EP2636634B1 - Kran und Verfahren zur Kransteuerung - Google Patents

Kran und Verfahren zur Kransteuerung Download PDF

Info

Publication number
EP2636634B1
EP2636634B1 EP12008081.7A EP12008081A EP2636634B1 EP 2636634 B1 EP2636634 B1 EP 2636634B1 EP 12008081 A EP12008081 A EP 12008081A EP 2636634 B1 EP2636634 B1 EP 2636634B1
Authority
EP
European Patent Office
Prior art keywords
crane
load
boom
cable
lifting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12008081.7A
Other languages
English (en)
French (fr)
Other versions
EP2636634A1 (de
Inventor
Johannes Karl Eberharter
Klaus Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Werk Nenzing GmbH
Original Assignee
Liebherr Werk Nenzing GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Werk Nenzing GmbH filed Critical Liebherr Werk Nenzing GmbH
Publication of EP2636634A1 publication Critical patent/EP2636634A1/de
Application granted granted Critical
Publication of EP2636634B1 publication Critical patent/EP2636634B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/26Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes for use on building sites; constructed, e.g. with separable parts, to facilitate rapid assembly or dismantling, for operation at successively higher levels, for transport by road or rail

Definitions

  • the invention relates to a method for controlling and / or data acquisition of a crane, wherein at least one measuring device on the crane provides one or more measured values for determining the position of a load receiving means.
  • the subject of the invention is also directed to a corresponding crane and a suitable crane control.
  • the determination of the exact hook position during crane operation is an essential prerequisite for an automated crane control method.
  • the height of the crane hook is calculated as a function of the radius of the crane, usually also referred to as a projection, by geometric relationships of the crane structure. For this calculation, however, a rigid crane body is assumed.
  • a generic method for controlling and / or data acquisition of a crane with the features of the preamble of claim 1 is already known from JP 2008 189401A known.
  • Object of the present invention is to provide a method for determining the current position of a lifting device, which allows a more exact position determination over the known methods.
  • the invention is based on the fact that at least one measuring device on the crane provides one or more measured values for determining the position of at least one load receiving means.
  • load-receiving means is preferably a crane hook, but alternative load-carrying means are conceivable, such as a support frame, a traverse, a gripper, a magnetic receiving means, etc ..
  • a calculation of the exact position of at least one load receiving means on the basis of the one or more measured values takes place at least a measuring device and one or more of the rigidity of the crane characterizing data.
  • values that characterize the rigidity of the crane can be understood as meaning values that correspond to a deviation of the crane geometry describe the normal rigid crane shape during crane operation.
  • Data characterizing the rigidity of the crane in this context include in particular data relating to the bending and / or expansion and / or torsional rigidity of the crane or of certain crane components or a measure of the bending and / or expansion and / or torsion of the crane or certain crane components.
  • the method therefore turns away from the previous assumption of a rigid crane structure and instead takes into account influences on the crane structure, in particular the effects of the attacking forces on the crane geometry or the associated deformation of the geometric crane shape to allow a more precise position determination of the lifting device.
  • the position of the load receiving means is preferably calculated in the radial direction R to the crane and in the vertical direction V relative to the crane or as an absolute value in the vertical direction H.
  • the data characterizing the rigidity of the crane preferably relate to the bending or flexural rigidity of at least one crane component.
  • Possible crane components in this context are the crane tower or individual tower elements as well as the boom system or individual boom elements.
  • the data characterizing the rigidity of the crane may take into account the suspension of one or more crane components.
  • at least one support of the crane should be mentioned.
  • the suspension of at least one Abstützarms and possibly the suspension of the support mechanism, For example, the corresponding support cylinder take into account.
  • the mentioned crane components are subject to deformation, which can be determined depending on the attached load mass and position.
  • the state of at least one hoisting rope can fall.
  • the overall stiffness and in particular the rope sag and / or the rope elongation and / or the expansion stiffness of at least one hoist rope can contribute to an improved representation of the crane system and help to more precisely determine the position of the load handling device used.
  • One or more data characterizing the rigidity of the crane may preferably be detected by one or more suitable measuring devices during crane operation and used to calculate the position of the load handling device.
  • a crane model that takes into account the crane rigidity is generated and taken into account for the calculation of the position of the load-carrying device.
  • the modeling of the crane condition has the advantage that a limited number of sensors is sufficient for the exact determination of the position of the lifting device. By using deformable crane models, a more realistic calculation can be sought.
  • one or more crane components can be represented as elastic elements, preferably beams, for the modeling.
