modelliert. Verformungen des Auslegers in Längsrichtung sind ebenfalls so gering, dass sie vernachlässigt werden können. Damit lässt sich die ungedämpfte Dynamik des Auslegers im rotierenden Referenzsystem durch die bekannte partielle Differentialgleichung μ ( x ) w ¨ ( x , t ) + ( E I ( x ) w ' ' ( x , t ) ) = q ˜ ( x , t )
    Figure DE102017114789A1_0005
    für die Ausleger-Auslenkung w(x,t) an der Stelle x zur Zeit t angeben. Dabei ist µ(x) der Massebelag, I(x) das Flächenträgheitsmoment an der Stelle x, E der Elastizitätsmodul und q̃(x,t) die einwirkende verteilte Kraft auf den Ausleger. Der Nullpunkt der Ortskoordinate x liegt für diese Herleitung am Ende des Gegenauslegers. Die Schreibweise ( ) ' = ( ) x
    Figure DE102017114789A1_0006
    beschreibt dabei die örtliche Differentiation. Dämpfungsparameter werden an späterer Stelle eingeführt.
  • Um eine Beschreibung der Auslegerdynamik im Inertialsystem zu erhalten wird die Eulerkraft aus der verteilten Kraft ausgegliedert, was auf die partielle Differentialgleichung μ ( x ) ( x l c j ) γ ¨ + μ ( x ) w ¨ ( x , t ) + E ( I ( x ) w ' ' ( x , t ) ) ' ' = q ( x , t )
    Figure DE102017114789A1_0007
    führt. Dabei ist l cj die Länge des Gegenauslegers und q(x,t) die tatsächliche verteilte Kraft auf den Ausleger ohne die Eulerkraft. Beide Balkenenden sind frei und nicht eingespannt. Daher gelten die Randbedingungen w ' ' ( 0, t ) = 0, w ' ' ( L , t ) = 0,
    Figure DE102017114789A1_0008
    w ' ' ' ( 0, t ) = 0, w ' ' ' ( L , t ) = 0,
    Figure DE102017114789A1_0009
    mit der Gesamtlänge L von Ausleger und Gegenausleger.
  • Eine Skizze des Auslegers ist in 5 dargestellt. Die Federsteifigkeiten ct und cb repräsentieren die Torsionssteifigkeit bzw. Biegesteifigkeit des Turms und werden im Folgenden erläutert.
  • Für die Modellierung der Schwenkdynamik wird vorteilhafterweise die Turmtorsion und Turmbiegung quer zur Auslegerrichtung berücksichtigt. Der Turm kann aufgrund seiner Geometrie zunächst als homogener Euler-Bernoulli-Balken angenommen werden. Zugunsten einer einfacheren Modellierung wird der Turm an dieser Stelle durch ein Starrkörper-Ersatzmodell dargestellt. Es wird nur eine Eigenmode für die Turmbiegung und eine für die Turmtorsion berücksichtigt. Da im Wesentlichen nur die Bewegung an der Turmspitze für die Schwenkdynamik relevant ist, kann die Turmdynamik durch jeweils ein Feder-Masse-System mit übereinstimmender Eigenfrequenz als Ersatzsystem für Biegung bzw. Torsion verwendet werden. Für den Fall einer höheren Elastizität des Turmes lassen sich die Feder-Masse-Systeme an dieser Stelle leichter um weitere Eigenmoden ergänzen, indem entsprechend viele Massen und Federn hinzugefügt werden, vgl. 6.
  • Die Parameter Federsteifigkeit cb und Masse mT werden so gewählt, dass die Auslenkung an der Spitze sowie die Eigenfrequenz mit der des Euler-Bernoulli-Balkens übereinstimmen, welcher die Turmdynamik repräsentiert. Sind für den Turm das konstante Flächenträgheitsmoment IT , die Turmhöhe lT und der Massebelag µT bekannt, so lassen sich die Parameter aus der statischen Auslenkung am Balkenende y 0 = F l T 3 3 E I T
    Figure DE102017114789A1_0010
    und der ersten Eigenfrequenz ω 1 = 12.362. E I T μ T l T 4
    Figure DE102017114789A1_0011
    eines homogenen Euler-Bernoulli Balkens analytisch zu c b = F y 0 = 3 E I T l T 3 , m T = c b ω 1 2 = 3 μ T l T 12.362 .
    Figure DE102017114789A1_0012
    berechnen.
  • Für die Turmtorsion lässt sich analog ein Starrkörper Ersatzmodell mit der Trägheit JT und der Torsionsfedersteifigkeit ct herleiten wie in gezeigt.
  • Sind für den Turm das polare Flächenträgheitsmoment Ip , das Torsionsträgheitsmoment JT (welches für Kreisringquerschnitte dem polaren Flächenträgheitsmoment entspricht), die Massendichte ρ und der Schubmodul G bekannt, so lassen sich die Parameter des Ersatzmodells zu c t = G J T , T l T , J T = 0.405 ρ I p l T
    Figure DE102017114789A1_0013
    bestimmen, um eine übereinstimmende erste Eigenfrequenz zu erzielen.
  • Um sowohl die Ersatzmasse mT als auch die Ersatzträgheit JT in Form eines additiven Massebelags des Auslegers zu berücksichtigen, kann die Approximation der Trägheit für schlanke Objekte verwendet werden, aus der folgt, dass ein schlankes Balkensegment der Länge b = 12 J T m T
    Figure DE102017114789A1_0014
    die Masse mT und bezüglich seines Schwerpunkts die Trägheit JT besitzt. D.h. der Massebelag des Auslegers µ(x) wird an der Stelle der Turmeinspannung über eine Länge von b um den konstanten Wert m T b
    Figure DE102017114789A1_0015
    erhöht.
  • Da die Dimensionen und Trägheitsmomente der Nutzlasten eines Turmdrehkrans in der Regel unbekannt sind, kann die Nutzlast weiterhin als konzentrierter Massenpunkt modelliert werden. Die Seilmasse kann vernachlässigt werden. Im Gegensatz zum Ausleger wird die Nutzlast etwas stärker durch Euler, Coriolis und Zentrifugalkräfte beeinflusst. Die Zentrifugalbeschleunigung wirkt nur in Auslegerrichtung, ist also an dieser Stelle nicht relevant, die Coriolisbeschleunigung ergibt sich mit dem Abstand xL der Last zum Turm zu a C o r i o l i s , y = 2 γ ˙ x ˙ L .
    Figure DE102017114789A1_0016
  • Aufgrund der geringen Ausleger-Drehraten kann die Coriolisbeschleunigung auf die Last vernachlässigt werden, insbesondere wenn die Last positioniert werden soll. Um bei Bedarf eine Störgrößenaufschaltung realisieren zu können wird sie jedoch noch für einige Schritte mitgeführt.
  • Für die Herleitung der Pendeldynamik wird diese auf eine Tangentialebene projiziert, die orthogonal zum Ausleger orientiert ist und die Position der Laufkatze schneidet.
  • Die Eulerbeschleunigung ergibt sich zu a E u l e r , L = γ ˙ x L .
    Figure DE102017114789A1_0017
  • Aufgrund der in der Regel kleinen Pendelwinkel gilt die Näherung x L / x t r 1
    Figure DE102017114789A1_0018
    aus der die Approximation a E u l e r , L = a E u l e r
    Figure DE102017114789A1_0019
    folgt, dass die Euler-Beschleunigung aufgrund der Drehung des Referenzsystems in etwa gleiche Weise auf Last und Laufkatze wirkt.
  • Die Beschleunigung auf die Last sind in 7 dargestellt.
  • Dabei ist s ( t ) = x t r γ ( t ) + w ( x t r , t ) .
    Figure DE102017114789A1_0020
    die y-Position der Laufkatze in der Tangentialebene. Die Position der Laufkatze auf dem Ausleger xtr wird aufgrund der Entkopplung von Radial- und Schwenkdynamik hier als konstanter Parameter approximiert.
  • Die Pendeldynamik lässt sich leicht über den Lagrange Formalismus herleiten. Dazu wird zunächst die potentielle Energie U = m L l ( t ) g  cos ( ϕ ( t ) )
    Figure DE102017114789A1_0021
    mit der Lastmasse mL , der Erdbeschleunigung g und der Seillänge l(t) aufgestellt sowie die kinetische Energie T = 1 2 m L r ˙ T r ˙ ,
    Figure DE102017114789A1_0022
