-
Die Erfindung betrifft ein Verfahren zur Steuerung und/oder Datenerfassung eines Krans, wobei mindestens eine Meßeinrichtung am Kran ein oder mehrere Meßwerte zur Bestimmung der Position eines Lastaufnahmemittels liefert. Der Gegenstand der Erfindung ist zudem auf einen entsprechenden Kran sowie eine geeignete Kransteuerung gerichtet.
-
Die Bestimmung der exakten Hakenposition während des Kranbetriebs ist eine wesentliche Voraussetzung für ein automatisiertes Kransteuerungsverfahren.
-
Bisher wird die Höhe des Kranhakens als Funktion des Radius vom Kran, üblicherweise auch als Ausladung bezeichnet, durch geometrische Zusammenhänge des Kranaufbaus berechnet. Für diese Berechnung wird jedoch ein starrer Krankörper angenommen.
-
Während des Kranbetriebs ist das gesamte Kransystem bzw. sind einzelne Krankomponenten extremen Belastungen durch angreifende Kräfte ausgesetzt. Diese bewirken jedoch eine erhebliche Verformung der geometrischen Kranform, was sodann bei der Berechnung der Position zu Ungenauigkeiten führt.
-
Ein gesteigertes Sicherheitsverlangen während des Kranbetriebs sowie besondere Kraneinsätze verlangen regelmäßig nach einer möglichst präzisen Positionsbestimmung des Lastaufnahmemittels während des Betriebs. Insbesondere fordert ein zuverlässiger Hubkraftbegrenzer eine genaue Positionsbestimmung des Hakens. Zudem wird eine korrekte Ermittlung der Kranhakenposition insbesondere im Tandembetrieb zweier Krane verlangt.
-
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Bestimmung der aktuellen Position eines Lastaufnahmemittels aufzuzeigen, das gegenüber den bekannten Verfahren eine exaktere Positionsbestimmung zulässt.
-
Diese Aufgabe wird durch ein Verfahren gemäß den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausführungen des Verfahrens sind Gegenstand der abhängigen Unteransprüche 2 bis 9.
-
Demnach basiert die Erfindung darauf, daß mindestens eine Meßeinrichtung am Kran ein oder mehrere Meßwerte zur Bestimmung der Position wenigstens eines Lastaufnahmemittels liefert.
-
Als Lastaufnahmemittel dient vorzugsweise ein Kranhaken, jedoch sind alternative Lastaufnahmemittel denkbar, wie beispielsweise ein Tragrahmen, eine Traverse, ein Greifer, ein Magnetaufnahmemittel, etc..
-
Erfindungsgemäß erfolgt eine Berechnung der exakten Position wenigstens eines Lastaufnahmemittels auf Grundlage der ein oder mehreren Meßwerte wenigstens einer Meßeinrichtung sowie ein oder mehrerer die Steifigkeit des Krans charakterisierende Daten. Bevorzugt lassen sich allgemein unter den die Steifigkeit des Krans charakterisierende Daten Werte verstehen, die eine Abweichung der Krangeometrie während des Kranbetriebs von der normalen starren Kranform beschreiben.
-
Die Steifigkeit des Krans charakterisierende Daten umfassen in diesem Zusammenhang insbesondere Daten, die die Biege- und/oder Dehnungs- und/oder Torsionssteifigkeit des Krans bzw. bestimmter Krankomponenten betreffen bzw. ein Maß für die Biegung und/oder Dehnung und/oder Torsion des Krans bzw. bestimmter Krankomponenten liefern.
-
Möglich ist es auch, eine Federkonstante des Krans bzw. einer Krankomponente als die die Steifigkeit des Krans charakterisierende Daten zu berücksichtigen.