  • the bending of the elements or beams flows through the realistic modeling of the crane system in the calculation of the position of the lifting device.
  • one or more tower elements of the crane are interpreted as beams, the bending of which is simulated in a known manner.
  • the elements of a cantilever system also consider as a single bar whose deflection is determinable.
  • the support system in particular individual support arms or associated support cylinders is modeled as resilient or damping elements.
  • expandable elements can be used for the generation of a crane model, wherein the expandable elements in particular represent the state of at least one hoisting rope.
  • the expandable elements in particular represent the state of at least one hoisting rope.
  • Certain parameters describing the crane condition may be required to determine the position of the lifting device.
  • at least one measuring device arranged on the crane detects the attached load mass.
  • the Auslegeraufrichtwinkel can be detected by measurement, in particular by means of at least one arranged on the crane and provided for measuring device.
  • the Kranne Trent - for example, when mounted on a ship - are recorded to take these into account.
  • the deflection of the boom system and / or the bending of the crane tower and optionally the spring or damping movement of the support device can be calculated, for example, taking into account the load mass and, if appropriate, the boom erection angle. Load mass and / or boom uprising angle are determined in this case appropriate indirectly or directly by measurement.
  • the radial distance R of the load-receiving means to the crane can then be determined on the basis of the measured values and the calculated or modulated bending or spring deflection. or damping movement are determined, in particular by means of transformation derived from the previously determined values.
  • At least one measuring device detects the unwound Hubseilsurprisingly.
  • the rope elongation and / or the rope sag of at least one hoist rope can be calculated or modeled as a function of the detected value for the unwound hoist rope length and taking into account the determined distance R.
  • the height H of the load-receiving means can then be derived from the calculated values, in particular by calculations.
  • the method according to the invention thus makes it possible to determine the coordinates R and H in a particularly exact manner.
  • the method requires no installation of additional sensors, but the position determination can be carried out by means of the usual sensors.
  • the inventive method is particularly suitable for controlling a crane tandem system. Furthermore, the application of the method according to the invention is particularly useful in the implementation of gripper controls or Hubkraftbegrenzern.
  • the invention further relates to a crane control for a crane for carrying out the method described above.
  • the advantages and details of the method according to the invention therefore obviously apply to the execution of the crane control according to the invention, which is why a renewed description is omitted here.
  • the invention is directed to a crane with such a crane control.
  • the advantages and properties of the method according to the invention accordingly apply analogously to the design of the crane according to the invention.
  • At least one measuring device of the crane has one or more strain gauge elements.
  • the arrangement of individual strain gauges on the crane system allows easy detection of the deformation, in particular bending, of certain crane components.
  • the arrangement on the boom system or on individual elements of the boom system makes sense.
  • the use of one or more strain gauges on the crane tower to detect the bending of the crane tower or individual crane tower elements.
  • At least one measuring device comprises a sensor arranged on the retractable sensor.
  • a sensor allows the measurement of the unwound cable length, which is considered in particular for the calculation of the height H of at least one lifting device, in particular a crane hook.
  • Related measurements may also or alternatively be provided by one or more pulleys.
  • a sensor system on the luffing mechanism in order to measure the condition of the luffing mechanism or the luffing angle of the boom system.
  • an angle encoder which is mounted on the boom system or on the rocker joint and detects the actual Aufrichtwinkel the boom system.
  • Another object of the present invention relates to a tandem crane system consisting of at least two cranes.
  • at least a crane or the entire tandem crane system on at least one crane control according to one of the above-described advantageous embodiments.
  • Two or more cranes are preferably operated by a uniform crane control and thus can be controlled simultaneously by a crane operator.
  • the invention further relates to a data carrier with a stored software for a crane control, which is suitable for carrying out the method according to the invention or an advantageous embodiment of the method according to the invention.
  • the advantages and properties of the claimed data carrier thus correspond to those of the method according to the invention.
  • the method according to the invention will be illustrated on a conventional crane.
  • the crane comprises a vertical crane tower, which is mounted on a rotatable relative to the undercarriage turntable.
  • the undercarriage is designed with a corresponding support device of individual support arms and corresponding support cylinders for operating the support arms.
  • the revolving stage is connected via turntable to the undercarriage.
  • the crane comprises a boom, which is attached by means of a luffing rocking on the crane tower.
  • the hoisting rope runs from the cable winch over several pulleys on the crane tower over the top of the tower to the top of the boom system.
  • a crane hook is struck as a load handling device.