    wobei r ( t ) = [ s ( t ) + l ( t )  sin ( ϕ ( t ) ) l ( t )  cos ( ϕ ( t ) ) ] .
    Figure DE102017114789A1_0023
    die y-Position der Last in der Tangentialebene. Mit der Lagrange Funktion L = T U
    Figure DE102017114789A1_0024
    und den Lagrange'schen Gleichungen der 2. Art d d t L ϕ ˙ L a ϕ = Q
    Figure DE102017114789A1_0025
    mit der nicht-konservativen Corioliskraft Q = [ m L   a C o r i o l i s , y 0 ] T r ϕ = m L l   a C o r i o l i s , y  cos ( ϕ )
    Figure DE102017114789A1_0026
    folgt die Pendeldynamik in Schwenkrichtung als 2 ϕ ˙ l ˙ + ( s ¨ a C o r i o l i s , y ) cos ϕ + g  sin ϕ + ϕ ¨ l = 0.
    Figure DE102017114789A1_0027
  • Linearisiert um ϕ = 0,ϕ̇ = 0 folgt daraus unter Vernachlässigung der Seillängenänderung i ≈ 0 und der Coriolisbeschleunigung aCoriolis,y ≈ 0 die vereinfachte Pendeldynamik ϕ ¨ = s ¨ g ϕ l = x t r γ ¨ w ¨ ( x t r , t ) g ϕ l .
    Figure DE102017114789A1_0028
  • Um die Rückwirkung der Pendeldynamik auf die Strukturdynamik von Ausleger und Turm zu beschreiben, muss die Seilkraft FR bestimmt werden. Am einfachsten wird diese dazu durch ihren Hauptanteil durch die Erdbeschleunigung zu F R , h = m L   g cos ( ϕ )  sin ( ϕ ) ,
    Figure DE102017114789A1_0029
    approximiert. Ihr horizontaler Anteil in y -Richtung ergibt sich damit zu F R , h = m L   g cos ( ϕ )  sin ( ϕ ) ,
    Figure DE102017114789A1_0030
    bzw. linearisiert um ϕ = 0 zu F R , h = m L   g ϕ .
    Figure DE102017114789A1_0031
  • Das verteiltparametrische Modell (5) der Auslegerdynamik beschreibt unendlich viele Eigenmoden des Auslegers und ist in der Form noch nicht für einen Regelungsentwurf geeignet. Da für Beobacher und Regelung nur wenige der niederfrequentesten Eigenmoden relevant sind, bietet sich eine Modaltransformation mit anschließender modaler Ordnungsreduktion auf diese wenigen Eigenmoden an. Eine analytische Modaltransformation der Gleichung (5) ist jedoch eher schwierig. Stattdessen bietet es sich an, Gleichung (5) zunächst mittels finiten Differenzen oder der finite Elemente Methode örtlich zu diskretisieren und somit eine gewöhnliche Differentialgleichung zu erhalten.
  • Bei einer Diskretisierung mittels der finiten Differenzen wird der Balken auf N äquidistant verteilte Massepunkte an den Auslegerpositionen x i ,   i [ 1 N ]
    Figure DE102017114789A1_0032
    aufgeteilt. Die Balkenauslenkung an jeder dieser Positionen wird als w i = w ( x i , t )
    Figure DE102017114789A1_0033
    notiert. Die örtlichen Ableitungen werden mit dem zentralen Differenzenquotient w i ' w i 1 + w i + 1 2 Δ x
    Figure DE102017114789A1_0034
    w i ' ' w i 1 2 w i + w i + 1 Δ x 2
    Figure DE102017114789A1_0035
    approximiert, wobei Δx=xi+1-xi den Abstand der diskreten Massepunkte und w i '
    Figure DE102017114789A1_0036
    die örtliche Ableitung w'(xi,t) beschreiben.
  • Für die Diskretisierung von w"(x) müssen die Randbedingungen (6)-(7) w i 1 2 w i + w i + 2 = 0,   i { 1, N }
    Figure DE102017114789A1_0037
    w i 2 + 2 w i 1 2 w i + 2 + w i + 2 = 0,   i { 1, N }
    Figure DE102017114789A1_0038
    nach w-1 ,w-2 ,wN+1 und wN+2 aufgelöst werden. Die Diskretisierung des Terms (I(x)w")" in Gleichung (5) ergibt sich zu ( I ( x ) w ' ' ) ' ' η i 1 2 η i + η i + 1 Δ x 2
    Figure DE102017114789A1_0039
    mit η i = I ( x i ) w i ' ' .
    Figure DE102017114789A1_0040
  • Durch die Wahl der zentralen Differenzen Approximation hängt Gleichung (35) an den Rändern von den Werten I-1 und IN+1 ab, welche in der Praxis durch die Werte I1 und IN ersetzt werden können.
  • Für das weitere Vorgehen bietet sich eine Vektorschreibweise (fett gedruckt) an. Der Vektor der Ausleger Auslenkungen wird als w = [ w 1     w N ] T
    Figure DE102017114789A1_0041
    bezeichnet, womit die Diskretisierung des Terms (I(x)w")" in Vektorschreibweise als K 0 w
    Figure DE102017114789A1_0042
    mit der Steifigkeitsmatrix K 0 = ( I 1 + I 2 2 I 1 2 I 2 I 1 + I 2 0 0 2 I 2 4 I 2 + I 3 2 I 2 2 I 3 I 3 0 I 2 2 I 2 2 I 3 I 2 + 4 I 3 + I 4 2 I 3 2 I 4 I 4 0 I N 2 2 I N 2 2 I N 1 I N 2 + 4 I N 1 2 I N 1 0 0 I N 1 + I N 2 I N 1 2 I N I N 1 + I N )
    Figure DE102017114789A1_0043
    ausgedrückt werden kann.
  • Ebenso wird die Massenmatrix des Massebelags (Einheit kgm) als Diagonalmatrix M 0 = diag ( [ μ ( x 1 )     μ ( x N ) ] )
    Figure DE102017114789A1_0044
    definiert, mit dem Vektor x T = [ ( x 1 l c j )     ( x N l c j ) ] T
    Figure DE102017114789A1_0045
    welcher für jeden Knoten den Abstand zum Turm beschreibt.
  • Für die verteilte einwirkende Kraft wird der Vektor q = [ q 1 q N ]
    Figure DE102017114789A1_0046
    mit den Einträgen qi = q(xi) definiert, so dass die Diskretisierung der partiellen Balkendifferentialgleichung (5) in diskretisierter Form als M 0 w ¯ ¨ + E Δ x 4 K 0 = q M x T y ¨ .
    Figure DE102017114789A1_0047
    angegeben werden kann.
  • Nun soll das dynamische Zusammenwirken von Stahlstruktur-Bewegung und Pendeldynamik beschrieben werden.
  • Hierzu werden zunächst die zusätzlichen Punktmassen auf dem Ausleger, nämlich die Gegenballastmasse mcj , die Ersatzmasse für den Turm mT sowie die Katzmasse mtr der verteilten Massenmatrix M 1 = M 0 + d i a g ( [ m c j Δ x m T b m T b m t r Δ x 0 ] )
    Figure DE102017114789A1_0048
    hinzugefügt.
  • Zudem können die Kräfte und Momente beschrieben werden, mit denen Turm und Last auf den Ausleger wirken. Die Kraft aufgrund der Turmbiegung ist über das Ersatzmodell durch q T Δ x = c b w ( x T ) .
    Figure DE102017114789A1_0049
    mit qT = q(lcj) gegeben. Für die Bestimmung des Moments durch die Turmtorsion wird zunächst die Verdrehung des Ausleger-Balkens an der Einspannungsstelle, ψ = w T ' = w T 1 + w T + 1 2 Δ x
    Figure DE102017114789A1_0050
    benötigt, aus der sich dann das Torsionsmoment τ = c T w T 1 + w T + 1 2 Δ x
    Figure DE102017114789A1_0051
    ergibt, das beispielsweise durch zwei gleich weit vom Turm entfernt angreifende (Hebelarm), gleichgroße Kräfte approximiert werden kann. Der Wert dieser beiden Kräfte ist F τ = τ 2 Δ x ,
    Figure DE102017114789A1_0052
    wenn Δx jeweils der Hebelarm ist. Dadurch kann das Moment durch den Vektor q
    Figure DE102017114789A1_0053
    der Kräfte auf den Ausleger beschrieben werden. Dazu müssen nur die beiden Einträge q T 1 Δ x = F τ , q T + 1 Δ x = F τ ,
    Figure DE102017114789A1_0054
    gesetzt werden.
  • Durch die horizontale Seilkraft (28) ergibt sich der Eintrag q t r Δ x = m L g ϕ
    Figure DE102017114789A1_0055
    in q .
    Figure DE102017114789A1_0056
  • Da somit nun alle Kräfte von ϕ oder w
    Figure DE102017114789A1_0057
    abhängen, kann die Verkopplung aus Struktur- und Pendeldynamik in Matrixschreibweise geschrieben werden als [ M 0 0 x t r T l ] M [ w ¨ ϕ ¨ ] x ¨ + [ ( E Δ x 4 K 0 + K 1 ) F t r 0 g ] K [ w ϕ ] x ¯ = [ M X T x t r ] B γ ¨
    Figure DE102017114789A1_0058