-
Das Verfahren wendet sich demnach von der bisherigen Annahme einer starren Kranstruktur ab und berücksichtigt statt dessen Einflüsse auf die Kranstruktur, insbesondere die Auswirkungen der angreifenden Kräfte auf die Krangeometrie bzw. die damit verbunden Verformung der geometrischen Kranform, um eine präzisere Positionsbestimmung des Lastaufnahmemittels zu ermöglichen.
-
Die Position des Lastaufnahmemittels wird vorzugsweise in radialer Richtung R zum Kran sowie in vertikaler Richtung V relativ zum Kran bzw. als Absolutwert in vertikaler Richtung H berechnet.
-
Die Steifigkeit des Krans charakterisierende Daten betreffen bevorzugt die Biegung bzw. Biegesteifigkeit wenigstens einer Krankomponente. Als mögliche Krankomponenten gelten in diesem Zusammenhang der Kranturm bzw. einzelne Turmelemente sowie das Auslegersystem bzw. einzelne Auslegerelemente.
-
Ferner können die die Steifigkeit des Krans charakterisierende Daten die Federung ein oder mehrerer Krankomponenten berücksichtigen. In diesem Zusammenhang ist wenigstens eine Abstützung des Krans zu nennen. Insbesondere soll die Federung wenigstens eines Abstützarms sowie gegebenenfalls die Federung des Abstützungsmechanismus, beispielsweise des entsprechenden Abstützzylinders, Berücksichtigung finden.
-
Die genannten Krankomponenten unterliegen Verformungen, die sich in Abhängigkeit der angehängten Lastmasse und Position bestimmen lassen.
-
Zudem kann unter die die Steifigkeit, insbesondere Dehnsteifigkeit, des Krans charakterisierenden Daten der Zustand wenigstens eines Hubseils fallen. Hier kann die Gesamtsteifigkeit und insbesondere der Seildurchhang und/oder die Seildehnung und/oder die Dehnungssteifigkeit wenigstens eines Hubseils zu einer verbesserten Darstellung des Kransystems beitragen und zu einer präzisieren Positionsbestimmung des verwendeten Lastaufnahmemittels verhelfen.
-
Ein oder mehrere die Steifigkeit des Krans charakterisierende Daten können vorzugsweise durch ein oder mehrere geeignete Meßvorrichtungen während des Kranbetriebs erfaßt und für die Berechnung der Position des Lastaufnahmemittels herangezogen werden.
-
Alternativ kann ein die Kransteifigkeit berücksichtigendes Kranmodell generiert und für die Berechnung der Position des Lastaufnahmemittels Berücksichtigung finden. Die Modellierung des Kranzustands bringt den Vorteil mit sich, daß eine begrenzte Anzahl von Sensoren für die exakte Bestimmung der Position des Lastaufnahmemittels ausreichend ist. Durch die Verwendung von verformbaren Kranmodellen kann eine realitätsnähere Berechnung angestrebt werden.
-
Für die Modellierung lassen sich beispielsweise ein oder mehrere Krankomponenten als elastische Elemente, vorzugsweise Balken darstellen. Die Biegung der Elemente bzw. Balken fließt durch die realitätsnahe Modellierung des Kransystems in die Berechnung der Position des Lastaufnahmemittels ein.
-
Beispielsweise werden ein oder mehrere Turmelemente des Krans als Balken interpretiert, deren Biegung in bekannter Art und Weise simuliert wird. Zudem lassen sich vorzugsweise die Elemente eines Auslegersystems ebenfalls als einzelne Balken auffassen, deren Durchbiegung bestimmbar ist.
-
Zweckmäßig wird das Abstützsystem, insbesondere einzelne Abstützarme bzw. dazugehörige Abstützzylinder als federnde bzw. dämpfende Elemente modelliert.
-
Ferner können dehnbare Elemente für die Generierung eines Kranmodels herangezogen werden, wobei die dehnbaren Elemente insbesondere den Zustand wenigstens eines Hubseils darstellen. Vorzugsweise fließt hierdurch ein möglicher Seildurchhang und bzw. oder eine mögliche Seildehnung wenigstens eines Hubseils in das Kranmodel ein.