  • the hoisting rope can be subdivided into three individual rope pieces, in particular the rope section along the crane tower, the cable section between the tower and boom tip and the cable section between boom tip and crane hook, the cable pieces are generally designed as a pulley system.
  • the crane also has a crane control, which is at least responsible for the essential control tasks. Part of the control tasks requires the knowledge of the control over the actual position of the load or the lifting device.
  • the controller has a suitable module that determines the current position of the lifting device during crane operation.
  • the height of the crane hook has been determined as a function of the radial distance of the crane hook to the crane, i. the crane overhang, calculated on the basis of the geometric relationships of the crane structure.
  • This has always been based on a rigid crane model that always retains its original geometric design.
  • the crane deformations occurring in reality as a result of the attacking forces, in particular the load mass are insufficiently appreciated or completely neglected. This leads disadvantageously to considerable inaccuracies in determining the position.
  • the method according to the invention which is carried out by the crane control, pursues the approach of enabling a more exact position determination of the crane hook by allowing a more realistic calculation by taking into account one or more data characterizing the deformation of the crane.
  • the crane control system provides for a suitable software module which uses the crane in accordance with the FIG. 1 modeled crane model exemplified.
  • the elasticity of the supporting device 2 consisting of the support arms and support cylinders is modeled via vertically oriented spring damper elements which are intended to simulate a resilient movement along the spring axis.
  • the crane body itself is modeled on several elastic beams, the undercarriage 1 and the turntable 3 mounted thereon as a horizontal bar and the crane tower 4 is modeled from two composite vertical standing beams.
  • the beam 5 modeled as a beam is pivoted on the crane tower 4 and extends starting from the point of articulation with the boom elevation angle 9 with respect to the horizontal from the crane tower 4.
  • the generated crane model takes into account the extensibility of the hoisting rope, in particular a rope slack 6, 7 being assumed on the rope sections along the crane tower and between the tower and jib tip and correspondingly modeled.
  • the jib raising angle 9 is detected by means of a measuring device arranged on the crane, in particular on the luffing mechanism, and communicated to the crane control.
  • the hook mass 10 or load mass are detected via a further measuring device and the corresponding measured values are communicated to the crane control.
  • the hoist winch 11 provides additional information concerning the unwound rope length of the hoist rope.
  • the winch position and / or the position of one or more pulleys is used for the determination of the rope length.
  • the hook height H can then be determined by the additional information of the winch 11 and the modeled rope sag 6, 7.
  • the calculation of the corresponding beam bending of the crane components 1, 3 to 5 modeled as beams is carried out by measuring the load suspended on the hook and the respective position.
  • FIG. 2 shows a calculation flow chart showing a chronological order of the individual process steps.
  • the load mass on the crane hook 10 is determined via a measuring device.
  • the attacking Forces in particular the weight of the load mass, determines the necessary data characterizing the crane rigidity.
  • the data include the deformation or bending of the beams of the crane components 1, 3 to 5 and the spring movement of the supporting device 2.
  • the position of the crane hook 10 in the radial direction R can be determined.
  • a value H for the vertical hook height H can be determined by means of calculation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Control And Safety Of Cranes (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Steuerung und/ oder Datenerfassung eines Krans, wobei mindestens eine Meßeinrichtung am Kran ein oder mehrere Meßwerte zur Bestimmung der Position eines Lastaufnahmemittels liefert. Der Gegenstand der Erfindung ist zudem auf einen entsprechenden Kran sowie eine geeignete Kransteuerung gerichtet.
  • Die Bestimmung der exakten Hakenposition während des Kranbetriebs ist eine wesentliche Voraussetzung für ein automatisiertes Kransteuerungsverfahren.
  • Bisher wird die Höhe des Kranhakens als Funktion des Radius vom Kran, üblicherweise auch als Ausladung bezeichnet, durch geometrische Zusammenhänge des Kranaufbaus berechnet. Für diese Berechnung wird jedoch ein starrer Krankörper angenommen.
  • Während des Kranbetriebs ist das gesamte Kransystem bzw. sind einzelne Krankomponenten extremen Belastungen durch angreifende Kräfte ausgesetzt. Diese bewirken jedoch eine erhebliche Verformung der geometrischen Kranform, was sodann bei der Berechnung der Position zu Ungenauigkeiten führt.
  • Ein gesteigertes Sicherheitsverlangen während des Kranbetriebs sowie besondere Kraneinsätze verlangen regelmäßig nach einer möglichst präzisen Positionsbestimmung des Lastaufnahmemittels während des Betriebs. Insbesondere fordert ein zuverlässiger Hubkraftbegrenzer eine genaue Positionsbestimmung des Hakens. Zudem wird eine korrekte Ermittlung der Kranhakenposition insbesondere im Tandembetrieb zweier Krane verlangt.
  • Ein gattungsgemäßes Verfahren zur Steuerung und/ oder zur Datenerfassung eines Krans mit den Merkmalen des Oberbegriffes Anspruchs 1 ist bereits aus der JP 2008 189401A bekannt.
  • Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Bestimmung der aktuellen Position eines Lastaufnahmemittels aufzuzeigen, das gegenüber den bekannten Verfahren eine exaktere Positionsbestimmung zulässt.