    mit K 1 = 1 4 Δ x 3 [ c T 0 c T 0 4 Δ x 2 c b 0 c T 0 c T ] ,
    Figure DE102017114789A1_0059
    F t r = 1 Δ x [ 0 m L g 0 ] T
    Figure DE102017114789A1_0060

    und x t r = [ 0 1 0 ] T  sodass  w ¨ ( x t r , t ) = x t r T w ¨ .
    Figure DE102017114789A1_0061
  • An dieser Stelle sei angemerkt, dass die drei Parameter Position der Laufkatze auf dem Ausleger xtr , Hubseillänge l und Lastmasse mL im laufenden Betrieb variieren. Daher handelt es sich bei (50) um eine lineare parametervariante Differentialgleichung, deren konkrete Ausprägung erst zur Laufzeit insbesondere online ermittelt werden kann. Beim späteren Beobachter- und Regelungsentwurf muss dies beachtet werden.
  • Die Anzahl der Diskretisierungspunkte N sollte groß genug gewählt werden, um eine präzise Beschreibung der Balkenverformung und -Dynamik zu gewährleisten. Damit wird (50) zu einem großen Differentialgleichungs-System. Für die Regelung bietet sich jedoch eine modale Ordnungsreduktion an, um die Vielzahl der Systemzustände auf eine niedrigere Anzahl zu reduzieren.
  • Die modale Ordnungsreduktion ist eines der am häufigsten verwendeten Reduktionsverfahren. Die Grundidee besteht darin, zunächst eine Modaltransformation durchzuführen, also die Dynamik des Systems auf Basis der Eigenmoden (Formen) und der Eigenfrequenzen anzugeben. Anschließend werden dann nur die relevanten Eigenmoden (in der Regel die niederfrequentesten) ausgewählt und alle höherfrequenten Moden vernachlässigt. Die Anzahl der berücksichtigten Eigenmoden wird im Folgenden mit ξ bezeichnet.
  • Zunächst müssen die Eigenvektoren ν i
    Figure DE102017114789A1_0062
    mit i ∈ [1,N+1] berechnet werden, welche zusammen mit den entsprechenden Eigenfrequenzen ωi das Eigenwertproblem K ν i = ω i 2 M ν i
    Figure DE102017114789A1_0063
    erfüllen. Diese Berechnung lässt sich über bekannte Standardverfahren leicht lösen. Die Eigenvektoren werden daraufhin mit steigender Eigenfrequenz sortiert in die Modalmatrix V = [ ν 1 ν 2 ]
    Figure DE102017114789A1_0064
    geschrieben. Die Modaltransformation lässt sich dann durchführen über die Berechnung z ¨ + V 1 M 1 K V K z = V 1 M 1 B B ^ γ ¨
    Figure DE102017114789A1_0065
    wobei der neue Zustandsvektor z ( t ) = V 1 x ( t )
    Figure DE102017114789A1_0066
    die Amplituden der Eigenmoden enthält. Da die modal transformierte Steifigkeitsmatrix eine Diagonalform aufweist, lässt sich das modal reduzierte System einfach durch Beschränkung auf die ersten ξ Spalten und Zeilen dieses Systems als z ¨ r + D ^ r z ˙ r + K ^ r z r = B ^ r γ ¨ .
    Figure DE102017114789A1_0067
    erhalten, wobei der Zustandsvektor z r
    Figure DE102017114789A1_0068
    nun nur noch die wenigen ξ Modalamplituden beschreibt. Durch experimentelle Identifikation lassen sich zudem die Einträge der diagonalen Dämpfungsmatrix r ermitteln.
  • Drei der wichtigsten Eigenmoden sind in 8 dargestellt. Die oberste beschreibt die langsamste Eigenmode, die durch die Pendelbewegung der Last dominiert wird. Die zweite dargestellte Eigenmode weist eine deutliche Turmbiegung auf, während sich in der dritten der Ausleger deutlich biegt. Alle Eigenmoden, deren Eigenfrequenzen durch den Drehwerksantrieb angeregt werden können, sollten berücksichtigt bleiben.
  • Die Dynamik des Drehwerk-Antriebes wird vorteilhafterweise als ein PT1-Glied approximiert, das die Dynamik γ ¨ = u γ ˙ T γ
    Figure DE102017114789A1_0069
    mit der Zeitkonstanten Tγ aufweist. In Verbindung mit Gleichung (57) ergibt sich damit x ˙ = [ 0 I 0 0 K ^ r D ^ r 0 B ^ r T γ 0 0 0 1 0 0 0 1 T γ ] A x + [ 0 B ^ r T γ 0 1 T γ ] B u
    Figure DE102017114789A1_0070
    mit dem neuen Zustandsvektor x = [ z r z ˙ r γ γ ˙ ] T
    Figure DE102017114789A1_0071
    und dem Stellsignal u der Sollgeschwindigkeit des Drehwerks.
  • Für den Beobachter und die Regelung der Schwenkdynamik kann das System (59) um einen Ausgangsvektor y
    Figure DE102017114789A1_0072
    zu x ˙ = A x + B u
    Figure DE102017114789A1_0073
    y = C x
    Figure DE102017114789A1_0074
    ergänzt werden, so dass das System beobachtbar ist, d.h. dass alle Zustände im Vektor x
    Figure DE102017114789A1_0075
    durch die Ausgänge y
    Figure DE102017114789A1_0076
    sowie endlich viele Zeitableitungen der Ausgänge rekonstruierbar sind und damit zur Laufzeit geschätzt werden können.
  • Der Ausgangsvektor y
    Figure DE102017114789A1_0077
    beschreibt dabei genau die Drehraten, Dehnungen oder Beschleunigungen, welche durch die Sensoren am Kran gemessen werden.
  • Auf Basis des Modells (61) lässt sich beispielsweise ein Beobachter 345, vgl. 2, in Form des Kalman Filters x ^ ˙ = A x ^ + B u + P C T     R 1 ( y C x ^ ) x ^ ( 0 ) = x ^ 0
    Figure DE102017114789A1_0078
    entwerfen, wobei der Wert P aus der algebraischen Riccati Gleichung 0 = P A + P A T + Q P C T R 1 C P
    Figure DE102017114789A1_0079
    folgen kann, die sich mit Standardverfahren leicht lösen lässt. Q und R stellen die Kovarianzmatrizen des Prozess- und Messrauschens dar und dienen als Auslegungs-Parameter des Kalmanfilters.
  • Da die Gleichungen (60) und (61) ein parametervariantes System beschreiben, ist die Lösung P der Gleichung (63) immer nur für den entsprechenden Parametersatz {xtr ,l,mL ) gültig. Die Standardverfahren zur Lösung algebraischer Riccati Gleichungen sind allerdings recht rechenintensiv. Um Gleichung (63) nicht zur Laufzeit auswerten zu müssen, kann die Lösung P für ein fein aufgelöstes Kennfeld in den Parametern xtr ,l,mL offline vorberechnet werden. Zur Laufzeit (online) wird dann aus dem Kennfeld der Wert ausgewählt, dessen Parametersatz {xtr ,l,mL } den momentanen Parametern am nächsten liegt.
  • Da durch den Beobachter 345 alle Systemzustände x ^
    Figure DE102017114789A1_0080
    geschätzt werden können, lässt sich die Regelung in Form einer Zustandsrückführung u = K ( x ref x ^ )
    Figure DE102017114789A1_0081
    realisieren. Dabei enthält der Vektor x ref
    Figure DE102017114789A1_0082
    die Sollzustände, die in der Ruhelage typischerweise alle null sind (bis auf den Drehwinkel γ). Während dem Abfahren einer Bahn können die Werte ungleich null sein, sollten aber nicht zu weit von der Ruhelage abweichen, um die das Modell linearisiert wurde.
  • Hierzu eignet sich beispielsweise ein linear-quadratischer Ansatz, bei dem die Rückführungsverstärkung K so gewählt wird, dass das Gütefunktional J = t = 0 x T Q x + u T   R u d t
    Figure DE102017114789A1_0083
    optimiert wird. Für den linearen Regelungsentwurf ergibt sich die optimale Rückführungsverstärkung zu K = R 1 B T P ,
    Figure DE102017114789A1_0084
    wobei sich P analog zum Kalmanfilter über die algebraische Riccati-Gleichung 0 = P A + A T P P B R 1 B T P + Q
    Figure DE102017114789A1_0085
    bestimmen lässt.
  • Da auch die Verstärkung K in Gleichung (66) abhängig vom Parametersatz {xtr ,l ,mL } ist, wird für diese analog zur Vorgehensweise für den Beobachter ein Kennfeld erzeugt. Im Kontext der Regelung ist dieser Ansatz unter dem Begriff „gain scheduling“ bekannt.
  • Zur Anwendung der Regelung an einem Turmdrehkran, kann die Beobachterdynamik (62) auf einem Steuergerät zur Laufzeit simuliert werden. Dazu können einerseits die Stellsignale u der Antriebe, sowie andererseits die Messignale y
    Figure DE102017114789A1_0086
    der Sensoren verwendet werden. Die Stellsignale berechnen sich widerum aus der Rückführungsverstärkung und dem geschätzten Zustandsvektor gemäß (62).
  • Da sich die Radialdynamik ebenfalls durch ein lineares Modell der Form (60)-(61) darstellen lässt, kann für die Regelung der Radialdynamik analog zur Schwenkdynamik vorgegangen werden. Beide Regelungen wirken am Kran dann unabhängig voneinander und stabilisieren die Pendeldynamik in radiale Richtung sowie quer zum Ausleger, jeweils unter Berücksichtigung der Antriebs- und Strukturdynamik.
  • Im Folgenden wird ein Ansatz zur Modellierung der Radialdynamik beschrieben. Dieser unterscheidet sich von dem zuvor beschriebenen Ansatz zur Modellierung der Schwenkdynamik dadurch, dass der Kran nun durch ein Ersatzsystem aus mehreren verkoppelten Starrkörpern beschrieben wird und nicht durch kontinuierliche Balken. Dabei kann der Turm in zwei Starrkörper aufgeteilt werden, wobei ein weiterer Starrkörper den Ausleger repräsentieren kann, vgl. 9.
  • Dabei beschreiben αy und βy die Winkel zwischen den Starrkörpem und ϕy den radialen Pendelwinkel der Last. Mit P werden die Positionen der Schwerpunkte beschrieben, wobei der Index CJ für den Gegenausleger, J für den Ausleger, TR für die Laufkatze (engl.: trolley) und T für den Turm (in diesem Fall den oberen Starrkörper des Turmes) steht. Die Positionen hängen dabei zumindest teilweise von den durch die Antriebe gestellten Größen xTR und l ab. An den Gelenken zwischen den Starrkörpern befinden sich Federn mit den Federsteifigkeiten α x ,ĉβ y sowie Dämpfer, deren viskose Reibung durch die Parameter dαy und dβy beschrieben wird.
  • Die Dynamik lässt sich über den bekannten Lagrange Formalismus herleiten. Dabei sind die drei Freiheitsgrade im Vektor
    Figure DE102017114789A1_0087
    zusammengefasst. Mit diesen lassen sich die translatorischen kinetischen Energien T kin = 1 2 ( m T P ˙ T 2 2 + m J P ˙ J 2 2 + m CJ P ˙ CJ 2 2 + m TR P ˙ TR 2 2 + m L P ˙ L 2 2 )
    Figure DE102017114789A1_0088
    sowie die potentiellen Energien aufgrund Gravitation und Federsteifigkeiten T pot = g ( m T P T , z + m J P J , z + m CJ P CJ , z   + m TR P TR , z + m L P L , z ) + 1 2 ( c ˜ α y α y 2 + c ˜ β y β y 2 )
    Figure DE102017114789A1_0089
    ausdrücken. Da die rotatorischen Energien im Vergleich zu den translatorischen vernachlässigbar klein sind, kann die Lagrange Funktion als L = T kin T pot
    Figure DE102017114789A1_0090
    formuliert werden. Daraus ergeben sich die Euler-Lagrange Gleichungen d d t L q ˙ i L q i = Q i *
    Figure DE102017114789A1_0091
    mit den generalisierten Kräften Q i * ,
    Figure DE102017114789A1_0092
    welche die Einflüsse der nicht-konservativen Kräfte, beispielsweise der Dämpfungskräfte, beschreiben. Ausgeschrieben ergeben sich die drei Gleichungen d d t L α ˙ y L α y = d α y α ˙ y ,
    Figure DE102017114789A1_0093
    d d t L β ˙ y L β y = d β y β ˙ y ,
    Figure DE102017114789A1_0094
    d d t L ϕ ˙ y L ϕ y = 0.
    Figure DE102017114789A1_0095
  • Durch Einsetzen von L und Berechnung der entsprechenden Ableitungen ergeben sich in diesen Gleichungen sehr große Terme, so dass eine explizite Darstellung hier nicht sinnvoll ist.
  • Die Dynamik der Antriebe des Katzwerks sowie des Hubwerks lässt sich in der Regel gut approximieren durch die PT1 Dynamiken erster Ordnung x ¨ TR = 1 τ TR ( u x x ˙ TR ) ,
    Figure DE102017114789A1_0096
    l ¨ = 1 τ l ( u l l ˙ ) .
    Figure DE102017114789A1_0097
    Darin beschreiben τi die entsprechenden Zeitkonstanten und ui die Sollgeschwindigkeiten.
  • Hält man nun alle Antrie,lbsbezogenen Variablen im Vektor x a = ( x TR , l , x ˙ TR , l ˙ , x ¨ TR , l ¨ )
    Figure DE102017114789A1_0098
    fest, so lässt sich die gekoppelte Radialdynamik aus Antriebs-, Pendel- und Strukturdynamik darstellen als ( a 11 ( q , q ˙ , x a ) a 12 ( q , q ˙ , x a ) a 13 ( q , q ˙ , x a ) a 31 ( q , q ˙ , x a ) a 22 ( q , q ˙ , x a ) a 23 ( q , q ˙ , x a ) a 31 ( q , q ˙ , x a ) a 32 ( q , q ˙ , x a ) a 33 ( q , q ˙ , x a ) ) A ˜ ( X ) q ¨ = ( b 1 ( q , q ˙ , x a ) b 2 ( q , q ˙ , x a ) b 3 ( q , q ˙ , x a ) ) B ˜ ( X )
    Figure DE102017114789A1_0099