-
Für die Bestimmung der Position des Lastaufnahmemittels können gewisse den Kranzustand beschreibende Parameter erforderlich sein. Vorzugsweise erfaßt wenigstens eine am Kran angeordnete Meßeinrichtung die angehängte Lastmasse. Zudem kann der Auslegeraufrichtwinkel meßtechnisch erfaßt werden, insbesondere mittels wenigstens einer am Kran angeordneten und dafür vorgesehenen Meßeinrichtung. Selbstverständlich kann auch die Kranneigung – so beispielsweise bei Montage auf einem Schiff – erfaßt werden, um diese zu berücksichtigen.
-
Wie bereits voranstehend erläutert wurde, wird die exakte Position des Lastaufnahmemittels über den radialen Abstand R zum Kran sowie die vertikale Höhe H des Lastaufnahmemittels beschrieben. Die Biegung des Auslegersystems und/oder die Biegung des Kranturms und gegebenenfalls die Feder- bzw. Dämpfungsbewegung der Abstützvorrichtung kann beispielsweise unter Berücksichtigung der Lastmasse sowie gegebenenfalls des Auslegeraufrichtwinkels berechnet werden. Lastmasse und bzw. oder Auslegeraufrichtwinkel werden in diesem Fall zweckmäßig mittelbar oder unmittelbar per Messung bestimmt.
-
Der radiale Abstand R des Lastaufnahmemittels zum Kran kann sodann anhand der gemessenen Werte sowie der berechneten bzw. modulierten Biegung bzw. Feder- bzw. Dämpfungsbewegung bestimmt werden, insbesondere mittels Transformation aus den zuvor ermittelten Werten abgeleitet werden.
-
In einer Ausführung des Verfahrens ist es denkbar, daß wenigstens eine Meßeinrichtung die abgewickelte Hubseillänge erfaßt.
-
Vorzugsweise kann die Seildehnung und bzw. oder der Seildurchhang wenigstens eines Hubseils in Abhängigkeit des erfaßten Wertes für die abgewickelte Hubseillänge und unter Berücksichtigung des ermittelten Abstands R berechnet bzw. modelliert werden. Die Höhe H des Lastaufnahmemittels lässt sich sodann aus den berechneten Werten ableiten, insbesondere durch Berechnungen ermitteln.
-
Das erfindungsgemäße Verfahren ermöglicht demnach eine besonders exakte Bestimmung der Koordinaten R und H. Das Verfahren verlangt keine Installation zusätzlicher Sensoren, sondern die Positionsbestimmung kann mittels der üblichen Sensoren ausgeführt werden.
-
Grundsätzlich besteht die Möglichkeit, einzelne Modellparameter meßtechnisch zu erfassen bzw. diese anhand bestimmter Meßwerte abzuleiten. So kann es zweckmäßig sein, die Biegung des Kranturms bzw. des Auslegersystems durch geeignete Meßeinrichtungen zu erfassen. Gleiches gilt für Parameter, die sowohl federnde bzw. dämpfende Elemente und bzw. oder dehnbare Elemente charakterisieren.
-
Eine exakte Positionsbestimmung des Lastaufnahmemittels ist insbesondere bei sogenannten Mehrkransteuerungen wünschenswert, da in diesen Fällen geringfügige Abweichungen der tatsächlichen Position der gemeinsamen Last bzw. Lastaufnahmemittels von einer steuerungstechnisch ermittelten Position zu einer erheblichen Gefährdung des Kranbetriebs führen können. Das erfindungsgemäße Verfahren eignet sich insbesondere zur Steuerung eines Kran-Tandemsystems. Weiterhin ist die Anwendung des erfindungsgemäßen Verfahrens insbesondere bei der Implementierung von Greifersteuerungen bzw. Hubkraftbegrenzern sinnvoll.