  • Diese Aufgabe wird durch ein Verfahren gemäß den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausführungen des Verfahrens sind Gegenstand der abhängigen Unteransprüche 2 bis 8.
  • Demnach basiert die Erfindung darauf, daß mindestens eine Meßeinrichtung am Kran ein oder mehrere Meßwerte zur Bestimmung der Position wenigstens eines Lastaufnahmemittels liefert.
  • Als Lastaufnahmemittel dient vorzugsweise ein Kranhaken, jedoch sind alternative Lastaufnahmemittel denkbar, wie beispielsweise ein Tragrahmen, eine Traverse, ein Greifer, ein Magnetaufnahmemittel, etc..
  • Erfindungsgemäß erfolgt eine Berechnung der exakten Position wenigstens eines Lastaufnahmemittels auf Grundlage der ein oder mehreren Meßwerte wenigstens einer Meßeinrichtung sowie ein oder mehrerer die Steifigkeit des Krans charakterisierende Daten. Bevorzugt lassen sich allgemein unter den die Steifigkeit des Krans charakterisierende Daten Werte verstehen, die eine Abweichung der Krangeometrie während des Kranbetriebs von der normalen starren Kranform beschreiben.
  • Die Steifigkeit des Krans charakterisierende Daten umfassen in diesem Zusammenhang insbesondere Daten, die die Biege- und/oder Dehnungs- und/oder Torsionssteifigkeit des Krans bzw. bestimmter Krankomponenten betreffen bzw. ein Maß für die Biegung und/oder Dehnung und/oder Torsion des Krans bzw. bestimmter Krankomponenten liefern.
  • Möglich ist es auch, eine Federkonstante des Krans bzw. einer Krankomponente als die die Steifigkeit des Krans charakterisierende Daten zu berücksichtigen.
  • Das Verfahren wendet sich demnach von der bisherigen Annahme einer starren Kranstruktur ab und berücksichtigt statt dessen Einflüsse auf die Kranstruktur, insbesondere die Auswirkungen der angreifenden Kräfte auf die Krangeometrie bzw. die damit verbunden Verformung der geometrischen Kranform, um eine präzisere Positionsbestimmung des Lastaufnahmemittels zu ermöglichen.
  • Die Position des Lastaufnahmemittels wird vorzugsweise in radialer Richtung R zum Kran sowie in vertikaler Richtung V relativ zum Kran bzw. als Absolutwert in vertikaler Richtung H berechnet.
  • Die Steifigkeit des Krans charakterisierende Daten betreffen bevorzugt die Biegung bzw. Biegesteifigkeit wenigstens einer Krankomponente. Als mögliche Krankomponenten gelten in diesem Zusammenhang der Kranturm bzw. einzelne Turmelemente sowie das Auslegersystem bzw. einzelne Auslegerelemente.
  • Ferner können die die Steifigkeit des Krans charakterisierende Daten die Federung ein oder mehrerer Krankomponenten berücksichtigen. In diesem Zusammenhang ist wenigstens eine Abstützung des Krans zu nennen. Insbesondere soll die Federung wenigstens eines Abstützarms sowie gegebenenfalls die Federung des Abstützungsmechanismus, beispielsweise des entsprechenden Abstützzylinders, Berücksichtigung finden.
  • Die genannten Krankomponenten unterliegen Verformungen, die sich in Abhängigkeit der angehängten Lastmasse und Position bestimmen lassen.
  • Zudem kann unter die die Steifigkeit, insbesondere Dehnsteifigkeit, des Krans charakterisierenden Daten der Zustand wenigstens eines Hubseils fallen. Hier kann die Gesamtsteifigkeit und insbesondere der Seildurchhang und/oder die Seildehnung und/oder die Dehnungssteifigkeit wenigstens eines Hubseils zu einer verbesserten Darstellung des Kransystems beitragen und zu einer präzisieren Positionsbestimmung des verwendeten Lastaufnahmemittels verhelfen.
  • Ein oder mehrere die Steifigkeit des Krans charakterisierende Daten können vorzugsweise durch ein oder mehrere geeignete Meßvorrichtungen während des Kranbetriebs erfaßt und für die Berechnung der Position des Lastaufnahmemittels herangezogen werden.
  • Erfindungsgemäß wird ein die Kransteifigkeit berücksichtigendes Kranmodell generiert und für die Berechnung der Position des Lastaufnahmemittels berücksichtigt. Die Modellierung des Kranzustands bringt den Vorteil mit sich, daß eine begrenzte Anzahl von Sensoren für die exakte Bestimmung der Position des Lastaufnahmemittels ausreichend ist. Durch die Verwendung von verformbaren Kranmodellen kann eine realitätsnähere Berechnung angestrebt werden.
  • Für die Modellierung lassen sich beispielsweise ein oder mehrere Krankomponenten als elastische Elemente, vorzugsweise Balken darstellen. Die Biegung der Elemente bzw. Balken fließt durch die realitätsnahe Modellierung des Kransystems in die Berechnung der Position des Lastaufnahmemittels ein.
  • Beispielsweise werden ein oder mehrere Turmelemente des Krans als Balken interpretiert, deren Biegung in bekannter Art und Weise simuliert wird. Zudem lassen sich vorzugsweise die Elemente eines Auslegersystems ebenfalls als einzelne Balken auffassen, deren Durchbiegung bestimmbar ist.
  • Zweckmäßig wird das Abstützsystem, insbesondere einzelne Abstützarme bzw. dazugehörige Abstützzylinder als federnde bzw. dämpfende Elemente modelliert.
  • Ferner können dehnbare Elemente für die Generierung eines Kranmodels herangezogen werden, wobei die dehnbaren Elemente insbesondere den Zustand wenigstens eines Hubseils darstellen. Vorzugsweise fließt hierdurch ein möglicher Seildurchhang und bzw. oder eine mögliche Seildehnung wenigstens eines Hubseils in das Kranmodel ein.
  • Für die Bestimmung der Position des Lastaufnahmemittels können gewisse den Kranzustand beschreibende Parameter erforderlich sein. Vorzugsweise erfaßt wenigstens eine am Kran angeordnete Meßeinrichtung die angehängte Lastmasse. Zudem kann der Auslegeraufrichtwinkel meßtechnisch erfaßt werden, insbesondere mittels wenigstens einer am Kran angeordneten und dafür vorgesehenen Meßeinrichtung. Selbstverständlich kann auch die Kranneigung - so beispielsweise bei Montage auf einem Schiff - erfaßt werden, um diese zu berücksichtigen.