    oder durch Umstellen zur Laufzeit als die nichtlineare Dynamik in der Form q ¨ = f ( q ˙ , q , x a ) .
    Figure DE102017114789A1_0100
  • Da die Radialdynamik somit in Minimalkoordinaten vorliegt, ist eine Ordnungsreduktion nicht erforderlich. Allerdings ist aufgrund der Komplexität der durch (75) beschriebenen Gleichungen eine analytische offline Vorberechnung der Jacobi Matrix f [ q ˙ , q ]
    Figure DE102017114789A1_0101
    nicht möglich. Um aus (75) ein lineares Modell der Form (60) für die Regelung zu erhalten, kann daher zur Laufzeit eine numerische Linearisierung durchgeführt werden. Hierfür kann zunächst die Ruhelage (0 ,q0 ) bestimmt werden, für die 0 = f ( q ˙ 0 , q 0 , 0 )
    Figure DE102017114789A1_0102
    erfüllt ist. Dann lässt sich das Modell über die Gleichungen x ˙ lin = f [ q ˙ , q ] | ( q ˙ 0 , q 0 ) A   x lin + f u | ( q ˙ 0 , q 0 ) B u .
    Figure DE102017114789A1_0103
    linearisieren und es ergibt sich ein lineares System wie in Gleichung (60). Durch die Wahl einer geeigneten Sensorik für Struktur- und Pendeldynamik, beispielsweise mit Hilfe von Gyroskopen, ergibt sich ein Messausgang wie in (61), durch den die Radialdynamik beobachtbar ist.
  • Das weitere Vorgehen des Beobachter- und Regelungsentwurfes entspricht dem für die Schwenkdynamik.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 202008018260 U1 [0006]
    • DE 102009032270 A1 [0006]
    • DE 202008018206 U1 [0006]
    • EP 1628902 B1 [0007]
    • DE 10324692 A1 [0007]
    • EP 2562125 B1 [0007]
    • US 20130161279 A [0007]
    • DE 10064182 A1 [0007]
    • US 5526946 B [0007]
  • Zitierte Nicht-Patentliteratur
    • E. Arnold, O. Sawodny, J. Neupert and K. Schneider, „Anti-sway system for boom cranes based on a model predictive control approach“, IEEE International Conference Mechatronics and Automation, 2005, Niagara Falls, Ont., Canada, 2005, pp. 1533-1538 Vol. 3 [0008]
    • Arnold, E., Neupert, J., Sawodny, O., „Modellprädiktive Trajektoriengenerierung für flachheitsbasierte Folgeregelungen am Beispiel eines Hafenmobilkrans“, at - Automatisierungstechnik, 56(8/2008) [0008]
    • J. Neupert, E. Arnold, K. Schneider & O. Sawodny, „Tracking and anti-sway control for boom cranes“, Control Engineering Practice, 18, pp. 31-44, 2010 [0008]