-
Die Erfindung betrifft des Weiteren eine Kransteuerung für einen Kran zur Ausführung des eingangs beschriebenen Verfahrens. Die Vorteile und Einzelheiten des erfindungsgemäßen Verfahrens gelten demnach offensichtlich für die Ausführung der erfindungsgemäßen Kransteuerung, weshalb an dieser Stelle auf eine erneute Beschreibung verzichtet wird.
-
Ferner ist die Erfindung auf einen Kran mit einer derartigen Kransteuerung gerichtet. Die Vorteile und Eigenschaften des erfindungsgemäßen Verfahrens treffen demnach analog auf die Ausführung des erfindungsgemäßen Krans zu.
-
Besonders vorteilhaft ist es, wenn wenigstens eine Meßeinrichtung des Krans ein oder mehrere DMS-Elemente aufweist. Die Anordnung einzelner Dehnmeßstreifen am Kransystem erlaubt eine einfache Erfassung der Verformung, insbesondere Biegung, bestimmter Krankomponenten. Insbesondere ist die Anordnung am Auslegersystem bzw. an einzelnen Elementen des Auslegersystems sinnvoll. Darüber hinaus eignet sich der Einsatz ein oder mehrerer Dehnmeßstreifen am Kranturm, um die Biegung des Kranturms bzw. einzelner Kranturmelemente zu erfassen.
-
Weiterhin vorteilhaft ist es, wenn wenigstens eine Meßeinrichtung eine am Einziehwerk angeordnete Sensorik umfasst. Eine derartige Sensorik erlaubt die Messung der abgewickelten Seillänge, die insbesondere für die Berechnung der Höhe H wenigstens eines Lastaufnahmemittels, insbesondere eines Kranhakens berücksichtigt wird. Diesbezügliche Meßwerte können ebenfalls oder alternativ durch ein oder mehrere Seilrollen geliefert werden.
-
Zudem kann zweckmäßig eine Sensorik am Wippwerk vorgesehen sein, um den Zustand des Wippwerks bzw. den Wippwinkel des Auslegersystems zu messen. Möglich ist auch ein Winkelgeber, der am Auslegersystem bzw. am Wippgelenk montiert ist und den tatsächlichen Aufrichtwinkel des Auslegersystems erfaßt.
-
Ein weiterer Gegenstand der vorliegenden Erfindung bezieht sich auf ein Tandem-Kransystem, das aus wenigstens zwei Kranen besteht. Erfindungsgemäß weist wenigstens ein Kran bzw. das gesamte Tandem-Kransystem mindestens eine Kransteuerung gemäß einer der voranstehend beschriebenen vorteilhaften Ausführungen auf. Zwei oder mehrere Krane werden vorzugsweise durch eine einheitliche Kransteuerung betrieben und können folglich simultan von einem Kranführer gesteuert werden.
-
Die Erfindung betrifft des Weiteren einen Datenträger mit einer gespeicherten Software für eine Kransteuerung, die zur Ausführung des erfindungsgemäßen Verfahrens bzw. einer vorteilhaften Ausführung des erfindungsgemäßen Verfahrens geeignet ist. Die Vorteile und Eigenschaften des beanspruchten Datenträgers entsprechen folglich denen des erfindungsgemäßen Verfahrens.
-
Weitere Vorteile und Einzelheiten der Erfindung sollen anhand der folgenden Zeichnungen näher beschrieben werden. Es zeigen:
-
1: ein skizziertes Kranmodell zur Berechnung der exakten Position eines Lastaufnahmemittels und
-
2: einen Berechnungsflussplan für die Bestimmung der Position des Lastaufnahmemittels.