  • Wie bereits voranstehend erläutert wurde, wird die exakte Position des Lastaufnahmemittels über den radialen Abstand R zum Kran sowie die vertikale Höhe H des Lastaufnahmemittels beschrieben. Die Biegung des Auslegersystems und/oder die Biegung des Kranturms und gegebenenfalls die Feder- bzw. Dämpfungsbewegung der Abstützvorrichtung kann beispielsweise unter Berücksichtigung der Lastmasse sowie gegebenenfalls des Auslegeraufrichtwinkels berechnet werden. Lastmasse und bzw. oder Auslegeraufrichtwinkel werden in diesem Fall zweckmäßig mittelbar oder unmittelbar per Messung bestimmt.
  • Der radiale Abstand R des Lastaufnahmemittels zum Kran kann sodann anhand der gemessenen Werte sowie der berechneten bzw. modulierten Biegung bzw. Feder- bzw. Dämpfungsbewegung bestimmt werden, insbesondere mittels Transformation aus den zuvor ermittelten Werten abgeleitet werden.
  • In einer Ausführung des Verfahrens ist es denkbar, daß wenigstens eine Meßeinrichtung die abgewickelte Hubseillänge erfaßt.
  • Vorzugsweise kann die Seildehnung und bzw. oder der Seildurchhang wenigstens eines Hubseils in Abhängigkeit des erfaßten Wertes für die abgewickelte Hubseillänge und unter Berücksichtigung des ermittelten Abstands R berechnet bzw. modelliert werden. Die Höhe H des Lastaufnahmemittels lässt sich sodann aus den berechneten Werten ableiten, insbesondere durch Berechnungen ermitteln.
  • Das erfindungsgemäße Verfahren ermöglicht demnach eine besonders exakte Bestimmung der Koordinaten R und H. Das Verfahren verlangt keine Installation zusätzlicher Sensoren, sondern die Positionsbestimmung kann mittels der üblichen Sensoren ausgeführt werden.
  • Grundsätzlich besteht die Möglichkeit, einzelne Modellparameter meßtechnisch zu erfassen bzw. diese anhand bestimmter Meßwerte abzuleiten. So kann es zweckmäßig sein, die Biegung des Kranturms bzw. des Auslegersystems durch geeignete Meßeinrichtungen zu erfassen. Gleiches gilt für Parameter, die sowohl federnde bzw. dämpfende Elemente und bzw. oder dehnbare Elemente charakterisieren.
  • Eine exakte Positionsbestimmung des Lastaufnahmemittels ist insbesondere bei sogenannten Mehrkransteuerungen wünschenswert, da in diesen Fällen geringfügige Abweichungen der tatsächlichen Position der gemeinsamen Last bzw. Lastaufnahmemittels von einer steuerungstechnisch ermittelten Position zu einer erheblichen Gefährdung des Kranbetriebs führen können. Das erfindungsgemäße Verfahren eignet sich insbesondere zur Steuerung eines Kran-Tandemsystems. Weiterhin ist die Anwendung des erfindungsgemäßen Verfahrens insbesondere bei der Implementierung von Greifersteuerungen bzw. Hubkraftbegrenzern sinnvoll.
  • Die Erfindung betrifft des Weiteren eine Kransteuerung für einen Kran zur Ausführung des eingangs beschriebenen Verfahrens. Die Vorteile und Einzelheiten des erfindungsgemäßen Verfahrens gelten demnach offensichtlich für die Ausführung der erfindungsgemäßen Kransteuerung, weshalb an dieser Stelle auf eine erneute Beschreibung verzichtet wird.
  • Ferner ist die Erfindung auf einen Kran mit einer derartigen Kransteuerung gerichtet. Die Vorteile und Eigenschaften des erfindungsgemäßen Verfahrens treffen demnach analog auf die Ausführung des erfindungsgemäßen Krans zu.
  • Besonders vorteilhaft ist es, wenn wenigstens eine Meßeinrichtung des Krans ein oder mehrere DMS-Elemente aufweist. Die Anordnung einzelner Dehnmeßstreifen am Kransystem erlaubt eine einfache Erfassung der Verformung, insbesondere Biegung, bestimmter Krankomponenten. Insbesondere ist die Anordnung am Auslegersystem bzw. an einzelnen Elementen des Auslegersystems sinnvoll. Darüber hinaus eignet sich der Einsatz ein oder mehrerer Dehnmeßstreifen am Kranturm, um die Biegung des Kranturms bzw. einzelner Kranturmelemente zu erfassen.
  • Weiterhin vorteilhaft ist es, wenn wenigstens eine Meßeinrichtung eine am Einziehwerk angeordnete Sensorik umfasst. Eine derartige Sensorik erlaubt die Messung der abgewickelten Seillänge, die insbesondere für die Berechnung der Höhe H wenigstens eines Lastaufnahmemittels, insbesondere eines Kranhakens berücksichtigt wird. Diesbezügliche Meßwerte können ebenfalls oder alternativ durch ein oder mehrere Seilrollen geliefert werden.
  • Zudem kann zweckmäßig eine Sensorik am Wippwerk vorgesehen sein, um den Zustand des Wippwerks bzw. den Wippwinkel des Auslegersystems zu messen. Möglich ist auch ein Winkelgeber, der am Auslegersystem bzw. am Wippgelenk montiert ist und den tatsächlichen Aufrichtwinkel des Auslegersystems erfaßt.
  • Ein weiterer Gegenstand der vorliegenden Erfindung bezieht sich auf ein Tandem-Kransystem, das aus wenigstens zwei Kranen besteht. Erfindungsgemäß weist wenigstens ein Kran bzw. das gesamte Tandem-Kransystem mindestens eine Kransteuerung gemäß einer der voranstehend beschriebenen vorteilhaften Ausführungen auf. Zwei oder mehrere Krane werden vorzugsweise durch eine einheitliche Kransteuerung betrieben und können folglich simultan von einem Kranführer gesteuert werden.
  • Die Erfindung betrifft des Weiteren einen Datenträger mit einer gespeicherten Software für eine Kransteuerung, die zur Ausführung des erfindungsgemäßen Verfahrens bzw. einer vorteilhaften Ausführung des erfindungsgemäßen Verfahrens geeignet ist. Die Vorteile und Eigenschaften des beanspruchten Datenträgers entsprechen folglich denen des erfindungsgemäßen Verfahrens.
  • Weitere Vorteile und Einzelheiten der Erfindung sollen anhand der folgenden Zeichnungen näher beschrieben werden. Es zeigen:
  • Figur 1:
    ein skizziertes Kranmodell zur Berechnung der exakten Position eines Lastaufnahmemittels und
    Figur 2:
    einen Berechnungsflussplan für die Bestimmung der Position des Lastaufnahmemittels.
  • Das erfindungsgemäße Verfahren soll an einem herkömmlichen Kran verdeutlicht werden. Der Kran umfasst einen senkrecht stehenden Kranturm, der auf einer relativ zum Unterwagen verdrehbaren Drehbühne aufgesetzt ist. Der Unterwagen ist mit einer entsprechenden Abstützvorrichtung aus einzelnen Abstützarmen sowie entsprechenden Abstützzylindern zur Bedienung der Abstützarme ausgeführt. Die Drehbühne ist via Drehkranz mit dem Unterwagen verbunden. Ferner umfasst der Kran einen Ausleger, der mit Hilfe eines Wippwerks wippbar am Kranturm befestigt ist. Das Hubseil verläuft ausgehend von der Seilwinde über mehrere Seilrollen am Kranturm über die Turmspitze bis hin zur Spitze des Auslegersystems. Endseitig ist ein Kranhaken als Lastaufnahmemittel angeschlagen. Das Hubseil lässt sich in drei einzelne Seilstücke unterteilen, insbesondere den Seilabschnitt entlang des Kranturms, den Seilabschnitt zwischen Turm- und Auslegerspitze sowie den Seilabschnitt zwischen Auslegerspitze und Kranhaken, wobei die Seilstücke im allgemeinen als Flaschenzugsystem ausgeführt sind.