Claims (24)

  1. Kran, insbesondere Turmdrehkran, mit einem Hubseil (207), das von einem Kranausleger (202) abläuft und ein Lastaufnahmemittel (208) trägt, Antriebseinrichtungen zum Bewegen mehrerer Kranelemente und Verfahren des Lastaufnahmemittels (208), einer Steuervorrichtung (3) zum Steuern der Antriebseinrichtungen derart, dass das Lastaufnahmemittel (208) entlang eines Verfahrwegs verfährt, sowie einer Pendeldämpfungseinrichtung (340) zum Dämpfen von Pendelbewegungen des Lastaufnahmemittels (208) und/oder des Hubseils (207), wobei die Pendeldämpfungseinrichtung (340) eine Pendelsensorik (60) zum Erfassen von Pendelbewegungen des Hubseils (207) und/oder des Lastaufnahmemittels ((208) sowie einen Reglerbaustein (341) mit einem geschlossenen Regelkreis zum Beeinflussen der Ansteuerung der Antriebseinrichtungen in Abhängigkeit eines dem Regelkreis rückgeführten Pendelsignals der Pendelsensorik (60) aufweist, dadurch gekennzeichnet, dass die Pendeldämpfungseinrichtung (340) eine Strukturdynamik-Sensorik (342) zum Erfassen von Verformungen und/oder dynamischen Insich-Bewegungen von Strukturbauteilen des Krans aufweist und der Reglerbaustein (341) der Pendeldämpfungseinrichtung (340) dazu ausgebildet ist, beim Beeinflussen der Ansteuerung der Antriebseinrichtungen sowohl das Pendelsignal der Pendelsensorik (60) als auch die dem Regelkreis rückgeführten Strukturdynamiksignale, die Verformungen und/oder dynamische Insich-Bewegungen der Strukturbauteile angeben, zu berücksichtigen.
  2. Kran nach einem der vorhergehenden Ansprüche, wobei der Reglerbaustein (341) eine Zwei-Freiheitsgrade-Regelungsstruktur aufweist und/oder zusätzlich zu dem geschlossenen Regelkreis ein Vorsteuermodul (350) zum Vorsteuern der Stellsignale für die Antriebseinrichtungen aufweist.
  3. Kran nach dem vorhergehenden Anspruch, wobei das Vorsteuermodul (350) als differenzielles Flachheitsmodell ausgebildet ist.
  4. Kran nach einem der beiden vorhergehenden Ansprüche, wobei das Vorsteuermodul (350) dazu ausgebildet ist, die Vorsteuerung ohne Berücksichtigung der Pendelsignale der Pendelsensorik (60) und der Strukturdynamiksignale der Strukturdynamiksensorik (342) auszuführen.
  5. Kran nach einem der vorhergehenden Ansprüche 2 bis 4, wobei dem Vorsteuermodul (350) eine Kerbfiltereinrichtung (353) zum Filtern der der Vorsteuerung zugeführten Eingangssignale zugeordnet ist, wobei die genannte Kerbfiltereinrichtung (353) dazu ausgebildet ist, aus den genannten Eingangssignalen anregbare Eigenfrequenzen der Strukturdynamik zu eliminieren.
  6. Kran nach einem der vorhergehenden Ansprüche 2 bis 5, wobei dem Vorsteuermodul (350) ein Trajektorien-Planungsmodul (351) und/oder ein Sollwert-Filtermodul (352) zum Bestimmen eines Sollverlaufs für die Lastaufnahmemittelposition und deren zeitlichen Ableitungen aus vorbestimmten Sollwerten für das Lastaufnahmemittel zugeordnet sind.
  7. Kran nach dem beiden vorhergehenden Ansprüchen, wobei die Kerbfiltereinrichtung (353) zwischen dem Trajektorien-Planungsmodul (351) und dem Sollwert-Filterrnodul (352) einerseits und dem Vorsteuermodul (350) andererseits vorgesehen ist.
  8. Kran nach einem der vorhergehenden Ansprüche, wobei der Reglerbaustein (341) ein Regelungsmodell aufweist, das die Strukturdynamik des Krans in voneinander unabhängige Teile aufteilt, die zumindest einen Schwenkdynamikteil, der die Strukturdynamik bezüglich Verschwenken des Auslegers (202) um die aufrechte Kranschwenkachse berücksichtigt, und einen Radialdynamikteil, der Strukturdynamikbewegungen parallel zu einer vertikalen, Ausleger parallelen Ebene berücksichtigt, umfassen.
  9. Kran nach einem der vorhergehenden Ansprüche, wobei die Strukturdynamik-Sensorik (342) zumindest - einen Radialdynamik-Sensor zum Erfassen von dynamischen Bewegungen der Kranstruktur in einer aufrechten Ebene parallel zum Kranausleger (202), und - einen Schwenkdynamiksensor zum Erfassen von dynamischen Bewegungen der Kranstruktur um eine aufrechte Krandrehachse, insbesondere Turmachse (205) aufweist und der Reglerbaustein (341) der Pendeldämpfungseinrichtung (340) dazu ausgebildet ist, die Ansteuerung der Antriebseinrichtungen, insbesondere eines Katzantriebs und Drehwerkantriebs, in Abhängigkeit der erfassten dynamischen Bewegungen der Kranstruktur in der aufrechten, auslegerparallelen Ebene und der erfassten dynamischen Bewegungen der Kranstruktur um die aufrechte Krandrehachse zu beeinflussen.
  10. Kran nach einem der vorhergehenden Ansprüche, wobei die Strukturdynamik-Sensorik (342) ferner - einen Hubdynamik-Sensor zum Erfassen von vertikalen dynamischen Verformungen des Kranauslegers (202) aufweist und der Reglerbaustein (341) der Pendeldämpfungseinrichtung (340) dazu ausgebildet ist, die Ansteuerung der Antriebseinrichtungen, insbesondere eines Hubwerkantriebs, in Abhängigkeit der erfassten vertikalen dynamischen Verformungen des Kranauslegers (202) zu beeinflussen.
  11. Kran nach einem der vorhergehenden Ansprüche, wobei die Strukturdynamik-Sensorik (342) dazu ausgebildet ist, dynamische Verwindungen eines den Kranausleger tragenden Kranturms (201) und/oder des Kranauslegers (202) zu bestimmen und der Reglerbaustein (341) der Pendeldämpfungseinrichtung (340) dazu ausgebildet ist, die Ansteuerung der Antriebseinrichtungen in Abhängigkeit der erfassten dynamischen Verwindungen des Kranauslegers (202) und/oder des Kranturms (201) zu beeinflussen.
  12. Kran nach dem vorhergehenden Anspruch, wobei die Strukturdynamik-Sensorik (342) dazu ausgebildet ist, alle Eigenmoden der dynamischen Verwindungen des Kranauslegers (202) und/oder des Kranturms (201), deren Eigenfrequenzen in einem vorbestimmten Frequenzbereich liegen, zu erfassen.
  13. Kran nach dem vorhergehenden Anspruch, wobei die Strukturdynamik-Sensorik (342) zumindest einen, vorzugsweise mehrere Turmsensor(en), der/die beabstandet von einem Knotenpunkt einer Turmeigenschwingung angeordnet ist, zum Erfassen von Turmverwindungen sowie zumindest einen, vorzugsweise mehrere Auslegersensor(en), der/die beabstandet von einem Knotenpunkt einer Auslegereigenschwingung angeordnet ist, zum Erfassen von Auslegerverwindungen aufweist.
  14. Kran nach einem der vorhergehenden Ansprüche, wobei die Strukturdynamik-Sensorik (342) Dehnungsmesstreifen und/oder Beschleinigungssensoren und/oder Drehratensensoren, insbesondere in Form von Gyroskopen, zum Erfassen der Verformungen und/oder dynamischen Insich-Bewegungen von Strukturbauteilen des Krans aufweist, wobei die Beschleinigungssensoren und/oder Drehratensensoren vorzugsweise dreiachsig erfassend ausgebildet sind.