-
Das erfindungsgemäße Verfahren soll an einem herkömmlichen Kran verdeutlicht werden. Der Kran umfasst einen senkrecht stehenden Kranturm, der auf einer relativ zum Unterwagen verdrehbaren Drehbühne aufgesetzt ist. Der Unterwagen ist mit einer entsprechenden Abstützvorrichtung aus einzelnen Abstützarmen sowie entsprechenden Abstützzylindern zur Bedienung der Abstützarme ausgeführt. Die Drehbühne ist via Drehkranz mit dem Unterwagen verbunden. Ferner umfasst der Kran einen Ausleger, der mit Hilfe eines Wippwerks wippbar am Kranturm befestigt ist. Das Hubseil verläuft ausgehend von der Seilwinde über mehrere Seilrollen am Kranturm über die Turmspitze bis hin zur Spitze des Auslegersystems. Endseitig ist ein Kranhaken als Lastaufnahmemittel angeschlagen. Das Hubseil lässt sich in drei einzelne Seilstücke unterteilen, insbesondere den Seilabschnitt entlang des Kranturms, den Seilabschnitt zwischen Turm- und Auslegerspitze sowie den Seilabschnitt zwischen Auslegerspitze und Kranhaken, wobei die Seilstücke im allgemeinen als Flaschenzugsystem ausgeführt sind.
-
Der Kran besitzt weiterhin eine Kransteuerung, die zumindest für die wesentlichen Steuerungsaufgaben verantwortlich ist. Ein Teil der Steuerungsaufgaben setzt die Kenntnis der Steuerung über die tatsächliche Position der Last bzw. des Lastaufnahmemittels voraus. Hierzu besitz die Steuerung ein passendes Modul, daß die aktuelle Position des Lastaufnahmemittels während des Kranbetriebs ermittelt.
-
Bisher wurde die Höhe des Kranhakens als Funktion des radialen Abstands des Kranhakens zum Kran, d. h. der Kranausladung, auf Grundlage der geometrischen Zusammenhänge der Kranstruktur berechnet. Hierbei wurde immer von einem starren Kranmodell ausgegangen, daß stets seine ursprüngliche geometrische Ausgestaltung beibehält. Allerdings werden die in der Realität auftretenden Kranverformungen infolge der angreifenden Kräfte, insbesondere der Lastmasse, nur unzureichend gewürdigt bzw. vollständig vernachlässigt. Dies führt nachteilig zu erheblichen Ungenauigkeiten bei der Positionsbestimmung.
-
Das erfindungsgemäße Verfahren, das von der Kransteuerung ausgeführt wird, verfolgt demgegenüber den Ansatz, eine exaktere Positionsbestimmung des Kranhakens zu ermöglichen, indem durch Berücksichtigung ein oder mehrere die Verformung des Krans charakterisierende Daten eine realitätsnähere Berechnung ermöglicht wird. Die Kransteuerung sieht hierzu ein geeignetes Softwaremodul vor, das den Kran mit Hilfe des in 1 beispielhaft dargestellten Kranmodells modelliert.
-
Die Elastizität der Abstützvorrichtung 2 bestehend aus den Abstützarmen sowie Abstützzylindern wird über vertikal ausgerichtete Federdämpferelemente modelliert, die eine federnde Bewegung entlang der Federachse simulieren sollen.
-
Der Krankörper selbst wird über mehrere elastische Balken modelliert, wobei der Unterwagen 1 sowie die darauf aufgesetzte Drehbühne 3 als waagrechte Balken und der Kranturm 4 aus zwei zusammengesetzten vertikal stehenden Balken modelliert wird. Der als Balken modellierte Ausleger 5 ist am Kranturm 4 wippbar angelenkt und erstreckt sich ausgehend vom Anlenkpunkt mit dem Auslegeraufrichtwinkel 9 gegenüber der Horizontalen vom Kranturm 4 weg. Zudem berücksichtigt das generierte Kranmodell die Dehnbarkeit des Hubseils, wobei insbesondere ein Seildurchhang 6, 7 an den Seilstücken entlang des Kranturms sowie zwischen Turm- und Auslegerspitze angenommen und entsprechend modelliert wird.