  • Der Kran besitzt weiterhin eine Kransteuerung, die zumindest für die wesentlichen Steuerungsaufgaben verantwortlich ist. Ein Teil der Steuerungsaufgaben setzt die Kenntnis der Steuerung über die tatsächliche Position der Last bzw. des Lastaufnahmemittels voraus. Hierzu besitz die Steuerung ein passendes Modul, daß die aktuelle Position des Lastaufnahmemittels während des Kranbetriebs ermittelt.
  • Bisher wurde die Höhe des Kranhakens als Funktion des radialen Abstands des Kranhakens zum Kran, d.h. der Kranausladung, auf Grundlage der geometrischen Zusammenhänge der Kranstruktur berechnet. Hierbei wurde immer von einem starren Kranmodell ausgegangen, daß stets seine ursprüngliche geometrische Ausgestaltung beibehält. Allerdings werden die in der Realität auftretenden Kranverformungen infolge der angreifenden Kräfte, insbesondere der Lastmasse, nur unzureichend gewürdigt bzw. vollständig vernachlässigt. Dies führt nachteilig zu erheblichen Ungenauigkeiten bei der Positionsbestimmung.
  • Das erfindungsgemäße Verfahren, das von der Kransteuerung ausgeführt wird, verfolgt demgegenüber den Ansatz, eine exaktere Positionsbestimmung des Kranhakens zu ermöglichen, indem durch Berücksichtigung ein oder mehrere die Verformung des Krans charakterisierende Daten eine realitätsnähere Berechnung ermöglicht wird. Die Kransteuerung sieht hierzu ein geeignetes Softwaremodul vor, das den Kran mit Hilfe des in Figur 1 beispielhaft dargestellten Kranmodells modelliert.
  • Die Elastizität der Abstützvorrichtung 2 bestehend aus den Abstützarmen sowie Abstützzylindern wird über vertikal ausgerichtete Federdämpferelemente modelliert, die eine federnde Bewegung entlang der Federachse simulieren sollen.
  • Der Krankörper selbst wird über mehrere elastische Balken modelliert, wobei der Unterwagen 1 sowie die darauf aufgesetzte Drehbühne 3 als waagrechte Balken und der Kranturm 4 aus zwei zusammengesetzten vertikal stehenden Balken modelliert wird. Der als Balken modellierte Ausleger 5 ist am Kranturm 4 wippbar angelenkt und erstreckt sich ausgehend vom Anlenkpunkt mit dem Auslegeraufrichtwinkel 9 gegenüber der Horizontalen vom Kranturm 4 weg. Zudem berücksichtigt das generierte Kranmodell die Dehnbarkeit des Hubseils, wobei insbesondere ein Seildurchhang 6, 7 an den Seilstücken entlang des Kranturms sowie zwischen Turm- und Auslegerspitze angenommen und entsprechend modelliert wird.
  • Der Auslegeraufrichtwinkel 9 wird über eine am Kran, insbesondere am Wippwerk angeordnete Meßeinrichtung erfaßt und der Kransteuerung mitgeteilt. Zudem werden die Hakenmasse 10 bzw. Lastmasse über eine weitere Meßeinrichtung erfaßt und die entsprechenden Meßwerte werden der Kransteuerung mitgeteilt. Die Hubseilwinde 11 liefert Zusatzinformationen, die die abgewickelte Seillänge des Hubseils betreffen. Vorzugsweise wird die Windenposition und bzw. oder die Position ein oder mehrerer Seilrollen für die Bestimmung der Seillänge herangezogen.
  • Der Auslegerwinkel 9 bestimmt neben der Hakenmasse 10 und den daraus erfolgten Verformungen der Balken, das heißt des Unterwagens 1, der Drehbühne 3 sowie des Kranturms 4 und des Auslegers 5, und der Feder- bzw. Dämpfungsbewegung des Abstützsystems 2 den Radius R. Die Hakenhöhe H kann sodann durch die Zusatzinformation der Seilwinde 11 sowie dem modellierten Seildurchhang 6, 7 bestimmt werden. Die Berechnung der entsprechenden Balkenbiegung der als Balken modellierten Krankomponenten 1, 3 bis 5 erfolgt durch eine Messung der am Haken hängenden Last sowie der jeweiligen Position.
  • Figur 2 zeigt ein Berechnungs-Flussdiagramm, das eine chronologische Reihenfolge der einzelnen Verfahrensschritte zeigt.
  • Zu Beginn wird über eine Meßeinrichtung die Lastmasse am Kranhaken 10 bestimmt. Mit Hilfe des Kranmodells werden unter Berücksichtigung der angreifenden Kräfte, insbesondere der Gewichtskraft der Lastmasse, die notwendigen die Kransteifigkeit charakterisierenden Daten bestimmt. Die Daten umfassen die Verformung bzw. Biegung der Balken der Krankomponenten 1, 3 bis 5 betreffen sowie die Federbewegung der Abstützvorrichtung 2. Durch Transformation der genannten Werte lässt sich die Position des Kranhakens 10 in radialer Richtung R bestimmen.
  • Mit Hilfe des Abstands R sowie der Zusatzinformation über den Zustand des Hubseils kann der tatsächliche Verlauf des Hubseils, insbesondere mögliche Seilkurven sowie die Seildehnung des Hubseils, ziemlich genau nachgebildet werden und für die Berechnung der Höhe der Last über der Kranstandfläche verwendet werden. Ausgehend vom radialen Abstand R und dieser Zusatzinformation kann mittels Berechnung ein Wert H für die vertikale Hakenhöhe H ermittelt werden.
  • Die Berücksichtigung der Verformungsparameter sowie des exakten Verlaufs des Hubseils sowie dessen Dehnung führt zu einer im Vergleich zum Stand der Technik genaueren Positionsbestimmung des Kranhakens 10. Zudem setzt das modellbasierte Verfahren keine zusätzliche Sensorik zur Erfassung bestimmter Parameter voraus. Neben der Lastmasse muss lediglich der Auslegeraufrichtwinkel 9 des Auslegers 5 bestimmt werden. Die dazu notwendigen Meßeinrichtungen sind üblicherweise ohnehin vorhanden. Ein bestehendes Kransystem kann mittels Softwareupdate der Kransteuerung für die Ausführung des erfindungsgemäßen Verfahrens nachgerüstet werden.
  • Zudem besteht die Möglichkeit, die Balkenbiegung an allen oder einzelnen Balken nicht zu berechnen, sondern über installierte DMS-Elemente zu bestimmen, um dem Kranmodell sodann exakte Meßwerte zuführen zu können.