  15. Kran nach dem vorhergehenden Anspruch, wobei die Strukturdynamik-Sensorik (344) zumindest einen Drehraten- und/oder Beschleunigungssensor und/oder Dehnungsmessstreifen zum Erfassen von dynamischen Turmverformungen, zumindest einen Drehraten- und/oder Beschleunigungssensor und/oder Dehnungsmessstreifen zum Erfassen von dynamischen Auslegerverformungen aufweist.
  16. Kran nach einem der vorhergehenden Ansprüche, wobei die Pendelsensorik (60) eine Erfassungseinrichtung zum Erfassen einer Auslenkung (φ) des Hubseils (207) und/oder des Lastaufnahmemittels (208) gegenüber einer Vertikalen (61) aufweist und der Reglerbaustein (341) der Pendeldämpfungseinrichtung (340) dazu ausgebildet ist, die Ansteuerung der Antriebseinrichtungen in Abhängigkeit der ermittelten Auslenkung (φ) des Hubseils (207) und/oder des Lastaufnahmemittels (208) gegenüber der Vertikalen (61) zu beeinflussen.
  17. Kran nach dem vorhergehenden Anspruch, wobei die Erfassungseinrichtung (60) eine bildgegebende Sensorik, insbesondere eine Kamera (62) aufweist, die im Bereich eines Aufhängepunktes des Hubseils (207), insbesondere einer Laufkatze (206), im Wesentlichen senkrecht nach unten blickt, wobei eine Bildauswerteeinrichtung (64) zum Auswerten eines von der bildgebenden Sensorik bereitgestellten Bilds hinsichtlich der Position des Lastaufnahmemittels (208) in dem bereitgestellten Bild und Bestimmung der Auslenkung (φ) des Lastaufnahmemittels (208) und/oder des Hubseils (207) und/oder der Auslenkungsgeschwindigkeit gegenüber der Vertikalen (61) vorgesehen ist.
  18. Kran nach einem der vorhergehenden Ansprüche, wobei der Reglerbaustein (341) eine Filter- und/oder Beobachtereinrichtung (345) zum Beeinflussen der Stellgrößen von Antriebsreglern (347) zum Ansteuern der Antriebseinrichtungen aufweist, wobei die genannte Filter- und/oder Beobachtereinrichtung (345) dazu ausgebildet ist, als Eingangsgrößen einerseits die Stellgrößen der Antriebsregler (347) und andererseits sowohl das Pendelsignal der Pendelsensorik (60) als auch die dem Regelkreis rückgeführten Strukturdynamiksignale, die Verformungen und/oder dynamische Insich-Bewegungen der Strukturbauteile angeben, zu erhalten und in Abhängigkeit der für bestimmte Reglerstellgrößen erhaltenen dynamikinduzierten Bewegungen von Kranelementen und/oder Verformungen von Strukturbauteilen die Reglerstellgrößen zu beeinflussen.
  19. Kran nach dem vorhergehenden Anspruch, wobei die Filter- und/oder Beobachtereinrichtung (345) als Kalman-Filter (346) ausgebildet ist.
  20. Kran nach dem vorhergehenden Anspruch, wobei in dem Kalman-Filter (346) erfasste und/oder geschätzte und/oder berechnete und/oder simulierte Funktionen, die die Dynamik der Strukturbauteile des Krans charakterisieren, implementiert sind.
  21. Kran nach einem der vorhergehenden Ansprüche, wobei der Reglerbaustein (341) dazu ausgebildet ist, zumindest eine Regelungskenngröße, insbesondere Regelverstärkungen, in Abhängigkeit von Veränderungen bei zumindest einem Parameter aus der Parametergruppe Lastmasse (mL, Hubseillänge (I), Katzposition (xtr) und Ausladung, nachzuziehen und/oder anzupassen.
  22. Verfahren zum Steuern eines Krans, insbesondere Turmdrehkrans, dessen an einem Hubseil (207) angebrachtes Lastaufnahmemittel (208) durch Antriebseinrichtungen verfahren wird, welche Antriebseinrichtungen von einer Steuervorrichtung (3) des Krans angesteuert werden, wobei die Ansteuerung der Antriebseinrichtungen von einer Pendeldämpfungseinrichtung (340) umfassend einen Reglerbaustein (341) mit einem geschlossenen Regelkreis in Abhängigkeit von pendelrelevanten Parametern beeinflusst wird, dadurch gekennzeichnet, dass dem geschlossenen Regelkreis sowohl Pendelsignale einer Pendelsensorik (60), mittels derer Pendelbewegungen des Hubseils und/der des Lastaufnahmemittels erfasst werden, als auch Strukturdynamiksignale einer Strukturdynamik-Sensorik (342), mittels derer Verformungen und/oder dynamische Insich-Bewegungen der Strukturbauteile erfaßt werden, rückgeführt werden und von dem Reglerbaustein (341) Ansteuersignale (u(t)) zum Ansteuern der Antriebseinrichtungen in Abhängigkeit sowohl der rückgeführten Pendelsignale der Pendelsensorik (60) als auch der rückgeführten Strukturdynamiksignale der Strukturdynamik-Sensorik (342), beinflußt werden.
  23. Verfahren nach dem vorhergehenden Anspruch, wobei die rückgeführten Pendelsignale der Pendelsensorik (60) als auch der rückgeführten Strukturdynamiksignale der Strukturdynamik-Sensorik (342) einem Kalman-Filter (346) zugeführt werden, dem als Eingangsgrößen weiterhin die Stellgrößen von Antriebsreglern (347) zum Ansteuern der Antriebseinrichtungen zugeführt werden, wobei der Kalman-Filter (346) in Abhängigkeit der genannten Pendelsignale der Pendelsensorik (60), der Strukturdynamiksignale der Strukturdynamik-Sensorik (342) und der rückgeführten Stellgrößen der Antriebsregler (347) eine Beeinflussung der Stellgrößen der Antriebsregler (347) vornimmt.
  24. Verfahren nach einem der beiden vorhergehenden Ansprüche, wobei die Ansteuersignale zum Ansteuern der Antriebseinrichtungen von einem dem Reglerbaustein (341) vorgeschalteten Vorsteuermodul (350) vorgesteuert werden, wobei das genannte Vorsteuermodul (350) dazu ausgebildet ist, die Vorsteuerung ohne Berücksichtigung der Pendelsignale der Pendelsensorik (60) und der Strukturdynamiksignale der Strukturdynamiksensorik (342) auszuführen.
DE102017114789.6A 2017-07-03 2017-07-03 Kran und Verfahren zum Steuern eines solchen Krans Pending DE102017114789A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE102017114789.6A DE102017114789A1 (de) 2017-07-03 2017-07-03 Kran und Verfahren zum Steuern eines solchen Krans
ES18740502T ES2924332T3 (es) 2017-07-03 2018-06-26 Grúa y procedimiento para controlar una grúa de este tipo
JP2020500045A JP7224330B2 (ja) 2017-07-03 2018-06-26 クレーン、およびこのようなクレーンを制御する方法
EP18740502.2A EP3649072B1 (de) 2017-07-03 2018-06-26 Kran und verfahren zum steuern eines solchen krans
AU2018296142A AU2018296142B2 (en) 2017-07-03 2018-06-26 Crane and method for controlling such a crane
CN201880044958.7A CN111295354B (zh) 2017-07-03 2018-06-26 起重机及用于控制这种起重机的方法
PCT/EP2018/000320 WO2019007541A1 (de) 2017-07-03 2018-06-26 Kran und verfahren zum steuern eines solchen krans
BR112019027928-8A BR112019027928A2 (pt) 2017-07-03 2018-06-26 guindaste e processo para controle de tal guindaste
US16/733,619 US11447372B2 (en) 2017-07-03 2020-01-03 Crane and method for controlling such a crane
AU2024201066A AU2024201066A1 (en) 2017-07-03 2024-02-19 Crane and method for controlling such a crane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017114789.6A DE102017114789A1 (de) 2017-07-03 2017-07-03 Kran und Verfahren zum Steuern eines solchen Krans