-
Der Auslegeraufrichtwinkel 9 wird über eine am Kran, insbesondere am Wippwerk angeordnete Meßeinrichtung erfaßt und der Kransteuerung mitgeteilt. Zudem werden die Hakenmasse 10 bzw. Lastmasse über eine weitere Meßeinrichtung erfaßt und die entsprechenden Meßwerte werden der Kransteuerung mitgeteilt. Die Hubseilwinde 11 liefert Zusatzinformationen, die die abgewickelte Seillänge des Hubseils betreffen. Vorzugsweise wird die Windenposition und bzw. oder die Position ein oder mehrerer Seilrollen für die Bestimmung der Seillänge herangezogen.
-
Der Auslegerwinkel 9 bestimmt neben der Hakenmasse 10 und den daraus erfolgten Verformungen der Balken, das heißt des Unterwagens 1, der Drehbühne 3 sowie des Kranturms 4 und des Auslegers 5, und der Feder- bzw. Dämpfungsbewegung des Abstützsystems 2 den Radius R. Die Hakenhöhe H kann sodann durch die Zusatzinformation der Seilwinde 11 sowie dem modellierten Seildurchhang 6, 7 bestimmt werden. Die Berechnung der entsprechenden Balkenbiegung der als Balken modellierten Krankomponenten 1, 3 bis 5 erfolgt durch eine Messung der am Haken hängenden Last sowie der jeweiligen Position.
-
2 zeigt ein Berechnungs-Flussdiagramm, das eine chronologische Reihenfolge der einzelnen Verfahrensschritte zeigt.
-
Zu Beginn wird über eine Meßeinrichtung die Lastmasse am Kranhaken 10 bestimmt. Mit Hilfe des Kranmodells werden unter Berücksichtigung der angreifenden Kräfte, insbesondere der Gewichtskraft der Lastmasse, die notwendigen die Kransteifigkeit charakterisierenden Daten bestimmt. Die Daten umfassen die Verformung bzw. Biegung der Balken der Krankomponenten 1, 3 bis 5 betreffen sowie die Federbewegung der Abstützvorrichtung 2. Durch Transformation der genannten Werte lässt sich die Position des Kranhakens 10 in radialer Richtung R bestimmen.
-
Mit Hilfe des Abstands R sowie der Zusatzinformation über den Zustand des Hubseils kann der tatsächliche Verlauf des Hubseils, insbesondere mögliche Seilkurven sowie die Seildehnung des Hubseils, ziemlich genau nachgebildet werden und für die Berechnung der Höhe der Last über der Kranstandfläche verwendet werden. Ausgehend vom radialen Abstand R und dieser Zusatzinformation kann mittels Berechnung ein Wert H für die vertikale Hakenhöhe H ermittelt werden.
-
Die Berücksichtigung der Verformungsparameter sowie des exakten Verlaufs des Hubseils sowie dessen Dehnung führt zu einer im Vergleich zum Stand der Technik genaueren Positionsbestimmung des Kranhakens 10. Zudem setzt das modellbasierte Verfahren keine zusätzliche Sensorik zur Erfassung bestimmter Parameter voraus. Neben der Lastmasse muss lediglich der Auslegeraufrichtwinkel 9 des Auslegers 5 bestimmt werden. Die dazu notwendigen Meßeinrichtungen sind üblicherweise ohnehin vorhanden. Ein bestehendes Kransystem kann mittels Softwareupdate der Kransteuerung für die Ausführung des erfindungsgemäßen Verfahrens nachgerüstet werden.
-
Zudem besteht die Möglichkeit, die Balkenbiegung an allen oder einzelnen Balken nicht zu berechnen, sondern über installierte DMS-Elemente zu bestimmen, um dem Kranmodell sodann exakte Meßwerte zuführen zu können.