Claims (14)

  1. Verfahren zur Steuerung und/oder zur Datenerfassung eines Krans (1, 2, 3, 4), wobei mindestens eine Meßeinrichtung am Kran ein oder mehrere Meßwerte zur Bestimmung der Position wenigstens eines Lastaufnahmemittels, insbesondere Kranhaken (10), liefert, wobei eine Berechnung der Position des Lastaufnahmemittels auf Grundlage der ein oder mehreren Meßwerte wenigstens einer Meßeinrichtung und ein oder mehrerer die Steifigkeit des Krans charakterisierender Daten erfolgt,
    dadurch gekennzeichnet,
    daß ein die Kransteifigkeit berücksichtigendes Kranmodell erstellt und für die Berechnung der Position des Lastaufnahmemittels berücksichtigt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein oder mehrere die Steifigkeit des Krans (1, 2, 3, 4), charakterisierende Daten die Biegung wenigstens eines Turmelementes (4) bzw. Auslegerelementes (5) und/oder den Seildurchhang (6, 7) und/oder die Seildehnung wenigstens eines Hubseils und/oder die Federung wenigstens einer Abstützvorrichtung (2), insbesondere wenigstens eines Abstützarmes und/oder wenigstens eines Abstützzylinders, umfassen.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein oder mehrere die Steifigkeit des Krans (1, 2, 3, 4) charakterisierende Daten gemessen und/oder berechnet werden.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein oder mehrere Krankomponenten im Kranmodell durch ein oder mehrere elastische Elemente, vorzugsweise Balken, und/oder ein oder mehrere federnde bzw. dämpfende Elemente und/oder ein oder mehrere dehnbare Elemente moduliert werden.
  5. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß wenigstens eine Meßeinrichtung die Lastmasse (10) und/oder einen Auslegeraufrichtwinkel (9) und/oder die abgewickelte Hubseillänge und/oder den Seilwinkel erfaßt.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der radiale Abstand R des Lastaufnahmemittels (10) zum Kran (1, 2, 3, 4) anhand der gemessenen Lastmasse und/oder des gemessenen Auslegeraufrichtwinkels (9) in Verbindung mit der daraus berechneten Biegung des Auslegersystems (5) und/oder der Biegung des Kranturms (4) und/oder der Federbewegung der Abstützvorrichtung bestimmt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Höhe H des Lastaufnahmemittels (10) in Abhängigkeit des radialen Abstands R des Lastaufnahmemittels zum Kran (1, 2, 3, 4) und/oder der Seildehnung und/oder des Seildurchhangs (6, 7) und/oder der abgewickelten Hubseillänge und/oder der Last bestimmt wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Verfahren für die Steuerung einer Mehrkransteuerung, insbesondere eines Kran-Tandemsystems, geeignet ist.
  9. Kransteuerung für einen Kran (1, 2, 3, 4) zur Ausführung des Verfahrens nach einem der voranstehenden Ansprüche.
  10. Kran (1, 2, 3, 4) mit einer Kransteuerung nach Anspruch 9.
  11. Kran (1, 2, 3, 4) nach Anspruch 10, dadurch gekennzeichnet, daß wenigstens eine Meßeinrichtung des Krans ein oder mehrere DMS-Elemente umfasst, wobei wenigstens ein DMS-Element vorzugsweise am Auslegersystem (5) und/oder am Kranturm (4) angeordnet ist.
  12. Kran nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, daß wenigstens eine Meßeinrichtung eine Sensorik am Einziehwerk zur Messung der abgewickelten Seillänge und/oder wenigstens eine Sensorik am Wippwerk zur Messung des Aufrichtwinkels (9) umfasst.
  13. Mehrkransystem bestehend aus wenigstens zwei Kranen mit wenigstens einer Kransteuerung gemäß Anspruch 9.
  14. Auf einem Datenträger gespeicherte Software für eine Kransteuerung zur Ausführung des Verfahrens nach einem der Ansprüche 1 bis 8.
EP12008081.7A 2012-03-08 2012-12-03 Kran und Verfahren zur Kransteuerung Active EP2636634B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012004739A DE102012004739A1 (de) 2012-03-08 2012-03-08 Kran und Verfahren zur Kransteuerung