Publications (1)

Publication Number Publication Date
DE102017114789A1 true DE102017114789A1 (de) 2019-01-03

Family

ID=62909478

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017114789.6A Pending DE102017114789A1 (de) 2017-07-03 2017-07-03 Kran und Verfahren zum Steuern eines solchen Krans

Country Status (9)

Country Link
US (1) US11447372B2 (de)
EP (1) EP3649072B1 (de)
JP (1) JP7224330B2 (de)
CN (1) CN111295354B (de)
AU (2) AU2018296142B2 (de)
BR (1) BR112019027928A2 (de)
DE (1) DE102017114789A1 (de)
ES (1) ES2924332T3 (de)
WO (1) WO2019007541A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112325839A (zh) * 2020-11-23 2021-02-05 李玉凤 一种输电铁塔塔材微形变在线监测装置
WO2021037526A1 (de) * 2019-08-26 2021-03-04 Liebherr-Werk Biberach Gmbh Kran und verfahren zum steuern eines solchen krans
EP3796114A1 (de) * 2019-09-18 2021-03-24 Rockwell Automation Technologies, Inc. Systeme und verfahren zur nichtstarren lastschwingungssteuerung
WO2022073680A1 (de) * 2020-10-09 2022-04-14 Liebherr-Werk Biberach Gmbh Hebezeug wie kran sowie verfahren und vorrichtung zum steuern eines solchen hebezeugs
CN114890322A (zh) * 2022-07-14 2022-08-12 菏泽广泰耐磨制品股份有限公司 一种船舶用货物吊装起重装卸设备
CN117401580A (zh) * 2023-12-12 2024-01-16 河南卫华重型机械股份有限公司 一种起重机主梁形变软检测方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015202734A1 (de) * 2015-02-16 2016-08-18 Terex Cranes Germany Gmbh Kran und Verfahren zum Beeinflussen einer Verformung eines Auslegersystems eines derartigen Krans
DE102016004350A1 (de) * 2016-04-11 2017-10-12 Liebherr-Components Biberach Gmbh Kran und Verfahren zum Steuern eines solchen Krans
DE102017114789A1 (de) 2017-07-03 2019-01-03 Liebherr-Components Biberach Gmbh Kran und Verfahren zum Steuern eines solchen Krans
DE102018005068A1 (de) * 2018-06-26 2020-01-02 Liebherr-Components Biberach Gmbh Kran und Verfahren zum Steuern eines solchen Krans
JP2021054655A (ja) * 2019-09-30 2021-04-08 株式会社神戸製鋼所 クレーンの旋回振れ止め装置およびこれを備えたクレーン
CN111153328B (zh) * 2020-04-02 2020-07-24 上海驭矩信息科技有限公司 一种基于lqr的吊装系统的防摇控制方法及系统
CN111591887A (zh) * 2020-06-03 2020-08-28 太原科技大学 用于塔式起重机拉杆的减振系统和减振方法
DE102020120699A1 (de) * 2020-08-05 2022-02-10 Konecranes Global Corporation Auslegerdrehkran mit einer Kamera sowie Verfahren zur Reduzierung von Lastpendelungen im Kranbetrieb
CN112209251B (zh) * 2020-10-30 2021-11-02 华中科技大学 地铁盾构隧道管片吊装的门吊刹车摆动预警系统及方法
CN113387284A (zh) * 2021-06-23 2021-09-14 湖南三一塔式起重机械有限公司 一种塔机回转速度的控制方法、系统及塔式起重机
CN113336097B (zh) * 2021-06-30 2023-08-22 三一汽车起重机械有限公司 起重机回转控制的方法、装置、电子设备及存储介质
CN113682966B (zh) * 2021-07-19 2023-06-02 杭州大杰智能传动科技有限公司 用于智能塔吊的运行数据监控识别系统及其方法
CN115116318B (zh) * 2022-07-06 2023-11-24 中国一冶集团有限公司 吊机吊装模拟装置
CN117720012A (zh) * 2024-02-08 2024-03-19 泰安市特种设备检验研究院 基于扩展卡尔曼滤波的吊车系统模型预测控制方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3933527C2 (de) * 1989-10-04 1992-02-13 Mannesmann Ag, 4000 Duesseldorf, De
US5526946A (en) 1993-06-25 1996-06-18 Daniel H. Wagner Associates, Inc. Anti-sway control system for cantilever cranes
DE10064182A1 (de) 2000-10-19 2002-05-08 Liebherr Werk Nenzing Kran oder Bagger zum Umschlagen von einer an einem Lastseil hängenden Last mit Lastpendelungsdämpfung
DE10324692A1 (de) 2003-05-30 2005-01-05 Liebherr-Werk Nenzing Gmbh, Nenzing Kran oder Bagger zum Umschlagen von einer an einem Lastseil hängenden Last mit optimierter Bewegungsführung
DE102009032270A1 (de) 2009-07-08 2011-01-13 Liebherr-Werk Nenzing Gmbh Verfahren zur Ansteuerung eines Antriebs eines Kranes
DE202008018206U1 (de) 2007-09-13 2012-01-24 Rheinkalk Gmbh Fahrzeug zum Einbringen alkalischer Stoffe in Gewässer
DE202008018260U1 (de) 2007-05-16 2012-05-15 Liebherr-Werk Nenzing Gmbh Kransteuerung und Kran
US20130161279A1 (en) 2011-08-26 2013-06-27 Liebherr-Werk Nenzing Gmbh Crane control apparatus
WO2016131753A1 (de) * 2015-02-16 2016-08-25 Terex Cranes Germany Gmbh Kran und verfahren zum beeinflussen einer verformung eines auslegersystems eines derartigen krans
WO2017178106A1 (de) * 2016-04-11 2017-10-19 Liebherr-Components Biberach Gmbh Kran und verfahren zum steuern eines solchen krans

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333086A (ja) * 1995-06-09 1996-12-17 Komatsu Ltd 吊り荷の撮像画像処理装置
JP4472949B2 (ja) * 2003-08-21 2010-06-02 秀和 西村 ジブクレーンの制御方法及び装置
JP4415335B2 (ja) * 2007-06-28 2010-02-17 株式会社Ihi 制振位置決め制御方法および装置
DE102010038218B4 (de) * 2010-10-15 2014-02-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Kran mit einer Struktur, mit mindestens einem an der Struktur angreifenden Aktuator und einer den Aktuator zur Unterdrückung von Schwingungen der Struktur ansteuernden Steuerung
DE102011001112A1 (de) * 2011-03-04 2012-09-06 Schneider Electric Automation Gmbh Verfahren und Steuerungseinrichtung zur schwingungsarmen Bewegung eines bewegbaren Kranelementes eines Kransystems
EP2574819B1 (de) * 2011-09-30 2014-04-23 Siemens Aktiengesellschaft Geschwindigkeitsproportionale aktive Schwingungsdämpfung
JP5984642B2 (ja) * 2012-11-28 2016-09-06 住友重機械搬送システム株式会社 クレーンの制振制御システム及びクレーンの制振制御方法
CN103640976B (zh) * 2013-11-19 2015-07-22 中联重科股份有限公司 塔机起升安全控制方法、装置、系统及塔机
EP3034455B1 (de) * 2014-12-18 2017-08-23 Iveco Magirus Ag Verfahren zur Steuerung einer Auslegervorrichtung und Auslegervorrichtung mit Steuerung zur Durchführung des Verfahrens
CN104743445B (zh) * 2015-02-05 2016-09-21 西安工业大学 基于连通管和姿态的塔吊安全性能检测装置及其分析方法
BR112018070462A2 (pt) * 2016-04-08 2019-02-05 Liebherr Components Biberach guindaste
DE102017114789A1 (de) 2017-07-03 2019-01-03 Liebherr-Components Biberach Gmbh Kran und Verfahren zum Steuern eines solchen Krans

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3933527C2 (de) * 1989-10-04 1992-02-13 Mannesmann Ag, 4000 Duesseldorf, De
US5526946A (en) 1993-06-25 1996-06-18 Daniel H. Wagner Associates, Inc. Anti-sway control system for cantilever cranes
DE10064182A1 (de) 2000-10-19 2002-05-08 Liebherr Werk Nenzing Kran oder Bagger zum Umschlagen von einer an einem Lastseil hängenden Last mit Lastpendelungsdämpfung
DE10324692A1 (de) 2003-05-30 2005-01-05 Liebherr-Werk Nenzing Gmbh, Nenzing Kran oder Bagger zum Umschlagen von einer an einem Lastseil hängenden Last mit optimierter Bewegungsführung
EP1628902B1 (de) 2003-05-30 2007-10-17 Liebherr-Werk Nenzing GmbH Kran oder bagger zum umschlagen von einer an einem lastseil hängenden last mit optimierter bewegungsführung
DE202008018260U1 (de) 2007-05-16 2012-05-15 Liebherr-Werk Nenzing Gmbh Kransteuerung und Kran
DE202008018206U1 (de) 2007-09-13 2012-01-24 Rheinkalk Gmbh Fahrzeug zum Einbringen alkalischer Stoffe in Gewässer
DE102009032270A1 (de) 2009-07-08 2011-01-13 Liebherr-Werk Nenzing Gmbh Verfahren zur Ansteuerung eines Antriebs eines Kranes
US20130161279A1 (en) 2011-08-26 2013-06-27 Liebherr-Werk Nenzing Gmbh Crane control apparatus
EP2562125B1 (de) 2011-08-26 2014-01-22 Liebherr-Werk Nenzing GmbH Kransteuervorrichtung
WO2016131753A1 (de) * 2015-02-16 2016-08-25 Terex Cranes Germany Gmbh Kran und verfahren zum beeinflussen einer verformung eines auslegersystems eines derartigen krans
WO2017178106A1 (de) * 2016-04-11 2017-10-19 Liebherr-Components Biberach Gmbh Kran und verfahren zum steuern eines solchen krans

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Arnold, E., Neupert, J., Sawodny, O., „Modellprädiktive Trajektoriengenerierung für flachheitsbasierte Folgeregelungen am Beispiel eines Hafenmobilkrans", at - Automatisierungstechnik, 56(8/2008)
E. Arnold, O. Sawodny, J. Neupert and K. Schneider, „Anti-sway system for boom cranes based on a model predictive control approach", IEEE International Conference Mechatronics and Automation, 2005, Niagara Falls, Ont., Canada, 2005, pp. 1533-1538 Vol. 3
J. Neupert, E. Arnold, K. Schneider & O. Sawodny, „Tracking and anti-sway control for boom cranes", Control Engineering Practice, 18, pp. 31-44, 2010

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021037526A1 (de) * 2019-08-26 2021-03-04 Liebherr-Werk Biberach Gmbh Kran und verfahren zum steuern eines solchen krans
EP3796114A1 (de) * 2019-09-18 2021-03-24 Rockwell Automation Technologies, Inc. Systeme und verfahren zur nichtstarren lastschwingungssteuerung
US11264929B2 (en) 2019-09-18 2022-03-01 Rockwell Automation Technologies, Inc. Systems and methods for non-rigid load vibration control
US11682994B2 (en) 2019-09-18 2023-06-20 Rockwell Automation Technologies, Inc. Systems and methods for non-rigid load vibration control
WO2022073680A1 (de) * 2020-10-09 2022-04-14 Liebherr-Werk Biberach Gmbh Hebezeug wie kran sowie verfahren und vorrichtung zum steuern eines solchen hebezeugs
CN112325839A (zh) * 2020-11-23 2021-02-05 李玉凤 一种输电铁塔塔材微形变在线监测装置
CN112325839B (zh) * 2020-11-23 2022-04-26 上海圣享科技股份有限公司 一种输电铁塔塔材微形变在线监测装置
CN114890322A (zh) * 2022-07-14 2022-08-12 菏泽广泰耐磨制品股份有限公司 一种船舶用货物吊装起重装卸设备
CN117401580A (zh) * 2023-12-12 2024-01-16 河南卫华重型机械股份有限公司 一种起重机主梁形变软检测方法
CN117401580B (zh) * 2023-12-12 2024-04-05 河南卫华重型机械股份有限公司 一种起重机主梁形变软检测方法

Also Published As

Publication number Publication date
AU2018296142A1 (en) 2020-01-30
JP2020525373A (ja) 2020-08-27
EP3649072A1 (de) 2020-05-13
AU2024201066A1 (en) 2024-03-07
BR112019027928A2 (pt) 2020-07-14
JP7224330B2 (ja) 2023-02-17
WO2019007541A1 (de) 2019-01-10
EP3649072B1 (de) 2022-05-04
US20200148510A1 (en) 2020-05-14
AU2018296142B2 (en) 2023-11-23
ES2924332T3 (es) 2022-10-06
US11447372B2 (en) 2022-09-20
CN111295354B (zh) 2021-12-24
CN111295354A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
DE102017114789A1 (de) Kran und Verfahren zum Steuern eines solchen Krans
DE102018005068A1 (de) Kran und Verfahren zum Steuern eines solchen Krans
EP3408208B1 (de) Kran und verfahren zum steuern eines solchen krans
EP2272784B1 (de) Kran zum Umschlagen einer an einem Lastseil hängenden Last
EP2502871B1 (de) Kransteuerung, Kran und Verfahren
DE102012220036B4 (de) Bewegungssystem, das ausgestaltet ist, um eine nutzlast inmehrere richtungen zu bewegen
EP1326798B1 (de) Kran oder bagger zum umschlagen von einer an einem lastseil hängenden last mit lastpendelungsdämpfung
AT520008B1 (de) Verfahren zum Dämpfen von Drehschwingungen eines Lastaufnahmeelements einer Hebeeinrichtung
DE102014008094A1 (de) Verfahren zum Steuern der Ausrichtung einer Kranlast und Auslegekran
DE102012220035B4 (de) Bewegungssystem, das ausgestaltet ist, um eine nutzlast zu bewegen
EP4013713B1 (de) Kran und verfahren zum steuern eines solchen krans
EP2878566B1 (de) Verfahren zur Beeinflussung einer Bewegung einer an einem Kran aufgenommenen Last
DE102007038016A1 (de) Drehleiter
DE102015100669A1 (de) Anti-pendel-steuerverfahren mit einstellbarer unterstützung für den transport einer schwebenden last
DE10029579B4 (de) Verfahren zur Orientierung der Last in Krananlagen
EP1834920B1 (de) Verfahren zum automatischen Umschlagen von einer Last eines Kranes mit Lastpendelungsdämpfung und Bahnplaner
EP1992583B1 (de) Kran mit Kransteuerung
DE102019205329A1 (de) Vorrichtung zur Steuerung einer an einem Strang hängenden Last
EP2902356A1 (de) Kran mit aktiver Dämpfung von Pendelbewegungen der Last
DE102021121818A1 (de) Turmdrehkran, Verfahren und Steuerungseinheit zum Betreiben eines Turmdrehkrans, Laufkatze und Katzfahrwerk
EP2977343B1 (de) Kran mit aktiver Dämpfung von Pendelbewegungen der Last
EP3326957A1 (de) Betriebsverfahren für einen kran

Legal Events

Date Code Title Description
R163 Identified publications notified
R081 Change of applicant/patentee

Owner name: LIEBHERR-WERK BIBERACH GMBH, DE

Free format text: FORMER OWNER: LIEBHERR-COMPONENTS BIBERACH GMBH, 88400 BIBERACH, DE