Publications (2)

Publication Number Publication Date
EP2636634A1 EP2636634A1 (de) 2013-09-11
EP2636634B1 true EP2636634B1 (de) 2015-07-15

Family

ID=47290564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12008081.7A Active EP2636634B1 (de) 2012-03-08 2012-12-03 Kran und Verfahren zur Kransteuerung

Country Status (5)

Country Link
US (1) US10138094B2 (de)
EP (1) EP2636634B1 (de)
CN (1) CN103303802B (de)
DE (1) DE102012004739A1 (de)
ES (1) ES2544445T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236346A1 (de) 2021-05-14 2022-11-17 Palfinger Ag Verfahren zum steuern und/oder regeln eines fahrzeuggebundenen hebezeuges

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010014310U1 (de) * 2010-10-14 2012-01-18 Liebherr-Werk Ehingen Gmbh Kran, insbesondere Raupen- oder Mobilkran
CN104692250B (zh) * 2015-02-05 2016-11-02 三一汽车起重机械有限公司 起重机及其力矩测量系统与方法
DE102015202734A1 (de) * 2015-02-16 2016-08-18 Terex Cranes Germany Gmbh Kran und Verfahren zum Beeinflussen einer Verformung eines Auslegersystems eines derartigen Krans
DE102016004350A1 (de) * 2016-04-11 2017-10-12 Liebherr-Components Biberach Gmbh Kran und Verfahren zum Steuern eines solchen Krans
US11084691B2 (en) 2016-04-08 2021-08-10 Liebherr-Components Biberach Gmbh Crane
DE102016004266A1 (de) * 2016-04-08 2017-10-12 Liebherr-Werk Biberach Gmbh Baumaschine, insbesondere Kran, und Verfahren zu deren Steuerung
US11319193B2 (en) * 2017-07-28 2022-05-03 Brandt Industries Canada Ltd. Monitoring system and method
CN108328476B (zh) * 2018-04-08 2023-12-12 苏州库力铁重工有限公司 用于起重机的检修装置
JP7084347B2 (ja) * 2019-03-29 2022-06-14 グローブライド株式会社 ウインチ制御システム
US11447373B2 (en) 2019-09-27 2022-09-20 Caterpillar Inc. Lift capacity system for lifting machines
CN111761574B (zh) * 2020-05-28 2022-08-02 中联重科股份有限公司 判断臂架可进行的操作的安全性的方法和装置及工程机械
JP2024515632A (ja) 2021-04-12 2024-04-10 ストラクチュアル サービシズ インコーポレイテッド クレーンオペレータを支援するためのシステム及び方法
CN113340257B (zh) * 2021-08-09 2021-12-14 三一汽车起重机械有限公司 一种起重机的旁弯检测方法、装置、起重机及电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2050294B (en) * 1979-05-18 1983-04-07 Coles Cranes Ltd Safe load indicator
DE19842436A1 (de) * 1998-09-16 2000-03-30 Grove Us Llc Shady Grove Verfahren und Vorrichtung zur Kompensation der Verformung eines Kranauslegers bei dem Aufnehmen und Absetzen von Lasten
DE19931301B4 (de) * 1999-07-07 2005-08-18 Liebherr-Werk Ehingen Gmbh Verfahren und Vorrichtung zum Führen eines Kranlasthakens
DE102006040782A1 (de) * 2006-08-31 2008-03-20 Liebherr-Werk Nenzing Gmbh, Nenzing Sicherungs- und Steuerungsverfahren für Krane
JP4986643B2 (ja) * 2007-02-01 2012-07-25 株式会社北川鉄工所 タワークレーンにおける吊荷の位置表示方法及び吊荷位置表示装置を備えたタワークレーン
DE102009016366A1 (de) * 2008-04-11 2009-12-17 Terex-Demag Gmbh Kran sowie Verfahren und System zum Betreiben eines Krans mit Hilfe von GPS
DE202008008174U1 (de) * 2008-06-18 2009-11-05 Liebherr-Werk Ehingen Gmbh Kran, vorzugsweise Mobil- oder Raupenkran
US8352129B2 (en) * 2008-10-16 2013-01-08 Eaton Corporation Motion control of work vehicle
FI122429B (fi) * 2008-12-29 2012-01-31 Bronto Skylift Oy Ab Menetelmä henkilönostimen puomin taipuman mittaamiseksi, henkilönostin sekä mittausjärjestelmä
DE102009032269A1 (de) * 2009-07-08 2011-01-13 Liebherr-Werk Nenzing Gmbh Kransteuerung zur Ansteuerung eines Hubwerkes eines Kranes
CN102367158B (zh) * 2011-09-15 2013-05-15 济南富友慧明监控设备有限公司 一种基于塔身刚度的塔机倾翻临界状态判断方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236346A1 (de) 2021-05-14 2022-11-17 Palfinger Ag Verfahren zum steuern und/oder regeln eines fahrzeuggebundenen hebezeuges

Also Published As

Publication number Publication date
US10138094B2 (en) 2018-11-27
ES2544445T3 (es) 2015-08-31
US20130233820A1 (en) 2013-09-12
CN103303802B (zh) 2016-10-05
CN103303802A (zh) 2013-09-18
DE102012004739A1 (de) 2013-09-12
EP2636634A1 (de) 2013-09-11

Similar Documents

Publication Publication Date Title
EP2636634B1 (de) Kran und Verfahren zur Kransteuerung
EP2298687B1 (de) System zum Erfassen der Lastmasse einer an einem Hubseil eines Kranes hängenden Last
EP3408208B1 (de) Kran und verfahren zum steuern eines solchen krans
EP2135834B1 (de) Kran, vorzugsweise Mobil- oder Raupenkran
EP3362400B1 (de) Anordnung aus einer steuerung und einem mobilen steuerungsmodul
DE102011107754A1 (de) Verfahren zur Überwachung der Kransicherheit während des Rüstvorgangs, sowie Kran und Kransteuerung
EP4013713B1 (de) Kran und verfahren zum steuern eines solchen krans
WO2016128119A1 (de) Kran sowie verfahren zum überwachen der überlastsicherung eines solchen krans
DE102008021627A1 (de) Mobilkran und Verfahren zum Betreiben eines Mobilkranes
EP2524892A1 (de) Kransteuerung
EP1975114A1 (de) Schwingungskompensation am Hubgerüst eines Flurförderzeugs
DE102015208071A1 (de) Fahrbare Arbeitsmaschine und Verfahren zu deren Betrieb
EP3256415A1 (de) Kran sowie verfahren zum überwachen der überlastsicherung eines solchen krans
DE102015003177A1 (de) Verfahren zum Betrieb einer mobilen Arbeitsmaschine mit Bodendruckbegrenzung
DE102020125626A1 (de) System und verfahren zur bestimmung einer hubkapazität einer maschine
EP3428112B1 (de) Hebezeug, insbesondere ein mobilkran oder ein seilbagger, mit einer vorrichtung zur überwachung des aufricht- und ablegevorganges eines auslegersystems und entsprechendes verfahren
DE19931302A1 (de) Kontinuierlich verstellbarer Kran
EP3853167A1 (de) Kran mit einer antikollisionseinrichtung sowie verfahren zum einrichten einer solchen antikollisionseinrichtung
DE102012106222A1 (de) Verfahren zur automatischen Reichweitenbegrenzung bei Hubarbeitsbühnen
EP3532425B1 (de) Vorrichtung zur kompensation von schrägzug bei kranen
DE102014012457A1 (de) Automatisches Aufrichten eines Krans
EP0672889A2 (de) Verfahren zur Erfassung der Änderung des Radius eines Auslegers eines Kranes unter Last
DE102017202009A1 (de) Kran
DE102021128317A1 (de) Verfahren und System zur Planung eines Einsatzes zum Heben einer Last mit einem Kran
DE2140779C3 (de) Vorrichtung zum Bestimmen der Grenzbelastungen von Auslegerkranen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131204

RIC1 Information provided on ipc code assigned before grant

Ipc: B66C 13/46 20060101AFI20150212BHEP

Ipc: B66C 13/18 20060101ALI20150212BHEP

Ipc: B66C 23/26 20060101ALI20150212BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150413

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 736672

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012003775

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2544445

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150715

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151015

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151016

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012003775

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

26N No opposition filed

Effective date: 20160418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151203

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161203

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 736672

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171203

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231227

Year of fee payment: 12

Ref country code: FR

Payment date: 20231220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231221

Year of fee payment: 12